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Abstract—Nowadays, with the development of e-commerce, a growing number of customers choose to go shopping online. To find

attractive products from online shopping marketplaces, the skyline query is a useful tool which offers more interesting and preferable

choices for customers. The skyline query and its variants have been extensively investigated. However, to the best of our knowledge,

they have not taken into account the requirements of customers in certain practical application scenarios. Recently, online shopping

marketplaces usually hold some price promotion campaigns to attract customers and increase their purchase intention. Considering

the requirements of customers in this practical application scenario, we are concerned about product selection under price promotion.

We formulate a constrained optimal product combination (COPC) problem. It aims to find out the skyline product combinations which

both meet a customer’s willingness to pay and bring the maximum discount rate. The COPC problem is significant to offer powerful

decision support for customers under price promotion, which is certified by a customer study. To process the COPC problem

effectively, we first propose a two list exact (TLE) algorithm. The COPC problem is proven to be NP-hard, and the TLE algorithm is

not scalable because it needs to process an exponential number of product combinations. Additionally, we design a lower bound

approximate (LBA) algorithm that has a guarantee about the accuracy of the results and an incremental greedy (IG) algorithm that

has good performance. The experiment results demonstrate the efficiency and effectiveness of our proposed algorithms.

Index Terms—Data management, price promotion, skyline query, NP-hard

Ç

1 INTRODUCTION

WITH the development of e-commerce, a growing num-
ber of customers choose to go shopping online because

it saves time and effort. However, it always contraries to
expectations of customers. This is because they may need
to pick up one choice among thousands of products. To help
customers identify attractive products, a skyline query is
admittedly a common and effective methodology. According
to the definition of the skyline query [1], a product which is
not dominated by any other product is said to be a skyline
product or it is in the skyline. The products in the skyline are
the best possible trade offs between all the factors that custom-
ers care about. The skyline query is useful in identifying
attractive products.

In Jingdong andAlibaba’s TaobaoMall which are themost
famous online shopping malls in China, there are many
online stores that specialize in one category of products such
as red wine, watches, television, laptop, to name just a
few. During the weekends or holidays, these stores usu-
ally hold some price promotion campaigns to boost con-
sumption. Under the price promotion campaigns of these

stores, a customer could select an optimal product com-
bination by himself. Besides, the customer is common to
participate in cooperation with his families or friends for
group-buying.

The present price promotion campaigns can be classified
into two categories due to whether products can be chosen
independently. The first category, namely, independent-
product selection, includes the campaigns such as “buy one
product and get another product for free” and “25% discount
for two pics” etc. Under these campaigns, customers can pick
out the products meeting their demands independently and
directly, and skyline queries could offer powerful decision
support. The second category, namely, dependent-product
selection, consists of the campaigns such as “get $60 off every
$200 purchase” and “$100 coupon every $500 purchase” etc.
In these scenarios, customers always expect to select products
which are attractive and bring the greatest benefit. Moreover,
it needs to take into consideration the customer’s willingness
to pay which is an important issue that affects the customer’s
purchasing behavior. The skyline query is powerful to com-
pute the skyline products that have a strong appeal to custom-
ers. However, it is inadequate to help customers select skyline
product combinationswith the greatest benefit.

Considering the requirements of customers in this practical
application scenario, we are concerned about a new problem
of identifying optimal product combinations under price pro-
motion campaigns. In this paper, we focus on the dependent-
product selection campaigns that are muchmore popular but
complicated with comparison to the independent-product
selection campaigns.

Assume that Jingdong offers a price promotion campaign
which is “get $60 off every $200 purchase” (we will use this
price promotion campaign in all the remaining examples).
It has a French wine set W ¼ fw1; w2; w3; w4; w5; w6; w7; w8g
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for sale as illustrated in Table 1. We take three attributes of
each wine, which are class, praise degree, and original price,
into account. The French wines are usually divided into
four classes which are 1. Vin de France (VDF), 2. Vin de
Pays (VDP), 3. Vin Delimitesde Qualite Superieure (VDQS),
and 4. Appellation d’Origine Protegee (AOP). Without loss
of generality, for the two attributes, class and praise degree,
of the French wines, large values are considered to be pref-
erable over small ones. For the original price, small value is
better than large one.

In order to find out the wines, which are attractive to
customers, the skyline query is one of the most useful tools.
In table 1, the wine w4 dominates the wine w2 since its class
and praise degree are larger and the original price is
smaller. Similarly, the wines w1 and w3 are dominated by
the wine w4. The wine w7 is dominated by the wine w6. After
the skyline query over the wine dataset in Table 1, we get a
skyline set fw4; w5; w6; w8g, where each wine is not domi-
nated by any other one. All these wines in the skyline set
offer more interesting and preferable choices for customers.

Although the skyline query is helpful to compute attrac-
tive wines, it is inadequate to gain the optimal wine com-
binations under price promotion campaigns. In practice,
the customer always chooses product combinations with a
payment constraint. Continuing with the example in Table 1,
if the customer’s willingness to pay is $400 at most, then it
only needs to process the wine combinations in Table 2
whose actual payments are not more than $400. The other
wine combinations including fw4; w5; w6g, fw4; w5; w8g,
fw4; w6; w8g, fw5; w6; w8g, and fw4; w5; w6; w8g are out of
consideration since their actual payments exceed the cus-
tomer’s willingness to pay. In Table 2, discount denotes
the discount of each wine combination, actual payment is
computed as Original Price�Discount, and discount rate

is Discount
Original Price. For an example, the discount of wine combina-

tion fw5; w6g is b190þ210
200 c � 60 ¼ 120, the actual payment is

400�120 ¼ 280, and the discount rate is 120
400 ¼ 0:300.

Customer demands are diversification and individua-
tion. When selecting products under price promotion, apart
from payment constraints, customers are common to have
demands such as maximum discount rate, spending or sav-
ing the most money, to name just a few. As illustrated in
Table 2, the wine combination fw5; w6g is with the maxi-
mum discount rate. Moreover, the customer can save the
most money when selecting from the wine combinations
fw4; w5g; fw4; w6g; fw4; w8g; and fw5; w6g. If the customer
wants to spend money as much as possible, the wine combi-
nations fw4; w6g and fw6; w8g are great choices.

In this paper, we measure the product combinations
by their discount rates, and focus on how to combine

homogenous products under price promotion campaigns.
Besides, in some cases, customersmay need to select products
fromdifferent categories, this is out of the scope in this paper.

In the literature, the closely related researches to our
problem are group skyline queries [2], [3], [4], [5], [6], [7],
[8], [9] and skyline queries under constraints [10], [11], [12],
[13], [14], [15], [16]. However, they cannot be applied to our
problem directly as analyzed in Section 2. To the best of our
knowledge, we study product selection under price promo-
tion for the first time in the literature. Our contributions are
briefly summarized as follows.

� We devise the COPC problem. This problem aims
to find skyline product combinationswhichmeet a cus-
tomer’s payment willingness and bring the maximum
discount rate.We prove the COPCproblem isNP-hard.

� We propose an exact algorithm, namely two list
exact algorithm, for the COPC problem. Besides, we
design a lower bound approximate algorithm, which
has guarantee about the accuracy of the results.
To get better performance, we develop the incremen-
tal greedy algorithm for the COPC problem.

� We introduce how to extend the proposed approaches
to handle the corresponding problem under other
price promotions and discuss two variants of the
COPC problem by taking into account different cus-
tomer demands.

� We conduct a small customer study to verify the sig-
nificant of our COPC problem and perform an exten-
sive experimental study to clarify the effectiveness
and efficiency of all the proposed algorithms.

The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we formulate the
COPCproblem. In Section 4, we propose effective algorithms
to solve the COPC problem. In Section 5, we discuss the
way of extending the proposed approaches to handle the
corresponding problem under other price promotions and
introduce two variants of the COPC problem. In Section 6,
we evaluate the performance of the proposed algorithms by
extensive experiments. In Section 7, we conclude the paper
and also expatiate the directions for futurework.

2 RELATED WORK

As an important data management operator [17], the skyline
query and its variants has received a great attention in the
literature [10], [18], [19], [20], [21]. In our COPC problem,
it computes the optimal skyline product combinations with
a constraint, which is the customer’s willingness to pay.

TABLE 1
The Candidate Wines

Wine Class Praise Degree Original Price($)

w1 4 50% 450
w2 3 60% 340
w3 1 65% 300
w4 4 75% 240
w5 2 85% 190
w6 3 80% 210
w7 3 55% 360
w8 1 90% 180

TABLE 2
The Candidate Wine Combinations

Wine
Combination

Original
Price ($)

Discount
($)

Actual
Payment ($)

Discount
Rate

fw4g 240 60 180 0.250
fw5g 190 0 190 0.000
fw6g 210 60 150 0.286
fw8g 180 0 180 0.000
fw4; w5g 430 120 310 0.279
fw4; w6g 450 120 330 0.267
fw4; w8g 420 120 300 0.286
fw5; w6g 400 120 280 0.300
fw5; w8g 370 60 310 0.162
fw6; w8g 390 60 330 0.154

ZHOU ET AL.: FINDING OPTIMAL SKYLINE PRODUCT COMBINATIONS UNDER PRICE PROMOTION 139



The closely related problems are group skyline queries and
skyline queries under constraints, and the related works are
reviewed in this section.

