
58

Efficient Approaches to k Representative G-Skyline Queries

XU ZHOU and KENLI LI, Hunan University

ZHIBANG YANG, Changsha University

YUNJUN GAO, Zhejiang University

KEQIN LI, Hunan University and State University of New York

The G-Skyline (GSky) query is a powerful tool to analyze optimal groups in decision support. Compared with
other group skyline queries, it releases users from providing an aggregate function. Besides, it can get much
comprehensive results without overlooking some important results containing non-skylines. However, it is
hard for the users to make sensible choices when facing so many results the GSky query returns, especially
over a large, high-dimensional dataset or with a large group size. In this article, we investigatek representative
G-Skyline (kGSky) queries to obtain a manageable size of optimal groups. The kGSky query can also inherit
the advantage of the GSky query; its results are representative and diversified. Next, we propose three exact
algorithms with novel techniques including an upper bound pruning, a grouping strategy, a layered optimum
strategy, and a hybrid strategy to efficiently process the kGSky query. Consider these exact algorithms have
high time complexity and the precise results are not necessary in many applications. We further develop two
approximate algorithms to trade off some accuracy for efficiency. Extensive experiments on both real and
synthetic datasets demonstrate the efficiency, scalability, and accuracy of the proposed algorithms.

CCS Concepts: • Information systems → Data management systems; Database management system engines;
Database query processing; Query operators;

Additional Key Words and Phrases: Approximate algorithms, data management, group skyline query, Pro-
gressive algorithms

ACM Reference format:

Xu Zhou, Kenli Li, Zhibang Yang, Yunjun Gao, and Keqin Li. 2020. Efficient Approaches to k Representative
G-Skyline Queries. ACM Trans. Knowl. Discov. Data 14, 5, Article 58 (July 2020), 27 pages.
https://doi.org/10.1145/3397503

This research was supported by the National Key R&D Programs of China (Grant No. 2018YFB1003401), the Programs of

National Natural Science Foundation of China (Grant Nos. 61772182, 61802032, 61806077, 61902120, and 61872127), and the

Key Area Research Program of Hunan (2019GK2091).

Authors’ addresses: X. Zhou, College of Information Science and Engineering, Hunan University, Changsha, China; email:

zhouxu2006@126.com; K. Li (corresponding author), College of Information Science and Engineering, Hunan university,

Lushan Road (S), Yuelu District, Changsha, Hunan Province, China; email: lkl@hnu.edu.cn; Z. Yang, College of Com-

puter Engineering and Applied Mathematics, Changsha University, No. 98, Hongshan Road, Kaifu District, Changsha,

China; email: yangzb@hnu.edu.cn; Y. Gao, College of Computer Science, Zhejiang University, Hangzhou, China; email:

gaoyj@zju.edu.cn; K. Li, Department of Computer Science, State University of New York, Science Hall 249, 1 Hawk Drive,

New Paltz, New York, USA; email: lik@newpaltz.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1556-4681/2020/07-ART58 $15.00

https://doi.org/10.1145/3397503

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

https://doi.org/10.1145/3397503
mailto:permissions@acm.org
https://doi.org/10.1145/3397503

58:2 X. Zhou et al.

1 INTRODUCTION

1.1 Background

The skyline query is a famous tool for the scenarios of multi-criteria optimization to filter out many
incompetent objects [Zhao et al. 2017]. A point p ′ is uncompetitive with comparison to another
point p if it is dominated by the point p. Here, p dominates p ′ if and only if p is not worse than
p ′ in all the dimensions and is better than p ′ in at least one dimension [Börzsönyi et al. 2001].
The skyline query [Börzsönyi et al. 2001; Papadias et al. 2005; Lee et al. 2010] and its variants
[Zhang et al. 2009; Gao et al. 2015b; Zhou et al. 2016b; Lu et al. 2011; Tao et al. 2009; Lin et al.
2007; Magnani et al. 2014] are useful to analyze individual points. However, they are inadequate
to many real-world applications that call for optimal groups of points.

In Chung et al. [2013], Im and Park [2012], and [Zhang et al. 2014], group skyline queries were re-
searched to find optimal groups not dominated by any other group of equal size. For given groups
G and G ′, most of these group skyline queries first compute the aggregation points p and p ′ of
G and G ′ separately. Then we have G dominates G ′ if p dominates p ′. Here, the attribute val-
ues of the points p and p ′ are the aggregations over the points in G and G ′. However, it is diffi-
cult for users to offer an appropriate aggregate function, and get all the optimal groups what the
users expect [Liu et al. 2015]. To address this issue, Liu et al. [2015] proposed a new definition of
group dominance which takes into account the dominance relationship between points of different
groups. Under the new group dominance operator, they formulated the G-Skyline (GSky) query
which can release users from specifying the aggregate function and can get more comprehensive
results.

