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Abstract—Query processing over uncertain data has gained growing attention, because it is necessary to deal with uncertain data in

many real-life applications. In this paper, we investigate skyline queries over uncertain data in distributed environments (DSUD query)

whose research is only in an early stage. The state-of-the-art algorithm, called e-DSUD algorithm, is designed for processing this

query. It has the desirable characteristics of progressiveness and minimum bandwidth consumption. However, it still needs to be

perfected in three aspects. (1) Progressiveness. Each time it only returns one query result at most. (2) Efficiency. There are a

significant amount of redundant I/O cost and numerous iterations which causes a long total query time. (3) Universality. It is restricted to

the case where local skyline tuples are incomparability. To address these concerns, we first present a detailed analysis of the e-DSUD

algorithm and then develop an improved framework for the DSUD query, namely IDSUD. Based on the new framework, we propose an

adaptive algorithm, called ADSUD, for the DSUD query. In the algorithm, we redefine the approximate global skyline probability and

choose local representative tuples due to minimum probabilistic bounding rectangle adaptively. Furthermore, we design a progressive

pruning method and apply the reuse mechanism to improve its efficiency. The results of extensive experiments verify the better overall

performance of our algorithm than the e-DSUD algorithm.

Index Terms—Data management, distributed database, skyline query, uncertain data
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1 INTRODUCTION

1.1 Motivation

R ECENTLY skyline query processing has become a topic
issue in database management research. The popular-

ity of skyline queries mainly depends on their widespread
use in real-world applications, such as multi-criteria data
analysis, data mining, and decision making [1]. In those
applications, data uncertainty arises inherently for several
reasons, such as incomplete survey results, data measure
and collection approaches, and so on [2]. Furthermore, with
the development of big data and cloud computing, data
storage has trended to become increasingly distributed [2].
In practice, more and more applications need to collect data
from multiple data sources which have distributed and
decentralized control. Since the data uncertainty and dis-
tributed data storage have been the inherent characteristics
of many applications, skyline queries over uncertain data in
distributed environments (DSUD query) will be paid grow-
ing attention [3], [4].

DSUD query processing is a vital research topic with
many potential real-life applications. Consider the stock

market application scenario as an example [3]. Stock traders
always want to mine the stocks with the best investment
potential. For this purpose, they need to access history deals
stored in multiple distributed databases. The databases
are usually scattered over different places like New York,
London, Shanghai, Tokyo, etc. Moreover, the historical deal
is uncertain for network or human beings. So the uncer-
tainty of each deal must be taken into consideration. In this
case, a DSUD query is more suitable because it allows better
local data management, smaller update cost, and higher tol-
erance to machine failures [4].

We take the uncertain dataset shown in Fig. 1 as an exam-
ple of a P-skyline query. The property value and probability
of each deal in Fig. 1 is depicted in Table 1. Assume a tuple is
recorded by two attributes (price, volume). Suppose a tuple
with a lower price and a lower volume will be a good choice.
Let the probabilistic threshold be equal to 0.4. According to
the definition of skyline probability in [1], since there is no
tuple dominating the tuple d1, d2, and d6, it holds that the
skyline probabilities of the above tuples are equal to their
existential probabilities, respectively. For tuple d3 which is
dominated by tuple d1, its skyline probability is computed
by 0:6� ð1�0:3Þ ¼ 0:42. Similarly, the skyline probabilities
of d4 and d5 are equal to 0:8� ð1�0:3Þ � ð1�0:4Þ ¼ 0:336 and
0:3� ð1�0:4Þ ¼ 0:18, respectively. Since the skyline proba-
bilities of d2, d3, and d6 are larger than the probability thresh-
old, we retrieve them as our skyline query results.

There have been abundant research achievements about
skyline queries over uncertain data, but most of them are
primarily focused on the assumption of a single and central-
ized storage database [1], [5], [6], [7]. Such approaches
assume a sole relation as input, and lack adaptations or
optimizations specific to distributed computing environ-
ments [8]. Furthermore, many attempts have been made for
distributed skyline query over precise data. They resulted
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in a lot of famous approaches [4] discussed in Section 2.
Nevertheless, most of these approaches are inapplicable
to our problems because their research basis is the certain
database. On the contrary, we carry on the distributed sky-
line query research on uncertain data in this paper.

Note that skyline queries over uncertain data in distrib-
uted environments have been studied quite extensively but
separately. Ding and Jin [3] first formulated theDSUDquery.
Their pioneering work has desirable features of minimize
bandwidth consumption and progressiveness. However, it
still needs to be improved from three respects of progressive-
ness, efficiency, and universality (See Section 2.3 for details).

1.2 Our Contributions

As mentioned above, the famous activities about skyline
queries in distributed environments are mainly researched
over certain data [3], [4]. Moreover, the existing algorithms
about our problem also have several aspects which need to
be perfected. Therefore it leads to an urgent requirement for
researching on DSUD query. Motivated by these concerns,
we make the key contributions as follows.

� We review the work about DSUD query and summa-
rize the objectives of the algorithms about it.

� We propose an improved framework for the DSUD
query where a Query-Routing phase is used to prune
unqualified local sites.

� We present an adaptive (ADSUD) algorithm for
the DSUD query on the basis of the IDSUD frame-
work. In the algorithm, we redefine the approxi-
mate global skyline probability to improve its
universality, and give a definition of the MPBR to
boost its progressiveness. Moreover, we design an
improved PR-tree (IPR-tree) to organize the local
data sets and apply the reuse mechanism to accel-
erate the DSUD query.

� We conduct a comprehensive evaluation of our
ADSUD algorithm. The experimental results illus-
trate that ADSUD has much better efficiency and
progressiveness comparing to e-DSUD.

The rest of the paper is organized as follows. Section 2 sur-
veys previous work related to ours. Section 3 gives a defini-
tion of the DSUD query and presents the objectives of DSUD
query algorithms. Section 4 introduces our improved distrib-
uted uncertain skyline query (IDSUD) framework. Section 5
describes our proposed algorithm, namelyADSUD, and ana-
lyzes its performance. Section 6 evaluates the performance of
our proposed algorithm with experiments. Section 7 con-
cludes this paper with directions for futurework.

2 RELATED WORK

In this section, we survey the related work about the
DSUD query.

2.1 Probabilistic Skyline Queries

The first study about probabilistic skyline query, named P-
skyline, was reported by Pei et al. [1]. The P-Skyline query is
developed to return skyline tuples whose skyline probabili-
ties are larger than a specified probability threshold. This
pioneering work inspires a number of follow-up studies [5],
[6], [7], [8], [9], [10]. Dongwon et al. [5] proposed an in-mem-
ory tree structure, Z-tree, to find as many incomparable
groups of instances as possible. Then a probabilistic skyline
query algorithm, called P-Skyline, is designed. Atallah and
Qi [6] focused on the cases where low probability events can-
not be ignored. In such situations, it is necessary to compute
skyline probabilities of all data items. In addition to conven-
tional skyline operator over uncertain data, numerous sky-
line query variants have also been studied. Lian and Chen
[7] formalized the probabilistic reverse skyline query over
uncertain data in both monochromatic and bichromatic
cases. Zhang et al. [8] focused on the problem of skyline
query over sliding windows on uncertain data stream.
Recently, Lian and Chen [9] formulated a novel and impor-
tant query, namely probabilistic group subspace skyline
query, that is useful in applications like sensor data analysis.

Although skyline queries over uncertain data have been
researched widely, they are mainly based on the P-skyline
semantics. The answer obtained via a P-Skyline query usu-
ally depends on the probabilistic threshold. When a small
threshold is specified, it includes skyline tuples undesirably
dominating each other; if a larger probabilistic threshold is
arranged, it may contain much fewer skyline tuples [2]. To
address the above concern, Liu et al. studied a new uncer-
tain skyline query, called U-Skyline query. It reports a set of
tuples that has the highest probability [2].