2.1 Group Skyline Queries
The skyline query aims to return the points that are not-domi-
nated by any other point [1]. However, most of the works
about the skyline query just analyze individual points, and
they are inappropriate to many applications that call for anal-
ysis of groups of different points. Motivated by this, group
skyline queries are developed and paid growing attention.

In most of the group skyline queries, optimal groups
are computed by the dominance relationship between
corresponding aggregate-based points of different groups.
Su et al. [3] formulated top k combinatorial skyline query
(k-CSQ). It returns those combinatorial skyline tuples whose
aggregate values for a certain attribute are maximum. Since
only the first k combinations are required, the k-CSQ query
process can be simplified [4]. Chung et al. [4] extended the
traditional skyline queries and formulated a combinatorial
skyline query, namely CSQ, which is to find the outstanding
skyline combinations. Im et al. [5] studied the group skyline
query which is based on the dominance relationship
between the groups of the same size. The dominance rela-
tionship is checked according to the aggregate values of
attributes. Magnani et al. [6] introduced aggregate skylines,
where the skyline works as a filtering predicate on sets of
records. The aggregate skyline queries merge the function-
alities of two basic database operators, skyline and group
by. Zhang et al. [7] focused on a novel problem of groups
of k tuples, which are not dominated by any other group
of equal size, based on aggregate-based group dominance
relationship. They also identified two anti-monotonic prop-
erties to filter out candidate groups. Wu et al. [2] researched
the work which is similar to the group skyline computation.
They focused on a problem of creating competitive products
which are not dominated by the products in the existing
market. Here each new product is generated by combing
products from different source tables. To reduce the search
space, it only combines the skyline products from source
tables to generate new products. In addition, they also pre-
sented an approach which divides similar products into
groups and processes them as a whole.

In the group skyline queries aforementioned, the aggre-
gate values of corresponding attributes are taken into
account when checking the dominance relationship between
different groups. However, it is difficult for customers to
specify an appropriate aggregate function.Moreover, it over-
looks many significant groups that may contain non-skyline
points [8]. Motivated by the problems which the group sky-
line queries face, Liu et al. [8] presented a Pareto group-based
skyline (G-skyline) query which retrieves G-skyline groups.
These G-skyline groups are not g-dominated by any other
group of the same size. They presented a directed skyline
graph which captures the dominant relationship of tuples
within the first k skyline layers. Furthermore, two heuristic
algorithms are designed to solve the G-skyline query effec-
tively. Recently, Yu et al. [9] defined the Multiple Skyline
Layers, and presented two fast algorithms to compute the
G-skylines due to the observation that skyline points contrib-
utemore to skyline groups compared to non-skyline points.

The above approaches for group skyline queries are inap-
propriate for our problem. This is since they filter out
the optimal groups by the dominance relationship, but the

skyline product combinations in our COPC problem are
measured by the maximum discount rate.

2.2 Skyline Queries under Constraints
Skyline query is a useful tool to find out attractive products
which offer more interesting and preferable choices for cus-
tomers. However, the size of the skyline query results cannot
be controlled flexibly. Accordingly, many research efforts
have been devoted to contend with this problem. The exist-
ing approaches to address this problem are developed to
identify k representative skylines which have the maximum
dominant capacity or themaximumdiversification.

Lu et al. [10] were concerned about the case when the
actual cardinality of skyline results is less than the desired
result cardinality k. They proposed a new approach, namely
skyline ordering, which forms a skyline-based partitioning
of a given dataset. Then they applied a set-wide maximiza-
tion technique, which is used to find an object set dominat-
ing the largest number of points, to process each partition.
Bai et al. [19] focused on how to choose k representative sky-
lines over data streams. Gao et al. [18] formulated the most
desirable skyline object query which reports the most pref-
erable k skylines based on a new ranking criterion. Lin et al.
[12] studied the problem of selecting k skyline points such
that the number of points, which are dominated by at least
one of these k skyline points, is maximized. Papadias et al.
[11] proposed the K-dominating query which retrieves K
points dominating the largest number of other points. This
query does not necessarily contain skyline points but has the
advantages of both ranking queries and skyline queries,
which are with the control on the size of the answer set and
without users’ efforts to specify ranking functions. Chan et al.
[15] formulated a top k ranking problem which retrieves
points appearing frequently in the subspace skylines. Wan
et al. [14] identified the problem of finding top-k profitable
products. Given a set of packages in the existing market and
a set of potential new packages, they wanted to select k new
packages such that the sum of the profits of the selected pack-
ages is maximized and each selected package is not domi-
nated by any package in the existing market and any selected
new package. Lin et al. [13] proposed a k-most demanding
products (k-MDP) discovering problem that helps the com-
pany to select k products from the candidate products with
the maximum expected number of the total customers.
In [20], we developed a top k favorite probabilistic product
query. It is utilized to select k products which can meet the
needs of a customer set at themaximum level.

The representative skyline queries aforementioned only
highlight some features which are stability, scale invariance,
diversification of the results, and partial knowledge of the
record scoring function [16]. Magnani et al. [16] focused on
the representative skyline queries in terms of both the sig-
nificance and diversity of results. This representative sky-
line query can satisfy all the features above. Moreover, there
are also some other approaches to avoid returning many
skyline query results. In [22], Chen et al. studied a con-
strained skyline query. It first filters out the points which do
not satisfy range constraints of each attributes, and then
processes the skyline query over the remaining points.

To our best knowledge, this is the first attempt to research
product selection under price promotion. The COPC problem
aims to find optimal skyline product combinations whose
actual payments are not beyond the customer’s willingness to
pay. Moreover, these optimal skyline product combinations
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could bring the maximum discount rate. Noticeably, the
methods for the skyline queries under constraints cannot
be applied to process our problem straightly.

The frequently used symbols are summarized in Table 3.

3 THE CONSTRAINED OPTIMAL PRODUCT

COMBINATION (COPC) PROBLEM

In the COPC problem, it needs to compute the skyline prod-
ucts by the skyline query which is a useful tool for decision
support.

The skyline query over all the attributes may give rise to
loose some important product combinations. Assume that
there are three products p1, p2, and p3 whose prices are $190,
$210, and $200, respectively, the other attributes of p2 and p3
are the same, and the price promotion campaign is “get $60
off every $200 purchase”. In the skyline query over all the
attributes, p2 is dominated by p1 and pruned since p2 has a
lower price and the other attributes of them are the same.
However, the discount rates of fp1; p2g and fp1; p3g are
equal to 0.300 and 0.154 separately, and fp1; p2g is obvious a
great choice with the maximum discount rate. For p2 is not
in the skyline, the important product combination fp1; p2g is
overlooked in the process of product selection.

In [8], Liu et al. formulated a new G-Skyline query that
aims to return optimal point groups, namely G-Skylines.
Different from other group skyline queries, it reports a
more comprehensive results and may return optimal point
groups (G-Skylines) that contain non-skyline points [8].
In essence, for a G-Skyline G, each non-skyline point p 2 G
is only dominated by some other points p0 2 G.

In this paper, we introduce the grouping campaign intro-
duced in [8] to avoid missing important products that are
not skyline query results. For a given dataset P , we part
products p 2 P into different groups G and products p 2 G
are with the same values in term of the attributes except the
original price. After that, we adapt the definition of domi-
nance operator in [1].

Given a nonempty set of products P ¼ fp1; p2; . . . ; png
which stores the information of different products, for each
product p0 2 P , it can be represented by a multi-dimensional

point <p0½1�; p0½2�; . . . ; p0½d�> . Here p0½i� for 1 � i � d denotes
the ith attribute value of p0. For ease to description, p0½d�
is used to represent the original price of p0, denoted as
OriPriðp0Þ.
Definition 1 (Dominance). For two products p and p0 that are

included in different groups, p0 is said to dominate p, denoted
as p0�p, if it holds that for all i, p0½i� � p½i� and for at least one
i, p0½i�<p½i� for 1 � i � d.

In the above definition of the dominance operator, prod-
ucts which have equal values of the attributes except the
price are divided into a same group. A product p in a group
G is considered non-skyline if it is dominated by some
points p =2 G. By this adjustment, the skyline query over the
product set could get a more comprehensive results.

Definition 1 (Skyline Query [1]). The skyline query returns
all the products p 2 P such that there does not exist any other
product p0 2 P�p satisfying p0�p.

In Section 1, we classify the present price promotion cam-
paigns into two categories which are independent-product
and dependent-product selections. In this paper, we focus
on the dependent-product selection, which includes the cam-
paigns such as “get $b off every $a purchase” and “$b cou-
pon every $a purchase” etc. This is because these campaigns
are widely adopted by online shopping malls and much
more complicated than the ones of the independent-product
selection campaigns. In addition, under the campaigns of
independent-product selection, the skyline query could offer
powerful decision support. But, the skyline query only does
little help when selecting products under the campaigns of
dependent-product selection.

