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Abstract—With the development of the economy, products are significantly enriched, and uncertainty has been their inherent quality.

The probabilistic dynamic skyline (PDS) query is a powerful tool for customers to use in selecting products according to their

preferences. However, this query suffers several limitations: it requires the specification of a probabilistic threshold, which reports

undesirable results and disregards important results; it only focuses on the objects that have large dynamic skyline probabilities; and,

additionally, the results are not stable. To address this concern, in this paper, we formulate an uncertain dynamic skyline (UDS) query

over a probabilistic product set. Furthermore, we propose effective pruning strategies for the UDS query, and integrate them into

effective algorithms. In addition, a novel query type, namely the top k favorite probabilistic products (TFPP) query, is presented. The

TFPP query is utilized to select k products which can meet the needs of a customer set at the maximum level. To tackle the TFPP

query, we propose a TFPP algorithm and its efficient parallelization. Extensive experiments with a variety of experimental settings

illustrate the efficiency and effectiveness of our proposed algorithms.

Index Terms—Data management, dynamic skyline query, parallel algorithm, probabilistic products
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1 INTRODUCTION

WITH the development of the economy, we have entered
the era of product explosion. Amazon.com, for exam-

ple, offers 236,080 types of wrist watches, 41,063 types of
grapewines, and 1,046,681 types of milk.Moreover, probabi-
listic products, which customers can obtain with certain
probabilities, are being given increasing attention [1]. Similar
to the specialized probabilistic products that companies pro-
vide, the most common products on an on-line shopping
platform are also uncertain, and can be considered probabi-
listic products. These products are associated with favorable
rating values derived from historical customer feedback. The
rating value of each product can be considered its existential
probability because it represents the probability that the
product matches the description in the advertisement [2]. As
a result, it brings a great challenge for customers, who must
process massive numbers of probabilistic products to iden-
tify the items that satisfy their preferences.

To identify products that can meet a customer’s demands,
there are mainly two approaches. One approach is to execute
a dynamic skyline query in view of the customer [3]. Another
approach, as seen in [4] and [5], allows customers to specify

the worst acceptable value of each attribute. A product p is
said to satisfy customer c if all of the attribute values of p are
not worse than the worst acceptable values, respectively. The
above two approaches are useful for processing traditional
products with certainty. However, these processes are not
applicable when handling probabilistic products because
they do not account for the uncertainty of each candidate pro-
duct. Moreover, one serious limitation of the second app-
roach is that it fails to handle subjective types of attributes [3].

In [6], Lian et al. formulated a probabilistic reverse skyline
query based on a dynamic skyline query over uncertain data.
To find the probabilistic reverse skylines, it is necessary to
first execute the probabilistic dynamic skyline (PDS) query.
In [7], Lian et al. researched the probabilistic group subspace
skyline query, which is also based on the PDS query. The PDS
query retrieves the objects whose dynamic skyline probabili-
ties are not less than the specified probabilistic threshold. Spe-
cifically, a data object p dominates another object p0 in view of
a query point q, if it holds that (1) jp½i� � q½i�j � jp0½i� � q½i�j for
all dimensions 1 � i � d; and (2) it has at least one dimension
j in which jp½j� � q½j�j< jp0½j� � q½j�j, where p½j� and p0½j� are
the jth dimensions of objects p and p0, respectively. This PDS
query is easy to adjusted and utilize to help find probabilistic
products that satisfy a customer’s requirements.

Consider an on-line trading system that has a grape wine
set W ¼ fw1; w2; w3; w4; w5; w6g for sale, as illustrated in
Table 1. We consider two attributes of each wine, which are
the grape juice content (GraCon) and price (Pri). For ease of
description, we use 1�GraCon instead of GraCon to
describe the grape content in this paper. Without loss of
generality, for 1�GraCon and Pri, the lower values are con-
sidered preferable. Furthermore, as shown in Table 1, each
grape wine has a rating (Rat), which indicates the probabil-
ity that the product matches the description in the advertise-
ment in terms of quality. Table 2 provides a customer set
C ¼ fc1; c2; c3g, which describes the customers’ different
preferences for the grape wine.

Fig. 1 shows an example of the PDS query with respect to
the customer c1. Based on [6], in view of c1, because no wine
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dynamically dominates w3, the dynamic skyline probability
of w3 is equal to 0.40. Considering that w1 is dynamically
dominated by w3 and w6, its dynamic skyline probability is
0:90� ð1� 0:40Þ � ð1� 0:60Þ ¼ 0:22. Similarly, we obtain
the dynamic skyline probabilities of w2, w4, w5 and w6,
which are 0.48, 0.03, 0.04 and 0.36, respectively. As a conse-
quence, given a probabilistic threshold a ¼ 0:35, the PDS
query returns a set fw2; w3; w6g, where the dynamic skyline
probability of each wine is not less than 0.35, as depicted in
Fig. 1b. Fig. 1c shows that if the probabilistic threshold a is
set to 0.45, the PDS query reports a set fw2g.

From Fig. 1, it is clear that the PDS query has several limi-
tations. First, it is necessary to specify a threshold a, which is
difficult for customers without guidelines. Second, the PDS
query may obtain some undesirable objects that have no
advantages in terms of either their attributes or dynamic sky-
line probabilities. For example, w6 is considered an undesir-
able result in view of c1 because w6 is dynamically
dominated by w3 and its dynamic skyline probability is also
less than that of w6. Additionally, the PDS query may over-
look some important objects. As shown in Fig. 1c, the wine
w3, which has the best attributes, is not returned to the cus-
tomer because the dynamic skyline probability of w3 is equal
to 0.40, which is slightly lower than the threshold 0.45.
Finally, the PDS query results changewith different probabi-
listic thresholds. Fig. 1 shows that it returns a set fw2; w3; w6g
with a ¼ 0:35 and reports a set fw2gwith a ¼ 0:45.

In this paper, we are concerned with the limitations that
the PDS query faces, and propose a new dominant operator:
uncertain dynamic dominance (UD-Dominance). To obtain
products with higher satisfaction levels, in the UD-
Dominance operator, we account for both the attributes and
the dynamic skyline probabilities of the products. A prod-
uct p UD-dominates another product p0 in view of a cus-
tomer c if it holds that (1) p is not worse than p0 in both all

the attributes and the dynamic skyline probability, and p is
better than p0 in at least one attribute; or (2) p is not worse
than p0 in all attributes and the dynamic skyline probability
of p is larger than that of p0. Moreover, we develop an uncer-
tain dynamic skyline (UDS) query. Given a probabilistic
product set UP and a customer set c, the UDS query reports
all of the products p 2 UP that are not UD-dominated by
any other p0 2 UP in view of c .

In the UDS query, it only takes a customer’s preference
into consideration, whereas many applications need to con-
sider the various preferences of a group of customers. For
instance, an online shopping mall plans to implement a
sales strategy. It is important to maximize the profits of the
mall by selecting some “best” products that can satisfy a set
of customers according to their different preferences. This
essentially describes another useful query that concerns
UDS queries with a size constraint and in view of different
customers. To concern this, we define this query operator as
a top k favorite probabilistic products (TFPP) query. This
TFPP query reports the k products that have the highest
favorite probabilities.

The TFPP query is also important in many other applica-
tions. In a general scenario, consider a family that wants to
book a flight. Every family member has his/her own prefer-
ences, including price, boarding time, and flight duration.
In this application, the TFPP query can also help select the
flights that are most suitable for this family.

Briefly, the significant contributions of this paper are
summarized as follows.

� We formulate an uncertain dynamic skyline query in
the context of a probabilistic product set.

� We propose several pruning approaches to reduce
the search space of the UDS query, and integrate
them into a UDS query (UDSQ) algorithm. More-
over, we introduce the reuse mechanism to acceler-
ate the UDS query and develop an enhanced UDSQ
(EUDSQ) algorithm.

TABLE 1
The Grape Wines

Wines 1-GraCon(%) Pri($) Rat

w1 40 70 0.90
w2 20 90 0.80
w3 60 170 0.40
w4 30 220 0.50
w5 90 190 0.70
w6 70 80 0.60

TABLE 2
The Preferences of Customers

Customers 1-GraCon(%) Pri($)

c1 55 130
c2 35 110
c3 70 140

Fig. 1. The illustration of PDS queries with respect to c1.
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� We develop a top k favorite probabilistic products
query, which is concerned with the preferences of a
customer set.

� We design an efficient approach to address the TFPP
query. Furthermore, we offer a parallel approach to
improve the efficiency of the TFPP query.