Notice that, all the above works are studied on a central-
ized database. So they can not be applied to compute dis-
tributed skyline queries over uncertain data directly.

2.2 Distributed Skyline Queries

Skyline queries in distributed environments were first
researched in [10]. It supports the web information which is
vertically partitioned into lists. Thereafter, in the literature,
abundant research achievements have been gained to
address distributed skyline queries [4].

Wang et al. and Chen et al. both researched skyline
queries in structured P2P networks, namely BATON net-
works, where each peer is responsible for a partial region of
data space [4]. Hose et al. proposed an approach to skyline
processing in unstructured P2P networks that uses routing
indexes to identify relevant peers. Cui et al. studied skyline

Fig. 1. Illustration of P-skyline query.

TABLE 1
Deal’s Property Value and Probability

Deal d1 d2 d3 d4 d5 d6

Price 10 20 15 30 35 50
Volume 30 10 50 35 15 5
Probability 0.3 0.4 0.6 0.8 0.3 0.5
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query processing in a distributed environment, where the
querying peer can directly communicate with all peers [4].
Rocha-Junior et al. [11] proposed a grid-based approach for
distributed skyline processing (AGiDS), which assumes
that each peer maintains a grid-based data summary struc-
ture for describing its data distribution. Zhu et al. [12] pro-
posed a feedback-based distributed skyline query algorithm
(FDS) to support arbitrary horizontal partitioning. It aims at
minimize the network bandwidth consumption. Chen et al.
[13] paid attention on a constrained skyline query in distrib-
uted environments. In order to help to decide execution
order between different local sites, they first presented a
partition algorithm. Then they introduced heuristics for
selecting a given number of multiple filtering points.

Trimponias et al. [14] studied skyline queries over dis-
tributed web information systems where the attributes of
each tuple are provided by different sources. The proposed
algorithm, namely PDS, is restricted to the case where each
server maintains exactly one dimension. Taking the concern
into account, Trimponias et al. [14] proposed an approach
to skyline query on distributed vertical decompositions of
arbitrary dimensionality. In [15], Vlachou et al. proposed a
new angel-based partitioning scheme by using the hyper-
spherical coordinates of the data points. Based on a distrib-
uted data stream model, Sun et al. [16] designed an
algorithm (BOCS) for skyline queries over data streams,
which collects data streams from different servers and then
processes skyline query on them. Skyline queries in wireless
sensor networks (WSNs) were studied in [17]. It proposed
an algorithm that is carried out in k iterations. In each itera-
tion, it computes the skyline set of a partial dataset.

The MapReduce framework has an obvious advantage in
processing skyline queries over big data sets due to its char-
acteristics of ease of programming, scalability, and fault-tol-
erance [18]. In [19], Zhang et al. presented a preliminary
approach for skyline queries in MapReduce. The authors
developed three skyline algorithms under the MapReduce
framework, called MR-BNL, MR-SFS, and MR-Bitmap. In
[20], Tao et al. studied the minimal algorithms for MapRe-
duce. Also, they introduced an approach for processing sky-
line queries over two-dimensional data sets, which needs to
sort the data sets. In [21], Park et al. proposed an effective
parallel algorithm, SKY-MR, for processing the skyline
queries. In the SKY-MR algorithm, a sky-quadtree with a
sample of the entire data set is designed and utilized in the
data partition and local pruning. In [22], Chen et al. intro-
duced the angle data partitioning approach and proposed
the MR-Angle algorithm for skyline queries in MapReuce.
Since the existing works on skyline computation in MapRe-
duce still run significant parts serially, in [23], Mullesgaard
et al. designed a grid partitioning scheme to divide the data
space into partitions, and employed a bitstring to represent
them. Furthermore, they proposed the MR-GRMRS algo-
rithm for skyline queries, which applies multiple reducers
for computing global skyline unprecedentedly.

Although there have been abundant activities for skyline
queries in distributed environments, they can merely be
applied to process precise data sets. Since they do not take
the uncertain scenarios into consideration, the above algo-
rithms are not applicable to handle the DSUD queries in
this paper. Moreover, the DSUD queries are without the

property of additivity, and hence, it is a great challenge to
study them under MapReduce. Due to the huge advantage
of MapReduce in processing large-scale data sets, we will
take the DSUD queries under MapReduce as our next work.

2.3 Distributed Skyline Queries over Uncertain Data

The notation of the distributed skyline query over uncertain
data was first proposed by Ding and Jin [3]. They proposed
the DSUD algorithm and its enhance algorithm e-DSUD. In
the e-DSUD algorithm, each local site computes its local
skylines and sorts them by their local skyline probabilities
first. The remaining part of the e-DSUD algorithm is an iter-
ative process. In an iteration, each local site sends the repre-
sentative tuple, which has the maximum local skyline
probability, to the serverH. Then,H collects the local repre-
sentative tuples and computes the global candidate sky-
lines. Afterwards, H selects the global candidate skyline,
which has the maximum approximate global skyline proba-
bility, and sends it to local sites (except the local site that the
skyline is from). Finally, each local site refreshes its local
skyline set and helps computing the local skyline probabil-
ity of the tuple fromH.

Although the e-DSUD algorithm is both communication-
and computation-efficient, it still has room for development
in the following aspects.

1) Progressiveness. Although the e-DSUD algorithm
can return the query results progressively, it can
only return one query result after an iteration at
most, and sometime it can not get any answer at all.

2) Efficiency. The e-DSUD algorithm could retrieve the
query results with minimum bandwidth consump-
tion. However, it does not take total query time,
which is also a key performance metric to measure
the distributed algorithms, into account. It needs
Hðd;NÞ iterations for getting all the query results at
least, where Hðd;NÞ is the expected number of sky-
line tuples and is computed by

Hðd;NÞ �
XN
n¼0

ðlnnÞd�1

d!
� P ðnÞ; (1)

where P ðnÞ denotes the probability of having exactly
n tuples [3]. Moreover, for calculating local skyline
probability of each global candidate skyline from
server H, it needs to visit each local PR-tree for
Hðd; nÞ times at least, which incurs redundant I/O
and CPU costs.

From the analysis above, the two issues become
the bottlenecks of the e-DSUD algorithm, because
they cause total query time too long when processing
on massive databases.

3) Universality. The e-DSUD algorithm is restricted to
the case where the local skyline tuples are incompa-
rable. But, generally speaking, some of the local sky-
line tuples are undesirably dominating each other
[2]. In this case, it is unsuitable to choose a represen-
tative tuple based on its approximate global skyline
probability at serverH.