Consider a real-life application that a travel agency selects some hotels for cooperation. In
Figure 1, it depicts a typical example with a hotel set H = {h1,h2, . . . ,h14} containing 14 candi-
date hotels (data points). We take into account the following two attributes: distance to the des-
tination (distance for short) and price. Without loss of generality, the hotels cheap and close to
the destination are preferred. As shown in Figure 1, the hotels h1,h2, h3, and h4 are skylines since
they are not dominated by any other hotel according to the traditional dominance relationship
[Börzsönyi et al. 2001]. The hotels h5 to h14 are non-skylines because of being dominated by at
least one hotel in Figure 1. For instance, the hotel h5 is dominated by the hotel h1 since it is more
expensive than h1 and its distance is farther than h1. Assume that the travel agency needs to pick
out three hotels. The right table in Figure 1 shows all the GSky query results (G-Skylines) as well
as the non-skylines contained in each result. The hotel groups {h1,h2,h3}, {h1,h2,h4}, {h1,h3,h4},
and {h2,h3,h4} merely consist of skylines. Furthermore, there are also many G-Skylines such as
{h1,h2,h5} containing a hotel h5 that is a non-skyline. This GSky {h1,h2,h5} is considered better to
the travelers who use the price as the main criterion, e.g., students with low travel budget. This is
because the hotels h1,h2,h5 have the first three lowest prices. If the hotels h1,h2 are fully-booked,
then the hotel h5 is a good choice since it is the cheapest hotel that the traveler can book. The
hotel groups, not shown in Figure 1, are not the GSky query results for being dominated by at
least one hotel group of the same size. For instance, the hotel group {h1,h2,h6} is dominated by
{h1,h2,h3} because h6 is dominated by h3. After getting all the G-Skylines, the travel agency can
make a choice according to its personalized preference.

In addition to the above example of the travel agency, the GSky query can also offer powerful
decision support in many other real-life applications. When a coach builds an NBA team of five
players, the GSky query can help to find the teams not only consisting of skyline players but also
including non-skyline players who are only dominated by another player in the same team [Wang
et al. 2018]. For an advertising company, the G-Skyline query is also a useful tool to help select
billboards to serve its advertisements [Wang et al. 2018].

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:3

Fig. 1. The GSky query example of a hotel set.

As mentioned above, the GSky query is significant and practical for many applications that need
to compute optimal groups. However, over datasets with large cardinality, high dimensionality, or
large group sizes, the GSky query faces the problem of combinatorial explosion and the sizes of
the GSky query results may become excessively large. As pointed out in Liu et al. [2015], the GSky
query results consist of points within the first l skyline layers where l is the group size. Assume

that there are nl points in the first l skyline layers. There can be
(

nl

l

)
different GSky query results

where l ≤ nl . For instance, suppose a travel agency needs to select 3 hotels from 50 candidate
hotels where each candidate hotel is not dominated by any other one. By the GSky query, it reports(

50
3

)
= 19,600 hotel groups. The travel agency has to compare all the hotel groups manually and

make a decision. Apparently, large-scale results of the GSky query prevent the travel agency from
making a quick and rational decision [Zhao et al. 2017].

1.2 Our Contributions

In this article, we firstly investigate a new variant of the GSky query, namely, k representative
G-Skyline (kGSky), which can not only overcome the limitation of the GSky query but also inherit
its advantages. The kGSky query has the nice properties of controllable number of results and the
results have representativeness. Moreover, it inherits the advantage of the GSky query which is
to get comprehensive and diversified results. It can also output some G-Skylines containing non-
skylines. Second, we propose some pruning strategies to reduce the search space and present a
grouping strategy, a hybrid strategy, and a layered optimization strategy to boost query perfor-
mance. Finally, we develop approximate algorithms to trade off some accuracy for efficiency. The
main contributions of our work are summarized as follows.

—We formulate the kGSky query to retrieve a manageable size of G-Skylines.
—We exploit the properties of thekGSky query and propose some pruning strategies to reduce

the search space.
—We develop three exact algorithms for the kGSky query and two of them can report results

progressively.
—We present approximate algorithms for the kGSky query which exchange accuracy for

higher efficiency.
—We perform an extensive experimental study with both synthetic and real datasets.

The rest of the article is organized as follows. In Section 2, we review the related work. In Sec-
tion 3, we introduce the kGSky query and its properties. In Section 4, we design exact algorithms

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:4 X. Zhou et al.

for thekGSky query. In Section 5, we present two approximate algorithms. In Section 6, we evaluate
the performance of the proposed algorithms by extensive experiments. In Section 7, we conclude
the article and also expatiate the directions for future work.

2 RELATED WORK

In this section, we review the related work about representative skyline queries and group skyline
queries.

