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Abstract—Group skyline query is a powerful tool for optimal group analysis. Most of the existing group skyline queries select optimal

groups by comparing the dominance relationship between aggregate-based points; such feature creates difficulties for users to specify

an appropriate aggregate function. Besides, many significant groups that have great attractions to users in practice may be overlooked.

To address these issues, the group skyline (GSky) query is formulated on the basis of a general definition of group dominance operator.

While the existing GSky query algorithms are effective, there is still room for improvement in terms of progressiveness and efficiency.

In this paper, we propose some new lemmas which facilitate direct generation of the GSky query results. Consecutively, we design a

layered unit-based (LU) algorithm that applies a layered optimum strategy. Additionally, for the GSky query over the data that are

dynamically produced and cannot be indexed, we propose a novel index-independent algorithm, called sorted-based progressive (SP)

algorithm. The experimental results demonstrate the effectiveness, efficiency, and progressiveness of the proposed algorithms. By

comparing with the state-of-the-art algorithm for theGSky query, our LU algorithm ismore scalable and two orders of magnitude faster.

Index Terms—Data management, group skyline query, progressive algorithms

Ç

1 INTRODUCTION

SKYLINE query, as a useful tool in decision making
applications [1], [2], receives growing attention in the

database community. Given a set of data points P in a
d-dimensional space, the skyline query retrieves the points
that are not dominated by any other point in P [3]. Here, a
point p dominates another point p0, if and only if p is not
worse than p0 in all the dimensions and p is better than p0 in
at least one dimension. A point that is not dominated by
any other point is called skyline.

There are abundant works about skyline queries [2],
[3], [4], [5]. In addition to the traditional skyline query,
many skyline query variants have also been studied in
the literature. These variants include reverse skyline
queries [6], [7], skyline queries under distributed environ-
ments [8], [9], [10], probabilistic skyline queries [11], [12],
[13], [14], skyline queries with constraints [15], [16], [17],
[18], [19], why-not range-based skyline queries [20], and

optimizing quality for probabilistic skyline computation
[21], to name just a few.

The skyline query and its variants facilitate to analyze
individual points, however, it is inadequate for many appli-
cations that need to compute optimal groups, such as a
travel agency selects some hotels and the coaches of NBA
teams select players.

As an example, a travel agency requires to select some
hotels for cooperation. Fig. 1 shows a hotel set H that con-
tains ten candidate hotels h1; h2; . . . ; h10 with two attributes,
distance to the destination and price. Without loss of the
generality, lower values of the two attributes are preferable.
Based on the dominance relationship between hotels, we
get the skyline set fh1; h2; h3g where each hotel is not domi-
nated by any other one in H. Assume that three hotels is
desired. We could select hotels from the skyline set
fh1; h2; h3g. The hotel group fh1; h2; h3g that only contains
skylines could be returned to the travel agency. However,
as analyzed in [22], some other hotel groups such as
fh1; h2; h4g consists of hotels with low prices and
fh3; h6; h10g including hotels close to the destination may be
appeal to the travel agency. Here, the hotel group
fh1; h2; h4g includes the hotel h4 that is dominated by h1

and h2. In the hotel group fh3; h6; h10g, it contains the hotels
h6 and h10 that are not skylines. In essence, h6 is only domi-
nated by h32fh3; h6; h10g. Similarly, h10 is dominated by h3

and h6 which are both included in the group fh3; h6; h10g.
To compute optimal groups of points, there are mainly

two approaches. One approach is to pick out optimal
groups by the dominance relationship between different
aggregate points. The functions, such as SUM, MAX, and
MIN, are commonly used to calculate the aggregate points.
However, as mentioned in [22], it is difficult to select an
appropriate function, and it overlooks many significant
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groups which have great attractions to users in practice. Liu
et al. [22] developed another approach, namely group sky-
line (GSky) query, that aims to identify optimal groups not
dominated by any other one of the same size. They formu-
lated a novel group dominance operator based on the domi-
nance relationship between different points of the groups.
Given two groups G and G0, G dominates G0 if and only if
each point p2G dominates or is equal to some point p02G0,
and for at least one point p, p dominates p0. The group of
points is called G-Skyline if it is dominated by no other
group of equal size. As well as some G-Skylines only con-
sisting of skyline points, the GSky query reports important
groups that include non-skyline points.

Considering the example in Fig. 1, the GSky query in [22]
returns the groups fh1; h2; h4g; fh1; h2; h5g; fh2; h3; h5g; fh1;
h3; h6g; fh2; h3; h6g, and fh3; h6; h10g that include some non-
skylines aswell as the group fh1; h2; h3g consisting of skylines.

In [22], it organizes the first k skyline layers with a
directed skyline graph (DSG) where k is the group size.
Based on the DSG, the point-wise and unit-wise algorithms
for the GSky query are proposed. Although the two algo-
rithms can process the GSky query effectively, there is still
room for improvement from the following two aspects.

� Progressiveness. The point-wise algorithm lacks prog-
ressiveness since it cannot get any result until the end
of the algorithm. While the unit-wise algorithm can
provide the G-Skylines in a progressive manner, its
progressiveness could also been greatly improved.

� Efficiency. There are a larger number of redundant
dominance tests in the point-wise algorithm. More-
over, in the two algorithms, numerous unqualified
candidate groups are generated and the search space
can be further reduced.

Furthermore, in many applications the data are dynami-
cally produced (e.g., they arrive from a stream), so they can-
not be indexed [2], [23]. In this case, the point-wise and
unit-wise algorithms proposed in [22] cannot be utilized to
process the GSky query directly, since they are all based on
a pre-computed index, namely DSG. Besides, similar to the
index-based algorithms for skyline queries, they suffer from
the well-known curse of dimensionality and face memory
management problems [23], [24].

Skyline computation has received considerable attention
in the database community, especially for progressive meth-
ods that can quickly return the initial results without read-
ing the entire database. There has been some works about

progressive algorithms for the skyline query [12], [13].
The GSky query is much more complex than the skyline
queries. The query time may be very long especially when
processing a big dataset or with a large group size k. In the
experiment, for an anti-correlated dataset with k ¼ 5, d ¼ 3,
and N ¼ 40; 000, the query time of the state-of-the-art algo-
rithm for the GSky query is larger than 24h. Therefore,
progressiveness is also a desirable property for the GSky
query algorithms.

In this paper, we develop two progressive algorithms for
the GSky query. To begin with, we propose some new lem-
mas and introduce the layered optimum strategy to boost
the GSky query performance, and present the LU algorithm.
Different from the UWise+ algorithm in [22], our LU algo-
rithm could generate the G-Skylines directly due to the pro-
posed lemmas. Then, to process the GSky query over the
data that are dynamically produced and cannot be indexed,
we present the index-independent algorithm, called SP, as
an important supplement of the index-based algorithms.

In brief, the key contributions of this paper are summa-
rized as follows.

� We exploit some new properties of the GSky query
and present novel lemmas which facilitate direct
generation of the GSky query results.

� We propose a new index-based algorithm, called LU,
by integrating the new lemmas and adopting the lay-
ered optimum strategy. We analyze correctness and
complexity of the LU algorithm.

� We investigate, for the first time, the GSky query
over the data that cannot be indexed. We present the
index-independent algorithm, namely SP.

� We offer an approach of continuously maintaining
the G-Skylines when data updates happen. We also
discuss an important variant of the GSky query with
a size constraint based on a novel ranking criterion.

� We perform an extensive experimental study with
both synthetic and real datasets to demonstrate the
performance of our proposed algorithms in terms of
effectiveness, efficiency, and progressiveness.

The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we introduce the
GSky query and the DSG. In Section 4, we propose the LU
algorithm. In Section 5, we design the SP algorithm. In
Section 6, we evaluate the performance of the proposed algo-
rithms by extensive experiments. In Section 7, we offer the
approach of continuouslymaintaining theG-Skylines and for-
mulate the top l GSky query. In Section 8, we conclude the
paper and also expatiate the directions for futurework.