� We perform an extensive experimental study with
both synthetic and real datasets to verify the effi-
ciency and effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. In Section 2,
we propose the UDS query and TFPP query respectively,
and review the related work. In Section 3, we design effec-
tive pruning strategies and present two algorithms for the
UDS query. In Section 4, we present a TFPP algorithm and
its efficient parallelization for the TFPP query. In Section 5,
we evaluate the performance of the proposed algorithms by
extensive experiments. In Section 6, we conclude the paper
and also expatiate the directions for future work.

2 PROBLEM STATEMENT

In this paper, we research our problems on the basis of the
existentially uncertain datamodel where each uncertain object
exists to be a certain object with a probability [8]. Based on this
model, we formulate theUDS and the TFPPqueries in this sec-
tion. Then, we review the related research about our problems.

2.1 UDS Query

First, we introduce the notion of a dynamic dominance
operator and dynamic skyline query over precise datasets.

Consider a product set P ¼ fp1; p2; . . . ; png and a customer
set C ¼ fc1; c2; . . . ; cmg, which store the information of differ-
ent products and customers’ preferences, respectively. Each
product p 2 P is represented by a multi-dimensional point
<p½1�; p½2�; . . . ; p½d�> , where p½i� denotes its ith attribute
value. Without loss of generality, we assume that a smaller
value of p½i� for 1 � i � d is preferable. In addition, for a cus-
tomer c 2 C, the preference on the product is represented by
a multi-dimensional point <c½1�; c½2�; . . . ; c½d�> . Here, c½j�
denotes the special requirement on the jth attribute value.

Definition 2.1 (Dynamic Dominance [3]). In view of a cus-
tomer c 2 C, a product p 2 P dynamically dominates another
p0 2 P is expressed as follows:

p �c p
0 ¼ ð8i; jp½i� � c½i�j � jp0½i� � c½i�jÞ

^ ð9i; jp½i� � c½i�j< jp0½i� � c½i�jÞ
where 1 � i � d.

In this paper, we utilize the dynamic skyline query to
return “attractive” products because this query is a pow-
erful tool that is used to return products based on a cus-
tomer’s preferences and can also capture subjective
attributes [3].

Definition 2.2 (Dynamic Skyline Query, DSQ [3]). Let C
be a set of customers and P be a set of products. For a customer
c 2 C, the DSQ returns all the products p 2 P such that there
is not any other p0 2 P � fpg satisfying p0 �c p.

Based on Definitions 2.1 and 2.2, we propose an uncer-
tain dynamic dominance operator and an uncertain
dynamic skyline query in the following.

Definition 2.3 (Uncertain Dynamic Dominance, UD-
Dominance). Let C be a set of customers and UP ¼
fðp1; Prðp1ÞÞ; ðp2; Prðp2ÞÞ; . . . ; ðpn; PrðpnÞÞg be a set of prob-
abilistic products, where PrðpÞ represents the existential
probability of a product p 2 UP . A product p 2 UP UD-
dominates another p0 2 UP with respect to c is expressed as
follows:

p �u
c p0 ¼�8i jp½i� � c½i�j � jp0½i� � c½i�j ^ PrcDSkyðpÞ � PrcDSkyðp0Þ

� ^�9i jp½i� � c½i�j< jp0½i� � c½i�j _ PrcDSkyðpÞ>PrcDSkyðp0Þ
�
:

Here, 1 � i � d and the dynamic skyline probability of a prod-
uct p 2 UP is computed by

PrcDSkyðpÞ ¼ PrðpÞ �
Y

p02UP;p0�cp

ð1� Prðp0ÞÞ: (1)

Lemma 2.1. Given two products p and p0 within UP , if p �c p
0

and PrcDSkyðpÞ � PrcDSkyðp0Þ, then we have p �u
c p0.

Due to space limitation, the proofs of some lemmas and
theorems are given in the supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2016.2584606, of
this paper.

As illustrated in Fig. 2a, w3 �c1 w6. The dynamic
skyline probability of w6 is Prðw6Þ � ð1� Prðw3ÞÞ ¼
0:60� ð1� 0:40Þ ¼ 0:36. Since w3 �c1 w6 and the dynamic

skyline probability of w3 is larger than that of w6, we gain
w3 �u

c1
w6 according to Lemma 2.1.

Fig. 2. The illustration of UDS queries.
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Lemma 2.2 (Transitive Property of Uncertain Dynamic
Dominance). Given three products p, p0, and p00 within UP ,
if p �u

c p0 and p0 �u
c p00, then we gain p �u

c p00.

Based on Definition 2.2, we formulate the uncertain
dynamic skyline query as follows.

Definition 2.4 (Uncertain Dynamic Skyline Query,
UDS Query). Given a probabilistic product set UP and a cus-
tomer c, the uncertain dynamic skyline query retrieves all the
products p 2 UP which are not UD-dominated by any other
product p0 2 UP with respect to c. That is, the UDS query
returns a set UDSðUP; cÞ such that:

UDSðUP; cÞ ¼ fp 2 UP j @p0 2 UP � fpg; p0�u
c pg:

Continuing the example in Fig. 1, Fig. 2 shows the UDS
query results with respect to customer ci ð1 � i � 3Þ, respec-
tively. In view of customer c1, the UDS query retrieves a set
fw2; w3g. Similarly, in view of customers c2 and c3, the UDS
queries report fw1; w2g and fw3; w5; w6g, respectively.
Lemma 2.3. The UDSðUP; cÞ is complete and correct.

Consider a set of candidate products UP with jUP j ¼ N
and dimensionality d. According to the expected number of
skyline query result in [9], the size of the UDS query results
is computed by

Sðd;NÞ ¼ Hðdþ1; NÞ 	 1

d!
ððlnNÞ þ rÞd; (2)

where r is the Euler-Mascheroni constant approximately
equal to 0.577.

Our UDS query differs from the PDS query in [6], [7]
mainly in the following aspects:

� Friendliness. In the PDS query, it is necessary to spec-
ify a probabilistic threshold, which is difficult for cus-
tomers without guidelines. Moreover, the PDS query
may return undesirable results; and overlook some
important objects. To address this, we formulate a
UDS query that dispenses with the probabilistic
threshold, is able to obtain significantly better results,
and can report all the important results.

� Fairness. The PDS query does not satisfy the fairness
requirement because it only focuses on the objects
that have large dynamic skyline probabilities. How-
ever, in most cases, the data objects with small
dynamic skyline probabilities are also of great signif-
icance for the customers [10]. Accordingly, in our
UDS query, we take both the dynamic skyline proba-
bilities and the attributes of the objects into account.

� Stability. The PDS query results always change with
different probabilistic thresholds, whereas our UDS
query results are stable over a given dataset.

2.2 TFPP Query

The UDS query only takes a customer’s preferences into
account. Moreover, in this section, we propose an interest-
ing query that retrieves the top k favorite probabilistic prod-
ucts from the perspective of various customers.

To choose the k products that can meet various customers’
maximum demands, the typical approach is to specify a

function to rank the query results. However, it is inconvenient
and difficult for users to provide an appropriate ranking func-
tion without guidelines [3]. Motivated by these aspects, we
introduce a new selection strategy due to the favorite
probabilities.

Definition 2.5 (Favorite Probability). Given a probabilistic
product set UP , a customer c, and a product set UDSðUP; cÞ
which contains the UDS query result set in view of c, the favor-
ite probability of each product p 2 UDSðUP; cÞ, denoted as
PrFavðp; cÞ, is computed by

PrFavðp; cÞ ¼
PrcDSkyðpÞP

p02UDSðUP;cÞ Pr
c
DSkyðp0Þ

:

Furthermore, we measure the favorite probability of the
product p for a customer set C by

PrFavðp; CÞ ¼
X
c2C

PrFavðp; cÞ

¼
X
c2C

PrcDSkyðpÞP
p02UDSðUP;cÞ Pr

c
DSkyðp0Þ

:
(3)

Based on the favorite probability, we propose the formu-
lation of the TFPP query.

Definition 2.6 (Top k Favorite Probabilistic Products
Query, TFPP). Given a customer set C and a probabilistic
product set UP , the TFPP query retrieves k products
p 2 [c2CUDSðUP; cÞ with the highest favorite probabilities in
view of C.

Consider the set of grape wines in Fig. 1. Table 3 shows
the UDS query results and their dynamic skyline probabili-
ties in view of customer ci (1 � i � 3), respectively. Here, if
wine wi is not contained in the UDS query results in view of
customer cj for 1 � i � 6 and 1 � j � 3, then its dynamic
skyline probabilities is set to 0.00.