At the beginning of e-DSUD, each local site computes its
local skylines, respectively. Given two local skyline tuples
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t1 and t2 from local site Si and t1 � t2, the local skyline prob-
ability of tuple t2 is

PrLSkyðt2Þ ¼ Prðt2Þ � ð1�Prðt1ÞÞ �
Y
t�t2

t2UDBi�t1

ð1�PrðtÞÞ: (2)

At the first iteration, a prior queue L at the server H is
initialized with multiple representative tuples from local

sites. Assume that tuples t1 and t
0
1 are received from differ-

ent local sites Si and Sj separately, and t1 � t
0
1. At the end of

this iteration, the local skyline probability of tuple t
0
1 is

refreshed as

PrLSkyðt01Þ ¼ PrLSkyðt01Þ � ð1�Prðt1ÞÞ �
Y
t�t

0
1

t2L�t1

ð1�PrðtÞÞ: (3)

At the start of the second iteration, assume that tuple t2 is

sent to H and t2 � t
0
1. The approximate global probability of

tuple t
0
1 can be computed by

Pr
0
GSkyðt

0
1Þ ¼ PrLSkyðt01Þ � PrLSkyðt2Þ � ð1�Prðt2ÞÞ

Prðt2Þ
�

Y
t�t

0
1

t2L\UDBx�t2

�
PrLSkyðtÞ � ð1�PrðtÞÞ

PrðtÞ
�
;

(4)

where 1 � x � m;x 6¼ i; j.
By introducing Equation (2) and Equation (3) to

Equation (4), we have

Pr
0
GSkyðt

0
1Þ ¼ PrLSkyðt01Þ � ð1�Prðt1ÞÞ2 � ð1�Prðt2ÞÞ

�
Y
t2L
t�t1

ð1�PrðtÞÞ �
Y
t�t2

t2UDBi�t1

ð1�PrðtÞÞ

�
Ym
t�t

0
1

t2UDBx\L�t1

�
PrLSkyðtÞ � ð1�PrðtÞÞ

PrðtÞ
�
:

(5)

From Equation (5), we notice that the non-existential
probability of t1, which is equal to 1�Prðt1Þ, is multiplied
for two times. In this case, the approximate global skyline
probabilities of some tuples are less than its real values.
Therefore, it is inapplicable to select representative tuples of
H according to their approximate global skyline probabili-
ties when local skyline tuples have dominant relationship.

As mentioned above, all the works reviewed are unappli-
cable to compute the DSUD query directly. Furthermore, as
analyzed in Section 2.3, the existing algorithm for DSUD
queries can also be refined in three aspects. Hence, it is sig-
nificative to do further study on the DSUD query.

3 PRELIMINARIES

In this section, we give a definition of the DSUD query and
introduce the objectives of the DSUD query algorithms.

3.1 The DSUD Query

Definition 3.1 (Distributed Skyline Query over Uncertain
Data, DSUD Query [3]). Assume a probabilistic threshold a

ð0 � a � 1Þ and a distributed site Sk for 1 � k � m. Each site

Sk processes a local skyline query over an uncertain database
UDBk, which stores Nk tuples and

S
m
k¼1UDBk ¼ UDB.

There is also a server H to compute the global uncertain sky-
line answers.

A distributed skyline query over uncertain data is to report
those tuples whose global skyline probabilities are not
smaller than a given threshold a at serverH .

The local skyline probability of tuple t over the database
UDBi can be transformed into the following:

PrLSkyðt; UDBiÞ ¼
PrðtÞ �Qt

0 2UDBi;t
0 �tð1�Prðt0 ÞÞ; t 2 UDBi;Q

t
0 2UDBi;t

0 �t ð1�Prðt0 ÞÞ; otherwise:

(

wherem represents the number of local sites and 1 � i � m.
Based on the traditional skyline definition, assume each

local uncertain database is independent, the global skyline
probability of tuple t2UDBi is computed by

PrGSkyðtÞ ¼ PrLSkyðt; UDBiÞ �
Ym
k¼1

PrLSkyðt; UDBkÞ;

for k 6¼ i.
The DSUD query returns the tuples whose global skyline

probabilities are not less than a.

3.2 Objectives of DSUD Query Algorithms

As mentioned in [4], the main objective of distributed sky-
line processing is minimizing total query time. There are
several main issues that affect the total query time.

� Bandwidth consumption. To reduce the network
transfer time, the effective approach is to minimize
the bandwidth consumption, which is measured by
the number of tuples transmitted over the network.

� Local processing time. It is defined as the time
caused by processing local queries. To minimize the
total query time, it can be achieved by making use of
efficient local indexing and adopting state-of-the-art
centralized algorithms at each local site.

Moreover, in [3] and [13], they all take progressiveness
as their important objects. Since the total query time may
be very long, especially processing large databases, a good
distributed skyline processing algorithm should return
some early query results as soon as possible and produce a
majority of the other results well before the end of query
procedure.

The e-DSUD algorithm is progressive and with mini-
mum bandwidth consumption [3]. However, as mentioned
in Section 2.3, it does not take the total query time into con-
sideration. Moreover, its progressiveness also has room to
be improved.

4 THE IDSUD FRAMEWORK

In this paper, our goals are minimizing the total query time
and performing better progressiveness for the DSUD query.
In order to achieve these goals, motivated by the DSUD
framework in [3], we propose an improved framework,
IDSUD, for processing the DSDU query. There are some
differences between the DSUD in [3] and our IDSUD frame-
works. First, a Query-Routing phase is introduced into
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IDSUD. Moreover we design a two level pruning strategy,
which are site pruning in Query-Routing phase and pro-
gressively pruning strategy inside each local site or server.
Second, we design an improved PR-tree (IPR-tree) to boost
the DSUD query. Finally, in the To-Server phase of DSUD,
each local site chooses only one representative tuple with
the largest local skyline probability each time. In our
IDSUD, we will use a new local tuple choosing strategy,
called MPBR (See Section 5.2), to select multiple representa-
tive tuples. Specifically, the IDSUD framework is depicted
in Algorithm 1.

Algorithm 1. IDSUD_Framework

Input: Local uncertain database UDBk at local site Sk for
1 � k � m, a probabilistic threshold a;

Output: A set UGSky containing all the global skylines.
1: for each local site Sk do
2: computes its local skyline set ULSkyk
3: sorts tuples within ULSkyk
4: while ULSkyk is not empty do
5: for each local site Sk do
6: sends its partial abstract information to serverH
7: serverH prunes unqualified local sites and sends

request information to the rest local sites
8: for each rest local site Sk do
9: sends its representative tuples toH
10: server H unites the representative tuples from different

local sites and computes a global candidate skyline set
UGSkycan

11: serverH selects and feeds back its representative
tuples

12: for each local site Sk do
13: computes the local skyline probability of each tuple

from serverH
14: refreshes its local skyline set ULSkyk
15: serverH computes each candidate tuple’s global

skyline probability and adds qualified tuples to UGSky
16: return UGSky

At the beginning of IDSUD, Lines 1-3 are Local-Compu-
tation phase. In this phase, each local site Sk processes sky-
line query using a centralized algorithm, namely LUSQ, in
Section 5.3.3. To accelerate the local skyline queries, the
IPR-tree is used to organize the local data sets. The tuples
within each ULSkyk are sorted in decreasing order of their
local skyline probabilities, respectively. At the same time,
the centralized server H initializes a set UGSky, which
includes all the global skylines lastly. The rest of the IDSUD
is carried out in iterations. After introducing a new phase,
called Query-Routing phase, into the IDSDU framework,
each iteration consists of five phases as follows.

� Query-Routing phase (Lines 5-7). This phase is used
to decide which local site can contribute to the final
global skyline set. Each local site Sk generates its
MPBR (See Section 5.2) and sends its partial abstract
information to H. Then H prunes unqualified local
sites based on Lemmas 5.2 and 5.4. Moreover, if a
global skyline gaining in present iteration is from local
site Sk, then Sk will be requested to attend the Query-
Routing phase of the next iteration. This method is
efficient to reduce bandwidth consumption.

� Local-To-Server phase (Lines 8-9). Each local site,
which has not been pruned in the Query-Routing
phase, sends the representative tuples within its
MPBR to the serverH.

� Server-Computation phase (Line 10). The server H
unions all the local representative tuples, and com-
putes the global candidate skylines by the GUSQ
algorithm in Section 5.3.4. After gaining global candi-
date skyline tuples and adding them to a prior queue
L, we arrange the tuples within it in decreasing order
of their new approximate global skyline probabilities
in Section 5.1. In this phase, the H also maintains a
MPCS (Defined in Section 5.2), then Lemmas 5.3
could also be used to prune unqualified tuples.