2 RELATED WORK

In this section, we review the related research about group
skyline queries and the skyline queries under constraints.

2.1 Group Skyline Queries

Group skyline queries are very important in many applica-
tions that need to compute optimal groups of points. In
most of the group skyline queries, optimal groups are com-
puted by the dominance relationship between correspond-
ing aggregate-based points. Su et al. [25] formulated top k

Fig. 1. The skyline query example of a hotel set.
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combinatorial skyline query (k-CSQ) which returns the
combinatorial skyline tuples whose aggregate values for a
certain attribute are the highest. Chung et al. [26] extended
the traditional skyline query and formulated a combinato-
rial skyline query, namely CSQ, to find the outstanding sky-
line combinations. Im et al. [1] studied the group skyline
query based on the dominance relationship that is checked
according to the aggregate values of attributes. Magnani
et al. [27] introduced the aggregate skyline query that
merges two basic database operators, skyline and group by.
Zhang et al. [28] focused on the novel problem that aims to
report k tuple groups dominated by no other group of equal
size. The dominance test is also on the basis of aggregate-
based group dominance relationship. Wu et al. [29] investi-
gated a problem of creating competitive products which are
not dominated by the products in the existing market. Here
each new product is generated by combing its correspond-
ing attributes from different source tables. Jiang et al. [30]
defined a top-k combinatorial metric skyline (kCMS) query
to find k combinations of data points according to a mono-
tonic preference function. Each combination returned by
the kCMS query has the query object in its metric skyline.
Recently, Zhou et al. [31] were concerned about product
selection under price promotion and formulated a con-
strained optimal product combination (COPC) problem.

In the group skyline queries aforementioned, the aggr-
egate values of corresponding attributes are taken into
account when checking the dominance relationship betw-
een different groups. However, it is difficult for users to
specify an appropriate aggregate function. Moreover, it
overlooks many significant groups that may contain non-
skyline points [22].

Liu et al. [22] formulated the Pareto group-based sky-
line (GSky) query which retrieves G-Skyline groups not
g-dominated by any other group of the same size. They
presented the directed skyline graph to capture the domi-
nant relationship between the points within the first k
skyline layers. Furthermore, two heuristic algorithms,
point-wise and unit group-wise algorithms, were designed
to process the GSky query. After that, Wang et al. [32] dev-
eloped the minimum g-skyline support structure, called
MDG, and proposed two efficient algorithms. Yu et al. [33]
defined the multiple skyline layers, and presented two fast
algorithms to compute the G-skylines due to the observa-
tion that skyline points contribute more to skyline groups
compared to nonskyline points. In this paper, we focus
on the GSky query formulated in [22]. We develop the LU
algorithm that has better progressiveness and efficiency
than the state of the art algorithm for the GSky query.
Moreover, we investigate the GSky query over the data
that cannot be indexed for the first time and propose the
index-independent algorithm.

2.2 Skyline Queries under Constraints

Since the traditional skyline queries always return a large
number of query results [19], many approaches are pro-
posed to identify k representative skylines having the high-
est dominant capacity or the maximum diversification.

Papadias et al. [3] proposed a top k dominating query
which aims to find points having the largest dominance
capacity. This query has the advantages of both ranking

queries and skyline queries, which are with the control on
the size of the answer set and without users’ efforts to spec-
ify ranking functions. Lin et al. [18] studied the problem of
selecting k skyline points such that the number of points,
which are dominated by at least one of these k skyline
points, is maximized. Tao et al. [17] proposed a distance-
based skyline query that minimizes the distance between a
non-representative skyline point and its nearest representa-
tive one. Huang et al. [16] presented an l�SkyDiv query to
retrieve l skylines having the maximum diversity. Lu et al.
[15] concerned the case when the actual cardinality of sky-
line results is less than the desired cardinality k. They pro-
posed a new approach, namely skyline ordering, to form a
skyline-based partitioning of a given data set. Then they
applied the set-wide maximization technique, which is to
find an object set dominated the largest number of points, to
process each partition. Zhou et al. [34] formulated a top k
favorite probabilistic products (TFPP) query to select k
products which can meet the needs of different customers
at the maximum level.

The above representative skyline queries only highlight
some features which are stability, scale invariance, diversifi-
cation of the results, and partial knowledge of the record
scoring function [19]. Conversely, Magnani et al. [19]
focused on the representative skyline queries in terms of
both the significance and diversity of results to satisfy all
the features aforementioned.

In general, the above approaches to the skyline queries
under constraints cannot be utilized to the GSky query in this
paper. The skyline queries with constraints fucus on selecting
representative skylines based on some ranking criterions,
however, the GSky query pays more attention on groups of
points that are dominated by no other group of equal size.

The frequently used symbols are summarized in Table 1.

3 PRELIMINARIES

In this section, we introduce the GSky query and the direct
skyline graph.

3.1 The Group Skyline (GSky) Query Problem

In this subsection, we introduce the skyline query and the
GSky query, respectively.

Definition 3.1 (Skyline Query [3]). Given a dataset P with
cardinality N , the skyline query returns all the points p2P
that are not dominated by any other point p02P� fpg. Without
loss of the generality, assume that smaller value is preferred in

TABLE 1
The Summary of Frequently Used Notations

Notation Definition

P The dataset
N The size of the dataset
p A point
G The group of points
k The group size
up The unit group of point p
SLi The ith skyline layer
ParSetðpÞ The set of all the parents of p
TailSetðpÞ The tail set of p
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each dimension. Then, point p0 dominates point p, denoted as
p0�p, if it holds that for all i, p0½i��p½i� and for at least one i,
p0½i�<p½i� for 1�i�d. The points p2P which are not dominated
by any other point p02P�fpg are the skylines.

Definition 3.2 (Skyline Layer). Given a dataset P with cardi-
nality N and a parameter k, the first skyline layer SL1 includes
all the skylines of P , and the ith skyline layer SLi for 1<i�k
consists of the skylines of P� S i�1

j¼1SLj.

Due to Definition 3.2, the points within SLi are not domi-

nated by any point in P� S i�1
j¼1SLj. Assume that the objects

within P are uniformly distributed in each dimension, there
are no objects within P sharing the same value along any
dimension, and all dimensions are reciprocally indepen-
dent. Let �hi represent the cardinality of SLi and as intro-
duced in [35], its expected value could be computed as

�hi�
�
lnNiþg

�d�1
ðd�1Þ! : (1)

HereN1 ¼ N ,Ni ¼ N�Pi�1
j¼1 �hj for 2�i�k, and g is the Euler-

Mascheroni constant approximately equal to 0.577 [35].

Definition 3.3 (Parent Set, ParSet). Given a point p2P , the
parent set of p is defined as

ParSetðpÞ ¼ fp02P jp0�pg:
Moreover, for a set P 0�P , we have

ParSetðP 0Þ ¼ [p2P 0ParSetðpÞ:

Definition 3.4 (Group Dominance [22]). Given two k-point
groups G�P and G0�P , it holds that G g-dominates G0,
denoted as G�gG

0, if there are two permutations of G and G0,
G ¼ fp1; p2; . . . ; pkg and G0 ¼ fp01; p02; . . . ; p0kg, satisfying
pi	p0i for 1�i�k and pi�p0i for at least one i. Here pi	p0i
means that pi�p0i or pi is equal to p0i.

Definition 3.5 (Group Skyline Query, GSky). Given a
dataset P and a parameter k, the GSky query returns k-point
groups G�P that are g-dominated by no other group of the
same size, formally,

GSkyðP; kÞ ¼ fG�P j@G0�P;G0�gG; jGj ¼ jG0j ¼ kg:
The k-point group G that is g-dominated by no other group of
the same size is said to be G-Skyline.

Consider the dataset in Fig. 1. For two groups G ¼
fh1; h2; h3g and G0 ¼ fh4; h5; h6g, we have G�gG

0 because
h1�h4, h2�h5, and h3�h6. Therefore, G

0 is not a G-Skyline.