According to Definition 2.5 and Equation (3), with
respect to the customer set C ¼ fc1; c2; c3g, the favorite prob-
abilities of w1 and w2, respectively, are computed by

� 0:00

0:48þ0:40
þ 0:90

0:90þ 0:80
þ 0:00

0:40þ 0:42þ 0:60

�
¼ 0:53;

and� 0:48

0:48þ 0:40
þ 0:80

0:90þ 0:80
þ 0:00

0:40þ 0:42þ 0:60

�
¼ 1:02:

Similarly, we gain the favorite probabilities of w3, w4, w5,
and w6, which are 0.74, 0.00, 0.30, and 0.42, respectively. Let

TABLE 3
The UDS Query Results in View of ci (1�i�3)

Wines
Customers c1 c2 c3

ðw1; 0:9Þ 0.00 0.90 0.00
ðw2; 0:8Þ 0.48 0.80 0.00
ðw3; 0:4Þ 0.40 0.00 0.40
ðw4; 0:5Þ 0.00 0.00 0.00
ðw5; 0:7Þ 0.00 0.00 0.42
ðw6; 0:6Þ 0.00 0.00 0.60
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k ¼ 2. The TFPP query retrieves w2 and w3, which have the
top two favorite probabilities, as the query results.

2.3 Related Work

In this section, we summarize the most relevant problems to
our work, which are the dynamic skyline query and query
processing for product positing problem.

2.3.1 Dynamic Skyline Queries

Papadias et al. [11] first formulated a dynamic skyline
query, which is to find points whose dynamic attributes are
not dominated by those of other points [11]. There have
been abundant works that focus on this query. Sharifzadeh
and Shahabi [12] introduced the spatial skyline query where
the dynamic attributes are computed with respect to euclid-
ean distances to query points. Deng et al. [13] proposed a
usual definition of dynamic skyline queries where the
dynamic attributes of each point are computed as its abso-
lute coordinates with respect to a query point.

In addition, there are some variants of the dynamic sky-
line query which were studied in the literatures [14], [15],
[16], [17]. Recently, one of the variants, the reverse skyline
query, is paid much attention. Gao et al. [14] proposed two
new reverse skyline queries, which are reverse k-skyband
and ranked reverse skyline queries. In addition, reverse sky-
line queries over wireless sensor networks [15], data streams
[16], and arbitrary non-metric similarity measures [14] were
researched successively [14]. Moreover, Islam et al. [17] stud-
iedwhy-not questions in reverse skyline queries.

Skyline queries over uncertain data have recently gar-
nered considerable attention. Pei et al. [18] first proposed the

probabilistic skyline query over uncertain database and it
has some follow-up work [2], [6], [7]. In [6], it formulated a
probabilistic reverse skyline query which is based on a
dynamic skyline query over an uncertain database. Lian et al.
[7] researched the probabilistic group subspace skyline
queries which are also based on the PDS queries. However,
as analyzed in Section 1, the PDS query results mainly dep-
end on the specified probabilistic threshold. As a result, it
returns undesirable results and overlooks important results.

2.3.2 Query Processing for Product Positing

The purpose of product positing problem investigated in
[4], [19], [20] is to help companies develop new products
that can satisfy the customers’ demands. This is also our
goal in this paper.

Themost closely relatedwork about our problems is [4]. It
formulated a k-most demanding products (k-MDP) discover-
ing problem, which is to help the company to select k prod-
ucts with the maximum expected number of customers. The
k-MDP discovering problem is an efficient tool for compa-
nies to find competitive products, but it also has some limita-
tions. First, the k-MDP discovering problem is NP-hard
when the number of attributes for a product is no less than 3,
such that its computation is expensive and only approximate
algorithms can be used to handle it effectively [4]. Besides,
this problem is inapplicable to our scenario where only can-
didate products are taken into account. Second, [4] takes the
customer preferences into account. It allows customers to
specify their worst acceptable values for each attribute and
products having better values than the special ones are con-
sidered to be satisfiable. Such a formulation cannot be used
for handling subjective types of attributes [3]. In addition, it
cannot measure how relevant each product with respect to
the customer preferences [3]. Finally, this approach is only
applied to handle the traditional products with certainty and
inappropriate to process probabilistic products, which have
been paid a growing concern.

Table 4 summarizes the frequently used symbols.

3 UDS QUERY PROCESSING

To improve the query efficiency, an index is built on data-
bases as usual [18], [6], [7], [21]. In this paper, we employ the
PR-tree proposed in [21] to organize the datasets. As an
example shown in Fig. 3, a PR-tree PR is constructed over the
dataset in Fig. 3a, which contains eleven data objects. In the
PR-tree, each leaf entry contains the existential probabilities

TABLE 4
Symbols and Descriptions

Symbol Description

p; p0 A product
c A customer (query point)
C A set of customers (query points)
m The size of C
UP The set of probabilistic products
N The size of UP
PrðpÞ The existential probability of p
p �c p

0(p �u
c p0) The product p dynamically dominates

(UD-dominates) product p0 in view of c
PrcDSkyðpÞ The dynamic skyline probability of the

product p in view of c

Fig. 3. Examples of PR-tree and IR-tree.
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of the objects apart from the attribute values. In particular,
each intermediate entry e includes the minimum and maxi-
mum existential probabilities of its child entries.

3.1 The UDSQ Algorithm

In this section, we design pruning strategies to improve the
UDS query performance, and integrate them into an effec-
tive algorithm.

3.1.1 Pruning Strategies

Based on the characteristics of the UDS query and the PR-
tree, some effective lemmas are proposed for reducing the
search space.

Lemma 3.1. Given two products p; p0 2 UP , if
�
p �c p

0� ^��
PrðpÞ � Prðp0Þ� _�PrðpÞ � Prðp0Þ � ð1� PrðpÞÞ��, then

p0 can be pruned safely.

Proof. Since p �c p
0, the dynamic skyline probability of p0 is

computed by

PrDSkyðp0Þ
¼ Prðp0Þ � ð1� PrðpÞÞ �

Y
ð1� PrðpiÞÞ �

Y
ð1� PrðpjÞÞ

¼ PrDSkyðpÞ � Prðp0Þ
PrðpÞ � ð1� PrðpÞÞ �

Y
ð1� PrðpjÞÞ;

(4)

where pi; pj 2 UP , pi �c p, pj bc p and pj �c p
0. Since the

assumption in this lemma holds, by rewriting Equa-
tion (4), we have PrDSkyðpÞ � PrDSkyðp0Þ.

As p �c p
0 and PrDSkyðpÞ � PrDSkyðp0Þ, thus p �u

c p0 due
to Lemma 2.1. Therefore, this lemma holds due to Defini-
tion 2.4.

Let Enea be the nearest point of the bound rectangle of
entry E to a customer c and PrðEneaÞ ¼ maxp2EPrðpÞ.
Considering the relationship between a product and an
intermediate entry, we have the following lemmas.

Lemma 3.2. Given an entry E and a product p, if p�u
cEnea, then

p �u
c E, i:e:, p �u

c Enea ) p �u
c E.

Proof. For any product pi 2 E, it holds that Enea �c pi. The
dynamic skyline probability of pi is computed by

PrDSkyðpiÞ
¼ PrðpiÞ � ð1� PrðEneaÞÞ �

Y
ð1� Prðp0ÞÞ �

Y
ð1� Prðp00ÞÞ

� PrDSkyðEneaÞ � PrðpiÞ
PrðEneaÞ ;

where p0; p00 2 UP , p0 �c Enea, p
00 �c pi and p00bcEnea.

Since PrðpiÞ � PrðEneaÞ, it holds that PrDSkyðpiÞ �
PrDSkyðEneaÞ. For Enea �c pi and PrDSkyðEneaÞ �
PrDSkyðpiÞ, it holds that Enea�u

c pi based on Lemma 2.1.
Since p�u

cEnea and Enea�u
c pi, we get p�u

c pi due to Lemma
2.2. Because pi denotes any product within E, it holds
that p�u

cE.

Lemma 3.3. Given an entry E and a product p, if
�
p �c EneaÞ ^�ðPrðpÞ � PrðEneaÞÞ _ ðPrðpÞ � PrðEneaÞ � ð1� PrðpÞÞ�, then

the products within E can be pruned safely.

Proof. Based on the proof of Lemma 3.1, it is easy to get
p �u

c Enea. Moreover, due to Lemma 3.2, we have p �u
c E.

Therefore, each product within E is not a UDS query
result and this lemma holds.