� Server-Feedback phase (Line 11). The server H first
generates a MPBR over the set UGSkycan. Then the
representative tuples within its MPBR are broad-
casted to the corresponding local sites (except the
local site where the tuple comes from). These tuples
are delivered to local sites for both gaining their
global skyline probabilities and refreshing local sky-
line set ULSkyk.

� Local-Pruning phase (Lines 12-14). Each local site
receives the global candidate skyline tuples from
the server H, and maintains a MPCS for pruning the
global candidate tuples formH. The unqualified ones
could be expunged according to Lemmas 5.3. For the
left tuples, we compute their local skyline probabili-
ties and send them to H, respectively. Moreover, we
refresh eachULSkyk by pruning unqualified tuples.

In [3], it uses window query operators over each local
PR-tree, respectively, for gaining local skyline probabilities
of the global candidate skylines from H. Being different
from the method in [3], we introduce the reuse mechanism
[24] into IDSUD. In the Local-Computation phase, we store
the information of nodes having been visited in a reuse
heap PHr

k at each local site Sk. We only need to execute win-
dow query operators over PHr

k instead of accessing the local
IPR-tree PRk for many times. This method avoids unneces-
sary access of disk which is an effective way of reducing the
total query time.

For ensuring the progressiveness of our approach, those
qualified skyline tuples within UGSky after each iteration
will be returned as a part of the final DSUD query results.
Furthermore, in this iteration, while a global skyline
answer is from local site Sk, it will be requested to attend
the next iteration.

5 THE ADSUD ALGORITHM

Based on the IDSUD framework in Section 4, the key com-
ponents of the ADSUD are described in detail in this sec-
tion. Our algorithm, ADSUD, is adaptive for the MPBR
helps each local site to select the multiple representative
tuples adaptively.

5.1 Local Sorting Strategies

At each local site, we sort tuples in decreasing order of their
local skyline probabilities, in a way similar to the e-DSUD
algorithm [3], which ranks tuples within a priority queue L
at server H by the approximate global skyline probabilities.
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The old definition of approximate global skyline probability
in [3] is an effective way of choosing the most dominant
tuple. However, as analyzed in Section 2.3, this way is not
suitable when the local skyline answers have dominant rela-
tionship. Hence in this section we give a new definition of
approximate global skyline probability.

Given a set UGPrune which includes unqualified tuples
at the server H, for any tuple t2UDBi, the global skyline
probability is

PrGSkyðtÞ ¼ PrLSkyðt; UDBiÞ �
Y

PrLSkyðt; UDBkÞ
� PrLSkyðt; UDBiÞ �

Y
t
0 �t

ð1� Prðt0 ÞÞ

� PrLSkyðt; UDBiÞ �
Y
t
0 �t

�
ð1� Prðt0 ÞÞ

� PrLSkyðt0 ; UDBkÞ
Prðt0 Þ �

Y
t
00 �t

0

1

1� Prðt00 Þ
�
;

where t
0 2 UDBk\L, t00 2 UDBi \ ðUGSky [ UGPruneÞ, and

1 � k � m; k 6¼ i. Here, our new approximate global skyline
probability of tuple t is

Pr
0
NewGSkyðtÞ ¼ PrLSkyðt; UDBiÞ �

Y
t
0 �t

�
ð1� Prðt0 ÞÞ

� PrLSkyðt0 ; UDBkÞ
Prðt0 Þ �

Y
t
00 �t

0

1

1� Prðt00 Þ
�
:

In the newdefinition above,when computing Pr
0
NewGSkyðtÞ,

we find out tuple t
0
whichdominates t from the priority queue

L. Tuple t
0
and t are from different local sites. For improving

universality of our ADUSP algorithm, we consider the rela-

tionship between t
0
and tuples t

00
, and adjust the old definition

in [3].
In the Server-Feedback phase, server H first computes

Pr
0
NewGSkyðtÞ of each tuple within L. If Pr

0
NewGSkyðtÞ � a,

tuple t is not a global skyline and is deleted from L. The left
tuples within L are arranged in decreasing order of their
new approximate global skyline probabilities.

5.2 Minimum Probabilistic Bounding Rectangle

A good distributed skyline algorithm should be able to
transfer unqualified skyline points as less as possible [3],
[4]. Hence a local skyline selection strategy plays an impor-
tant role in a distributed skyline query algorithm.

In this section, we give a definition of the MPBR. Our
MPBR is different from the MBR of R-tree in two aspects.
First, the MBR is usually created by clustering the near
points while our MPBR is generated according to the proba-
bility threshold. Second, the MBR is utilized in the Local-
Computation phase for improving the pruning capacity.
Our MPBR is used to help choosing the local multiple repre-
sentative tuples which will be sent to the server in the Local-
To-Server phase, and helps to gain the abstracted informa-
tion for site pruning in the Query-Routing phase.

Definition 5.1 (Minimum Probabilistic Bounding Rectan-
gle (MPBR)). A MPBR BR consists of the minimum set of
tuples that satisfy the condition

PrnonexistðBRÞ ¼
Y

tj2BR
ð1�PrðtjÞÞ<a:

Let tmin and tmax be the minimum and maximum corner
of a BR. We have

tmin ¼ ðminti2BRti:x1;minti2BRti:x2; . . . ;minti2BRti:xdÞ;
tmax ¼ ðmaxti2BRti:x1;maxti2BRti:x2; . . . ;maxti2BRti:xdÞ;

and PrðtminÞ ¼ maxti2BRPrðtiÞ, PrðtmaxÞ ¼ minti2BRPrðtiÞ.
Note that, we could use two-tuples, ðtmin; tmaxÞ, to denote

a MPBR.
Suppose that site S1 gets a local skyline set fa; b; c; d; eg

and a ¼ 0:3, we choose points a, b and c to generate a MPBR
for ð1�PrðaÞÞ � ð1�PrðbÞÞ� ð1�PrðcÞÞ ¼ ð1�0:5Þ� ð1�0:4Þ�
ð1�0:3Þ ¼ 0:21 � 0:3.

Definition 5.2 (MPBR-dominance). Given two MPBRs

BR ¼ ðtmin; tmaxÞ and BR
0 ¼ ðt0min; t

0
maxÞ, we have BR �

BR
0
, if tmax � t

0
min.

Lemma 5.1. Given a MPBR BR ¼ ðtmin; tmaxÞ and a tuple t, if
tmax � t, then t can be safely pruned.

Proof. Since t
0 � tmax, for any tuple t

0 2 BR, if tmax � t,

we have t
0 � t according to the transmit property of

dominant relationship. Therefore BR � t. Because
PrnonexistðBRÞ � a, we get PrGSkyðtÞ � PrðtÞ �
PrnonexistðBRÞ<PrðtÞ � a. Considering 0 � PrðtÞ � 1, we
have PrGSkyðtÞ<a. Hence tuple t is not a local skyline
answer and can be safely pruned. tu

Based on Lemma 5.1 we also design a new lemma used to
local site pruning in the Query-Routing phase of the IDSUD.

Lemma 5.2. Given two MPBRs BR ¼ ðtmin; tmaxÞ and BR
0 ¼

ðt0min; t
0
maxÞ, if BR � BR

0
, then the tuples contained in BR

0

can be safely pruned.

Proof. Since BR�BR
0
, we have tmax � t

0
min due to Definition

5.2. For each tuple t2BR0
, we have tmax � t, which means

tuple t can be safely pruned according to Lemma 5.1.