2.1 Representative Skyline Queries

The traditional skyline queries always retrieve large-scale results [Magnani et al. 2014]. Inspired
by this, many representative skyline queries were proposed. Papadias et al. [2005] presented a top
k dominating query to find k points with the largest dominance sizes. This query can release users
from specifying a ranking function and can return a manageable size of results. Lin et al. [2007]
researched the problem of selecting k skylines such that the number of points dominated by at
least one of these k skylines is maximized. Tao et al. [2009] presented a distance-based skyline
query which aims to minimize the distance between a non-representative skyline and its nearest
representative one. Lu et al. [2011] were concerned the case when the actual cardinality of skyline
results is less than the desired cardinality k . The above representative skyline queries only high-
light some features which are stability, scale invariance, diversification of the results, and partial
knowledge of the record scoring function [Magnani et al. 2014]. Magnani et al. [2014] investigated
the representative skyline queries with taking into account both the significance and diversity of
results. In Zhou et al. [2016a], we formulated a top k favorite probabilistic products (TFPP) query
which can help users find k products meeting the preferences of different customers. After that, in
Zhou et al. [2019], we investigated the constrained optimal product combination problem under
price promotion.

2.2 Group Skyline Queries

Group skyline queries are useful tools for many applications to compute optimal groups of points.
Most of the group skyline queries compute the optimal groups based on the dominance relationship
between corresponding aggregate-based points [Chung et al. 2013; Im and Park 2012; Magnani
and Assent 2013; Zhang et al. 2014; Wan et al. 2009]. However, it is hard for users to specify an
appropriate aggregate function and it may lose significant results that include non-skylines [Liu
et al. 2015]. To resolve this problem, Liu et al. [2015] proposed the pareto group-based skyline
(GSky) query. Recently, Wang et al. [2018] developed the minimum GSky support structure for the
GSky query which is without redundant points.

The literature [Wang et al. 2018; Zhou et al. 2018] point out that the GSky query faces the
problem of a prohibitive large number of query results. This will make the users overwhelmed
and have a negative impact on the decision-making process. The work in Zhu et al. [2019] is
significant to release the burden on users for processing so many G-Skylines manually. In Zhu
et al. [2019], Zhu et al. researched the top k dominating queries on skyline groups where the score
of each group is measured by the number of points it dominates. Besides, Yu et al. [2019] presented
a k RG-Skyline query which aims to compute k representative G-Skylines. Here all the G-Skylines
are clustered into k clusters, and the k cluster centers are returned as final results.

Similarly to Zhu et al. [2019], ourkGSky query also computesk representative G-Skylines. How-
ever, different from Zhu et al. [2019], we define the dominance size based on the volume of the
dominated space which can reflect the dominance number to a certain degree and has satisfac-
tory representativeness [Bai et al. 2016]. Furthermore, as well as static datasets, this definition is
appropriate to data streams and frequently updated datasets [Bai et al. 2016].

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:5

3 THE kGSKY QUERY

In this section, we introduce some basic concepts and the presented kGSky query.

3.1 The GSky Query

Assume that we have a given dataset D with d dimensions. A point p ∈ D is denoted as
<p[1],p[2], . . . ,p[d]> where p[i] is the ith dimensional value of p for 1 ≤ i ≤ d . Without loss
of generality, the small value is preferred in each dimension. A point p is dominated by another
point p ′, denoted as p ′ ≺p, if and only if for all i , p ′[i] ≤ p[i] and for at least one i , p ′[i] < p[i] for
1 ≤ i ≤ d [Börzsönyi et al. 2001]. The points are called skylines if they are not dominated by any
other point in the given dataset.

In the following, we introduce the basic concepts of the skyline layer and the group dominance
operator.

Definition 3.1 (Skyline Layer). For a given dataset D, the ith skyline layer SLi is a set of skylines
in D − ∪i−1

j=1SLj , i.e., SLi = {t ∈D − ∪i−1
j=1SLj |�t ′ ∈ D − ∪i−1

j=1SLj , t
′ ≺ t }.

In the layered minimum dominance graph (LMDG) in Section 5.2, we organize the points
as different skyline layers. As shown in Figure 3(b), the first skyline layer SL1 = {h1,h2,h3,h4}
contains all the hotels that are not dominated by any other hotel, the second skyline layer
SL2 = {h5,h6,h7,h8} only includes the hotels dominated by at least one hotel within SL1. For the
hotels within SL3, it contains only one hotel h12 which are dominated by at least one hotel within
SL1 and SL2, respectively. Specifically, h12 is dominated by h4 ∈ SL1 and h8 ∈ SL2.

Definition 3.2 (Group Dominance [Liu et al. 2015]). For given l-point groups G,G ′ ⊆D, G g-
dominates G ′, denoted as G≺дG

′, if and only if there are two permutations of G and G ′, G =
{p1,p2, . . . ,pl } and G ′ = {p ′1,p ′2, . . . ,p ′l }, satisfying pi�p ′i for 1 ≤ i ≤ l and pi ≺p ′i for at least one
i . Here, pi�p ′i means that pi ≺p ′i or pi is equal to p ′i .