3.1.2 The UDSQ Algorithm

By integrating the pruning strategies in Section 3.1.1, we
present a UDSQ algorithm for the UDS query. The UDSQ
algorithm consists of two phases, pruning and refining
phases. The pruning phase is applied to obtain a candidate
product set by pruning products that are UD-dominated.
The refining phase is utilized to refine the candidate prod-
ucts and obtain the final accurate UDS query results.

Algorithm 1. UDSQ_Algorithm

Input: A PR-tree PR over a probabilistic product set UP and a
customer (query point) c.
Output: A set UDS containing all the final UDS query results.
1: Initialize a min-heap PH ¼ ; and two sets

UDScan ¼ UDS ¼ ;
2: Insert all entries in the root of PR into PH
3: while PH is not empty do
4: Remove the top entry E from PH
5: if E is a leaf node then
6: if p bu

c E for any p 2 UDScan due to Lemma 3.1 then
7: Insert E into UDScan

8: else
9: if E is an intermediate node then
10: if p bu

c E for any p 2 UDScan based on lemma 3.3
then

11: for each entry E0 in E do
12: if pbu

cE
0 for any candidate p 2 UDScan based on

lemma 3.3 then
13: Insert E0 into PH
14: Refine UDScan and add the final query answers to UDS
15: Return UDS

TheUDSQalgorithm is presented inAlgorithm 1. Initially,
UDSQ keeps the candidate set UDScan, which contains the
candidate results of the UDS query. Furthermore, in the UDS
query procedure, it visits the leaf and intermediate entries of
the PR-tree in non-decreasing order of their L1�norm distan-
ces with respect to the query point c and maintains a mini-
mum heap PH. Then lemmas introduced in Section 3.1.1 are
utilized to reduce the search space. After executing Lines 3-
13 of the UDSQ algorithm, the remaining objects failed to be
pruned are stored in UDScan. Because our pruning
approaches can ensure that all the pruned objects are the
UDS query results, the set UDScan following the pruning
phase contains all of the query answers.Moreover, it is neces-
sary to refine the candidates in UDScan to obtain the actual
query results. This is because some objects that are not part of
the UDS query results still exist in UDScan. Line 14 refines
UDScan by checking theUD-dominance relationship between
the different candidate products after obtaining their accu-
rate dynamic skyline probabilities. After this refining phase,
the UDSQ algorithm terminates and the set UDS containing
the final query answers is returned.

Example. As the example in Fig. 3, Table 5 depicts the
heap contents for processing the UDS query in each
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step of the UDSQ algorithm. It starts by inserting all the
entries (i.e., E1 and E2) in root of the PR into a heap
PH, where the entries are sorted in non-decreasing
order of their minimum L1-norm distance. The entry
E1 with the minimum L1-norm distance is then
“expanded”. This expansion pops out E1 from PH and
adds its children E3 and E4 back. Next, by expanding
E3, its children a, b, and c are inserted. Since a and b
cannot be pruned by any object in the UDScan (empty),
they are inserted into UDScan as candidate results.
However, c is pruned due to Lemma 3.1 for a�qc

and PrðaÞ>PrðcÞ � ð1� PrðaÞÞ. The next entry to be
expanded is E2. After expanding E2, we gain
PH ¼ fE5; E4; E6g. Furthermore, after expanding E5,
we get another two candidate results, g and h. After
that, since a�u

cE4, E4 is pruned due to Lemma 3.3. Simi-
larly, i and E6 are pruned due to h�u

c i and a�u
cE6.

Finally, we obtain UDScan ¼ fa; b; g; hg. In the refining
phase, we compute the dynamic skyline probabilities of
the candidates within UDScan. The objects a; b; g, and h
which are not UD-dominated are added to the set UDS
and reported as the final UDS query results.

Theorem 3.4. The UDSQ can return the final UDS query
results correctly.

Theorem 3.5. The UDSQ visits the PR-tree PR Sðd;NÞ þ 1
times at least.

3.2 The Enhanced UDSQ (EUDSQ) Algorithm

To accelerate the UDS query, the window query operator
and reuse technique [14], [22] are employed in the EUDSQ
algorithm. Moreover, we adjust the PR-tree and introduce
an IR-tree, where each intermediate entry also stores its
non-existential probability. As an example, the IR-tree over
the dataset in Fig. 3a is shown in Fig. 3c.

3.2.1 Pruning Strategies

In this section, we first present a lemma to identify the final
UDS query results as soon as possible. Based on this lemma,
we can report the final results progressively.

Lemma 3.6. Given a product p, if there is not any product
p0 2 UP � fpg with p0 �c p, then p is a final UDS query result
and its dynamic skyline probability is PrcDSkyðpÞ ¼ PrðpÞ.

Proof. Since there is not any product p0 2 UP � fpg with
p0 �c p, we gain p0bcp. Therefore, it holds that

:�8i jp½i� � c½i�j � jp0½i� � c½i�j ^ 9i jp½i� � c½i�j< jp0½i� � c½i�jÞ
¼:�8i jp½i� � c½i�j � jp0½i� � c½i�j�_:�9i jp½i� � c½i�j< jp0½i� � c½i�j�:
Based on Definition 2.3, we have p0 bu

c p. Therefore, p is a
final UDS query result due to Definition 2.4.

Due to Equation (1), we get

PrcDSkyðpÞ ¼ PrðpÞ �
Y

p02UP;p0�cp

ð1� Prðp0ÞÞ ¼ PrðpÞ:

Hence, this lemma holds.
To further improve the pruning capacity, we propose a

novel pruning strategy with considering the UD-dominant
relationship between different entries.

Given an entry E, Efar is the farthest point of the bound
rectangle of the entry E to a customer c and PrðEfarÞ ¼
minp2EPrðpÞ.
Lemma 3.7. Given two uncertain entries E and E0, if

Efar �u
c E0

nea, then E �u
c E0, i:e:, Efar �u

c E0
nea ) E �u

c E0.
Accordingly, the products within E0 can be pruned safely.

Proof. For any product pi 2 E, it is easy to obtain that
pi �c Efar and PrðpiÞ � PrðEfarÞ. Similarly to Lemma 3.2,
we have pi �u

c Efar. Since Efar �u
c E0

nea, it holds that
pi �u

c E0
nea based on Lemma 2.2. As pi represents any

product within E0, this lemma holds.

3.2.2 The EUDSQ Algorithm

Similarly to the UDSQ algorithm, the EUDSQ depicted in
Algorithm 2 contains a pruning phase and a refining phase.
In the pruning phase, apart from the lemmas in Section 3.1.1,
we use Lemmas 3.6 and 3.7 in Section 3.2.1, to further reduce
the search space. Moreover, Lemma 3.7 is applied in Line 17
of EUDSQ to prune all the unqualified entries in PH.

Algorithm 2. EUDSQ_Algorithm

Input: An IR-tree IR over a probabilistic product set UP and a
customer c.
Output: A set UDS containing all the final UDS query results.
1: Initialize a min-heap PH ¼ ; and two sets

UDScan ¼ UDS ¼ ;
2: Insert all entries in the root of PR into PH
3: while PH is not empty do
4: Remove the top entry E from PH
5: if E is a leaf node then
6: if p bc E for any product p 2 UDS then
7: Insert E into UDS and PrcDSkyðEÞ ¼ PrðEÞ according

to Lemma 3.6
8: else
9: if p bu

c E for any candidate p 2 UDScan due to
Lemma 3.1 then

10: Insert E into UDScan

11: else
12: if E is an intermediate node then
13: if p bu

c E for any p 2 UDScan due to lemma 3.3 then
14: for each entry E0 in E do
15: if p bu

c E0 for any p 2 UDScan due to lemma 3.3
then

16: Insert E0 into PH
17: Prune unqualified entries in PH by Lemma 3.7
18: UDS = UDS[RefineReuse_Algorithm(UDScan, IR)
19: Return UDS

TABLE 5
Heap Contents of UDSQ

Action Heap contents UDScan

Access root ðE1; 10Þ; ðE2; 18Þ f
Expand E1 ðE3; 10Þ; ðE2; 18Þ; ðE4; 27Þ f
Expand E3 ða; 10Þ; ðb; 14Þ; ðc; 16Þ; ðE2; 18Þ; ðE4; 27Þ f
Access a; b; c ðE2; 18Þ; ðE4; 27Þ fa; bg
Expand E2 ðE5; 18Þ; ðE4; 27Þ; ðE6; 31Þ fa; bg
Expand E5 ðg; 20Þ; ðh; 22Þ; ðE4; 27Þ; ði; 29Þ; ðE6; 31Þ fa; bg
Access g; h ðE4; 27Þ; ði; 29Þ; ðE6; 31Þ fa; b; g; hg
Access E4 ði; 29Þ; ðE6; 31Þ fa; b; g; hg
Access i ðE6; 31Þ fa; b; g; hg
Access E6 f fa; b; g; hg
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In the refining phase of theUDSQalgorithm, it is necessary
to visit the PR-tree Sðd;NÞ þ 1 times (see Theorem 3.5). There
are an abundance of redundant I/O operators because each
node of the PR-tree is accessed multiple times. In [14], [22],
[23], the reusing technique is proven to be an effective way of
reducing the redundant I/O operators. Accordingly, we
utilize this technique to boost theUDS query performance.