The group G ¼ fh1; h2; h3g is a G-Skyline since it is not g-
dominated by any other group of equal size.

3.2 The Directed Skyline Graph (DSG)

In [22], it organizes the skyline layers by a directed skyline
graph where a node represents a point and an edge repre-
sents the dominance relationship between two different
points. Besides, it also proves that each G-Skyline with size
k only contains the points within the first k skyline layers
due to Theorem 3.1. The structure of each node is [layer
index, point index, parents, children]. Here the layer index
indicates the skyline layer that the point lies on and the point
index uniquely identifies the point. Additionally, the parents
include all the points that dominate this point, and the chil-
dren contain all the points that are dominated by the point.

Theorem 3.1. For a given G-Skyline of size k G ¼ fp1;
p2; . . . ; pkg, points pi2G are all included in the first k skyline
layers [22].

Going back to the example in Fig. 1, the skyline layers are
SL1 ¼ fh1; h2; h3g, SL2 ¼ fh4; h5; h6g, and SL3 ¼ fh7; h8;
h9; h10g. Each hotel in SL1 is dominated by no other hotel in
H, while SL2 includes all the skylines over H�SL1, and SL3

contains all the skylines over H�SL1�SL2. Fig. 2 shows the
DSG over the hotel setH in Fig. 1. The edges of the DSG rep-
resent the dominance relationship between different hotels.
For instance, the edge h1!h4 means that h4 is dominated by
h1. In the node representing h4, it stores its parent set
fh1; h2g and its child set fh7g as well as its layer index 2 and
point index 4. Due to Theorem 3.1, the G-Skylines only con-
tain the points in the first 3 skyline layers in this example.

It requires a lot of storage cost and a long time to create the
DSG especially when processing large datasets. When creat-
ing a DSG of a dataset, it needs to find out all the parents and
children of each point in the dataset. This also makes the
DSG difficult to be managed. Besides, if adding a new point
to the dataset or deleting a point from the dataset, the DSG
should be refreshed and abundant nodes of the points domi-
nated by p and dominating p are updated in turn.

As an important input of the index-based algorithms for
the GSky query, the DSG in [22] could be adjusted due to
the corresponding algorithms. Similar to the UWise+ algo-
rithm in [22], our LU algorithm in Section 4.2 generates can-
didate groups by combing unit groups. The UWise+ and
LU algorithm are only closely related to parents of each
point. Thus, the structure of each node in the DSG could be
refined as [layer index, point index, parents]. Here for a point

Fig. 2. The DSG over the hotel set in Fig. 1.

Fig. 3. The LU algorithm over the hotel dataset in Fig. 1 with k¼3.
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p, its parents include the points which dominate p. By this
adjustment, when creating the DSG, it saves the cost of com-
puting the children of each point, and when adding or
deleting a point p, only the nodes of the points dominated
by p need to be updated.

In addition, to process the GSky query with an arbitrary
size, we create the DSG over the dataset. Consequently,
when processing the DSG query with size larger than k, it is
unnecessary to update the DSG by adding more skyline
layers in advance.

4 THE INDEX-BASED ALGORITHM FOR THE GSKY

QUERY

In this section, we introduce and analyze the UWise+ algo-
rithm in [22]. Afterward, we present the new index-based
algorithm, called LU.

4.1 The UWise+ Algorithm

Liu et al. [22] formulated the GSky query and proposed two
effective algorithms, the point-wise and unit-wise algo-
rithms, for processing the GSky query. To the best of our
knowledge, the unit-wise algorithm, called UWise+, has
better performance and is considered the state of the art
algorithm for the GSky query.

Definition 4.1 (Unit Group [22]). Given a point p2P , the
unit group of p is denoted as

up ¼ fpg[ParSetðpÞ:

Definition 4.2 (Tail set [22]). Given a point p, the tail set
TailSetðpÞ consists of all the points p0 whose point indexes are
larger than that of p.

In Fig. 2, TailSetðh1Þ ¼ fh2; h3; h4; h5; h6; h7; h8; h9; h10g
and TailSetðh5Þ ¼ fh6; h7; h8; h9; h10g.

The UWise+ algorithm contains three stages that are unit
group reordering, subset pruning, and G-Skyline computa-
tion stages. In the unit group reordering stage, it first builds
1-unit group of each point within the DSG and reorders
these unit groups in the reverse order of their point index.
By this, the unit groups are likely in the decreasing order of
their unit group sizes. Then, in the subset pruning stage, for
each candidate group G in 1-unit groups with jGj<k, a new
candidate group Glast is generated by combing G with its
tail set. The subtree of G can be pruned directly if jGlastj�k
and Glast of size k is reported as a G-Skyline. Moreover, the
candidate groups in the subtree of G’s right siblings are
pruned also. The G-Skyline computation stage is an itera-
tion procedure. For each candidate group G0 of size less
than k, it computes the parents of each unit group in G0 and
removes unit groups of these parents from TailSetðG0Þ. By
merging up and G0 for each left unit group up2TailSetðG0Þ,
new candidate groups G00 are generated. The candidate
groups G00 of size k could be reported as G-Skylines.
Besides, the candidate groups with size no less than k are
pruned, and the ones with size less than k are remained for
generating new G-Skylines in the next iteration.

UWise+ contains k times iterations at most. In each itera-
tion, for a candidate group G, the UWise+ algorithm creates
new candidate groups G0 by adding one unit within the tail
set of G at a time. It cannot get the G-Skylines containing G

until multiple iterations. This results in a large number of
unqualified candidate groups which can be pruned in the
left iterations, and it takes a lot of time to check them.

4.2 The Layered Unit-Based Algorithm

In the UWise+ algorithm, it generates a large number of
candidate groups, prunes the unqualified groups, and picks
out the G-Skylines. This always produces redundant com-
putation for generating and pruning unqualified candidate
groups. To boost the query performance in terms of pro-
gressiveness and efficiency, we develop the layered unit-
based (LU) algorithm by adopting a layered optimum strat-
egy and based on the following lemmas.

Lemma 4.1. Given a G-Skyline G and a group G0�SLi\G
where 1�i�k, it holds that jG0j�k�iþ1.

Proof. Since G0�SLi\G, it holds that G0 consists of points
within the ith skyline layer and

jG0[ParSetðG0Þj ¼ jG0jþjParSetðG0Þj�k:
Due to Definition 3.2, any point p2SLi is dominated by at
least one point p02SLj for 1�j< i. Therefore jParSet
ðG0Þj
i�1. Since jG0jþjParSetðG0Þj�k and jParSetðG0Þj

i�1, it is easy to get jG0j�k�jParSetðG0Þj� k�iþ1. There-
fore, this lemma holds. tu
Lemma 4.1 means that each G-Skyline G of size k con-

tains at most k�iþ1 points within SLi for 1�i�k. It provides
an upper bound of the size of G\SLi.

Lemma 4.2. Each k-point group G� S i
j¼1SLj, which con-

tains at least one point within SLi, only has probability to be
g-dominated by a group G0� S i�1

j¼1SLj with jG0j ¼ k.

Proof. Assume that there is a k-point group G00� S t
j¼1SLj

and G00 contains at least one point within SLt for t
i.
Additionally, G00 g-dominates G� S i

j¼1SLj. Due to
Definition 3.4, G00�gG if for each point p002G00, it holds
that p00 dominates or is just equal to some point p2G, and
for at least one point p00, p00�p. However, the points
p2G00\SLt are dominated by or incomparable to some
points in G for t
i. This contradicts to the assumption.
Therefore, this lemma holds. tu
In Fig. 1, for fh1; h3; h5g where h12SL1; h32SL1, and

h52SL2, it is g-dominated by fh1; h2; h3g where each hotel is
within SL1. The hotel groups of size 3, which contain hotels
within SLi for 2�i�3, do not g-dominate fh1; h3; h5g. For an
instance, fh1; h3; h4g is incomparable to fh1; h3; h5g since h5

is incomparable with h4. For a unit group u4 ¼ fh1; h4g of
h42SL2, according to Lemma 4.2, we could generate two G-
Skylines u4[u2 ¼ fh1; h2; h4g and u4[u3 ¼ fh1; h3; h4g by
merging u4 with the unit groups u2 and u3 which are the
unit groups of the points within SL1�u4.