Definition 3.3 (G-Skyline [Liu et al. 2015]). The l-point group G is called GSky if it is not g-
dominated by another group of size l .

According to Definition 3.2, for two given groups G,G ′ ⊆D, G ≺дG
′ if and only if there exist

two permutations of G and G ′ satisfying G ≺дG
′. For instance, consider two hotel groups G =

{h1,h2,h3} and G ′ = {h2,h3,h5} in Figure 1. By reordering the points within G and G ′, we have
G = {h1,h2,h3} and G ′ = {h5,h2,h3}. Since h1 ≺h5, it holds that G≺дG

′ based on Definition 3.2.
The group G is a GSky, as it is not g-dominated by any other group of size 3. Besides, the group
G ′ dominated by G is not a GSky.

In Liu et al. [2015], Liu et al. proposed the GSky query for the first time. It aims to compute the
G-Skylines that are not g-dominated by any other group of equal size [?]. Compared to the tradi-
tional group skyline query in Chung et al. [2013], Im and Park [2012], Magnani and Assent [2013],
Zhang et al. [2014], and Wan et al. [2009], it gets comprehensive and diversified results which can
meet the personalized preference of more users. Nevertheless, the GSky query faces the limitation
of prohibitively large number of query results which makes the query results less informative. Be-
sides, it brings a big challenge for users to make a good decision fast enough. To avoid this issue,
the efficient way is to compute a manageable size of results with good representativeness. This is
also the focus of this article.

3.2 The kGSky Query

In this section, we present the kGSky query to compute k representative G-Skylines with the
highest dominance capacity.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:6 X. Zhou et al.

Fig. 2. Dominance space of G-Skylines. (a) {h1,h2,h3}. (b) {h1,h2,h4}. (c) {h3,h4,h6}.

It is generally accepted that a query result with large dominance capacity has high representa-
tiveness [Bai et al. 2016]. In this article, we also choose to measure the representativeness of the
G-Skylines by their dominance capacity.

At present, there are two popular definitions of the dominance capacity. In Miao et al. [2015],
Tiakas et al. [2016], Amagata et al. [2018], Kontaki et al. [2011], and Santoso and Chiu [2014], the
dominance capacity is defined based on the number of points dominated. Moreover, in Bai et al.
[2016], the authors present a new definition of the dominance capacity, namely, dominance size,
on the basis of the volume of the dominated space. As introduced in Bai et al. [2016], this defini-
tion can reflect the dominance number to a certain degree and has satisfactory representativeness.
Furthermore, this definition is more general. As well as for static datasets, this definition is appro-
priate to data streams and frequently updated datasets. Following the work in Bai et al. [2016], in
the proposed kGSky query, we also compute the representative G-Skylines due to their dominance
sizes.

Definition 3.4 (Maximum Boundary Point). For a given dataset D, the maximum boundary
point is denoted as pmax = <pmax [1],pmax [2], . . . ,pmax [d]> where pmax [j] = maxp ∈D p[j] for
1 ≤ j ≤ d .

Definition 3.5 (Dominance Space). For a given dataset D and a point p, the dominance space of
the point p is denoted as DomSp(p) = ([p[1],pmax [1]], [p[2],pmax [2]], . . . , [p[d],pmax [d]]) where
pmax is the maximum boundary point. Moreover, for a point group G, its dominance space is the
union of dominance space of all the points p ∈G, i.e., DomSp(G) =

⋃
p ∈G DomSp(p).

Figure 2 illustrates the dominance space (marked in blue) of the G-Skylines {h1,h2,h3},
{h1,h2,h4}, and {h3,h4,h7}. The maximum boundary point hmax = (190, 90). For the point h1 =

(20, 70), we have DomSp(h1) = ([20, 190], [70, 90]). As depicted in Figure 2(a), the dominance space
of the GSky {h1,h2,h3} is DomSp({h1,h2,h3}) = DomSp(h1) ∪DomSp(h2) ∪DomSp(h3).

There may be overlapping of the dominance space of points within a group G. Consequently,
we formulate an intersection dominance size to evaluate the overlapping space of points within
G.

Definition 3.6 (Intersection Dominance Size). For a given datasetD and a groupG, the intersection

dominance size of the groupG is defined as IntSize(G) =
∏d

j=1 (pmax [j] −maxp ∈G p[j]).Here,pmax

is the maximum boundary point of the multiple dimensional space of the dataset D.