The RefineReuse algorithm (Line 26) in EUDSQ is similar
to the WindowQuery algorithm proposed in [23]. The
accessed nodes are inserted into the heaps PHw and PHr.
After getting the dynamic skyline probability of the first
candidate product within UDScand, we can visit the PHr

instead of IR for computing the accurate dynamic skyline
probabilities of the remaining candidate products. More-
over, for each product p 2 UDScand, we employ a window
query operator to compute its dynamic skyline probability.

Example. Continuing the example in Fig. 3a, the EUDSQ
algorithm organizes the datasets with the IR-tree IR illus-
trated in Fig. 3c. As depicted in Table 6, the EUDSQ starts
by inserting all the entries E1 and E2 in the root of IR into
PH. Then, after expanding E1 with the minimum L1-norm
distance, PH ¼ fE3; E2; E4g. Because E3 �u

q E4 due to

Lemma 3.7, E4 is pruned and PH ¼ fE3; E2g. After
expanding E3, PH ¼ fa; b; E2g for a�u

q c due to Lemma 3.1.

Next, we further pop out a and b from PH in sequence.
Since a is not pruned by any object within UDS, it is
inserted to UDS due to Lemma 3.6 as a final UDS query
result. Considering a�qb but b cannot be pruned by any
object within UDScan, it is added to UDScan for further veri-
fication. Repeating this iteration procedure, we obtain the
candidate set UDScan ¼ fbg and the final result set
UDS ¼ fa; g; hg at last. After that, it needs to refine the set
UDScan. Since a �q b but a bu

q b for PrDSkyðbÞ ¼ 0:48>

PrDSkyðaÞ ¼ 0:40, b is added to UDS as a final UDS query
result. Finally, we get the UDS query result set
UDS ¼ fa; b; g; hg.
Refer to Theorem 3.4, we can analogously prove that

EUDSQ is correct. Moreover, we analyze the I/O cost and
the progressiveness of the EUDSQ algorithm.

Theorem 3.8. The EUDSQ needs to access IR two times.

Theorem 3.9. The EUDSQ can return the UDS query results
progressively.

Theorem 3.10. The EUDSQ is more efficient than UDSQ.

Proof. The UDSQ needs to visit the PR-tree PR for
Sðd;NÞ þ 1 times based on Theorem 3.5, and it exists

many redundant I/O cost. However, the EUDSQ visits
the IR-tree IR for twice due to Theorem 3.8. It is easy to
draw a conclusion that EUDSQ needs less I/O cost
compared to UDSQ.

Furthermore, in the pruning phase, EUDSQ can gain bet-
ter pruning capacity than UDSQ by employing more prun-
ing strategies. In addition, in the refining phase of UDSQ, it
needs refine Sðd;NÞ candidate products at least, while
EUDSQ only needs to refine

Sðd;NÞ �Hðd;NÞ ¼ Hðdþ 1; NÞ �Hðd;NÞ
	 1

d!
ððlnNÞ þ r� dÞððlnNÞ þ rÞd�1

candidate products at least, where r is the Euler-Mascheroni
constant approximately equal to 0.577 [9]. Accordingly,
EUDSQ needs less CPU cost than UDSQ.

From the analysis above, EUDSQ needs less I/O and
CPU costs than UDSQ. Hence, this lemma holds.

4 TFPP QUERY PROCESSING

In this section, we present two algorithms, TFPP and
ParTFPP, for processing the TFPP query. In TFPP and
ParTFPP, EUDSQ is invoked to compute the UDS query
results due to Theorem 3.10.

4.1 The TFPP Algorithm

By employing EUDSQ in Section 3, we gain the candidate
products for each customer in C. We then compute their
favorite probabilities due to Equation (3), and sort them in
non-increasing order. At last, the k products which have the
highest favorite probabilities are returned as the TFPP
query results.

Algorithm 3. TFPP_Algorithm

Input: An IR-tree IR over a probabilistic product set UP and a
customer set C.

Output: A set FavProd containing k products with the highest
favorite probabilities.

1: for each customer ci 2 C do
2: UDSi=EUDSQ(IR, ci, UP )
3: UDS ¼ [m

i¼1UDSi

4: for each product p 2 UDS do
5: Compute PrFavðp; CÞ due to Equation (3)
6: FavPrmin ¼ 0
7: Initialize FavProdwith products pi for 1 � i � k
8: FavPrmin ¼ minki¼1PrFavðpi; CÞ
9: for each product p0 2 UDS � f[k

i¼1pi} do
10: if PrFavðp0; CÞ>FavPrmin then
11: Remove product pwith PrFavðp; CÞ ¼ FavPrmin from

FavProd and FavProd ¼ FavProd[fp0g
12: Return FavProd

The TFPP algorithm is proposed in Algorithm 3. It con-
sists of three phases:

(1) Executing the UDS query with respect to each cus-
tomer within C (Lines 1-2).

(2) Computing the favorite probability of each candidate
product within UDS (Lines 4-5).

TABLE 6
Heap Contents of EUDSQ

Action Heap contents UDScan UDS

Access root ðE1; 10Þ, ðE2; 18Þ f f
Expand E1 ðE3; 10Þ, ðE2; 18Þ, ðE4; 27Þ f f

Expand E3 ða; 10Þ, ðb; 14Þ, ðc; 16Þ, ðE2; 18Þ f f

Access a; b ðE2; 18Þ fbg fag
Expand E2 ðE5; 18Þ, ðE6; 31Þ fbg fag
Expand E5 ðg; 20Þ, ðh; 22Þ, ði; 29Þ, ðE6; 31Þ fbg fag
Access g; h ðE6; 31Þ fbg fa; g; hg
Access E6 f fbg fa; g; hg
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(3) Choosing the k products that have the highest
favorite probabilities as the final TFPP query results
(Lines 6-11).

In the third phase of Algorithm 3, we first initialize a set
FavProd that contains the final TFPP query results, with the
first k accessed products. We also maintain the minimum
favorite probability with FavPrmin and initialize it in Line 8.
In Lines 9-11, we visit the remaining candidate products.

Assume that a product p0 2 UDS � f[k
i¼1pig is being visited.

If its favorite probability is larger than the present minimum
favorite probability maintained in FavPrmin, we then refresh
the set FavPr in Line 11. After scanning the set UDS, we can
obtain the final TFPP query results.

Theorem 4.1. The TFPP algorithm needs to access the IR-tree
IR 2jCj times.

Theorem 4.2. The computational complexity of the TFPP
algorithm is Oðð�h@þ dþmþ kÞjUDSj � k2 þ kÞ; where
UDS ¼ [ci2CUDSðUP; ciÞ, m ¼ jCj, d denotes the average
cost of a window query operator, �h and @ represent the height of
the IR-tree and the average access cost of visiting a node,
respectively.

Proof. In the implementation of the TFPP algorithm, we use
an IR-tree to index the probabilistic product set. The TFPP
algorithm includes three phases. In the first phase, it exe-
cutes UDS queries in view of customerswithinC by invok-
ing the EUDSQ algorithm. Suppose that the height of the
IR-tree is �h and average access cost of visiting a node is @,
the node accesses cost isOð�h@jUDSjÞ. In the refining phase
of each UDSQ query, window query operators over each
reuse heap are used. Suppose the average cost of a win-
dow query operator is d, the total cost of refining all the
candidates is OðdjUDSjÞ. Therefore, the cost of UDS
queries is Oðð�h@þ dÞjUDSjÞ. In the second phase, the cost
of computing favorite probabilities of all the probabilistic
products is OðjCjjUDSjÞ ¼ OðmjUDSjÞ. In the final phase,
it takesOðkþ kðjUDSj � kÞÞ cost to identify the k products
with the highest favorite probabilities.