Due to Lemma 4.2, any group G, which contains at least
one point within SLi, may be only g-dominated by the
groupsG0� S i�1

k¼1SLk. Besides, the groups of k points within
the first skyline layer SL1 could be returned as G-Skylines,
directly, since they are dominated by no groups of equal size.

Theorem 4.3 (Verification of G-Skyline [22]). Given a
group G ¼ fp1; p2; . . .; pkg, it is a G-Skyline group, if its corre-
sponding unit group set S ¼ [ki¼1ui contains k points.
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Lemma 4.4. Given a group G�SLi for jGj�k and 1�i�k, we
have G0 ¼ G[ParSetðGÞ is a G-Skyline if jG0j ¼ k. Moreover,
G0 with jG0j>k is not a G-Skyline, and the points within G
are not contained in any G-Skyline at the same time.

Proof. This lemma holds due to Theorem 4.3. tu
Continuing the example in Fig. 1 with k ¼ 3, for

fh10g�SL3, we have fh10g[ParSetðfh10gÞ ¼ fh3; h6; h10g is a
G-Skyline. Considering fh4; h5g�SL2, it holds that fh4; h5g[
ParSetðfh4; h5gÞ ¼ fh1; h2; h4; h5g is not a G-Skyline. And
the hotels h4 and h5 are not contained in a G-Skyline
simultaneously.

Lemma 4.5. Given a point p2P , the unit group up is a G-Skyline
if jupj ¼ k, and up could be pruned if jupj>k. Moreover, given
a unit group set U with 1�jU j�k, G ¼ S

u2Uu is a G-Skyline
if jGj ¼ k, and G could be pruned if jGj>k.

Proof. This lemma holds due to Theorem 4.3. tu
According to Lemmas 4.1 and 4.2, we introduce the lay-

ered optimum strategy to the GSky query, and propose the
following LU algorithm. In the LU algorithm, we generate
the G-Skylines contain j points within SLi for 1�i�k and
1�j�k�iþ1 respectively and directly.

Algorithm. As depicted in Algorithm 1, it takes the DSG
DS and the group size k as the inputs. Line 1 first reports
the unit groups whose sizes are equal to k as G-Skylines,
and preprocesses DS by removing the nodes of points p2P
and its children if jupj
k due to Lemma 4.5. Later, Lines 3
to 5 compute the start layer. The G-Skylines contain at
least one point within SLstart layer. If k�jSL1j, we have
start layer ¼ 1. Otherwise when

Pi�1
t¼1 jSLtj<k�Pi

t¼1 jSLtj,
it holds start layer ¼ i. Line 6 checks whether start layer is
equal to 1. If it returns “yes”, Lines 7 to 10 are executed to
generate the G-Skylines that only contain points within the
first skyline layer SL1, and start layer is updated as
start layerþ1. Lines 11 to 24 are an iteration procedure that
generates the remaining G-Skylines. In an iteration, it builds
the G-Skylines that contain just j points within SLi for
1�j�k�iþ1. Line 12 computes the unit set Ui that contains
all the unit groups over the ith skyline layer SLi. In Fig. 2,
SL2 ¼ fh4; h5; h6g, u4 ¼ fh1; h2; h4g, u5 ¼ fh2; h5g, and
u6 ¼ fh3; h6g. Therefore, we have U2 ¼ fu4; u5; u6g ¼ ffh1;
h2; h4g; fh2; h5g; fh3; h6gg. Line 13 builds unit group sets
U 0�Ui with jU 0j ¼ j for 1�j�k�iþ1 due to Lemma 4.1. For
each unit group set U 0, a new candidate group G is gener-
ated in Line 15. Lines 16 and 17 identify and report the
groups G with jGj ¼ k as G-Skylines, and the ones of sizes
larger than k are pruned based on Definition 3.5. To further
improve the progressiveness, Line 18 sorts the left candidate
groups G in non-increasing order of their sizes. Thereafter,
Lines 19-24 aim to compute the G-Skylines based on each
candidate group G. If there are some G-Skylines G0 satisfy-
ing G�G0, then the groups G00 ¼ G0�G could be computed
by invoking LU that takes the DSG DS0 and k�jGj as the
inputs. Here DS0 contains the points within

S i�1
t¼1SLt�G.

Line 23 returns the groups G0 of size k as G-Skylines. The
groups G0 with jG0j>k are pruned due to Lemma 4.4.

To generate the G-Skylines that contain just j points
within SLi for 1�j�k�iþ1 and 1�i�k, Line 13 of the LU
algorithm generates unit group sets U 0�Ui of size j. It is

noticeable that the G-Skylines may contain at most t points
within SLj where t is far less than k�iþ1.

Algorithm 1. Layered Unit-Based (LU) Algorithm for the
GSky Query

Input: A DSGDS and group size k
Output: G-Skylines
1: Report the unit groups up with jupj ¼ k as G-Skylines and

preprocess DS by removing each node of point p with
jupj
k due to Lemma 4.5

2: Initialize start layer 1
3: for i 1 to k do
4: if

Pi
t¼1 jSLtj
k then

5: start layer i and break
6: if start layer¼¼1 then
7: Compute the unit group set U1 fupjp2SL1g that consists

of unit groups of all the points within SL1

8: Generate unit group sets U 0�U1 with jU 0j ¼ k
9: Report G S

u2U 0u with jG0j ¼ k as G-Skylines due to
Lemma 4.4

10: start layer start layerþ1
11: for i start layer to k do
12: Compute the unit group set Ui fupjp2SLig that consists

of unit groups of all the points within SLi

13: Generate unit group sets U 0�Ui of size j for 1�j�k�iþ1
due to Lemma 4.1

14: for each unit group set U 0 do
15: Generate a new candidate group G S

u2U 0u
16: Report the groups G as G-Skylines if jGj ¼ k
17: Delete the groups G if jGj>k
18: Sort the left candidate groups G of sizes less than k in

non-increasing order of jGj
19: for Each candidate group G do
20: Compute a DSG DS0 that consists of the points withinS i�1

t¼1SLt�G
21: Generate candidate groups G00 LU(DS0, k�jGj) due to

Lemma 4.2
22: Build new candidate groups G0 G[G00 for each G00

23: Report the groups G0 as G-Skylines if jG0j ¼ k on basis
of Lemma 4.4

24: Delete the groups G0 if jG0j>k

Example. Going back to the example in Fig. 1 with k ¼ 3, in
Algorithm 1, it organizes the dataset by the DSG DS
shown in Fig. 2. We first preprocess the DS by removing
nodes of the points h4; h7; h8; h9; and h10 whose sizes of
unit groups exceed 3. Additionally, the hotel groups
u4 ¼ fh1; h2; h4g and u10 ¼ fh3; h6; h10g are returned as G-
Skylines due to Lemma 4.5. Afterward, by executing
Lines 3 to 5 of the LU algorithm, it holds that start
layer ¼ 1. The hotel group u1[u2[u3 ¼ fh1; h2; h3g over
SL1 is generated as a G-Skyline, directly (Lines 7-9). Here
start layer is refreshed as 2. Then, Line 13 generates unit
group sets fu5g, fu6g, and fu5; u6g which include at most
two units of the points within SL2 due to Lemma 4.1.
Next, new hotel groups fh2; h5g, fh3; h6g and fh2; h3;
h5; h6g are computed by merging the hotels within the
above unit group sets, respectively. Since the size of
fh2; h3; h5; h6g is larger than 3, it is pruned directly. Based
on the unit u5 ¼ fh2; h5g, it generates u5[u1 ¼ fh1; h2; h5g
and u5[u3 ¼ fh2; h3; h5g as G-Skylines by invoking the
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LU algorithm recursively. Similarly, for the unit u6 ¼
fh3; h6g, it gets new G-Skylines u6 [ u1 ¼ fh1; h3; h6g and
u6 [ u2 ¼ fh2; h3; h6g.