In the following, we first research our problem under the
price promotion campaign as “get $b off every $a purchase”.
In particular, by investigating from Jingdong and Alibaba’s
Taobao Mall, the two most famous online shopping malls in
China, b and a are usually set to two- and three-digit num-
bers, respectively. The popular price promotion campaign is
getting b0 � 10 off every a0 � 100 purchase where b0 and a0

are integers and b0;a0 2 ½1; 9�.
Noteworthily, the approaches can also be adjusted to

handle product selection under other campaigns of the
dependent-product selection as analyzed in Section 5.

Definition 2 (Original Price). Given a product combination
P 0, its original price is computed as

OriPriðP 0Þ ¼
X
p2P 0

OriPriðpÞ;

where OriPriðpÞ is original price of a product p 2 P 0.

Definition 3 (Actual Payment). Given a price promotion
campaign “get $b off every $a purchase ”, the actual payment
of a product p 2 P is

ActPayðpÞ ¼ OriPriðpÞ�
$
OriPriðpÞ

a

%
� b:

Moreover, the actual payment of a product combination P 0

is computed by

ActPayðP 0Þ ¼
X
p2P 0

OriPriðpÞ�
$P

p2P 0 OriPriðpÞ
a

%
� b:

TABLE 3
The Summary of Frequently Used Notations

Notation Definition

P the product dataset

N the size of the product dataset

SP the skyline product set over P

NS the size of SP

SP
0

the skyline product combination with

SP
0 � SP

WTP a customer’s willingness to pay

b, a the price promotion campaign is getting $b

off each $a purchase

MaxSize the maximum size of SP
0

MaxDisNum the maximum discount number

MaxDisRate the maximum discount rate

OriPri(p) the original price of the product p

Discount(p) the discount by purchasing the product p

ActPay(p) the actual payment of the product p

DisRate(p) the discount rate of the product p
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Going back to the example in Table 2, the actual payment
of the wine combination fw4; w5g is

ActPayðfw4; w5gÞ ¼ OriPriðfw4; w5gÞ�
�
OriPriðfw4; w5gÞ

200

�
� 60

¼ 430�120 ¼ 310:

Definition 4 (Discount Rate). Suppose that the price promo-
tion campaign is getting $b off every $a purchase. The discount
rate gaining by selecting a product combinationP 0 is computed by

DisRateðP 0Þ ¼
j
OriPriðP 0Þ

a

k
� b

OriPriðP 0Þ : (1)

Definition 5 (The Constrained Optimal Product Combi-
nation (COPC) problem). Given a set of products P , a
customer’s willingness to pay WTP , the COPC problem is to
find the skyline product combinations SP 0, such that they bring
the maximum discount rate without exceeding the customer’s
payment willingness. The COPC problem can be formulated as

maximize DisRateðSP 0Þ
subject to ActPayðSP 0Þ � WTP;

for SP 0 � SP:

Here SP denotes the skyline product set over P .

Consider the wine dataset depicted in Table 1. Suppose
the customer’s willingness to pay WTP is equal to $400. In
the COPC problem, it first executes a skyline query and
gains the skyline set SP ¼ fw4; w5; w6; w8g. Then it generates
all the nonempty wine combinations and chooses the ones
whose actual payments are no more than $400. Therefore,
we gain the candidate wine combinations as shown in
Table 2. Since the wine combination fw5; w6g has the maxi-
mum discount rate, which is equal to 0.300, it is returned as
the final result of COPC.

Property 1. Given a price promotion campaign “get $b off every
$a purchase”, the upper bound of discount rate is b

a
.

The results of COPC can be identified and reported
to customers progressively due to Property 1. Based on
Property 1, each skyline product combination SP 0 with
DisRateðSP 0Þ ¼ b

a
is a result of COPC, and it can be reported

to customers as soon as possible.
Considering the price promotion campaign that is

“getting $60 off each $200 purchase”, the upper bound of the
discount rate is equal to 60

200 ¼ 0:300. This means that custom-
ers can get the discount rate that is no more than 0.300. In the
computation of the COPC problem, if getting some wine
combinations whose discount rates are just equal to 0.300,
then they could be returned to customers as final results.

Property 2. Given a skyline product combination SP 0 and a price
promotion campaign “get $b off every $a purchase”, it can get
the upper bound of the discount rate iff OriPriðSP 0Þ, which
denotes the original price of SP 0, is an integral multiple of a.

Definition 6 (Discount Number). Suppose that the price
promotion campaign is getting $b off every $a purchase. The
discount number by selecting a skyline product combination
SP 0 is computed by

DisNumðSP 0Þ ¼
�
OriPriðSP 0Þ

a

�
:

In Table 2, the original price of the wine combination
fw5; w6g is $400. Under the price promotion strategy that
is getting $60 off each $200 purchase the discount number
of the wine combination fw5; w6g is DisNumðfw5; w6gÞ ¼
b400200c ¼ 2.

Lemma 3.1. Given a customer’s payment willingness WTP and
the price promotion that is getting $b off every $a purchase,
the maximum discount number the customer can obtain is
MaxDisNum ¼ �

WTP
a�b

�
.

Proof. Given a skyline product combination SP 0 � SP ,
its original price is OriPriðSP 0Þ ¼ t� aþ r, where the

discount number t ¼ �OriPriðSP 0Þ
a

�
, and the discount

DiscountðSP 0Þ ¼ bOriPriðSP 0Þ
a

c � b. It holds that

ActPayðSP 0Þ ¼ OriPriðSP 0Þ�DiscountðSP 0Þ

¼ OriPriðSP 0Þ�
jOriPriðSP 0Þ

a

k
� b

¼ t� aþ r�t� b:

Since ActPayðSP 0Þ � WTP , we have t� aþ r�t� b �
WTP . Therefore, it holds that t � WTP�r

a�b
: Because 0 � r<a,

we gain t � WTP�r
a�b

� WTP
a�b

:

Therefore, it holds that MaxDisNum ¼ �
WTP
a�b

�
and

this lemma holds. tu
Theorem 3.2. The COPC problem is an NP-hard problem.

Proof. The NP-hardness proof can be achieved by trans-
forming the subset sum problem, which is an NP-hard
problem, to a special case of the COPCproblem [9], [23].

The subset sum problem is defined as follows:
Subset Sum Problem. Given a positive integer set W ¼

fw1; w2; . . . ; wng and a positive integer M, is there a sub-
setW 0 � W such that

P
w2W 0 w ¼ M?

For a skyline product combination SP 0 � SP , assume
that OriPriðSP 0Þ ¼ P

p2SP 0 OriPriðpÞ ¼ t� aþ r where

t ¼ �OriPriðSP 0Þ
a

�
, and r ¼ OriPriðSP 0Þmoda. On the basis

of Property 2, we can get the maximum discount rate

when OriPriðSP 0Þ is a multiple of a, and OriPriðSP 0Þ ¼P
pi2SP 0 OriPriðpiÞ ¼ t� a: Here t is a positive integer

and 1 � t � �
WTP
a�b

�
due to Lemma 3.1.

In the subset sum problem, let element wi 2 W repre-
sent the original price of a skyline product pi 2 SP , and
M ¼ t� a. Due to Property 2, if

P
w2W 0 w ¼ t� a, the

subset W 0 represents a final result of our COPC problem.
The result of the corresponding subset sum problem is
also the result of this instance of the COPC problem.

From the above analysis, any instance of the subset
sum problem can be transformed to an instance of the
COPC problem. Since the subset problem has been
proven to be an NP-hard problem, the COPC problem
is also NP-hard [23]. Furthermore, our COPC problem is
more complex than the subset sum problem. tu

4 ALGORITHMS FOR THE COPC PROBLEM

To process the COPC problem, a naive exact algorithm is to
generate all the skyline product combinations which are not
beyond the customer’s payment willingness, compute the
discount rate of each candidate combination, and identify
the ones that bring the maximum discount rate.
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Consider each combination of the skyline products
within SP , which contains t products for 1 � t � MaxSize.
The number of these combinations that contain t products
is NS

t

� �
, where NS represents the cardinality of the skyline

set SP , MaxSize denotes the maximum size of the skyline
product combinations. Therefore, the total number of candi-
date product combinations is

NS

1

� 	
þ NS

2

� 	
þ 	 	 	 þ NS

MaxSize

� 	
¼

XMaxSize

i¼1

NS

i

� 	
� 2NS :

The time complexity of this native algorithm is O
�
2NS

�
.

As analyzed above, the number of skyline product
combinations can be intimidating, and the computational
complexity of the native algorithm is unavoidable and unac-
ceptable. To enhance the performance of solving the COPC
problem, we develop a two list exact algorithm, a lower
bound approximate algorithm, and an incremental greedy
algorithm in this section.

4.1 The Two List Exact Algorithm
Due to Theorem 3.2, the COPC problem is closely related to
the subset sum problem. Moreover, our COPC problem is
much more complicated, and the approaches for the subset
problem cannot be utilized to our problem directly. In this
section, we develop the two-list algorithm, which is a
famous algorithm for the subset sum problem [24], [25], and
present a two list exact algorithm for the COPC problem.