From the analysis above, the total computational com-
plexity of the TFPP algorithm is

Oðð�h@þ dÞjUDSj þmjUDSj þ kþ kðjUDSj � kÞÞ
¼ Oðð�h@þ dþmþ kÞjUDSj � k2 þ kÞ:

4.2 The Parallel TFPP (ParTFPP) Algorithm

In the TFPP algorithm, it is necessary to execute UDS
queries with respect to all of the customers within C in
serial. This is the main issue affecting the TFPP query effi-
ciency. To boost the TFPP algorithm, we adopt the parallel
mechanism into the TFPP query and introduce a parallel
TFPP algorithm, namely ParTFPP. In the ParTFPP algo-
rithm, we divide the customer set C equally into r parts,
C1; C2; . . . ; Cr. Thereafter, the favorite probability of product
pwith respect to C can be computed by

PrFavðp; CÞ ¼
Xr
i¼1

PrFavðp; CiÞ

¼
Xr
i¼1

X
c2Ci

PrcDSkyðpÞP
p02UDSðUP;cÞ Pr

c
DSkyðp0Þ

:

The ParTFPP algorithm is described in Algorithm 4. Each
computing node Ni processes the UDS queries with respect
to a customer set Ci for 1 � i � r in parallel. We can gain
the favorite probability of the product p by summing its
local favorite probabilities. As depicted in Algorithm 4, the
ParTFPP algorithm includes the following two phases.

(1) Local-Computation phase. Each computing node Ni

executes UDS queries with respect to the customers
within Ci to obtain the local UDS query results (Line
3). The local favorite probability of each candidate
product in UDSi (Line 5) is computed; and sorted in
non-increasing order of their local favorite probabili-
ties in parallel (Line 6).

(2) Global-Merge phase. This involves merging the local
query results and obtaining our TFPP query answers
(Lines 7-56). This merging phase plays an important
role in developing the efficiency of this TFPP algo-
rithm. Therefore, we analyze this phase in detail.

Algorithm 4. ParTFPP_Algorithm

Input: An IR-tree IR over a probabilistic product set UP , a
customer set C with sizem, and computing nodesNi for
1 � i � r.

Output: A set FavProd containing k favorite products.
1: Divide C into r parts C1; C2; . . . ; Cr where jCij ¼ bmr c for

1 � i < r and jCrj ¼ m%r
2: for each computing node Ni for 1 � i � r do
3: UDSj ¼ EUDSQ(IR, cj, UP ) where cj 2 Ci, and

UDSi ¼
S jCi j

j¼1UDSj

4: for each product p0 2 UDSi do
5: Compute PrFavðp0; CiÞ due to Equation (3)
6: Sort products within UDSi in non-increasing order of

their local favorite probabilities
7: Initialize FavProd with the first visited k products from the

sets UDSi for 1 � i � r and compute their favorite proba-
bilities by random access

8: Initialize FavPrmin ¼ minp02FavProdPrFavðp0; CÞ
9: Define a threshold of the favorite probability

a ¼Pr
i¼1 PrFavðp̂i; CiÞ, where p̂i is the latest visited

product atNi

10: for each product p0 2 FavProd do
11: if PrFavðp0; CÞ>a then
12: Return p0 as a query result and k ¼ k� 1
13: while UDSi is not empty and k 6¼ 0 do
14: Do sequential access in parallel to each of the sets UDSi

for 1 � i � r
15: Real-time update for awith the latest visited product p̂i
16: if PrFavðp̂i; CÞ>FavPrmin then
17: Refresh FavProd and FavPrmin

18: if FavPrmin � a then
19: Return FavProd and break
20: else
21: for each product p0 2 FavProd do
22: if PrFavðp0; CÞ>a then
23: Return p0 as a query result and k ¼ k� 1

In Line 7, we initialize a set FavProd with the first visited
products and obtain their favorite probabilities. We then
define a variable FavPrmin to store the minimum favorite
probability of the products in FavProd. Line 9 computes a
favorite probability threshold a by summing up the favorite
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probabilities of products that are accessed currently. If
FavPrmin � a, then all of the products in FavProd are our
query results. Otherwise, to develop the progressiveness of
the ParTFPP algorithm, it is crucial to return the query
results as soon as possible. Therefore, Lines 10-12 are
applied to find the qualified query results and retrieve them
in a timely manner for customers. Lines 13-23 are executed
to identify the remaining query results through an iteration
procedure. Each iteration first accesses the results of local
UDS queries at different computing nodes in parallel. Line
15 updates the value of a with the latest visited product in
real time. Lines 16-17 are used to update the set FavProd
and FavPrmin. If FavPrmin � a, then we return FavProd as
the final query result set. Otherwise, Lines 21-23 are run to
produce new query results progressively.

This merging approach is similar to the famous TA algo-
rithm for top k queries [24]. Moreover, to further improve
the effectiveness and progressiveness of the TA algorithm,
we update the threshold (Line 15) with the latest visited
product in real time. For developing the ParTFPP algo-
rithm’s progressiveness, we return partial TFPP query
results as soon as possible (Lines 21-23).

Theorem 4.3. The ParTFPP algorithm needs to access the IR-
tree IR 2jCij times at each computing node Ni.

Theorem 4.4. The total computational complexity of the TFPP
algorithm is

O

 �
�h@þ dþ

jm
r

k�
jUDS
j þ jUDS
jlog jUDS
j

þ ðd
rCS þ a
ðr� 1ÞCRÞ
!
;

where jUDS
j ¼ maxri¼1jUDSij, CR and CS represent the
average cost of sequential and random access, respectively.
Similarly to [24], we also assume the merging phase halts at
depth d
 and visits a
 distinct products. In addition, the defini-
tions of �h, @ and d can refer to Theorem 4.2.

Discussion. It is clear that we can obtain the best query per-
formance when the computational complexity in Theo-
rem 4.4 is minimized. Assume that m is simply an
integral multiple of r, since for given product and cus-
tomer sets, jUDS
j, d
 and a
 are constant. The ParTFPP
algorithm can offer the best performance whenjm

r

k
� jUDS
j ¼ ðd
CS þ a
CRÞr:

Therefore, if

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� jUDS
j
d
CS þ a
CR

s
;

then the ParTFPP algorithm can offer the best
performance.

5 EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed algorithms,
we implemented all of them by C++. The experiments were
performed on a cluster composed of eight nodes. Each node
is with Intel Xeon E5-2667 3.3 GHz CPU (contains eight

cores) and 64 GB main memory, and runs the 64 bit Micro-
soft Windows 7 operation system.

5.1 Experimental Setup

The publicly data generator provided by [25]was used to gen-
erate synthetic datasets which follow independent (Ind) and
anti-correlated (Ant) distributions. We investigate the perfor-
mance of the proposed algorithms under various parameters,
as summarized in Table 7. In each experiment, we only vary
one parameter and fix the others to their defaults. The proba-
bilistic threshold a is specified for the PDS query. In particu-
lar, the values in bold font denote the defaults.

We also evaluate the algorithms for two real-world data-
sets, i.e., CarDB and ColDB. Specifically, CarDB includes
45,311 6-dimensional points [14]. We consider two numeri-
cal attributes, price and mileage, of each car. ColDB contains
68,040 9-dimensional points, and each point captures sev-
eral properties of an image [25]. We consider three dimen-
sions that record the mean, standard deviation, and
skewness of the pixels in the H channels into account. Due
to the lack of a real data set with uncertainty, similar to [2],
[21], we use uniform distribution to randomly generate the
existential probability of each point. To generate the cus-
tomer set C, we utilize the approach introduced in [3],
where Gaussian noise is added to the actual points.

For both synthetic and real datasets, we normalize all
attribute values to [0, 10,000] and index each data set with a
PR-tree/an IR-tree with a 4 KB page size. The reported
results are the average of 100 queries.

In particular, we evaluate the proposed algorithms from
the following aspects:

� I/O cost (Average I/O cost): the number (average
number) of nodes/page accesses occurrences
charges 10 ms for each page, similar to [7].

� CPU cost: the time spent on CPU.
� Memory requirement (MH): the maximum number

of entries in the heap.

5.2 Experimental Results for the UDS Query

In this section, we first compare the PDS query to our UDS
query. We then analyze the performance of the UDSQ and
EUDSQ algorithms.

5.2.1 Comparison of the PDS Query and Our UDS

Query

As analyzed in 2.1, the PDS query in [6], [7] suffers limita-
tions in terms of friendliness, fairness, and stability. To
overcome these limitations, we formulate the UDS query.