Theorem 4.6. The LU algorithm can return exactly GSky
query results.

Proof. This theorem means that there is no G-Skyline
missed as an unqualified group (i.e., no false negative)
and there is no unqualified group returned as a G-Skyline
(i.e., no false positive). tu
Suppose that there is a G-Skyline G of size kmissed as an

unqualified group. On this supposition, it holds that G is g-
dominated by other G-Skyline G0 or jGj>k since in the LU
algorithm, only the candidate groups of sizes larger than k
are deleted as unqualified groups. The group G is generated
by merging unit groups in the LU algorithm, and it is domi-
nated by no other group of equal size due to Theorem 4.3.
Therefore, if G is identified as an unqualified group, we
have jGj>k. This contradicts the assumption that G is a
G-Skyline of size k.

In the LU algorithm, it may generate some unqualified
groups G whose sizes are larger than k. These unqualified
groups are identified and pruned in Lines 17 or 24, and there
is not any unqualified groupG returned as a G-Skyline. This
ensures no false positive.

As analyzed aforementioned, this theorem holds.

Theorem 4.7. The time complexity of the LU algorithm is
Oðð�hkÞ�

Pk
i¼2 ð�hik ÞÞ; where �hi ¼ jSLij and �h ¼

Pk
i¼1 �hi.

Proof. The G-Skylines of size k consist of the points within
the first k skyline layers, and the maximum cardinality of
the G-Skylines is ð�hkÞ. Moreover, each G-Skyline includes
at most k�iþ1 points of the ith skyline layer due to
Lemma 4.1. The groups which include more than
k�iþ2 points within the ith skyline layer are not G-Sky

lines for 1�i�k. The size of these groups could be com-

puted as
Pk

j¼k�iþ2 ð�hij Þ�ð�h��hik�j Þ. Therefore, the maximum

size of the G-Skylines is ð�hkÞ�
Pk

i¼2
Pk

j¼k�iþ2 ð�hij Þ�ð�h��hik�j Þ
where �h ¼Pk

i¼1 �hi. tu
The LU algorithm generates the G-Skylines directly.

Since ð�hkÞ�
Pk

i¼2
Pk

j¼k�iþ2 ð�hij Þ�ð�h��hik�j Þ< ð�hkÞ�
Pk

i¼2ð�hik Þ; it holds
that the time complexity of the LU algorithm is Oðð�hkÞ�Pk

i¼2 ð�hik ÞÞ; and this theorem holds.
To improve the query performance of the GSky query,

the LU algorithm is designed by the use of the layered opti-
mum strategy. Besides, the LU algorithm generates the G-
Skylines directly due to Lemmas 4.1 and 4.2. This brings sig-
nificant reduction of redundant computation for generating
and checking unqualified candidate groups.

5 THE INDEX-INDEPENDENT ALGORITHM FOR THE

GSKY QUERY

For the skyline query and its variants, the index-based algo-
rithms intuitively have superior performance than the
index-independent algorithms [2], [23]. This is because they
avoid accessing the entire dataset. However, the index-
based algorithms are significantly limited by the indexing
requirement. They are inappropriate to process the data

that are dynamically produced (e.g., they arrive from a
stream), and cannot be indexed [23], [24]. In this case, as
well as the algorithms in [22], [32], [33], our LU algorithm
cannot be utilized to process the GSky query directly. This
is since they are all based on the pre-computed index, DSG.
Moreover, the index-based algorithms for the GSky query
suffer from the well-known curse of dimensionality and
face memory management problems.

In this section, we investigate the GSky query over the
data that cannot be indexed for the first time, and propose
an index-independent algorithm, called SP, as an important
supplement of the index-based algorithms.

Lemma 5.1. Given two points p; p02P , p0 is not contained in any
G-Skyline if p�p0 and jupj
k.

Proof. Since p�p0, for each p002up, it holds that p00�p and
p00�p0. Therefore, each point within up dominates p0. Since
jupj
k, it holds that jup0 j>k, and p0 will not be contained
in any G-Skyline due to Lemma 4.5. As analysed above,
this lemma holds. tu
In the SP algorithm, we maintain a group pruning set

GPruSet�P with the following property.

1) For each p2GPruSet, the size of up exceeds k.
2) If a point p0 is dominated by someone within

GPruSet, it is not a G-Skyline due to Lemma 5.1.
3) Given two points p; p02GPruSet, it holds pbp0.
The first property ensures that GPruSet consists of

unqualified points that are not contained in any G-Skyline.
The second property means that any point dominated by
someone within GPruSet is not a G-Skyline, and could be
pruned safely. The last property of GPruSet plays a signifi-
cant role in refining the points within GPruSet due to the
following lemma.

Lemma 5.2. Given two points p2GPruSet and p02P , there is no
need to add p0 to GPruSet and p0 could be deleted directly if
p�p0.

Proof. This is since p�p0, for any points p00 dominated by p0,
we have p�p00 due to the transitive property of dominance
operator [4]. Due to Lemma 5.1, p00 could be pruned by p
safely. Therefore, any point pruned by p could be pruned
by p0 instead, and there is no need to add p0 to GPruSet. tu
Algorithm. In the SP algorithm as depicted in Algorithm 2,

it takes the dataset P sorted by a monotone function
and the group size k as the inputs. Here, we use the function
min1�i�dðt:aiÞ to sort the points within P and useP

1�i�dðt:aiÞ as the tie breaker which is also utilized in [14].
After sorting the points p2P , any point p is only dominated
by the points ranked before it.

Line 1 initializes a candidate group set CG and a
G-Skyline set GSky with ;. Besides, a set GPruSet includes
some points which are pruned but could be utilized to iden-
tify other unqualified points. Then, for each point p2P , it
first checks whether there is some point p02GPruSet that
dominates p. If it return “yes”, p could be pruned due to
Lemma 5.2. Otherwise, Lines 6 and 7 compute the parent
set ParSetðpÞ and create a unit group up by merging fpg and
ParSetðpÞ. If the size of up is no less than k, then the point p
is inserted into GPruSet and GPruSet is refreshed by
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removing the points that are dominated by p. Moreover, if
jupj ¼ k, up is added to GSky as a G-Skyline. Line 12 deletes
p from P due to Lemma 4.5. In case up contains less than k
points, for each group G2CG, we add a new group G[fupg
of size k to GSky (Lines 15-16). Besides, CG is refreshed by
adding up and the groups G[fupg whose sizes are less than
k (Lines 18-20). After the for loop (Lines 2-20), we gain all
the G-Skylines that are stored in GSky.

Algorithm 2. Sorted-Based Progressive (SP) Algorithm
for the GSky Query

Input: A dataset P sorted using a monotone function and the
group size k

Output: A GSky query result set GSky
1: Initialize CG ¼ GSky ; and GPruSet ;
2: for each p2P do
3: if p is dominated by some point p02GPruSet then
4: Delete p from P due to Lemma 5.2
5: else
6: Compute ParSetðpÞ
7: Generate unit group up fpg[ParSetðpÞ
8: if jupj
k then
9: Insert p toGPruSet and refreshGPruSet by removing

the points that are dominated by p
10: if jupj ¼ k then
11: Add up to GSky as a G-Skyline
12: Delete p from P due to Lemma 4.5
13: else
14: for each group G2CG do
15: if jG[upj¼¼k then
16: Add G[up to GSky as a G-Skyline
17: else
18: if jG[upj<k then
19: Add G[up to CG
20: Add up to CG
21: Return GSky

In the LU algorithm, the unit group of each point p could
be computed by up ¼ fpg[ParSetðpÞ where ParSetðpÞ has
been computed in advance and stored in the DSG. How-
ever, in the SP algorithm, when visiting a point, it needs to
compute its parents and get unit group of the point in turn.
The cost of computing the parents of points plays an impor-
tant impact on performance of the SP algorithm. Therefore,
we apply the group pruning set GPruSet to identify and
prune unqualified groups as soon as possible. For a point p
pruned by some one within GPruSet, the groups containing
p are unqualified and unnecessary to be generated.