Since t represents any tuple within BR
0
, it holds that the

tuples within BR
0
are not local skyline results. Hence,

the lemma holds. tu

Note that it only takes a single MPBR into account in the
lemmas above. For the purpose of getting much higher
pruning power, we design some new lemmas, which take a
set of MPBRs into account, instead of a single one.

Definition 5.3 (MPBR Constrained Space (MPCS)). For a
MPBR set BRS ¼ f1 � i � jBRSjjBRi ¼ ðtimin; t

i
maxÞg, its

MPCS consists of the union of all the regions which are domi-
nated by timax.

Based on the property ofMPCS,we get following lemmas.

Lemma 5.3. Given a MPCS CS of a MPBR set BRS ¼ f1 � i �
jBRSjjBRi ¼ ðtimin; t

i
maxÞg and a tuple t, if t2CS, the tuple t

can be safely pruned.

Proof. Assume a MPBR BRi ¼ ðtimin; t
i
maxÞ and BRi2BRS,

since t2CS, from Definition 5.3, we have that tuple t is
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dominated by BRi. It holds that t
i
max � t. Therefore tuple t

is not a query result according to Lemma 5.1 and this
lemma holds. tu
Based on Lemma 5.3, if a global candidate tuple t,

which is fed back from server H, falls in one of the local
site’s MPCS, then t is not a global skyline. Moreover,
suppose server H receives a local skyline tuple t, it is
not a global skyline answer if it falls into the MPCS at
server H.

On the basis of Lemma 5.3, we also propose a new
lemma for local site pruning in the Query-Routing phase
of IDSUD in Section 4.

Lemma 5.4. Given a MPCS CS and a MPBR BR ¼ ðtmin; tmaxÞ,
if BR2CS, the tuples contained in BR can be safely pruned.

Proof. Since BR2CS, for any tuple t 2 BR, we have t2CS.
Therefore tuple t is not a local skyline according to
Lemma 5.3. Since tuple t represents any tuple contained
in BR, this lemma holds. tu
Fig. 2 shows an example of MPCS. As shown in Fig. 4, if a

tuple t falls into a MPCS, it is not a skyline answer according
to Lemma 5.3. Taking a MPBR BRk into consideration,
when it falls into a MPCS, tuples within it can be pruned
safely due to Lemma 5.4.

Assume a MPBR BRi is received from local site Si, if BRi

falls in the MPCS of serverH, then BRi is unqualified based
on Lemma 5.4.

5.3 The Local Algorithms

To minimize the total query time, it is partially achieved by
minimizing the individual local processing time, which is
accomplished by adopting state-of-the-art centralized algo-
rithms andmaking use of efficient local indexing at each local
site. Therefore, in this section, we first introduce the reuse
technology which is an effective way of reducing the I/O
cost. Then based on the PR-tree introduced in [3], we present
a more efficient index, namely IPR-tree. Last, two new local
centralized algorithms, LUSQ andGUSQ are designed.

5.3.1 The Reuse Mechanism

The reusing technology in [24] is an effective way for reduc-
ing the redundant I/O operations. Recently, it has been suc-
cessfully used in two famous skyline query variants, which
are monochromatic and bichromatic mutual skyline queries
[24] and reverse skyline query over certain data [25]. There-
fore, for minimizing the local processing time at each local
site, we utilize the reusing technology to boost the perfor-
mance of the DSUD query.

As illustrated in [24] and [25], when processing reverse
skyline query, it usually computes skyline answers first.
Then for each skyline answer, the traditional approaches
usually apply the window query over the R-tree to check
wether it is a reverse skyline result. This incurs redundant
I/O cost because of visiting the same nodes for many times.
In the effective way of applying the reuse mechanism, it
stores the nodes having been examined into a reuse heap.

5.3.2 The IPR-Tree

In order to improve the query efficiency, indices are built on
uncertain database as usual [3], [4]. It could sharply reduce
the processing time through using index technology. There-
fore, in this section we adjust the PR-tree proposed in [3]
and introduce an improved PR-tree, called IPR-tree.

According to the definition of skyline probability in
Section 3.1, the skyline probability of each tuple depends on
two issues, which are its existential probability and non-
existential probability of each entry dominates it. Therefore,
in our IPR-tree, each intermediate entry contains non-exis-
tential probability of its child entries instead of the mini-
mum probability in the PR-tree [3]. The non-existential
probability of an intermediate entry PE is computed by

PrnonexistðPEÞ ¼
Q

PEi2ChildðPEÞð1�PrðPEiÞÞ; for a leaf entry;Q
PEi2ChildðPEÞ PrnonexistðPEiÞ; otherwise:

�

Fig. 3 shows a general example of an IPR-tree. Let the
capacity of a minimum bounding rectangle (MBR) be equal
to 3. The existential probability of tuples a, b, and c are 0.4,
0.5, 0.6, respectively. Hence, the maximize probability of
entry PE3 is equal to maxðPrðaÞ; PrðbÞ; PrðcÞÞ ¼ 0:6. The
non-existential probability of PE3 is computed by

PrnonexistðPE3Þ ¼ ð1�PrðaÞÞ � ð1�PrðbÞÞ � ð1�PrðcÞÞ ¼ 0:12:

Consider PE1 to be an intermediate entry. It stores the
probabilities of maxðPrmaxðPE3Þ; PrmaxðPE4ÞÞ ¼ 0:6 and its
non-existential probability which is equal to PrnonexistðPE3Þ�
PrnonexistðPE4Þ ¼ 0:04032.

5.3.3 LUSQ Algorithm

At each local site Sk, we organize the local uncertain data-
bases UDBk by the IPR-tree in Section 5.3.2. Then we design
a local site uncertain skyline query (LUSQ) algorithm to
compute skylines at each local site. In LUSQ, we use a pro-
gressive pruning strategy to reduce the search space.

Given a probability threshold a ð0 � a � 1Þ, based on the
IPR-tree, we have the following lemmas.

Lemma 5.5. Given an entity E, if PrmaxðEÞ<a, then tuples
within E can be safely pruned.

Proof. Taking each tuple t 2 E into account, we have
PrðtÞ � PrmaxðEÞ. Since PrmaxðEÞ<a, we get PrðtÞ<a.
Due to Equation (2) in Section 3.1, it is obvious that
PrLSkyðtiÞ<PrðtÞ<a. Since ti represents any tuple within
E, this lemma holds. tu

Lemma 5.6. Given two entries Ei and Ej, if Ei � Ej and
PrmaxðEjÞ � PrnonexistðEiÞ<a, the tuples contained in Ej

can be safely pruned.

Fig. 2. Illustration of MPCS.
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Proof. Since 9t 2 Ej, it is obvious that PrðtÞ � PrmaxðEjÞ. For
PrmaxðEjÞ � PrnonexistðEiÞ<a and Ei � Ej, we have

PrLSkyðtÞ � PrmaxðEjÞ � ð1� PrðEiÞÞ
� PrmaxðEjÞ � PrnonexistðEiÞ<a:

Consider t represents any tuple in Ej and PrLSkyðtÞ<a.
we can get the lemma obviously. tu
For the sake of pruning unqualified tuples as early as

possible, we introduce a progressive pruning strategy. In
general, given a local candidate skyline tuple set ULSkykcan
at local site Sk, with accessing entries in order of their dis-
tance to the origin, the upper bound of local non-dominated
probability of entry E, PrUBLDomðEÞ, can be computed by

PrUBLDomðEÞ ¼
Y

tu�E;tu2ULSkykcan
ð1�PrðtuÞÞ:

Therefore, the upper bound of local skyline probability of
E is equal to

PrUBLSkyðEÞ ¼ PrmaxðEÞ � PrUBLDomðEÞ:

Lemma 5.7. Given an entry E, in case PrUBLSkyðEÞ<a, tuples
within E can be safely pruned.