As introduced in the proof of Theorem 3.2, we can get the
results of the COPC problem through computing several
subset sum problems whose sums are equal to t� a for
1 � t � MaxDisNum: Here MaxDisNum represents the
maximum discount number and can be computed due to
Lemma 3.1. Furthermore, when there are not any product
combination SP 0 with OriPriðSP 0Þ ¼ t� a, we will con-
serve the combinations whose sums are as small as possible
but not less than t� a due to the following lemmas.

Lemma 4.1. Given a price promotion campaign ”get $b off every
$a purchase”, and skyline product combinations SP 0; SP 00 �
SP with i� a � OriPriðSP 0Þ<OriPriðSP 00Þ< ðiþ 1Þ � a
for i is an integer and i 2 ½0;MaxDisNum�, it holds that
DisRateðSP 0Þ>DisRateðSP 00Þ:

Proof. Since i� a � OriPriðSP 0Þ< ðiþ 1Þ � a, it holds that

i ¼ bOriP ðSP 0Þ
a

c for 1 � i � bWTP
a�b

c according to Lemma 3.1.

Due to Equation (1), we have

DisRateðSP 0Þ ¼
j
OriP ðSP 0Þ

a

k
� b

OriP ðSP 0Þ ¼ i� b

OriP ðSP 0Þ :

Similarly, we have DisRateðSP 00Þ ¼ i�b
OriP ðSP 00Þ : Since

OriPriðSP 0Þ < OriPriðSP 00Þ, it has DisRateðSP 0Þ>
DisRateðSP 00Þ, and this lemma holds. tu
Based on the two list algorithm for the subset sum prob-

lem [24], we develop an exact algorithm as depicted in
Algorithm 1. Similarly to the two-list algorithm, Line 1
divides SP into two parts SP 1 and SP 2 equally. After that, it
generates all the subsets ofSP 1 andSP 2. These subsets, which
represent different skyline product combinations, satisfy the
conditions that actual payments do not exceed the customer’s
willingness to pay WTP . Thereafter Lines 2 and 4 get lists A

and B that store the sums of these subsets (original prices).
Specially, the elements in A are sorted in increasing order
while the elements in B are sorted in decending order. Here,
we generate subsets and sort them all at once through merg-
ing. This can further improve the performance of TLE [24].
Lines 3 and 5 compute the elements ofA andB that are equal
to the original prices of the skyline product combinations
with current maximum discount rate. Line 6 initializes SP 


with the product combinations that have the current maxi-
mum discount rate. Lines 7 to 22 are executed to merge the
two lists, A and B, to get the final product combinations SP 


that bring the maximum discount rate. Line 7 computes the
maximum discount numberMaxDisNum due to Lemma 3.1.
Due to Property 2, if there are some combinations whose orig-
inal prices are just an integralmultiple of a, the corresponding
skyline product combinations can bring the maximum dis-
count rate. Otherwise, the combinationswhose original prices
are as small as possible but no less than an integralmultiple of
amay be good choices. Thereafter, Lines 8-22 are an iteration
process to compute elements y
k for 1 � k � MaxDisNum.
These elements represent the original prices of product
combinations that may bring the maximum discount rate.
Suppose element ai 2 A is combined with the first j elements
within B, the next element aiþ1 only needs to be combined
with bjþ1 and the elements ranked after it. Hence, Line 9
defines flag to store the location of the last element within B
that is mergedwith ai. Lines 13 and 14 are used to identify the
combinations SP withOriPriðSPÞ ¼ k� a. Lines 16 to 18 are
utilized to find out the skyline product combinations whose
original prices are no less than but nearest to k� a. Line 22
chooses the product combinations SP 00 that can bring the
maximum discount rate from the ones whose original prices
are equal to y
k. Then SP 
 is updated by only reserving the
combinations that bring the maximum discount rate and sat-
isfy the customer’s payment willingness. At last, Line 23
returns SP 
 as the final result of COPC.

Example. Going back to the example in Table 1, by the sky-
line query, we have a wine set W ¼ fw4; w5; w6; w8g where
each wine is in the skyline. Dividing the set W into two
parts W1 ¼ fw4; w5g and W2 ¼ fw6; w8g. Line 2 generates
the wine combinations fw4g; fw5g, and fw4; w5g over W1.
After sorting these combinations in increasing order of
their original prices, we have the list A ¼ f190; 240; 430g
and a
 ¼ 430 since the wine combination fw4; w5g with
OriPriðfw4; w5gÞ ¼ 430 brings the maximum discount rate.
Line 4 generates the wine combinations fw6g; fw8g, and
fw6; w8g overW2. After sorting them in decending order of
their original prices, we have the list B ¼ f390; 210; 180g,
and b
 ¼ 210. Line 6 gets the wine combination fw6g
which matches the current maximum discount rate 0.286.
Line 7 computes the maximum discount number due to
Lemma 3.1, and we have MaxDisNum ¼ b 400

200�60c ¼ 2.
Lines 8 to 22 are utilized to combine the elements within A
andB. First, the parameter k is set to 1, we combine the ele-
ments withinA andB to get the combinations whose sums
are just equal to k� a ¼ 200. By combining a1 ¼ 190 with
bj 2 B, there is not any combination whose sum is just
equal to 200, and we get the combination fa1; b3g ¼
f190; 180gwhose sum is no less than but nearest to 200. We
also get flag ¼ 3. Considering the second element a2 ¼ 240,
it only needs to be combined with the element b3 and other
elements ranked after it within B. We have y
1 ¼ a1 þ
b3 ¼ 370, SP 00 ¼ fw5; w8g, and SP 
 ¼ fw6g. Similarly, for
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k ¼ 2, we get y
2 ¼ a1 þ b2 ¼ 400, SP 00 ¼ fw5; w6g, and
SP 
¼fw5; w6g. Finally, the wine combination fw5; w6g is
returned as the final result of COPC.

Algorithm 1. Two_List_Exact(TLE) Algorithm

Input: The skyline product set SP , a price promotion campaign
“get $b off every $a purchase”, and a customer’s payment
willingnessWTP

Output: A result set SP 
 of the COPC problem
1: Divide SP into two parts: SP 1 ¼ fsp1; sp2; . . . ; spNS=2

g and
SP 2 ¼ fspNS=2þ1; spNS=2þ2; . . . ; spNS

g
2: Generate all the product combinations SP 0 � SP 1 with

ActPayðSP 0Þ � WTP , sort them in an increasing order
of OriPriðSP 0Þ, and store OriPriðSP 0Þ as the list A ¼
fa1; a2; . . . ; aN1

g
3: Compute a
 2 Awhich is with the maximum discount rate
4: Generate all the product combinations SP 0 � SP 2 with

ActPayðSP 0Þ � WTP , sort them in a decending order
of OriPriðSP 0Þ, and store OriPriðSP 0Þ as the list B ¼
fb1; b2; . . . ; bN2

g
5: Compute b
 2 Bwhich is with the maximum discount rate
6: SP 
 ¼ argmaxOriPriðSP 0Þ2fa
 ;b
gDisRateðSP 0Þ
7: Set the maximum discount number MaxDisNum ¼ bWTP

a�b
c

due to Lemma 3.1
8: for k=1 toMaxDisNum do
9: Initialize i ¼ 1, flag ¼ 0 and y
k ¼ ðkþ 1Þ � a

10: for ai 2 A do
11: j ¼ flagþ 1
12: for bj 2 B do
13: if ai þ bj is equal to k� a then
14: y
k ¼ k� a and Break
15: else
16: if ai þ bj > k� a then
17: j ¼ jþ 1
18: y
k ¼ minfy
k; ai þ bjg
19: else
20: i ¼ iþ 1
21: flag ¼ j
22: Add SP 00 ¼ argmaxOriPriðSP 0Þ¼y


j
DisRateðSP 0Þ for 1 �

j � MaxDisNum to SP 
 and refresh SP 
 by removing
the combinations whose discount rates are less than
that of SP 00

23: Return SP 


Complexity. InAlgorithm1, it first dividesSP into two parts

SP 1 and SP 2 equally. Each part has NS
2 elements. Thereafter, it

generates all the subsets of SP 0 � SP 1 and SP 0 � SP 2 with
ActPayðSP 0Þ � WTP . The number of these combinations that

contain t products is N 0
t


 �
whereN 0 ¼ NS

2 . Therefore, the total

number of candidate skyline product combinations that con-
sist of the productswithin SP 1 orSP 2 is calculated by

N 0

1

� 	
þ N 0

2

� 	
þ 	 	 	 þ N 0

MaxSize

� 	
¼

XMaxSize

i¼1

N 0

i

� 	
� 2N

0 ¼
ffiffiffi
2

p NS
:

Here MaxSize is the maximum size of the skyline product
combination.

Algorithm 1 contains three stages, which are generation of
all subsets of SP 1 and SP 2, sorting these subsets by their
sums, and searching the final result of our problem by merg-
ing the subsets of SP 1 and SP 2. By merging the generation

and sorting stage, the time complexity isOðPMaxSize
i¼1 ðN 0

i ÞÞ due
to [26]. In the searching stage, the time complexity is

OðMaxDisNum�PMaxSize
i¼1 ðN 0

i ÞÞ. Here MaxDisNum denotes

the maximum discount number which can be computed due
to Lemma 3.1.