Example. We illustrate the SP algorithm for the GSky
query on the hotel dataset in Fig. 1. The SP algorithm takes
a hotel set fh3; h6; h1; h10; h2; h9; h5; h4; h8; h7g where the
hotels are ranked in non-decreasing order of their minimum
attribute values as its input. The hotel h3 is visited first
and we have CG ¼ fh3g. For the hotel h6, it holds that
u6 ¼ fh3; h6g and CG ¼ ffh3g; fh3; h6gg. After visiting h1,
we get the G-Skyline fh1; h3; h6g and CG ¼ ffh1g; fh3g;
fh1; h3g; fh3; h6gg. Next, u10 ¼ fh3; h6; h10g is added to GSky
as a G-Skyline and h10 is inserted to CPruSet. In the same
way, taking into account the hotels h2, h9, and h5, we gain
the G-Skylines fh1; h2; h3g, fh2; h3; h6g, fh1; h2; h5g, and
fh2; h3; h5g, and h9 is pruned and added to GPruSet. Then,

since ju4j ¼ jfh1; h2; h4gj ¼ 3, u4 is added to GSky and h4 is
inserted to GPruSet. Now, we have GPruSet ¼ fh10; h9; h4g.
Thereafter, h8 is pruned and added to GPruSet because
ju8j ¼ 5> 3 and h8 is not dominated by any hotel within
GPruSet. At last, for the hotel h7 is dominated by
h42GPruSet, it cannot be contained in any G-Skyline and is
pruned directly due to Lemma 5.2.

Theorem 5.3. The SP algorithm can return exactly GSky query
results.

Proof. The proof of this theorem is similar to that of
Theorem 4.6. If there is a G-Skyline G missed as an
unqualified group, it must be pruned by some point
within GPruSet due to Lemma 5.2 or its size is larger
than k and pruned by Lemma 4.5. Hence G is not a
G-Skyline which contradicts the assumption. Addition-
ally, any unqualified group G of size larger than k will be
pruned by Lemma 5.2 or Lemma 4.5, and there is not any
unqualified group G returned as a G-Skyline. As ana-
lyzed above, this theorem holds. tu

Theorem 5.4. The time complexity of the SP algorithm is
O
�
N2þN�jCGj�Þ where N is the cardinality of the dataset P

and CG consists of the candidate groups of sizes less than k.

Proof. The SP algorithm needs to take all the points within
P into account. Let N represent the cardinality of the
dataset P . For the ith point p2P where 1�i�N , it first
checks whether there is some point p02GPruSet dominat-
ing p. This costs OðjGPruSetjÞ. If p is not pruned by any
point in GPruSet, it computes its parent set by visiting all
the points ranked before it. The time cost to compute the
parents is Oði�1�jGPruSetjÞ. After that, the candidate
group set CG is updated for each G2CG. This costs
OðjCGjÞ where CG includes all the candidate groups
whose sizes are less than k. Hence, the time cost of SP is

O

�XN
i¼1

�
jGPruSetjþði�1�jGPruSetjÞþjCGj

��

¼ O
�
N2þN�jCGj

�
:

Therefore, this theorem holds. tu

6 PERFORMANCE EVALUATION

Our experiments use both synthetic datasets and real-life
datasets. A number of experiments have been completed on
synthetic datasets with two popular distributions: Indepen-
dent (Ind) and Anti-correlated (Ant) following the work in
[4]. Furthermore, we deploy the real dataset, NBA, which is
also adapted in [22]. Specifically, NBA contains 17,265
points. We consider 3 attributes that are the numbers of
points scored, rebounds, and assists. We also evaluate our
proposed algorithms over the real dataset, Household
(Hou) [12], [36]. It includes 127,000 tuples about the percent-
age of an American familys annual income. We consider 4
attributes, which are the expenditures of gas, electricity,
water, and heating. We will consider the UWise+ algorithm
[22], which is the state of the art algorithm for the GSky
query to the best of our knowledge, as the baseline algo-
rithm. Additionally, this is the first work for the GSky query
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without an index, and we conduct the SP algorithm against
a baseline algorithm, namely Base. In the Base algorithm, it
computes all the unit groups of points within the dataset,
sorts the unit groups in nondecreasing order of their sizes,
and combines the unit groups to compute the G-Skylines.
Moreover, we compare the SP algorithm with the one,
namely SP-, without adopting Lemma 5.2 and the pruning
set GPruSet. This can help to certify the pruning capacity of
Lemma 5.2 and the set GPruSet.

In the following experiments, we evaluate the algorithms
for the GSky query from the following two aspects.

� Query time (QT). The time between submitting a
query request and returning all the answers.

� Progressiveness. It is evaluated by the query time as
a function of the number of the GSky query results
reported.

Moreover, the number of points within the first k skyline
layers (NS) and the number of the GSky query results (NR)
are also reported.

As well as theoretical proofs about the correctness of the
proposed algorithms (Theorems 4.6 and 5.3), we also illus-
trate the query correctness with experimental demonstra-
tion. We design a programm to analyze the results returned
by our proposed algorithms and the UWise+ algorithm.
Many times of experiment show that, for the same datasets,

the G-Skylines retrieved by the above algorithms are just
the same.

All the experiments were conducted on a PC with Intel
(R) Core(TM) I5-3330S 2.7 GHz CPU (contains 4 cores) and
4GB main memory running windows 7 operating system.
All the algorithms were implemented in C++. In order to
compare the results in different scenarios, we vary one of
the parameters shown in Table 3 each time where the rest
ones are fixed to their default values as highlighted in bold.

6.1 Performance of the Index-Based Algorithm

In this subsection, we analyze the performance of the index-
based algorithms for the GSky query in terms of QT and
progressiveness.

6.1.1 Performance on Synthetic Datasets

Experimental Results by Varying d. By varying d, NS and QT
are shown in Table 4, and NR of the GSky query is depicted
in Fig. 4a. The dimensionality d has a great impact on the
performance of the LU and UWise+ algorithms. When d
increases, NS, the number of points within the first k ¼ 3
skyline layers, grows sharply. Due to Equation (1), the car-
dinality of the ith skyline layer SLi for 1�i�k increases
exponentially with the growth of d, and NS grows in an
exponential rate. The larger NS is, the larger NR is, and the
more candidate groups need to be evaluated which in turn
brings the growth of QT of the LU and UWise+ algorithms.
Besides, the NS, NR, and QT of the LU and UWise+ algo-
rithms over the Ant datasets are all much larger than those
over the Ind datasets.

Table 4 shows that our LU algorithm is much better than
the UWise+ algorithm in terms of QT. When processing
the GSky query over the Ind datasets, it reduces 97.21%
QT in the best case. Over the Ant datasets, it can cut
down 97.61 percent QT at most. This is since LU adopts the
layered optimum strategy and generates the query results

TABLE 2
Partial Running Information for SP over

the Hotel Dataset in Fig. 1

Hotel New groups in CG New G-Skylines in GSky

h3 fh3g
h6 fh3; h6g
h1 fh1g; fh1; h3g fh1; h3; h6g
h10 fh3; h6; h10g
h2 fh2g; fh1; h2g; fh2; h3g fh1; h2; h3g; fh2; h3; h6g
h5 fh2; h5g fh1; h2; h5g; fh2; h3; h5g
h4 fh1; h2; h4g

TABLE 3
System Parameters

Parameter Values

Data set dimensionality(d) 2, 3, 4, 5
Group size (k) 2, 3, 4, 5
Data set cardinality (N) 20000, 40000, 60000, 80000, 100000

TABLE 4
Experimental Results versus d

d
Ind Ant

NS LU (s) UWise+(s) NS LU (s) UWise+(s)

2 60 0.0005 0.0003 234 0.0021 0.0103
3 369 0.0019 0.0066 3138 0.2206 7.2249
4 1634 0.0212 0.3461 15575 26.4692 1078.3400
5 5571 0.5542 19.8756 30861 524.7570 21917.4000

Fig. 4. Number of the GSky query results (NR). (a) d. (b) k. (c)N.
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directly. Therefore, it brings significant reduction of redun-
dant computation for generating and identifying unquali-
fied candidate groups comparing to the UWise+ algorithm.