Proof. For 9t 2 E, we have

PrLSkyðtÞ � PrðtÞ �
Y

tu�E;tu2ULSkyican
ð1�PrðtuÞÞ

� PrmaxðEÞ �
Y

tu�E;tu2ULSkyican
ð1�PrðtuÞÞ

¼ PrUBLSkyðEÞ:
Since PrUBLSkyðEÞ<a, it holds that PrLSkyðtÞ<a.

Hence tuple t is not a skyline. Considering tuple t repre-
sents any tuple within E, the lemma holds. tu
Given a set of examined unqualified skyline points,

ULSkykRef , which has contribution to prune the unexamined

points, we have the following observation.

Observation 5.1. Given a tuple ti, any tuple tj dominated by
ti must be at least dominated by the same tuples.

This observation is clear. For any tuple tv that dominates
ti, since ti � tj, it holds that tv � tj due to the transitivity of
dominant relationship.

Lemma 5.8. Consider any visited tuple t which is unqualified. If
ð1�PrðtuÞÞ � PrUBLDomðtuÞ<a, then tu may have contribu-
tion to prune the unexamined points. Therefore, we add it to

ULSkyiRef .

Proof. Given an unexamined tuple tv that is dominated by
tu, the local skyline probability of tv is equal to

PrLSkyðtvÞ ¼ PrðtvÞ �
Y

t2UDBi;t�tv

ð1�PrðtÞÞ

� PrðtvÞ � ð1�PrðtuÞÞ �
Y

t�tu;t2UDBi

ð1�PrðtÞÞ

¼ PrðtvÞ � ð1� PrðtuÞÞ � PrUBLDomðtuÞ:

Since ð1�PrðtuÞÞ � PrUBLSkyðtuÞ<a, we have PrLSkyðtvÞ
<a. Therefore, the lemma holds. tu

With respect to ULSkykcan and ULocalkRef , we have

Pr
0
UBLDomðEÞ ¼

Y
t�E

t2ULSkykcan

ð1�PrðtÞÞ �
Y
t�E

t2ULSkyk
Ref

ð1�PrðtÞÞ

¼ PrUBLDomðEÞ �
Y
t�E

t2ULSkyk
Ref

ð1�PrðtÞÞ:

Considering Pr
0
UBLDomðEÞ, we have the following lemma.

Lemma 5.9. Given an entry E, it can be safely pruned if PrðEÞ�
Pr

0
UBLDomðEÞ<a.

The proof of Lemma 5.9 is similar to Lemma 5.7.
Based on the above lemmas, the LUSQ algorithm is pro-

posed to compute the local skyline set efficiently. The LUSQ
employs the IPR-tree to organize the data set. The pseudo-
code of this LUSQ algorithm is depicted in Algorithm 2.

It is composed of two phases, which are pruning phase
and refining phase. In the pruning phase, it identifies the
unqualified skyline tuples on the basis of Lemmas 5.5-5.9.
And a reuse min-heap PHr

k is defined besides a min-heap
PHk. It is used to store entries that have been visited and
play a key role in decreasing redundant I/O operators.
According to Observation 5.1 and Lemma 5.8, we add the

Fig. 3. Example of an IPR-tree.

378 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2016



unqualified tuple t to the set ULSkykRef , if t has contribution

to prune other unvisited tuples. Since our pruning strategies
can guarantee that all the pruned tuples are not query

results, the candidate set ULSkykcan after pruning would con-
tain all the query results. However, there are also some
tuples that should be unqualified query results still exist

in ULSkykcan. Therefore, in the refining phase, for each tuple

t within ULSkykcan, we use the window query operator over
PHr

k to find out all the tuples that dominate it and compute
its local skyline probability incrementally. Since PHr

k stores
all the index information of each tuple at different levels in
its entirety (See Theorem 5.10), it is not required to visit the
IPR-tree IPRk for more times but to reuse the information
stored in PHr

k.

Algorithm 2. LUSQ_Algorithm

Input: An uncertain local data set UDBk, an IPR-tree IPRk, and
a probability threshold a.

Output: A set ULSkyk containing all the local skylines.
1: Initialize a min-heap PHk ¼ ;, a reuse heap PHr

k ¼ ;, a can-
didate skyline set ULSkykcan ¼ ;, and a refine set

ULSkykRef ¼ ;
2: Insert the entries in the root of IPR into PHk and PHr

k

respectively
3: while PHk is not empty do
4: Remove top entry E from PHk

5: if E is a leaf node then
6: if PrðEÞ<a then
7: if ðPrUBLSkyðEÞ<aÞ^ðð1�PrðEÞÞ� PrUBLSkyðEÞ � aÞ

then
8: Add E to ULSkykRef /* by Lemmas 5.5, 5.7 and

5.8 */
9: else
10: if ðPrðEÞ � PrUBLDomðEÞ<aÞ_ ðPrðEÞ � Pr

0
UBLDomðEÞ

< aÞ then
11: if ð1�PrðEÞÞ � PrUBLSkyðEÞ � a then
12: Add E to ULSkykRef /* by Lemmas 5.7, 5.8

and 5.9 */
13: else
14: Make E as false alarm
15: else
16: Add E to ULSkykCan
17: else
18: Remove top entry E from PHr

k

19: for each children Ei of E do
20: Insert Ei into PHr

k

21: if ðPrmaxðEiÞ< aÞkðPrmax ðEiÞ � PrUBLSkyðEiÞ<aÞ
kðPrmaxðEiÞ � Pr

0
UBLSkyðEiÞ<aÞ then

22: MakeEi as false alarm /* by Lemmas 5.5 and 5.7 */
23: else
24: Insert Ei into PHk

25: Prune all unqualified entries in PHk by Lemma 5.6
26: Refine ULSkykcan by invoking the window query over PHr

k

and add the local skylines to ULSkyk
27: Return ULSkyk

Complexity. The LUSQ algorithm includes two phases
which are the pruning phase and refining phase. In the
prune phase, suppose that the height of the IPR-tree IPRk

is �h and the average access cost of visiting a node is @. The
node access cost by LUSQ is �h@Hðd;N=mÞ at most. In the

refining phase, window query operators over the reuse
heap are used to compute each candidate tuple’s accurate
local skyline probability. Assume that the average cost of a
window query operator is d. The total cost of refining all the
candidates is dHðd;N=mÞ. Therefore, the total cost of LUSQ
is Oðð�h@þdÞHðd;N=mÞÞ. Due to Equation (1), we have the
complexity of the LUSQ as

O

 
ð�h@þdÞ �

XN=m

n¼0

1

d!
ðlnnÞd�1 � P ðnÞ

!
:

5.3.4 The GUSQ Algorithm

In the Server-Computation phase,H unites all the representa-
tive tuples from local sites and stores the ones, which cannot
be pruned by Lemmas 5.1 and 5.3, in an uncertain database
UDB0. Then, we design a global skyline query algorithm,
calledGUSQ algorithm, to gain global candidate skylines.

Algorithm 3. GUSQ_Algorithm

Input: An uncertain local data set UDB0 containing the
tuples from local sites and a probability threshold a.

Output: A set UGSkycan containing all the global candidate
skylines.

1: Sort the left tuples within UDB0 in decreasing order of the
minimum attribute value of each tuple

2: for each tuple t2UDB0 do
3: Access the tuples within UDB0 which are sorted before t,

and compute the local skyline probability of the tuple t
4: if PrLSkyðtÞ � a then
5: Add t to a prior queue L
6: Return UGSkycan

In the GUSQ algorithm, it prunes the unqualified tuples
within UDB0 and gains a global candidate skyline set

UGSkycan. We choose the function mind
i¼1ðt:aiÞ as the mono-

tonic function to sort the tuples within UDB0 and usePd
i¼1 t:ai as the tie breaker. Therefore, we can get PrLSkyðtÞ

for each left tuple t2UDB0 through accessing the tuples
before it [2].