Asmentioned above, the time complexity of Algorithm 1 is

O
��
MaxDisNumþ 1

��PMaxSize
i¼1 ðN 0

i ÞÞ ¼ Oð�MaxDisNumþ 1
�� ffiffiffi

2
p NS Þ

whereNS represents the cardinality of the skyline set SP and

MaxDisNum is the maximumdiscount number which can be

computed due to Lemma 3.1.
Since the COPC problem is NP-hard, although the TLE

algorithm has better performance than the native algorithm,
it is not scalable for large skyline product sets. In the experi-
ments, the TLE algorithm can handle the skyline product
sets whose sizes are at most 35 while the naive algorithm
can only deal with the skyline product sets whose sizes
are at most 25. Therefore, we develop an approximate algo-
rithm with an approximate bound and a greedy algorithm
which have nice scalability for large skyline product sets in
the following subsections.

4.2 The Lower Bound Approximate Algorithm
Based on Lemmas 3.1 and 4.1, and Theorem 3.2, we design a
lower bound approximate algorithm for the COPC problem,
which is depicted in Algorithm 2.

The LBA algorithm first removes each product p0 2 SP
whose actual payment is larger than WTP (Line 1). Line 2
initializes a list L with a set that contains an element “0”.
Thereafter, the list L stores original prices of candidate sky-
line product combinations. Lines 3-10 are applied to find can-
didate skyline product combinations which may bring the
maximum discount rate. In Line 3, it computesMaxDisNum
which represents the maximum discount number based on
Lemma 3.1. Thereafter, Line 4 initializes y
j , which are the
original prices of skyline product combinations that may
bring themaximumdiscount rate without exceeding the cus-
tomer’s payment willingness, with1. The while loop (Lines
5-10) refreshes the list L (Line 6) by generating new elements
yþ fOriðpÞg for y 2 L and p 2 SP at a time, and adding these
elements to L. Line 7 sorts the elements in L in an increasing
order, and each element ywith y�by

a
c � b>WTP is removed

fromL. This is because if y�by
a
c � b>WTP , the skyline prod-

uct combinations whose original prices are equal to y are
beyond the customer’s payment willingness. This helps
to reduce the search space by pruning the skyline product
combinations which are beyond the customer’s payment
willingness as soon as possible. Line 8 computes elements
y
j 2 ½j� a; ðjþ 1Þ � aÞ which is as small as possible but
not less than j� a. The elements ranked after y
MaxDisNum

are removed from L (Line 9). This is because for a skyline
product combination SP 0 with OriPriðSP 0Þ>y
MaxDisNum, its
discount rate is less than the ones whose original prices
are equal to y
MaxDisNum due to Lemma 4.1. Moreover, the
skyline product combinations SP 00 with SP 0 � SP 00 cannot
be good choices for customers also. Hence, in the next
iteration, it is not necessary to generate new product com-
binations based on SP 0. Line 10 employs a function Trim
to trim some similar elements within L�y
j . Since y
j
contains the present optimal results, we always maintain
it in L without trimming.

The trimming function is similar to that utilized in the
full polynomial-time approximate algorithm for the subset
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sum problem [23]. As described in Lines 12-19, an element is
appended onto the list L0 if it is the first element of L or it
cannot be represented by any other element. In particular, if
we trim the list L by d, for two elements y and y0 within L, y0

is removed from L if it holds that y0 � y� ð1þ dÞ. This
means that y and y0 are closed to each other enough, and y
could be used to represent y0.

Algorithm 2. Lower_Bound_Approximate (LBA)
Algorithm

Input: The skyline product set SP with jSP j ¼ NS , a price
promotion campaign “get $b off every $a purchase”, a cus-
tomer’s payment willingness WTP , and a trimming param-
eter � for 0<�< 1

Output: A result set SP 
 of the COPC problem
1: Remove each product p0 2 SP with ActPriðp0Þ>WTP
2: Initialize L ¼ f0g
3: Set the maximum discount number MaxDisNum ¼

j
WTP
a�b

k
due to Lemma 3.1

4: Initialize y
j ¼ 1 for 1 � j � MaxDisNum
5: while SP is not empty do
6: L ¼ L[fyþOriðpÞ : y 2 L} for p 2 SP
7: Sort all the elements inL in an increasing order and remove

each element y fromL if y�by
a
c � b>WTP

8: Compute y
j 2 L where @y0 2 L�fy
jg; y0 <y
j with y0; y
j 2
½j� a; ðjþ 1Þ � aÞ for 1 � j � MaxDisNum and j is an
integer

9: Remove each element y from L which is larger than
y
MaxDisNum

10: L ¼Trim(L�y
j ,
�

2NS
) for 1 � j � MaxDisNum

11: Return SP 
 ¼ argmaxOriPriðSP 0Þ¼y

j
DisRateðSP 0Þ for j is an

integer and 1 � j � MaxDisNum
12: Function: Trim(L, d)
13: Initialize L0 ¼ fy1g
14: last ¼ y1
15: for i ¼ 2 to jLj do
16: if yi > last� ð1þ dÞ then
17: Append yi onto the end of L0

18: last ¼ yi
19: Return L0

After the while loop (Lines 5-10), we gain y
j which are as
small as possible but not less than j� a for 1 � j �
MaxDisNum. Line 11 finds out the skyline product combina-
tions with the maximum discount rate from the ones whose
original prices are equal to y
j for 1 � j � MaxDisNum, and
stores them in SP 
. Finally, Line 11 returns SP 
 as the final
results of COPC.

It is worth to notice that for large skyline product data-
sets, it may return many results that bring the same dis-
count rate. In this case, we will choose one result at random.

Example. Continuing with the example in Table 1, after get-
ting the skyline set fw4; w5; w6; w8g, MaxDisNum is com-
puted by b 400

200�60c ¼ 2. Assume that � ¼ 0:6 and �
2NS

¼
0:6
2�4 ¼ 0:075. The LBA generates the combinations whose
original prices are as small as possible but not less than
j� a for j 2 f1; 2g. First, we have a list L1 ¼ f0; 240g,
y
1 ¼ 240, and initialize y
2 ¼ 1. Considering the wine w5,
we have L2 ¼ f0; 190; 240; 430g by merging L1 and
fyþOriPriðw5Þ for y 2 L1}, y
1 ¼ 240 and y
2 ¼ 430. By
invoking the Trim function over the list L2�fy
1; y
2g ¼
f0; 190g, we have L2�fy
1; y
2g ¼ f0; 190g and L2 ¼

f0; 190; 240; 430g. This is since 190> 0� ð1þ 0:6
2�4Þ ¼ 0.

And then, we obtain L3 ¼ f0; 190; 210; 240; 400; 430; 450;
640g by merging L2 and fyþOriPriðw6Þ for y 2 L2g,
y
1 ¼ 210, and y
2 ¼ 400. Through removing the elements
430, 450, and 640 which are larger than y
2 ¼ 400 from L3,
we gain L3 ¼ f0; 190; 210; 240; 400g. After trimming
L3�fy
1; y
2g, we have L3 ¼ f0; 190; 210; 240; 400g. Consid-
ering the wine w8, we obtain L4 ¼ f0; 180; 190; 210; 240;
370; 390; 400; 420; 580g, y
1 ¼ 210, and y
2 ¼ 400. By remov-
ing the elements 420 and 580 which are larger than
y
2 ¼ 400 from L4, we gain L4 ¼ f0; 180; 190; 210; 240;
370; 390; 400g. After trimming L4�fy
1; y
2g, it holds that
L4 ¼ f0; 180; 210; 240; 370; 400g by removing the elements
190 and 390. This is because 190< 180� ð1þ 0:6

2�4Þ ¼ 193:5
and 390< 370� ð1þ 0:6

2�4Þ ¼ 397:75. Now, we have y
1 ¼ 210
and y
2 ¼ 400 which are as small as possible but not less
than j� a 2 f200; 400g. The original prices of the wine
combinations fw6g and fw5; w6g are equal to y
1 ¼ 210 and
y
2 ¼ 400 respectively. Lastly, the wine combination
fw5; w6g is reported as the final result of COPC since
DisRateðfw5; w6gÞ ¼ 0:300>DisRateðfw6gÞ ¼ 0:289.

Complexity. The LBA algorithm first removes the skyline
products whose actual payments are larger than WTP .
The cost of this stage is OðNSÞ.

Then, it generates the list Li which stores the original
prices of candidate skyline product combinations. Here Li

represents the list generated at the end of the ith iteration.
After sorting the elements in Li and removing the unquali-
fied elements, it invokes the Trim function to trim Li. Since
the time complexity of Trim is OðjLijÞ, the time complexity
of Lines 5-10 of the LBA algorithm is OðNS � jLijÞ.

Consider the successive elements y and y0 of Li. Due to
the Tim function, it holds that y0

y > 1þ �
2NS

and jLij ¼
ln t

� lnð1��=2NS Þ �
t

�=2NS
¼ 2NS�t

� ; where t ¼ j� a for 1 � j �
MaxDisNum. Here NS represents the cardinality of skyline
products and MaxDisNum is the maximum discount num-
ber that can be computed due to Lemma 3.1.