For the hotel group {h1,h2} in Figure 1, we have IntSize({h1,h2}) = (190 −max{20, 40}) × (90 −
max{70, 55}) = 3,000.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:7

Table 1. Dominance Sizes of the G-Skylines Over

the Dataset in Figure 1

G-Skyline G DomSize(G) G-Skyline G DomSize(G)
{h1,h2,h3} 8,250 {h1,h2,h4}� 10,600
{h1,h3,h4}� 10,700 {h2,h3,h4}� 10,600
{h1,h2,h5} 5,650 {h3,h4,h6} 9,900
{h1,h4,h7} 10,000 {h2,h4,h7}� 10,200
{h3,h4,h7} 9,900 {h1,h4,h8} 10,000
{h2,h4,h8}� 10,200 {h3,h4,h8} 9,900
{h4,h7,h8} 8,800 {h4,h8,h12} 8,800

Definition 3.7 (Dominance Size). For a given point p, its dominance size is computed as

DomSize(p) =
∏d

j=1 (pmax [j] − p[j]). Besides, for a group G, its dominance size is:

DomSize(G) =
∑

p ∈G

DomSize(p) +
k∑

i=2

(−1)i−1
∑

Gi ∈ {G′ |G′ ⊆G, |G′ |=i }
IntSize(Gi). (1)

Based on Definition 3.7, the kGSky query is formulated as follows.

Definition 3.8 (k Representative Group Skyline Query, kGSky). Given a dataset D, a group size l ,
and a parameter k , the kGSky query returns k representative G-SkylinesG of size l with the largest
dominance sizes. Here, for a GSky G, its dominance size is computed due to Equation (1). In case
G-Skylines with the same dominance size are tie at rank k-th, only some of them are returned.

We consider the example in Figure 1 with l = 3. For the GSky {h1,h2,h3}, we have:

DomSize({h1,h2,h3})
= (DomSize(h1) + DomSize(h2) + DomSize(h3))

+ (−1) × (IntSize({h1,h2}) + IntSize({h1,h3}) + IntSize({h2,h3}))
+ (−1)2 × IntSize({h1,h2,h3}) = 8250.

Similarly, we can get the dominance sizes of other G-Skylines as illustrated in Table 1. The G-
Skylines with large dominance sizes have nice representativeness. For example, consider the hotel
groups {h1,h2,h4} and {h1,h2,h3} as shown in Figure 2. The hotels in {h1,h2,h4} can well represent
the hotelsh5 toh14 because they are dominated by at least one hotel within {h1,h2,h4}. For the hotel
group {h1,h2,h3}, it can represent 7 hotels, h5,h6,h9,h10,h11,h13,h14. Obviously, the dominance
size of {h1,h2,h4} is larger than that of {h1,h2,h3}, and it has nicer representativeness. Based on
the dominance size, the hotel groups {h2,h3,h4}, {h1,h3,h4}, {h1,h2,h4}, {h2,h4,h7}, and {h2,h4,h8}
with the highest dominance sizes are returned as the final results of the kGSky query.

The symbols frequently used in this article are shown in Table 2.

4 APPROACHES TO THE kGSKY QUERY

In this section, we propose three exact algorithms which introduce a grouping strategy, a layered
optimum strategy, and a hybrid strategy to efficiently process the kGSky query, respectively.

4.1 The Group-based Algorithm (GA)

The first exact algorithm is proposed based on the grouping strategy.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:8 X. Zhou et al.

Table 2. Symbols to be Used

Notation Definition

D The dataset
G The group of points
l The group size
k The number of returned results
SLi The ith skyline layer
AncSet(p) The ancestor set of p
DesSet(p) The descendant set of p
DDesSet(p) The direct descendant set of p
DomSize(G) Dominance size of the G-Skyline G
DomSize+ (G) Upper bound of DomSize(G)
p.layer The skyline layer that the point p belongs to
max_layer(G) The maximum layer of the points within G

4.1.1 The Minimum Dominance Graph. Wang et al. [2018] introduced the minimum dominance
graph (MDG) which is the minimum GSky support structure for the GSky query without redundant
point. The structure of each node is [layer index, point index, ancestor set, and descendant set] where
the layer index is the skyline layer that the point lies on and the point index identifies the point
uniquely. The edges in MDG represent the dominance relationship between points. Given a point
p, the descendant and ancestor sets are defined as follows.

Definition 4.1 (Descendant Set, DesSet). For a given point p ∈D, the descender set of p is defined
as DesSet(p) = {p ′ ∈D |p ≺p ′}. In addition, for a group G ⊆D, DesSet(G) = ∪p ∈G DesSet(p).

Definition 4.2 (Ancestor Set, AncSet). For a given point p ∈D, the ancestor set of p is AncSet(p) =
{p ′ ∈D |p ′ ≺p}. For a group G ⊆D, AncSet(G) = ∪p ∈G AncSet(p).

Formally, we can define MDG as follows.

Definition 4.3 (Minimum Dominance Graph (MDG)). A MDG is a directed graphG = (V ,E) over
a given dataset D. With a group size l , each vertexv ∈V represents a point p ∈D that is dominated
by at most l − 1 points in the given dataset. Besides, each edge e ∈ E represents the dominance
relationship between corresponding points. The MDG is organized as two parts where the left
part contains all the vertexes representing the skylines, and the right part contains the vertexes
representing all the points dominated by at least one another point in the given dataset. Here the
skylines are the points not dominated by any other point.