Complexity. In the Server-Computation phase, to get the
local skyline probability of each tuple t2UDB0, it is neces-
sary to access all the tuples sorted before t. In the worst
case, the complexity of GUSQ algorithm is computed

by 1þ2þ 	 	 	 þðjUDB0j�1Þ ¼ 1
2 ðjUDB0j2�jUDB0jÞ. The com-

plexity of GUSQ algorithm is OðjUDB0j2Þ. It is obviously
that jUDB0j ¼ m�Hðd;N=mÞ. Therefore, according to
Equation (1) in [3], the complexity of GUSQ algorithm is

O

 
m2 �

 XN=m

n¼0

1

d!
ðlnnÞd�1 � P ðnÞ

!2!
:

Furthermore, to get the accurate global skylines, it is nec-
essary to refine tuples within UGSkycan though computing
their global skyline probabilities. In order to reduce the
bandwidth cost and get good progressiveness, we sort the
tuples within UGSkycan in decreasing order of their new
approximate global skyline probabilities defined in
Section 5.1. Then we generate a MPBR over UGSkycan and
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feed back the representative tuples within it to local sites for
gaining their global skyline probabilities.

Discussion. In a distributed system which contains only
one server, the server computation phase may be the bottle-
neck of our ADSUD. In this case, we could expand the tradi-
tional distributed system by using a server cluster. The local
sites are divided into several groups, and all the local sites
within a group connect with the same server. In the server-
computation phase, all the servers within the server cluster
work cooperatively to calculate the global candidate skylines
and compute their accurate global skyline probabilities.

5.4 Performance Analysis of ADSUD Algorithm

In this section, we certify that the ADSUD algorithm is I/O
efficient and correct.

Theorem 5.10. The reuse min-heap PHr
k can ensure the integrity

of each local PR-tree IPRk for 1 � k � m.

For clarity and readability, the detailed proofs of the the-
orems in this section are moved to the supplement.

Theorem 5.11. Compared to the e-DSUD algorithm proposed in
[3], our ADSUD algorithm is more I/O efficient.

Theorem 5.12. Any tuple contained in UGSky after the execu-
tion of ADSUQ algorithm is guaranteed to be a final global
skyline answer.

6 PERFORMANCE EVALUATION

In this section, we verify the efficiency and progressiveness
of our proposed ADSUD algorithm. Our experiments use
both the synthetic datasets and a real-life data set. Since
ADSUD is motivated by e-DSUD in [3], we consider e-DSUD
as the baseline algorithm, and compare ADSUDwith it.

In [3], it only takes bandwidth consumption and progres-
siveness as its performance measurements. In the following
experiments, we compare ADSUD against e-DSUD with
considering not only the bandwidth cost, progressiveness,
but also the total query time and the I/O cost. The main per-
formance metrics are summarized in Table 2.

Besides, we analyze the four metrics shown in Table 2in
the following aspects: (1) the number of local sites m; (2) the
dimensionality of the datasets d; (3) the probability thresh-
old a; (4) the total cardinality of datasets N .

The experiments were performed on a cluster composed
of 10 servers. Each server has two Intel Xeon E52667 3.3
GHz CPUs (each CPU contains 8 cores), and 64 GB main
memory, and runs the 64bit Microsoft Windows 7 operating
system. All algorithms were implemented in VC++ and the

page sizes of PR-tree and IPR-tree are both 4,096 Bytes. The
reported results are an average of 50 queries on the condi-
tion of the same system parameters.

6.1 Experiments on Synthetic Datasets

In order to study the scalability of bothADSUD and e-DSUD,
we first do experiments on the synthetic datasets with
two popular distributions: Independent (Ind) and Anti-
correlated (Ant). Specifically, for the Ind data set, all attribute
values are generated independently using a uniform distri-
bution; for the Ant data set, if a point has a small coordinate
on one dimension, then it tends to have a large coordinate on
at least another dimension [12]. Similar to [3], we use uni-
form distribution to randomly generate an existential proba-
bility of each tuple tomake them be uncertain.

In this section, we investigate the performance of our
ADSUD by comparing it with e-DSUD under different
parameters. The parameters of the experiments are listed in
Table 3, and the default parameter values are given in bold.
Note that, in each experiment, only one parameter varies
and the others are fixed to their default values.

6.1.1 ADSUD Performance versus Number

of Local Sitesm

In the first set of experiments, we examine the effect of the
number of local sites m on the performance of the DSUD
query. The number of local sites m varies from 20 to 100
by a step of 20 and the other parameters kept to their
default values.

Moreover, in our experiments, to simulate 20, 40, 80, 60,
100 computing nodes, it decomposes a server to 2, 4, 6, 8,
and 10 virtual computing nodes, respectively.

Figs. 4a and 4b depict that QT and AN of the two algo-
rithms, e-DSUD and our ADSUD, get smaller as m grows.
This is because the size of each local database decreases
with m grows. It is obvious that it needs less AN and local
query time for a smaller local database, which reduces the
QT in turn. As shown in Fig. 4c, the NT raises with m
increases. Since in the Server-Feedback phase, the tuples
selected from the server H are broadcasted to the corre-
sponding local sites (except the local site where the tuple
comes from). Thus, it is necessary to make m�1 copies of
each representative tuple and send them to different local
sites, respectively. Due to Equation (1), the total number of
final skyline tuples, Hðd;NÞ, is fixed according to d and N .
Therefore, the total number of tuples delivered from the
server H is ðm�1ÞHðd;NÞ at least. It is easy to draw a con-
clusion that the larger the number of local sites m, the more
the network bandwidth cost needs.

Fig. 4 illustrates that the performance of our ADSUD is
much better than that of e-DSUD as m grows. For Ind

TABLE 2
Performance Metrics

Metric Measurement

I/O cost Average number of nodes accesses (AN)
Bandwidth cost Number of tuples transmitted over the

network (NT)
Total query time Total time between submitting the quest

and returning all the answers (QT)
Progressiveness Bandwidth cost as a function of the

number of reported skyline points

TABLE 3
System Parameters

Parameter Values

The number of local site (m) 20, 40, 60, 80, 100
Dimensionality(d) 2, 3, 4, 5
Probability threshold (a) 0.3, 0.5, 0.7, 0.9
Cardinality (N) 2,000 K, 4,000 K, 6,000 K,

8,000 K, 10,000 K
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datasets, ADSUD can decrease 35.13 percent QT, 48.56 per-
cent AN, and 9.51 percent NT, separately. Considering the
Ant datasets, our ADSUD algorithm can cut down 40.66
percent QT, 47.47 percent AN, and 4.14 percent NT at most.

Obviously, the performance benefit of NT is much less
than that of QT or AN. This is because in e-DSUD each local
site delivers only one representative tuple each time, while
in the Local-To-Server phase of ADSUD, each local site
delivers multiple representative tuples to the server H.
Moreover, in the Server-Feedback phase at each iteration, H
chooses several global candidate tuples and delivers it to
local sites. For each global candidate tuple withinH, it needs
to generate m�1 copies and broadcast them to local sites,
separately. In some cases, the NT of our ADSUDmay a little
larger than that of e-DSUD. It is worth to notice that, in most
cases, the NT of our ADSUD is less than that of e-DSUD.
Moreover, our ADSUD always outperforms e-DSUD
with considering the overall performance in terms of QT,
AN, and NT.

6.1.2 ADSUD Performance versus Cardinality N

In the second set of experiments, we examine the effect of the
cardinality N on the performance of the DSUD query. The
cardinality N varies from 2,000 to 10,000 K by a step of
2,000 K and the other parameters kept to their default values.