Experimental Results by Varying k. The experimental
results of NS and QT by varying k are shown in Table 5.
Fig. 4b shows NR of the GSky query with increasing k. Simi-
lar to the dimensionality d, k affects the performance of the
LU and UWise+ algorithms significantly. As k grows, NS,
NR, and cardinality of candidate groups increase signifi-
cantly. This makes QT of the LU and UWise+ algorithms
grows sharply. Additionally, the Ant datasets have larger
NS and NR, and need much more QT than the Ind datasets.

Again, our LU algorithm outperforms the UWise+ algo-
rithm in terms of QT. For the GSky queries over the Ind
datasets, it reduces 86.10% QT in the best case. Over the Ant
datasets, our LU algorithm cuts down 97.52% QT at most.
As depicted in Table 5, the QT of our LU algorithm is
2911.7100s (< 1h) when processing the Ant dataset with
k ¼ 5. However, the QT of the UWise+ algorithm has
exceeded 24h which becomes unacceptable.

Experimental Results by Varying N . Table 6 presents NS
and QT of the LU and UWise+ algorithms, and Fig. 4c
shows NR with varying N over the Ind and Ant datasets.
With comparing to d or k, NS, NR, and QT of the LU and
UWise+ algorithms have not been significant impacted by
increasing N . As depicted in Table 6, NS increases as N
grows. This makes a slight growth of the number of the
GSky query results NR and QT of the LU and UWise+ algo-
rithms. Besides, over the Ind datasets, comparing with the
UWise+ algorithm, it reduces 84.37% QT at best by utilizing
our LU algorithm. Over the Ant datasets, our LU algorithm
cuts down 97.28% QT in the best case.

6.1.2 Progressiveness Performance

In this set of experiments, we evaluate progressiveness of
the index-based algorithms, LU and UWise+, over the Ind
and Ant datasets. We analyze the progressiveness of the
algorithms through evaluating the QT with varying NR
which is the number of results returned. The accumulated

QT of the LU and UWise+ algorithms over the Ind and Ant
datasets are reported as NR grows.

From Fig. 5, we note that when it returns the same num-
ber of results, our LU algorithm always needs much less QT
than that of the UWise+ algorithm. Compared to the UWise+
algorithm, to get the GSky query results of the same size, our
LU algorithm can reduce 93.81%QT at most for the Ind data-
sets. Besides, for the Ant datasets, the LU algorithm can
reduce 99.05% QT at best. This indicates our LU algorithm
hasmuch better progressiveness than the UWise+ algorithm.

6.2 Performance of the Index-Independent
Algorithms

In this subsection, we report the experimental results of the
index-independent algorithms. Here, due to the experimen-
tal environment, the defaults of N and d are adjusted to
20000 and 2, respectively.

6.2.1 Performance on Synthetic Datasets

Experimental Results by Varying d. By varying d, Figs. 6a and
7a show QT of the SP, SP-, and Base algorithms. The
dimensionality d is an important issue which has a signifi-
cant impact on the performance of the GSky query. Similar
to the analysis in Section 6.1.1, QT of the proposed algo-
rithms increases as d grows. This is due to the exponential
increase of candidate groups with increasing d. The Ant
datasets need much more QT than that over the Ind datasets
with the same dimensionality d.

Among the three index-independent algorithms, the SP
algorithm has the best performance in most cases as shown
in Figs. 6a and 7a. This is attributed to the pruned set
GPruSet and Lemmas 5.1 and 5.2. However, over the Ant
dataset with d ¼ 5, the SP- algorithm needs a little less QT
than that of the SP algorithm. This is reasonable because a
high-dimensional point is less likely to be dominated and
pruned by the points within the set GPruSet, and many
unqualified points are added to GPruSet. The larger
GPruSet is, the more cost of dominance test needs.

Experimental Results by Varying k. The experimental
results of QT with varying k are shown in Figs. 6b and 7b.
The QT of the algorithms increases when k grows. This is
since the number of candidate groups grows rapidly as k
grows. Besides, it always needs much more QT to process
the Ant datasets with comparing to the Ind datasets. When
dealing with the GSky query over the Ind dataset with
k ¼ 2, QT of the Base algorithm is a little less than that of
the SP algorithm. However, with the growth of k, the SP
algorithm has the best performance in terms of QT as shown
in Figs. 6b and 7b. This also confirms the effectiveness of the
pruned set GPruSet and Lemmas 5.1 and 5.2.

TABLE 5
Experimental Results versus k

k
Ind Ant

NS LU (s) UWise+(s) NS LU (s) UWise+(s)

2 177 0.0001 0.0006 1614 0.0013 0.0540
3 369 0.0017 0.0068 3138 0.2274 7.6742
4 634 0.0123 0.0835 5087 27.9916 1073.8900
5 943 0.1314 0.9458 7365 2911.7100 > 24h

TABLE 6
Experimental Results versusN

N
Ind Ant

NS LU (s) UWise+(s) NS LU (s) UWise+(s)

20000 270 0.0012 0.0025 2575 0.1625 5.1836
40000 369 0.0019 0.0066 3138 0.2262 7.7928
60000 421 0.0022 0.0109 3431 0.2671 9.6701
80000 445 0.0025 0.0140 3711 0.3062 10.9869
100000 484 0.0031 0.0199 3916 0.3833 14.1110

Fig. 5. Progressiveness comparison. (a) Ind. (b) Ant.
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Experimental Results by Varying N . Figs. 6c and 7c present
QT of the SP, SP-, and Base algorithms with varying N . As
depicted in Figs. 6c and 7c, QT increases with the increase
of N . This is also as expected since the larger N is, the much
more candidate groups need to be considered in the GSky
query. It requires much more QT to process the Ant datasets
with comparing to the Ind datasets. In terms of QT, the Base
algorithm is the best when N ¼ 20000 over the Ant dataset.
However, with varying N , the SP algorithm requires the
minimal QT as shown in Figs. 6c and 7c.

6.2.2 Progressiveness Performance

In this set of experiments, we evaluate the progressiveness
of the index-independent algorithms.

Table 7 reports the QT of the SP, SP-, and Base algorithms
over the Ind and Ant datasets, respectively. Here NR repre-
sents the number of returned results. From Table 7, we
observe that when it returns the same number of the GSky
query results, the SP algorithm needs much less QT, com-
paring to the Base algorithm. This indicates the SP algo-
rithm has better progressiveness than the Base algorithm.

Additionally, the Base algorithm has the worst progressive-
ness, this is also as expected. It needs to compute all the unit
groups of points within the datasets at first, which has a sig-
nificant impact on the progressiveness of the Base algo-
rithm. The progressiveness of SP is better than that of SP-
over Ant datasets, and for Ind datasets, QT of the two algo-
rithms is comparable.

6.3 Performance on the Real Datasets

In this subsection, we report the experimental results on the
real datasets, NBA and Hou, with k ¼ 3. Table 8 shows QT
of the proposed algorithms for the GSky query over the
NBA and Hou datasets, respectively. The results on the real
datasets are consistent with the ones obtained from the
experiments on the synthetic datasets. From Table 8, the LU
algorithm requires slightly more QT than the UWise+ algo-
rithm over the NBA dataset which is a small dataset, but it
is better than the UWise+ algorithm over the Hou dataset.
The SP algorithm again requires the minimal QT among the
three index-independent algorithms.