Note that, the PDS and our UDS queries are different
formulations of skyline query over uncertain data. The

TABLE 7
Parameter Settings on Synthetic Datasets

Parameter Range

Size of UP (jUP j) 64K, 128K, 256K, 512K, 1024K
Size of C (jCj) 2K, 4K, 6K, 8K, 10K
Dimensionality (d) 2, 3, 4, 5
The probabilistic threshold (a) 0.2, 0.4, 0.5, 0.6, 0.8
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approaches for the PDS query proposed in [6], [7] cannot be
applied to process our UDS query. Thus, we do not compare
with them in our experiments. Instead, we compare the two
queries based on query results in the aspects of redundant
rate (RedRat) and missing rate (MisRat). Here the RedRat
and MisRat are the ratios of the undesirable results and
the important results overlooked in the PDS query. The
important results overlooked are those objects which
are not dynamically dominated by other objects due to
Definition 2.1, but are not returned as the PDS query results.

As shown in Tables 8 and 9, by varying d or jUP j, the
PDS queries over the Ind and Ant datasets always report
undesirable results and overlook important results. With
the growth of d, RedRat and MisRat of the PDS query are
up to 35:71 and 24:32 percent, respectively. As jUP j
increases, the highest values of RedRat and MisRat are
31:19 and 24:32 percent, respectively.

With growing the probabilistic threshold a, MisRat of the
PDS query increases sharply as illustrated in Table 10. This
is since with the growth of a, much more important results,
of which the dynamic skyline probabilities are less than a,
are pruned. When a ¼ 0:8, the PDS query overlooks 81:08
and 79:02 percent of the important results over the Ind and
Ant datasets, respectively. As a increases, less undesirable
results are reported by the PDS query. When a> 0:5, the
PDS query results do not contain undesirable results. This is
reasonable. If a> 0:5 and there are two different PDS
query results t and t0 with t �u

c t0, we then gain

PrDSkyðtÞ � a> 0:5 and PrDSkyðt0Þ � a> 0:5. Therefore, it

holds that PrðtÞ> 0:5 and Prðt0Þ> 0:5. For t �u
c t0, it holds

that t �c t
0. Since PrðtÞ> 0:5, we obtain 1� PrðtÞ< 0:5.

For 0 � Prðt0Þ � 1, we have PrDSkyðt0Þ¼ Prðt0Þ � ð1� P ðtÞÞ�Q
t
00 2UD�ftg;t00 �ct0 ð1� Prðt00 ÞÞ< 0:5. This contradicts the

assumption.
As analyzed above, the PDS query always overlooks some

important results and contains undesirable results in most
cases. However, our UDS query could overcome these limi-
tations due to Definition 2.4. This is reasonable for two rea-
sons. First, the UDS query does not return any undesirable
results since it prunes the objects which are UD-dominated
due to Definition 2.4. Second, it accounts for both the attrib-
utes and dynamic skyline probabilities of objects. Accord-
ingly, important objects with small dynamic skyline
probabilities, which have advantages in terms of their attrib-
utes, are also reported as part of our UDS query results.

5.2.2 Experimental Results for the UDS Query

We could also process the UDS query by another algorithm
which computes the dynamic skyline probabilities of objects
first and then adjusts the BBS algorithm to compute the UDS
query results. However, this algorithm is inefficient to process
the UDS query. Therefore, in this section, we mainly compare
the performance of the proposed algorithms, UDSQ and
EUDSQ, by varying two parameters: d and jUP j, individually.

Experimental results versus d. As shown in Fig. 4 and
Table 11, d has a significant impact on the performance of
the UDSQ and EUDSQ algorithms. The I/O and CPU costs
of the two algorithms increase quickly with the growth of d.
This is because, as d increases, the datasets become sparse,
which makes the size of the UDS query results grows. The

TABLE 8
Analysis of the PDS Query Results versus d

d Ind Ant

RedRat MisRat RedRat MisRat

2 35.71% 20.00% 23.53% 16.07%
3 15.69% 24.32% 22.92% 18.80%
4 20.14% 16.17% 18.53% 20.75%
5 22.60% 22.24% 15.20% 20.03%

TABLE 9
Analysis of the PDS Query Results versus jUPj

jUPj Ind Ant

RedRat MisRat RedRat MisRat

64K 23.91% 22.64% 19.47% 17.43%
128K 15.69% 24.32% 22.92% 18.80%
256K 31.19% 23.44% 20.32% 21.07%
512K 16.28% 17.91% 23.75% 19.46%
1024K 26.23% 20.73% 20.46% 22.99%

TABLE 10
Analysis of the PDS Query Results versus a

a Ind Ant

RedRat MisRat RedRat MisRat

0.2 15.69% 24.32% 22.92% 18.80%
0.4 0.00% 39.19% 1.51% 37.47%
0.6 0.00% 56.76% 0.00% 58.45%
0.8 0.00% 81.08% 0.00% 79.02%

Fig. 4. Performance versus d.

TABLE 11
The MH of UDSQ and EUDSQ versus d

d UDSQ EUDSQ

Ind Ant Ind Ant

2 3,086 646 876 202
3 3,138 1,602 1,258 675
4 3,639 2,191 2,337 1,411
5 4,533 6,153 3,718 5,154
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poor performance of the PR-tree or IR-tree in high
dimensionality also leads to the degradation of the perfor-
mance of the two algorithms.

Moreover, EUDSQ requires less I/O and CPU costs than
UDSQ with the growth of d. In particular, compared to
UDSQ, for the Ind and Ant datasets, EUDSQ reduces 59.10
CPU cost, 64.77 I/O cost, and 71.61 percent MH at most.

Experimental results versus jUP j. Fig. 5 shows the experi-
mental results of UDSQ and EUDSQ as varying jUP j. Both
UDSQ and EUDSQ require more CPU and I/O costs as jUP j
grows. This is because a larger data set has a larger number of
UDS query results and results in higher CPU and I/O costs.
In addition, a small data set sometimes may be more expen-
sive than a large one. This is due to the positions of the skyline
points and the order in which they are discovered. If the first
query result is very close to the query point, both UDSQ and
EUDSQ could prune a large part of the search space.

Moreover, in all cases, EUDSQ is much more efficient
and scales better than UDSQ as jUP j grows (as depicted in
Table 12 and Fig. 5). With comparing to UDSQ, EUDSQ cuts
down 52.50 CPU cost and 46.45 percent I/O cost at most. In
terms of MH, as shown in Table 12, EUDSQ degrades the
MH by up to 59.91 percent compared to UDSQ.

5.2.3 Performance on Real Datasets

In this section, we also research the performance of UDSQ
and EUDSQ on two real-world datasets.

The EUDSQ clearly outperforms UDSQ in terms of MH,
the CPU and I/O costs, on two real-world datasets. This is

similar to the synthetic datasets. For clarity and readability,
the detailed analysis of performance on real datasets are
moved to the supplement.

5.3 Experimental Results for the TFPP Query

In this section, we study the performance of our proposed
algorithms, TFPP and ParTFPP, for the TFPP query. Since
the two algorithms have similar memory requirement
(MH) under the same parameters, we only analyze the
experimental results of CPU and the average I/O costs in
the following experiments. Furthermore, the value of k
does not have a significant impact on the performance of
our proposed algorithms for the TFPP query. Thus, the
experimental results under different k are skipped, and k
is set to 40.

In the following experiments, we compare the perfor-
mance of TFPP and ParTFPP by varying three parameters:
d, jUP j, and jCj, individually. ParTFPP-i (i ¼ 2; 4; 8) denotes
the experimental results of i computing nodes, respectively.

Experimental results on d. We first examine the two algo-
rithms, TFPP and ParTFPP, by varying d. Fig. 6 shows the
CPU and average I/O costs of the above algorithms. Here
the average I/O cost is denoted as the average I/O cost for
a customer. As depicted in Fig. 6, the CPU and average I/O
costs increase sharply as the growth of d. This trend is simi-
lar to that of the UDS query. Moreover, ParTFPP exhibits
much better performance than TFPP. In terms of CPU and
average I/O costs, the approximate linear speedups are
obtained by ParTFPP without changing MH.

Experimental results on jUP j. We then conduct a perfor-
mance analysis with the growth of jUP j. The experimental
results are shown in Fig. 7. As jUP j grows, both TFPP and
ParTFPP require higher CPU and I/O costs. Moreover,
ParTFPP has much better performance than TFPP. The
speedup is approximate to the linearity by applying
ParTFPP with varying jUP j.

Experimental results on jCj. Fig. 8 illustrates that the CPU
cost for the TFPP query becomes much larger as jCj
increases. With respect to the average I/O cost, the cus-
tomer size jCj has little impact as depicted in Fig. 8.