Fig. 5 shows the results by varying the cardinalityN . Obvi-
ously, the QT, AN, andNT of our ADSUD and e-DSUD grow
whenN gets larger. This is expected, because the local query
time and communication time increase as N becomes larger,
and the size of the global skylines ascend as the growth of N
which makes AN and NT grow. In addition, our ADSUD

outperforms e-DSUD in all cases with the growth of N . For
Ind datasets, ADSUD can decrease 40.67 percent QT, 63.53
percent AN, and 16.21 percent NT, separately. Considering
the Ant datasets, our ADSUD can cut down 46.11 percent QT,
24.91 percent AN, and 2.81 percent NT atmost.

6.1.3 ADSUD Performance versus Dimensionality d

In the third set of experiments, we study the performance of
ADSUD with d varying from 2 to 5 by a step of 1, and the
other parameters are kept to their default values.

The efficiency of the algorithms under various d is
depicted in Tables 4 and 5, where QT, AN, and NT are
reported, respectively. As expected, the performance of
the two algorithms, e-DSUD and our ADSUD, both reduce
sharplywith the growth of d. It has two reasons. The first one
is in a high-dimensional space, each tuple has a low probabil-
ity of being dominated by other ones, which makes the final
skyline set become larger. More query results lead to higher
bandwidth cost. The second one is the poor performance of
the R-tree in high dimensions, which incurs the algorithms
to visit more entries of local PR-tree/IPR-tree.

Fig. 5. Performance versus cardinalityN. (a) QT. (b) AN. (c) NT.

Fig. 4. Performance versus number of local sitesm. (a) QT. (b) AN. (c) NT.

TABLE 4
Experimental Results versus Dimensionality d (Ind)

d e-DSUD ADSUD

QT(sec) AN NT QT(sec) AN NT

2 0.339 77 68 0.250 38 62
3 0.813 305 246 0.627 157 223
4 3.634 1,308 998 2.240 201 692
5 6.988 7,225 3,464 4.323 411 3,431
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Obviously, the performance of ADSUD is also much bet-
ter than that of e-DSUD. Especially, for Ind datasets, it could
reduce 38.36 percent QT, 94.30 percent AN, and 9.35 percent
NT by utilizing our ADSUD. Taking the Ant datasets into
account, applying the ADSUD can decrease 56.41 percent
QT, 97.01 percent AN, and 13.04 percent NT.

6.1.4 ADSUD Performance versus Threshold a

In the fourth set of experiments, we explore the impact
of threshold a on the performance of the algorithms. Specifi-
cally, a varies from 0.3 to 0.9 by a step of 0.2, and the other
parameters are kept to their default values.

Fig. 6 illustrates the experimental results when we vary a

from 0.3 to 0.9, under the Ind and Ant datasets. As a

increases, the performance of the two algorithms both
become better. The reason is the size of the global skylines is
sensitive to the probability threshold a. According to the def-
inition of P-skyline query in Section 2, the larger the proba-
bility threshold, the smaller the global skyline sets. So the NT
reduces as a raises. Moreover, with the growth of a, we can
prune much more unqualified skyline tuples whose global

skyline probabilities are less than it. Since larger a gains bet-
ter pruning ability, the QT and AN are both cut down in
turn. In addition, comparing to the e-DSUD, for Ind datasets,
our ADSUD reduces 30.51 percent QT, 48.56 percent AN,
and 29.21 percent NT in the best case. Consider the Ant
datasets. Our algorithm can decrease 42.37 percent QT,
24.91 percent AN, and 10.81 percent NT atmost separately.

6.2 Experiments on Real Datasets

In this section, we evaluate our proposed algorithm over a
real dataset, Household (Hous) [26] (available at http://
www.ipums.org/). It includes 127,000 tuples about the per-
centage of an American family’s annual income. We con-
sider four attributes, which are the expenditures of gas,
electricity, water, and heating.

Figs. 7 and 8 show that the results on the real data set are
consistent with the ones obtained from the experiments on
the synthesis datasets. The performance of ADSUD is much
better than e-DSUD on the real data set. As m increases,
comparing to the e-DSUD, our ADSUD can reduce 61.76 per-
cent QT, 90.23 percent AN, and 4.37 percent NT at most sep-
arately. Comparing to the e-DSUD, for processing the real
dataset, our ADSUD decreases 58.93 percent QT, 82.40 per-
cent AN, and 14.57 percent NT with the growth of a.

6.3 Progressiveness Performance

In this set of experiments, we evaluate the progressiveness
of our proposed algorithm over synthetic datasets and the
real dataset (Hous) in Section 6.2.

We use the synthetic datasets, which are under Ind and
Ant distributions with d ¼ 5 and the other parameters equal
to their default values in Table 4.

TABLE 5
Experimental Results versus Dimensionality d (Ant)

d e-DSUD ADSUD

QT(sec) AN NT QT(sec) AN NT

2 0.126 24 46 0.088 21 40
3 6.258 619 211 3.960 465 206
4 20.715 4,304 2,496 9.029 767 2,478
5 118.567 29,946 14,005 64.648 859 13,932

Fig. 6. Performance versus probabilistic threshold a. (a) QT. (b) AN. (c) NT.

Fig. 7. Performance on real dataset (Hous) versus number of local sitesm. (a) QT. (b) AN. (c) NT.
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We analyze progressiveness of ADSUD through evaluat-
ing the QT, AN, and NT with varying the number of
reported skyline points. The accumulated QT, AN, and NT
of ADSUD and e-DSUD over Ind and Ant distributions are
reported as the number of reported skyline tuples grows.

From Figs. 9 and 10, we note that when it returns the
same number of query results, ADSUD always needs less
QT, AN, and NT, comparing to e-DSUD. For Ind datasets,
our ADSUD reduces 38.89 percent QT, 94.31 percent AN,
and 35.76 percent NT in the best case. Consider the Ant
datasets. Our algorithm can cut down 49.85 percent QT,
97.01 percent AN, and 46.59 percent NT at most separately.
Besides, for the real dataset, the ADSUD could also decrease
58.93 percent QT, 82.40 percent AN, and 9.38 percent NT. It
also shows that with respect to the progressiveness, ADSUD
has more steady performance than e-DSUD.

The two phenomenons above indicate ADSUD has
much better progressiveness. This is expected because in

the Server-Feedback phase of ADSUD, it chooses multiple
global candidate skyline tuples from H and sends them to
local sites each time. Therefore after each iteration, it can
return several query results. However, in e-DSUD, after
each iteration, it can return only one query answer and
sometimes we can not get any answer.

7 CONCLUSION

In this paper, we focus on the P-skyline query in distributed
environment, namely DSUD query. In order to accelerate
the DSUD query, we propose an improved DSUD frame-
work and design an ADSUD algorithm. In ADSUD, several
efficient technologies, including an IPR-tree and the reuse
technology, are employed. Moreover, we define the MPBR
for collecting the global abstract information and selecting
local representative tuples. Extensive experiments have
been conducted to clarify the effectiveness and the

Fig. 8. Performance on real dataset (Hous) versus probabilistic threshold a. (a) QT. (b) AN. (c) NT.

Fig. 9. Progressiveness comparison versus synthetic datasets. (a) QT. (b) AN. (c) NT.

Fig. 10. Progressiveness comparison versus real dataset (Hous). (a) QT. (b) AN. (c) NT.
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efficiency of our algorithms. Considering MapReduce pos-
sess tremendous advantages in extracting, processing, and
analysis of big datasets, the DSUD queries under MapRe-
duce can be an extension work to be done as our future
work.
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