Figure 3 shows the MDG over the hotel set in Figure 1. The MDG contains two parts where the
left part contains the skyline hotels h1,h2, h3, and h4 and the right part includes the non-skyline
hotelsh5,h6,h7,h8, andh12. Besides, it only includes the hotels dominated by less than l = 3 hotels.

4.1.2 The Group-based Algorithm (GA). In this subsection, we propose the GA algorithm based
on the following lemmas.

Property 1. Given a point group G ⊆D and a point p ∈D, it holds that DomSize(G ∪ {p}) =
DomSize(G) if the point p is dominated by a point p ′ ∈ G.

Lemma 4.4. Given a GSky G ⊆D with G1 = G ∩ SL1, it holds that DomSize(G) = DomSize(G1).
Here G1 only contains the points of G that belong to the first skyline layer SL1.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:9

Fig. 3. The MDG and LMDG of the hotel set in Figure 1.

Proof. For a non-skyline point p in the GSkyG, all the points p ′ that dominate p are contained
in G [Liu et al. 2015]. The dominance space of p is covered by that of p ′ according to Definition
3.5, and DomSize({p,p ′}) = DomSize({p ′}).

From Definition 3.1, any non-skyline point p ∈G −G1 is dominated by at least a point p ′′ ∈G1

forG1 = SL1 ∩G. Besides, we have DomSize(G = G1 ∪ (G −G1)) = DomSize(G1) based on Property
1. Therefore, this lemma holds. �

On the basis of Lemma 4.4, in Figure 2(c) for the GSky {h3,h4,h6}, we have
DomSize({h3,h4,h6}) = DomSize({h3,h4}).

Due to Lemma 4.4, for a given GSky G, its dominance size is closely related to G ∩ SL1.
Therefore, we can compute DomSize(G ∩ SL1) instead of computing DomSize(G). Moreover, to
check and prune unqualified results as soon as possible, we develop the following upper bound
pruning strategy.

Definition 4.5 (Upper bound of DomSize(G), DomSize+ (G)). For a given group G, the upper
bound of DomSize(G) is DomSize+ (G) =

∑
p ∈G ∩SL1

DomSize(p).

On the basis of Definition 4.5, we have the upper bound pruning strategy as follows.

Lemma 4.6. For a given GSkyG,G can be pruned safely if DomSize+ (G) ≤ r where r is the current

kth largest dominance size.

Proof. Since DomSize(G) < DomSize+ (G) based on Equation (1) and DomSize+ (G) ≤ r , it holds
that DomSize(G) < r , and G is not a result of the kGSky query due to Definition 3.8. �

As illustrated in Algorithm 1, the GA algorithm first computes the G-Skylines (line 1) by the
G-MDS algorithm in Wang et al. [2018] which is the state-of-the-art algorithm for the GSky query.
Then, it initializes l sets Vi to store the G-Skylines containing i points within SL1 for 1 ≤ i ≤ l
(Line 2). Next, the G-Skylines G are divided due to |G ∩ SL1 | and stored in sets Vi for 1 ≤ i ≤
l (Lines 3 to 5). This means that the set Vi contains i points within SL1. In the left part of the
GA algorithm, the G-Skylines containing more points within the first skyline layer SL1 are given
priority to be processed. In lines 6 and 7, we initialize a set RSky to store the final results of the
kGSky query and r to represent the current kth highest dominance size. Lines 8 to 19 are a for-loop
that computes k G-Skylines with the highest dominance sizes. Here, i varies from l to 1. Noticeably,
by the grouping strategy, we could give higher priority to process the G-Skylines that may have
large dominance sizes. If Vi is not empty, lines 9 to 18 are executed to compute the G-Skylines
G ∈Vi with dominance sizes exceed r . For each GSkyG withinVi , line 11 checks whether its upper

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:10 X. Zhou et al.

ALGORITHM 1: Group-based Algorithm (GA) for the kGSky query

Require: A MDG MD over D, a group size l , and the number of results k
Ensure: kGSky query results

1: Compute G-Skylines by G-MDS(D, l , MD)
2: Initialize sets Vi←∅ for 1 ≤ i ≤ l
3: for each G-Skyline G do

4: Add the G-Skyline G with |G ∩ SL1 | = i to the set Vi

5: end for

6: Initialize a set RSky of size k to store k G-Skylines with highest dominance sizes
7: Initialize r←0 //the kth highest dominance size
8: for i←l to 1 do

9: if Vi is not empty then

10: for each G-Skyline G ∈ Vi do

11: if DomSize+ (G) > r then

12: DomSize(G)←DomSize(G ∩ SL1) //Lemma 4.4
13: if DomSize(G) ≥ r then

14: Update RSky and r using <G,DomSize(G)>
15: end if

16: end if

17: end for

18: end if

19: end for

20: Return the G-Skylines within RSky

bound of the dominance size is larger than r . If it returns ‘no’, G is pruned due to Lemma 4.6.
Otherwise, line 14 refreshes r and updates the set RSky by adding the new GSky G and removing
the old G-Skylines whose dominance sizes are less than r . After the for-loop, RSky contains all the
kGSky query results.