The cardinality of the NBA dataset is too small to
show the difference in the progressiveness of the algorit-
hms for the GSky query. Therefore, we only analyze the

Fig. 6. Experimental results over the Ind datasets. (a) d. (b) k. (c)N.

Fig. 7. Experimental results over the Ant datasets. (a) d. (b) k. (c)N.

TABLE 7
Progressiveness Comparison over the Synthetic Datasets

NR
Ind (N¼4000; d¼3; k¼3) Ant (N¼2000; d¼2; k¼3)

SP(s) SP- (s) Base(s) SP(s) SP- (s) Base(s)

2000 0.0009 0.0008 0.0616 0.0018 0.0040 2.6665
4000 0.0015 0.0014 0.0622 0.0038 0.0186 2.6672
6000 0.0019 0.0018 0.0630 0.0063 0.0447 2.6679
8000 0.0024 0.0022 0.0637 0.0075 0.0619 2.6686
10000 0.0029 0.0027 0.0643 0.0092 0.0833 2.6693

TABLE 8
Experimental Results over the Real Datasets

Dataset
Index-based Algs. Index-independent Algs.

LU(s) UWise+(s) SP(s) SP-(s) Base(s)

NBA 0.0006 0.0002 0.0649 0.0094 0.0145
Hou 0.0657 1.2745 0.9148 0.9436 2.1761
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progressiveness of the algorithms for the GSky query over the
Hou dataset. From Table 9, we observe that our LU algorithm
has much better progressiveness than the UWise+ algorithm,
and the SP algorithm is the best index-independent algorithm
for the GSky query in terms of progressiveness.

7 EXTENSIONS

In this section, we explore how to continuously maintain the
GSky query results when data updates happen. Besides, we
propose an important variant of the GSky query, namely
TlGSky, which aims to return l G-Skylines based on a novel
ranking criterion.

7.1 Maintain the GSky Query Results

In practical applications, the dataset is usually updated.
Noticeably, in the literature, there is no work about the
GSky query when data updates happen. In this section, we
develop an approach of maintaining the GSky query results,
namely MGSky.

Generally speaking, an update operator includes insert
and delete operators. If there is a new point p, to get
the accurate G-Skylines after the insert operator, the
old G-Skylines containing p0 dominated by the point p
are removed from the GSky query result set, and new
G-Skylines including p need to be rebuilt (The new
G-Skylines G containing p0 satisfy p2G because p�p0). Sup-
pose that a point p is deleted from the dataset P . The old
G-Skylines including the point p are deleted (For the old
G-Skylines G containing the points p0 that are dominated by
p, it holds that p is also included in G), and it is necessary to
regenerate the G-Skylines including p0 afterwards.

In the above insert and delete operations, they need
to generate G-Skylines containing the point p updated.
Assume that p2SLi for 1�i�k. The MGSky algorithm gener-
ates unit group sets U 0�Ui with up2U 0 and 1�jU 0j�k�iþ1.
This ensures each G-Skyline gained contains the point p.
Based on the unit group setsU 0, someG-SkylinesG are gener-
ated in a bottom up fashion by invoking Lines 14 to 24 of the
LU algorithm. The left part of theMGSky algorithm is an iter-
ation procedure. In each iteration, we compute ChiSetðp; jÞ
that includes children of the point p in SLj for iþ1�j�k.
Next, it generates unit group sets U 0�Uj that contain at least
one of the units up0 of the points p

02ChiSetðp; jÞ. Since p0 is a
child of p, G-Skylines that contain p0 include p simultaneously
due to Lemma 4.4. For each U 0, we could get new G-Skylines
containing the point p by applying Lines 14 to 24 of the LU
algorithm. Thereafter, for unit group sets U 0�Uj that do not
include any up0 with p02ChiSetðp; jÞ, we generate candidate

groups G S
u2U 0[fupgu. Similarly, by invoking Lines 16 to

24 of the LU algorithm, we could get the left G-Skylines that
contain the point p.

7.2 A GSky Query with a Size Constraint

As introduced in [22], the GSky query faces a big limitation
which is it usually reports too many results to draw a
meaningful insight. In addition, a large number of G-Skylines
could create emotional stress to users and act as powerful bar-
riers to rational decisions [37]. In the experiments, for the anti-
correlated dataset with k ¼ 2, d ¼ 3, andN ¼ 40000, it reports
140,078 G-Skylines. Besides, the GSky query over the anti-
correlated dataset with k ¼ 3, d ¼ 3, and N ¼ 40000, returns
24,756,789 G-Skylines.

Liu et al. [22] developed an interesting variant of the
GSky query, namely PG-Skyline. It gets a subset of the
GSky query results by relaxing the dominance requirement.
Although this approach is useful to limit the GSky query
results, it is difficult for users to specify an appropriate
parameter p and the query results are not controllable. In
this subsection, we investigate the GSky query with a size
constraint to gain G-Skylines of a manageable size.

Search result diversification has become important for
improving user satisfactory. To meet as many requirements
as possible for users, we investigate the GSky query with a
size constraint based on the diversify of different G-Skylines.
In [19], a diversity function d was proposed to measure the
diversity of a pair of skyline points. The function d is scale
invariant and monotone-robust. However, it cannot be uti-
lized tomeasure the diversification of different G-Skylines.

In the following, we extend the function d and propose a
new ranking function dðG;G0Þ, which is defined as

dðG;G0Þ ¼
X
p2G

min
p02G0

dðp; p0Þ: (2)

Here dðp; p0Þ ¼

1

d

X
j2½1;d�

��fo2 [i2½1;k� SLijðpj�oj�p0jÞ[ðp0j�oj�pjg
���1

j [i2½1;k� SLij�1 ;

SLi is a set that includes all the points within the ith skyline
layer.

Based on the new ranking function in Equation (2), we
formulate the TlGSky query which returns representative
G-Skylines of a manageable size.

Definition 7.1 (Top l Group-based Skyline Query,
TlGSky). Given a dataset P , two parameters k and l, the
l-GSky query returns a set GS including l G-Skylines G that
have the highest scores Score(GS) as given in

ScoreðGSÞ ¼
X

G2GSky

min
G02GSky�fGg

dðG;G0Þ:

Here dðG;G0Þ is given in Equation (2).

8 CONCLUSIONS

In this paper, we investigate the GSky query which aims to
report the G-Skylines dominated by no other group of the
same size. We first develop a new index-based algorithm,
called LU, for the GSky query. The LU algorithm has
much better progressiveness and efficiency compared to

TABLE 9
Progressiveness Comparison over the Hou Dataset

NR
Index-based Algs. Index-independent Algs.

LU(s) UWise+(s) SP(s) SP-(s) Base(s)

2000 0.00006 0.02611 0.00079 0.00091 0.94281
4000 0.00012 0.02707 0.00113 0.00124 0.92874
6000 0.00019 0.02808 0.00162 0.00170 0.92975
8000 0.00027 0.02908 0.00227 0.00234 0.93075
10000 0.00032 0.03008 0.00277 0.00286 0.93175
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the state-of-the-art algorithm for the GSky query. Addition-
ally, we focus on the GSky query over datasets that cannot
be indexed and develop an index-independent algorithm.
Last but not least, we explore how to continuously maintain
the GSky query results when data updates happen and dis-
cuss an interesting extension of the GSky query, called
TlGSky, based on the new ranking criterion.

This work opens to some promising directions for future
work. First, it is of interest to develop efficient algorithms
for the GSky queries over sliding windows [5], [38]. Then,
uncertain data analysis is significant in many important
applications [13], [14], [39], and it is significant to research
the GSky query over uncertain data. After that, to further
improve the query performance, it is worth to research the
GSky query under distributed or multi-core environments
based on the previous work in [8], [9], [10], [40]. Last, it is a
significant but challenging work to develop effective algo-
rithms for the TlGSky query.
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