As analyzed above, the complexity of the LBA algorithm is

NS þNS �
XMaxDisNum

i¼1

jLij<NS

þNS �
XMaxDisNum

i¼1


 2NS � t

�

�

¼ a

�



MaxDisNum2 �N2

S þMaxDisNum�N2
S

�
þNS:

Therefore, the complexity of the LBA is O
�
a
�MaxDisNum2 �

N2
S

�
, and it is apparent to be a pseudo-polynominal time

algorithm.

Theorem 4.2. LBA is a ð1þ �Þ-approximation algorithm for the
COPC problem.

Proof. Let Oi denote the set of all values obtained by select-
ing a subset of fp 2 SP jOriPriðpÞg, summing its members.
The list Li contains a suitably trimmed version of the set
Oi. After removing all the elements that ensure not to
be the final results from Li and trimming the list Li, each
element of Li is also the element of Oi which represents
the original prices of some skyline product combinations.
For each element y 2 Oi, there is an element y0 2 Oi \ Li

such that y�
1þ �

2n

�i � y0 � y;where n ¼ NS ¼ jSP j.
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Let y
j 2 On represent the element which is as small as
possible but not less than j� a for 1 � j � MaxDisNum.

There is an element zj 2 Ln such that
y

j�

1þ �
2n

�n � zj � y
j :

Thus
y

j

zj
� �

1þ �
2n

�n
: Therefore for the approximate opti-

mal solution z
j 2 Ln which is as small as possible but

not less than j� a, we also have
y

j

z

j
� ð1þ �

2nÞn: Since

ð1þ �
2nÞn � 1þ �, it holds that

y

j

z

j
� 1þ �.

Finally, after computing the discount rates of the skyline
product combinations whose original prices are equal to
y
j , we obtain the ones having the maximum discount rate
as the final results. tu

4.3 The Incremental Greedy Algorithm
In this section, to further improve the performance of proc-
essing the COPC problem, we propose an incremental
greedy (IG) algorithm.

As depicted in Algorithm 3, the IG algorithm first removes
all the skyline products whose actual payments are more
thanWTP . Due to the property of the COPC problem, it does
not always bring a greater benefit (larger discount rate)
by selecting much more products. As shown in Table 2, we
have DisRateðfw6gÞ ¼ 0:286>DisRateðfw4; w6gÞ ¼ 0:267
and DisRateðfw6gÞ>DisRateðfw6; w8gÞ ¼ 0:154. Obviously,
fw6g is better than fw4; w6g or fw6; w8g in terms of discount
rate. Therefore, besides a set SP 
 to store the final optimal
product combinations. Line 2 initializes a set PreP to store
local optimal skyline product combinations. Line 3 computes
the product p with the highest discount rate and adds fpg
to the set PreP . The set SP 
 is initialized as PreP and the
final maximum discount rate Max R is set as DisRateðfpgÞ.
By combining each product combination SP 0 2 PreP with
other skyline products p 2 SP�SP 0, we get new skyline prod-
uct combinations of larger size (Lines 5 to 25). Lines 5 to 25
are a process of iteration. It generates the skyline product
combinations incrementally and maintains the ones that have
the current maximum discount rate in SP 
. In each iteration,
the TempMax R stores the local maximum discount rate
which is the maximum discount rate of new skyline product
combinations in the current iteration. Lines 7 to 18 compute a
set CandSet that contains the product combinations whose
discount rates are equal to TempMax R. Lines 19 to 24 update
SP 
 if TempMax R exceeds Max R. Otherwise, SP 
 and
Max R are maintained without changing. Line 25 updates
PreP as CandSet. New combinations will be generated based
on PreP in the next iteration. This process of iteration pro-
ceeds until PreP is empty. Finally SP 
 is returned as the final
result set of the COPCproblem.

Example 5. Going back to the example in Table 1, by the
skyline query over the wine set, it gets the skyline set
SP ¼ fw4; w5; w6; w8g. Since the wine w6 is with the larg-
est discount rate compared to other wines w4; w5, and w8,
fw6g is inserted into PreP . We have SP 
 ¼ ffw6gg and
Max R ¼ 0:286. Next, by combining fpg with fw6g 2
PreP for each p 2 fw4; w5; w8g, we get new wine combina-
tions fw4; w6g, fw5; w6g and fw8; w6g. Since fw5; w6g gets
the local maximum discount rate, it holds that CandSet ¼
ffw5; w6gg and TempMax R ¼ DisRateðfw5; w6gÞ ¼ 0:300.
Here, we have SP 
 ¼ ffw5; w6gg, Max R ¼ 0:300, and
PreP ¼ ffw5; w6gg. Then, we generate two new wine
combinations ffw4; w5; w6gg and ffw5; w6; w8gg. For
ActPayðfw4; w5; w6gÞ ¼ 460> 400, fw4; w5; w6g is not a

legal result of the COPC problem. Similarly, SP 00 ¼
ffw5; w6; w8gg is pruned as an unqualified result. Finally,
fw5; w6g 2 SP 
 is returned as the final result.

Algorithm 3. Incremental_Greedy (IG) Algorithm

Input: The skyline set SP of a product dataset P , a price pro-
motion campaign “getting $b off every $a purchase”, and a
customer’s payment willingnessWTP

Output: A result set SP 
 of the COPC problem
1: Remove each product p 2 SP with ActPayðpÞ>WTP
2: Initialize PreP ¼ ;
3: Compute product combinations fpg where p 2 SP and p

are with the highest discount rate, and add them to PreP
4: Initialize SP 
 ¼ PreP
5: InitializeMax R ¼ DisRateðfpgÞ for fpg 2 PreP
6: while PreP is not empty do
7: TempMax R ¼ 0 and a set CandSet ¼ ;
8: for each candidate product combination SP 0 2 PreP do
9: PreP ¼ PreP�SP 0

10: for each product p 2 SP�SP 0 do
11: Generate a newproduct combinationSP 00 ¼ SP 0 [ fpg
12: if ActPayðSP 00Þ � WTP then
13: ifDisRateðSP 00Þ>TempMax R then
14: TempMax R ¼ DisRateðSP 00Þ
15: Remove the product combinationswithinCandSet
16: Add SP 00 to CandSet
17: else
18: ifDisRateðSP 00Þ ¼ TempMax R then
19: Add SP 00 to CandSet
20: if TempMax R>Max R then
21: SP 
 ¼ CandSet
22: Max R ¼ TempMax R
23: else
24: if TempMax R ¼ Max R then
25: SP 
 ¼ SP 
 [ CandSet
26: PreP ¼ CandSet
27: Return SP 


Complexity. The IG algorithm is composed of two stages.
In the first stage (Line 1), it checks and removes the prod-
ucts whose actual payments are larger than WTP . Besides,
the discount rates of each product p 2 SP are computed.
The cost of this stage is OðNSÞ. In the second stage (Lines 5
to 25), it is a while loop which generates skyline product
combinations incrementally. During each iteration, it needs
to combine each product combination SP 0 2 PreP with
a product in SP�SP 0, the complexity of this stage is

O
�jPreP j � jSP�SP 0j� ¼ O

�jPreP j � jSP j�:
As analysed above, the complexity of the IG algorithm is
equal to OðjPreP j �NSÞwhere NS ¼ jSP j.

5 DISCUSSIONS

In this section, we discuss variants of the COPC problem
with considering other price promotion campaign and
different customer’s demands.

5.1 Other Price Promotion Campaigns
In this paper, we pay attention on the price promotion
campaigns of the dependent-product selection. In the pro-
posed algorithms, we consider one typical campaign as
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getting $b off every $a purchase. It is worth to notice that our
approaches can also be used to handle the COPC problem
under other campaigns of the dependent-product selection.

Consider the popular price promotion campaign “$b
coupon every $a”. Some definitions and lemmas in Section 3
need to be modified as follows. At first, in Definition 3, the
actual payment of a skyline product combination P is com-
puted by ActPayðP Þ ¼ P

p2P OriPriðpÞ: Then, the discount
rate of the skyline product combination P in Definition 4 is

DisRateðP Þ ¼
j
OriPriðP Þ

a

k
� b

OriPriðP Þ þ
j
OriPriðP Þ

a

k
� b

:

Last, due to Property 1, the upper bound of the discount
rate is b b

aþb
c: The maximum discount number in Lemma 3.1

is computed by MaxDisNum ¼ bWTP
a
c: Additionally, under

the price promotion that is getting $b coupon every $a pur-
chase, customers can get the maximum discount rate if the
original price of P 0 is an integral multiple of a. Therefore, it
does not need to change Property 2.

Based on the modified definitions and lemmas, the
approaches proposed in Section 4 could also be employed
to the COPC problem under the price promotion campaigns
such as ”$b coupon every $a purchase”.

5.2 Different Customer’s Demands
In this paper, the COPC problem is to find the skyline prod-
uct combinations SP 0, such that they bring the maximum
discount rate without exceeding the customer’s payment
willingness. However, when selecting products under price
promotion, apart from the maximum discount rate, custom-
ers are common to have other two popular demands that are
spending or saving the most money. When customers want
to spend the most money, it only needs to redefine the COPC
problem in this paper by modifying the objection function
as “maximize ActPayðSP 0Þ” in Definition 5. In addition, for
saving the most money (maximize the discount), the new
objection function is “maximize DiscountðSP 0Þ”.