Fig. 5. Performance versus jUPj.

TABLE 12
The MH of UDSQ and EUDSQ versus jUPj

jUPj UDSQ EUDSQ

Ind Ant Ind Ant

64K 1,851 1,538 806 775
128K 3,138 1,602 1,258 675
256K 3,202 1,932 1,415 838
512K 4,021 1,656 1,795 847
1,024K 5,445 4,268 2,266 1,800

Fig. 6. Performance versus d.
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Furthermore, in term of CPU cost, ParTFPP can also offer an
approximate linear speedup with changing jCj.

Experimental results on real datasets. Similar to the syn-
thetic datasets, it can obtain an approximate linear speedup
by adopting ParTFPP on real datasets. Due to space limita-
tion, the detailed analyses of TFPP and ParTFPP on real
datasets are moved to the supplement.

6 CONCLUSIONS

Customer preferences information is a growing concern in
market analysis. In this paper, we first propose the UDS
query to select products that can meet a customer’s
demands to the greatest extent. Compared to the PDS query,
our UDS query does not need to specify a threshold and can
return much better results. In addition, with respect to the
preferences of different customers, we formulate the TFPP
query, which retrieves the k products with the highest

favorite probabilities. Moreover, to process the UDS and
TFPP query effectively, some pruning strategies are pro-
posed and integrated into several effective algorithms.
Finally, the efficiency and effectiveness of the proposed
algorithms have been verified with extensive experiments.
As part of our future research, we will investigate the UDS
and TFPP queries on big data.

ACKNOWLEDGMENTS

The research was partially funded by the Key Program of
National Natural Science Foundation of China (Grant Nos.
61133005, 61432005), the National Natural Science Founda-
tion of China (Grant Nos. 61370095, 61472124, 61202109,
and 61472126), the International Science & Technology
Cooperation Program of China (Grant No. 2015DFA11240),
the National High-tech R&D Program of China (Grant No.
2015AA015303), and the Outstanding Graduate Student
Innovation Fund Program of Collaborative Innovation Cen-
ter of High Performance Computing. Kenli Li is the corre-
sponding author.

REFERENCES

[1] S. Fay and J. Xie, “Probabilistic goods: A creative way of selling
products and services,”Mark. Sci., vol. 27, no. 4, pp. 674–690, 2008.

[2] W. Zhang, X. Lin, Y. Zhang, W. Wang, G. Zhu, and J. X. Yu,
“Probabilistic skyline operator over sliding windows,” Inf. Syst.,
vol. 38, no. 8, pp. 1212–1233, 2013.

[3] A. Arvanitis, A. Deligiannakis, and Y. Vassiliou, “Efficient influ-
ence-based processing of market research queries,” in Proc. 21st
ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 1193–1202.

[4] C.-Y. Lin, J.-L. Koh, and A. L. Chen, “Determining k-most
demanding products with maximum expected number of total
customers,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1732–
1747, Aug. 2013.

[5] Y. Peng, R.-W. Wong, and Q. Wan, “Finding top-k preferable
products,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 10, pp. 1774–
1788, Oct. 2012.

[6] X. Lian and L. Chen, “Reverse skyline search in uncertain
databases,” ACM Trans. Database Syst., vol. 35, no. 1, 2010,
Art. no. 3.

[7] X. Lian and L. Chen, “Efficient processing of probabilistic group
subspace skyline queries in uncertain databases,” Inf. Syst.,
vol. 38, no. 3, pp. 265–285, 2013.

[8] M. L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis, “Efficient
evaluation of probabilistic advanced spatial queries on existen-
tially uncertain data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 1,
pp. 108–122, Jan. 2009.

[9] L. Zhu, Y. Tao, and S. Zhou, “Distributed skyline retrieval with
low bandwidth consumption,” IEEE Trans. Knowl. Data Eng.,
vol. 21, no. 3, pp. 384–400, Mar. 2009.

[10] M. J. Atallah and Y. Qi, “Computing all skyline probabilities for
uncertain data,” in Proc. 28th ACM SIGMOD-SIGACT-SIGART
Symp. Principles of Database Systems, 2009, pp. 279–287.

[11] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 41–82, Mar. 2005.

[12] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,”
in Proc. 32nd Int Conf. Very Large Data Bases, 2006, pp. 751–762.

[13] E. Dellis and B. Seeger, “Efficient computation of reverse skyline
queries,” in Proc. 33rd Int Conf. Very Large Data Bases, 2007,
pp. 291–302.

[14] Y. Gao, Q. Liu, B. Zheng, L. Mou, G. Chen, and Q. Li, “On process-
ing reverse k-skyband and ranked reverse skyline queries,”
Inf. Sci., vol. 293, pp. 11–34, Feb. 2015.

[15] G. Wang, J. Xin, L. Chen, and Y. Liu, “Energy-efficient reverse
skyline query processing over wireless sensor networks,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 7, pp. 1259–1275, Jul.2012.

[16] M. Bai, J. Xin, and G. Wang, “Probabilistic reverse skyline query
processing over uncertain data stream,” in Proc. 17th Int. Conf.
Database Syst. Adv. Appl., 2012, pp. 17–32.

Fig. 8. Performance versus jCj.

Fig. 7. Performance versus jUPj.

2820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016



[17] M. S. Islam, R. Zhou, and C. Liu, “On answering why-not ques-
tions in reverse skyline queries,” in Proc. 29th Int. Conf. IEEE Int.
Conf. Data Eng., 2013, pp. 973–984.

[18] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on
uncertain data,” in Proc. 33rd Int. Conf. Very Large Data Bases, 2007,
pp. 15–26.

[19] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. €Ozsu, and Y. Peng,
“Creating competitive products,” Proc. Int. Conf. Very Large Data
Bases, vol. 2, no. 1, pp. 898–909, Aug. 2009.

[20] Q. Wan, R.-W. Wong, and Y. Peng, “Finding top-k profitable
products,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp. 1055–
1066.

[21] X. Ding and H. Jin, “Efficient and progressive algorithms for dis-
tributed skyline queries over uncertain data,” IEEE Trans. Knowl.
Data Eng., vol. 24, no. 8, pp. 1448–1462, Aug. 2012.

[22] X. Zhou, K. Li, Y. Zhou, and K. Li, “Adaptive processing for dis-
tributed skyline queries over uncertain data,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 2, pp. 371–384, Feb. 2016.

[23] Y. Gao, Q. Liu, B. Zheng, and G. Chen, “On efficient reverse sky-
line query processing,” Expert Syst. Appl., vol. 41, no. 7, pp. 3237–
3249, Jun. 2014.

[24] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algo-
rithms for middleware,” J. Comput. Syst. Sci., vol. 66, no. 4,
pp. 614–656, Jun. 2003.

[25] Y. Tao, X. Xiao, and J. Pei, “Efficient skyline and top-k retrieval in
subspaces,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 8, pp. 1072–
1088, Aug. 2007.

Xu Zhou received the PhD degree from the
Department of Information Science and Engi-
neering, Hunan University, China, in 2016. She is
currently a postdoctoral researcher of electrical
engineering at Hunan University. Her research
interests include parallel computing and data
management.

Kenli Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He is currently a
full professor of computer science and technol-
ogy at Hunan University. His major research
includes parallel computing and cloud computing.
He has published more than 150 papers in inter-
national conferences and journals, such as the
IEEE Transactions on Computers, the IEEE
Transactions on Parallel and Distributed Sys-
tems, and the Journal of Parallel and Distributed

Computing. He is currently on the editorial board of the IEEE Transac-
tions on Computers. He is a senior member of the IEEE and an
outstanding member of CCF.

Guoqing Xiao is currently working towards the
PhD degree in the Department of Information
Science and Engineering, Hunan University,
Changsha, China. His research interests include
parallel computing and data management.

Yantao Zhou received the PhD degree in infor-
mation and electrical engineering from the Wuhan
Naval University of Engineering, China, in 2009.
He is currently a professor of electric and informa-
tion engineering at Hunan University, Changsha.
His major research interests include parallel com-
puting and distributed datamanagement.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and distributed comput-
ing. He has published more than 410 journal
articles, book chapters, and refereed conference
papers, and has received several best paper
awards. He is currently or has served on the edito-
rial boards of the IEEE Transactions on Parallel and
Distributed Systems, the IEEE Transactions on
Computers, and the IEEE Transactions on Cloud
Computing. He is a fellowmember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHOU ETAL.: TOP k FAVORITE PROBABILISTIC PRODUCTS QUERIES 2821



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