Example. We continue the example in Figure 1 with l = 3 and k = 5. After getting all the G-
Skylines, we part them into 3 groups due to |G ∩ SL1 | and gain the three sets V1 = {{h4,h7,h8},
{h4,h8,h12}}, V2 = {{h1,h2,h5}, {h3,h4,h6}, {h1,h4,h7}, {h2,h4,h7}, {h3,h4,h7}, {h1,h4,h8}, {h2,h4,
h8}, {h3,h4,h8}}, and V3 = {{h1,h2,h3}, {h1,h2,h4}, {h1,h3,h4}, {h2,h3,h4}}. For k = 5 > |V3 |, all
the G-Skylines within V3 are inserted into the set RSky as candidate results. Here, we have
r = 8250. Next, the GSky {h1,h2,h5} ∈V2 is accessed and added to the set RSky because the
size of RSky is less than k = 5. The current kth highest score is r = DomSize({h1,h2,h5}) =
5650. After accessing other G-Skylines within V2, {h2,h4,h7} and {h2,h4,h8} are inserted into
RSky. Now, r is modified as DomSize({h2,h4,h8}) = 10,200 and the set RSky is refreshed as
{{h1,h2,h4}, {h1,h3,h4}, {h2,h3,h4}, {h2,h4,h7}, {h2,h4,h8}} by removing the G-Skylines {h1,h2,h5}
and {h1,h2,h3} with dominance sizes less than r = 10,200. Finally, the G-Skylines {h4,h8,h12} and
{h4,h7,h8} inV1 are pruned directly as their dominance sizes are both less than r = 10,200. Finally,
the G-Skylines within RSky are reported as the final results.

Complexity. The time complexity of the G_MDS algorithm in Wang et al. [2018] is

O (
∑l

i=1 (�
i
)) ≤ O (2�) to calculate the unit group sets of size i for 1 ≤ i ≤ l . Here, � = | ∪l

i=1 SLi |.
Suppose the number of the G-Skylines is �д . Then, it divides the G-Skylines into different sets Vi

with a time complexity of O (�д). For all the G-Skylines, in worst case it takes O (�д × 2l) to com-

pute their dominance sizes. Therefore, the time complexity of the GA algorithm is O (2� + �д +

�д × 2l) = O (2� + �д × 2l).

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:11

4.2 The Layered Unit-based (LU) Algorithm

As pointed out in Papadias et al. [2005], a skyline query algorithm is progressive if the first result
can be reported to the user as soon as possible and the output size increases gradually. The pro-
gressive property is needed in many preference queries such as the skyline query [Papadias et al.
2005; Ding and Jin 2012; Zhou et al. 2016b] and the top k dominating query [Tiakas et al. 2016;
Han et al. 2017; Amagata et al. 2018].

In the GA algorithm, the kGSky query results are computed and reported at the end of the query
procedure. Therefore, the users cannot get any results until the algorithm terminates, and there
may be a long latency delay between issuing the kGSky query and getting any results. Inspired by
this, we propose a layered unit-based algorithm to report the query results progressively.

4.2.1 The Layered MDG. The DSG [Liu et al. 2015] is a layered index that organizes the points
within the first l skyline layers. Because there are many redundant points dominated by at least l
points in DSG, MDG is proposed in Wang et al. [2018]. When building MDG, only the points domi-
nated by less than l − 1 points are considered. Now, MDG is considered the minimum GSky support
structure without redundant points. However, there are redundant edges in MDG. In Figure 3(a),
as well as the edges h4→h8 and h8→h12, MDG also stores the edge h4→h12 to show the dominance
relationship between h4 and h12.

In this article, we introduce the layered MDG, namely, LMDG, that combines the advantages
of both DSG and MDG. Different from MDG in Wang et al. [2018], LMDG proposed divides the
points dominated by less than l points into different layers. Compared to DSG and MDG, LMDG
is a more simplified index without redundant points and redundant edges.

Definition 4.7 (LMDG). A LMDG is a directed graph G = (V ,E) over a given dataset D. With a
group size l , each vertexv ∈V represents a point p ∈D that is dominated by at most l − 1 points in
the given dataset. Besides, each edge e ∈ E represents the dominance relationship between corre-
sponding points in adjacent layers. The LMDG is organized as l layers and the ith layer contains
the vertexes corresponding to the points within the ith skyline layer SLi for 1 ≤ i ≤ l .