6 EXPERIMENTAL EVALUATION

In this section, similar to [8], we first conduct a small
customer study to certify the significance of our problem
in the product-selection under price promotion. We then
evaluate the performance of the proposed algorithms.

The naive exact algorithm of COPC is to generate all
the skyline product combinations which are not beyond the
customer’s payment willingness, compute the actual dis-
count rate of each skyline product combination, and identify
the ones that bring themaximumdiscount rate.

Since we investigate the COPC problem for the first time,
we also take the naive exact algorithm as a baseline algorithm.
Admittedly, this exact algorithm, which needs to enumerate
all the skyline product combinations, is not scalable. Similar
to theways in [14], we first conduct some experiments to com-
pare all the proposed algorithms, TLE in Section 4.1, LBA in
Section 4.2, and IG in Section 4.3, over several small skyline
product sets. Besides, we compare the LBA and IG algorithms
for the COPCproblem over large skyline product sets.

All the proposed algorithms aforementioned were imple-
mented in C++ to evaluate their effectiveness and efficiency.
In particular, we evaluate the algorithms in term of

processing time (PT) which is the time to compute the opti-
mal skyline product combinations. Besides, number of sky-
line products (NS) is illustrated for evaluating the
relationship between PT andNS .

The experiments were performed on a PC with Intel Core
I7-6700T 2.81 GHz CPU (contains 4 cores), 8 GB main mem-
ory, and under the Microsoft Windows 7 operation system.

6.1 A Customer Study
In [8], Liu et al. presented a small customer study to verify the
motivation of the G-skyline query. Similarly, we also perform
a small customer study using the wine set in Table 1. This
study is based on questionnaire investigation for 47 under-
graduates, 38 master and doctorate candidates, and 16 staff
members in our university. They are asked to pick out the best
wine combinationswhen the price promotion campaign is get-
ting $60 off each $200 purchase and the customer’s willingness
to pay is $400. Besides, they are also required to provide the
reasons of their selections. Table 4 shows the picked number of
each wine combination from 89 feedbacks The wine combina-
tions are ranked in descending order of their picked numbers.

From the questionnaires, it holds that customers mainly
select the wines in the skyline which have advantages in the
attributes, class and praise degree. Here, the great attention
is common to be paid to the attributes except the original
prices. Additionally, we have the following conclusions: First
of all, most of the customers choose the wine combination
fw5; w6g because it does not exceed the customer’s willing-
ness to pay $400 and brings the maximum benefit (discount
rate) for the customers. More, some customers who should
not spend too much time on the selection tend to choose
the wine combinations fw4; w5g, fw4; w6g, and fw4; w8g. This
is since these wine combinations could bring good benefits,
which are close to the maximum one, for the customers.
Furthermore, some customers who do not drink wine select
the wine combinations fw4g and fw6g that only contain one
wine and bring good benefit. Last but not least, the customers
who favorite the wine combinations fw8g, fw5; w8g, and
fw6; w8g aremost concerned about the praise degree.

Customer requirements are diversified in the product-
selection under price promotion, but most of the customers
tend to find the wine combinations whose original prices are
just equal to integral multiples of $a and the actual prices are
not beyond the customer’s willingness to pay. This means
that these wine combinations bring the maximum discount
rate due to Property 2. As shown in Table 4, in the process of
product selection, about 70 percent of the customers pick out
the wine combinations with large discount rates. We place
thesewine combinations gray backgrounds in Table 4.

On the basis of the analysis above, our COPC problem is sig-
nificant for customers to select products under price promotion.

TABLE 4
The Results of the Customer Study

Wine Combination Discount Rate Picked Number

fw5; w6g 0.300 28
fw4; w6g 0.267 16
fw6; w8g 0.154 14
fw5; w8g 0.162 8
fw4g 0.250 7
fw4; w8g 0.286 6
fw8g 0.000 5
fw6g 0.286 3
fw4; w5g 0.279 2
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6.2 Experimental Setup
In order to test the performance of the proposed algorithms
for the COPC problem on different datasets, we adjusted
the publicly available data generator provided by [27] to
generate synthetic datasets used in the following experi-
ments. We applied the modified generator to generate two
types of datasets distributions: Independent (Ind) and Anti-
correlated (Ant), respectively. Each dataset is indexed by an
R-tree with 4 KB page size.

We use two real datasets, namely Beer and Smartphone.
The beer dataset that is extracted from jx.tmall.com contains
2001 tuples, and we take into account three attributes which
are the weight, average monthly sales, and price. Besides,
the smartphone dataset is gained form jd.com. It contains
4476 tuples with seven attributes which are weight, com-
ments, resolution, number of pixel of the camera, size of
memory, number of cores of the CPU, and price.

In practice, merchants usually compute the upper bound
of discount rate UDisRate on the basis of product’s histori-
cal transaction data. Here UDisRate is different from the
MaxDisRate. UDisRate is the upper bound of the discount
rate the online merchants can offer while MaxDisRate rep-
resents the maximum discount rate the customers can gain.
Since larger UDisRate brings more sales, the total profits,
which the merchants can obtain, increase in turn. Therefore,
online merchants trend to provide an appropriate UDisRate
that can bring them the maximum total profits. Particularly,
the price promotion campaign is designed due to the
UDisRatewhich the merchants could offer.

There are numerous approaches to design the price pro-
motion campaign. Consider the concrete approaches have
little effect on performance of the proposed algorithms.
In this paper, we only take one approach, which is due to
UDisRate and the hundreds of bAvePriðP Þc, into account.
Here, the average price of products in P is computed

by AvePriðP Þ ¼ OriPriðP Þ
N : If UDisRate is equal to 30% and

the hundreds of bAvePriðP Þc is 5, then the price promotion

campaign is “get $500�30%¼ $150 off every $500 purchase”.
The parameter settings of the synthetic datasets are sum-

marized in Table 5 where default values of the parameters
are highlighted in bold.

6.3 Experimental Results for the COPC Problem
In this section, since the exact algorithms cannot be utilized
to process large skyline product sets, we first evaluate all
the proposed algorithms for the COPC problem over several
small skyline product sets. Then, we compare the LBA and
IG algorithms over some large skyline product sets.

6.3.1 Performance on Small Skyline Product Sets

The cardinalities of the skyline product sets which the exact
algorithms can deal with depend on the memory capacity.
The more memory capacity, the large skyline product sets
the exact algorithms can process. Table 6 shows PT of the
proposed algorithms over some small skyline product sets
where each product is selected from the skyline set of an Ant
dataset with size 256K and d ¼ 4 at random. Since the experi-
mental results of the proposed algorithms over an Ind data-
set are close to those of an Ant dataset when processing the
same number of skyline products. We only illustrate the
experimental results over the Ant dataset in this section.

As shown in Table 6, in our experiments, the TLE algo-
rithm can handle the skyline product set with the cardinality
NS � 35 while the naive algorithm can only deal with the
skyline product sets withNS � 25. The proposed algorithms
needmuchmore PTwith the growth ofNS .When processing
small skyline product sets, the naive exact and TLE algo-
rithms may have better performance than the LBA and IG
algorithms. This is since PT of the algorithms are close but
the exact algorithms could gain accurate results. Besides,
LBA and IG have advantages in processing large skyline
product sets. LBA needs less PT with the growth of �. IG
outperforms LBA in term of PT and offers better scalability.

6.3.2 Performance on Large Skyline Product Sets

In this section, we vary the cardinality N , the customer’s
payment willingnessWTP , the upper bound of the discount
rate UDisRate, and the dimensionality d, respectively, and
evaluate the performance of the LBA and IG algorithms for
the COPC problem.

Experimental Results on CardinalityN .We research the per-
formance of the LBA and IG algorithmswithN varying from
64 K to 512 K, and the other parameters are kept to their
default values. The experimental results of LBA and IG

TABLE 5
The Parameter Settings on Synthetic Datasets

Parameter Range Description

N 64K, 128K, 256K, 512K the cardinality of the product dataset P
UDisRate 30%, 40%, 50%, 60%, 70%, 80% the upper bound of the discount rate which the merchant could offer
WTP f5; 10;15; 20g�bAvePriðP Þc the customer’s willingness to pay
� 0.20, 0.40, 0.60, 0.80 the trimming parameter utilized in the LBA algorithm
d 3, 4, 5 the number of attributes

TABLE 6
PT(ms) of the Proposed Algorithms versus Cardinality of the Skyline Product Set NS (Ant)

NS AvePri a b Naive Exact TLE LBA (0.20) LBA (0.40) LBA (0.60) LBA (0.80) IG

5 420.80 400 200 1.077 0.780 0.917 0.874 0.782 0.761 0.622
10 474.50 400 200 4.534 3.312 1.337 1.091 1.032 0.912 0.764
15 465.27 400 200 22.524 4.209 2.848 1.710 1.264 1.237 0.742
20 425.50 400 200 691.879 18.591 7.280 3.901 2.966 2.056 0.821
25 422.04 400 200 34701.793 810.472 20.962 7.254 4.947 3.432 0.863
30 448.77 400 200 �� 26880.209 47.419 13.501 7.571 5.852 0.925
35 427.20 400 200 �� 4223055.338 95.598 24.216 12.641 8.770 0.911
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under variousN are depicted in Fig. 1. Table 7 shows the run-
ning information as varying N . For the Ind dataset with
N ¼ 64K, it reports a skyline product set with NS ¼ 278, the
average price of the skyline products is AvePri ¼ 264:63,
and the price promotion campaign is “get $b ¼ $200 �
UDisRate ¼ $200� 50% ¼ $100 off each $200 purchase”. Simi-
larly, we could get the running information over other datasets
as shown in Table 7. The increase ofN brings much more sky-
line product combinations to be considered in general. This
also brings the growth of PT. Moreover, IG outperforms LBA
by many orders of magnitudes in term of PT. Considering
LBA, it needs less PT when � increases in most cases. It is an
interesting phenomena that for the LBA algorithm with
� ¼ 0:2, PT decreases when processing the Ind datasets withN
varying from 256K to 512K. This depends on the values of the
price in the datasets. In the LBA algorithm, after pruning
unqualified product combinations, the solution space over a
large dataset may be less than that over a small dataset. Thus,
in some cases, itmayneed less time to process the larger dataset
than the small dataset by the LBA algorithmwith the same �.

Experiment Results on Customer’s Willingness to Pay WTP .
Fig. 2 shows the results of the LBA and IG algorithms for
the COPC problem with varying the customer’s willingness
to pay WTP , and the other parameters are kept to their
default values. Here WTP varies from 5� bAvePriðP Þc to
25� bAvePriðP Þc by a step of 5� bAvePriðP Þc.

As shown in Fig. 2, PT of the LBA and IG algorithms
increases with the growth of WTP . This is because the growth
of WTP makes the customer have much more choice. There-
fore,muchmore skyline combinations require to be considered.
Furthermore, IG also needsmuch less PT thanLBA. Besides, PT
of the LBA algorithmdecreaseswith the growth of �.

Experiment Results on Maximum Discount Rate UDisRate.
Furthermore, we also do experiments on varying the maxi-
mum discount rate UDisRate, which a merchant can offer,
from 30% to 80%, and the other parameters are kept to their
default values. The price promotion is “get UDisRate�
ð15� bAvePriðP ÞcÞ off every 15� bAvePriðP Þc purchase”.
Obviously, the price promotion campaigns vary with the
change of UDisRate as shown in Fig. 3.

As the growth of UDisRate, customers could buy much
more products with the sameWTP . This is similar to increase

the customer’s payment willingnessWTP . Because it requires
to compute muchmore skyline product combinations in turn,
the LBA and IG algorithms require much more PT as the
growth of UDisRate. Additionally, IG needs much less PT
compared to LBA, PT of LBA decreaseswith the growth of �.

Experiment Results on Dimensionality d. Tables 8 and 9 show
the results of the LBA and IG algorithms for the COPC prob-
lemwith varying d from 3 to 5 by a step of 1. The dimensional-
ity d has a significant effect on the proposed algorithms. As d
grows, PT significantly increases as illustrated in Tables 8 and
9. This is since the cardinality of skyline product set NS

increases with the growth of d. Moreover, IG four orders of
magnitude faster than LBA. Considering the LBA algorithm,
PTdecreaseswith the growth of �.

Experiment Results on a. We evaluate the performance of
the LBA and IG algorithms under different price promotion
campaigns. Tables 10 and 11 show the results of LBA and
IG for the COPC problem with varying a, and the other
parameters are kept to their default values. We generate a
randomly and choose values due to the average prices of
products in the datasets.

As shown in Tables 10 and 11, PT of the LBA and IG algo-
rithms decrease with the growth of a. This is because the
larger a is, the less products the customer can buy. Therefore,
less skyline product combinations need to be generated and
checked. The IG algorithm requires less PT and has better
scalability than the LBA algorithm. As � increases, PT of the
LBA algorithmdecreases.

6.4 Performance on Real Datasets
In this subsection, we report experimental results on the real
datasets, Beer and Smartphone. Fig. 4 shows PT of the LBA
and IG algorithms for the COPC problem over the above
datasets, respectively.

We apply the price promotion campaigns “get 100 yuan
off 199 yuan” and “get 400 yuan off 1999 yuan”, which are
offered by Jingdong and Alibabas Taobao Mall, for the beer
and smartphone, respectively.

The results on the real datasets are consistent with the
ones obtained from the experiments on the synthetic data-
sets. As illustrated in Fig. 4, PT of the LBA and IG algorithms

Fig. 1. Performance versus cardinalityN (a) Ind and (b) Ant.

TABLE 7
Running Information versus Cardinality N

N Ind (d ¼ 4) Ant (d ¼ 4)

NS AvePri a b NS AvePri a b

64K 278 264.63 200 100 932 296.23 200 100
128K 399 233.66 200 100 1117 294.23 200 100
256K 635 197.74 100 50 1406 260.71 200 100
512K 1004 156.03 100 50 2047 249.57 200 100

Fig. 2. Performance versus customer’s willingness to pay WTP (a) Ind
and (b) Ant.

Fig. 3. Performance versus maximum discount rate UDisRate (a) Ind
and (b) Ant.
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increases as WTP grows. Here for the Beer, the customer’s
payment willingnessWTP is changed from 5� bAvePriðP Þc
to 25� bAvePriðP Þc by a step of 5� bAvePriðP Þc. Consider
the smartphone, we vary WTP from 2� bAvePriðP Þc to
6� bAvePriðP Þc by a step of bAvePriðP Þc. The IG algorithm
outperforms the LBA algorithm in term of PT. For the LB
algorithm, PT reduces with the growth of �.

6.5 Summary
As analyzed above, the naive exact and TLE algorithms
are appropriate to process small skyline product sets.
The LBA and IG algorithms have advantages in dealing
with large skyline product sets. The IG algorithm always
requires far less PT with comparing to LBA. Compared
to the exact algorithms and the LBA algorithm, the IG
algorithm has the best scalability. For the LBA algorithm,
it results in the degradation of PT with the increase of �
in most cases.

It always needs more PT to process the Ant datasets than
the Ind datasets. This is reasonable because NS of the Ant
datasets is larger than that of the Ind datasets with equal
cardinality. As N ,WTP , UDisRate or d grows, it faces much
more candidate skyline product combinations, and the
proposed algorithms need much more PT.

7 CONCLUSIONS

In this paper, we formulate the COPC problem to retrieve
optimal skyline product combinations that satisfy the custom-
er’s payment constraint and bring the maximum discount
rate. To tackle the COPC problem, we propose an exact algo-
rithm, design an approximate algorithmwith an approximate
bound, and develop an incremental greedy algorithm to boost
the performance. We conduct a customer study to verify the
significant of our COPC problem. Additionally, the experi-
mental results on both real and synthetic datasets illustrate
the effectiveness and efficiency of the proposed algorithms.

This work opens to some promising directions for future
work. First, in addition to combinations of homogeneous
products, we will focus on the COPC problem over prod-
ucts of different categories. After that, in reality, the custom-
er’s demands are diversification and individuation, and it is
significant and interesting to compute optimal product com-
binations that meet different customer demands such as
save or spend the most money under their budgets. Last but
not least, we could also research top k COPC problem that
aims to compute k optimal product combinations due to
customer demands based on the work in [17], [28], [29].

TABLE 8
PT (ms) versus Dimensionality d (Ind)

d NS LBA (0.20) LBA (0.40) LBA (0.60) LBA (0.80) IG

3 381 28928.412 16891.914 10112.268 6539.403 1.182
4 635 174322.639 99205.364 65055.745 45076.783 1.679
5 1713 1137468.790 1077165.967 758256.252 605025.628 2.873

TABLE 9
PT (ms) versus Dimensionality d (Ant)

d NS LBA (0.20) LBA (0.40) LBA (0.60) LBA (0.80) IG

3 422 61233.599 30273.884 17912.103 11322.974 1.547
4 1406 699495.325 657629.099 463531.221 371199.523 2.225
5 6099 5812650.716 5602174.722 4785533.809 4063466.844 8.663

TABLE 10
PT(ms) of the LBA and IG Algorithms versus a (Ind)

a b LBA (0.20) LBA (0.40) LBA (0.60) LBA (0.80) IG

222 110 179086.773 97580.890 62211.985 43840.969 0.4904
495 240 160603.879 93662.425 58523.776 41709.408 0.2880
676 330 159672.526 92828.485 57096.462 39977.643 0.3205
893 440 152736.130 90040.361 56501.649 39902.512 0.2651

TABLE 11
PT(ms) of the LBA and IG Algorithms versus a (Ant)

a b LBA (0.20) LBA (0.40) LBA (0.60) LBA (0.80) IG

265 130 720305.956 675961.955 495234.720 378460.696 1.6512
435 210 712640.120 664243.563 451091.051 356581.461 0.8205
634 310 706395.286 612276.516 431516.169 335209.025 0.7913
848 420 696462.452 604887.070 424758.962 333665.256 0.5948

Fig. 4. Performance versus customer’s willingness to pay WTP (a) Beer
and (b) Smartphone.
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