Figure 3(b) shows the LMDG over the hotel dataset in Figure 1 with the group size l = 3. The
LMDG organizes the points dominated by less than l − 1 = 2 points as three skyline layers, SL1 =

{h1,h2,h3,h4}, SL2 = {h5,h6,h7,h8}, and SL3 = {h12}. All the hotels within the LMDG are dominated
by at most l − 1 = 2 hotels. The hotels h ∈ SL1 are skylines that are not dominated by any other
hotel in Figure 1. The edges represent the dominance relationship between hotels. For instance,
the edge h1→h5 represents that the hotel h5 is dominated by the hotel h1.

4.2.2 The LU Algorithm. In this subsection, we develop the layered unit-based (LU) algorithm
which introduces a layered strategy and based on the following lemmas.

Property 2 [Wang et al. 2018]. For a given group G, it can be returned as a G-Skyline directly if it

consists of l points within the first skyline layer SL1.

Lemma 4.8. A GSkyG contains at most l − i + 1 points within the ith skyline layer SLi for 1 ≤ i ≤ l .

Proof. For the GSky G, we get a group G ′ = SLi ∩G. Both G ′ and AncSet(G ′) are contained in
G, and G ′ ∪AncSet(G ′) ⊆G. Therefore, |G ′ ∪AncSet(G ′) | = |G ′ | + |AncSet(G ′) | ≤ l .

According to Definition 3.1, a point p ∈ SLi is dominated by at least one pointp ′ ∈ SLj for 1 ≤ j <
i . Therefore |AncSet(G ′) | ≥ i − 1. For |G ′ | + |AncSet(G ′) | ≤ l and |AncSet(G ′) | ≥ i − 1, it is easy to
get |G ′ | ≤ l − |AncSet(G ′) | ≤ l − i + 1. Besides, when all the points withinG ′ ⊆ SLi ∩G have a same
ancestor point within SLj for 1 ≤ j < i , |G ′ | reaches its maximum value that is equal to l − i + 1.
Therefore, this lemma holds. �

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:12 X. Zhou et al.

From Lemma 4.8, we have any GSky of size l includes at most l − i + 1 points within the ith
skyline layer.

Definition 4.9 (Maximum Layer). Given a group G, its maximum layer is max_layer(G) =
maxp ∈G p.layer. Here, p.layer is the skyline layer that the point p belongs to.

For the hotel group {h4,h8} in Figure 1, we have max_layer({h4,h8}) =max{h4.layer,h8.layer} =
2.

Lemma 4.10. Given two point groups Gmaxl_i and Gmaxl_j whose maximum layers are i and j, re-

spectively, Gmaxl_i only may be g-dominated by Gmaxl_j if j ≤ i .

Proof. Assume that Gmaxl_j ≺дGmaxl_i and j > i . Due to Definition 3.2, if Gmaxl_j ≺дGmaxl_i , for
each point p ′ ∈Gmaxl_j , p

′ dominates or is just equal to some point p ∈Gmaxl_i , and for at least one
point p ′, p ′ ≺p. However, since j > i , there is at least a point p ∈Gmaxl_j ∩ SLj that is dominated
by or incomparable to some points in Gmaxl_i ∩ SLi due to Definition 3.1. This contradicts to the
assumption. It is worth to notice that in case i = j, Gmaxl_j may be dominated by Gmaxl_i only it
satisfies Gmaxl_j ∩ SLj = Gmaxl_i ∩ SLi . Therefore, this lemma holds. �

In Figure 1, forG = {h1,h3,h5} where max_layer(G) = 2, it is g-dominated by {h1,h2,h3} where
each hotel is within SL1. The hotel groups of size 3, which contain hotels within SLi for i > 2, cannot
g-dominate {h1,h3,h5}. For instance, {h1,h3,h5} is incomparable to {h1,h3,h8} since h5 is incompa-
rable toh8. Moreover, for two given hotel groupsG = {h4,h6,h8,h12} andG ′ = {h3,h4,h8,h12}with
max_layer(G) = max_layer(G ′) = 3, we can also have G ′ ≺G. This is because h6 ∈G is dominated
by h3 ∈G ′ and other hotels in the two groups are the same.

Based on Lemma 4.10, any groupG of size l whose maximum layer is i may be only g-dominated
by the groupsG ′ ⊆ ⋃i

j=1 SLj . Besides, the groups of l points within the first skyline layer SL1 could
be returned as G-Skylines, directly, since they are dominated by no groups of the same size.

Definition 4.11 (Unit Group [Liu et al. 2015]). For a point p ∈D, its unit group is up =

{p} ∪AncSet(p).

Theorem 4.12 (Verification of GSky [Liu et al. 2015]). For a group G = {p1,p2, . . . ,pl }, it is

a GSky, if and only if the unit group set S = ∪{upi
|i ∈ [1, l]} includes l points.

Lemma 4.13. Given a unit group set U with 1 ≤ |U | ≤ l , G =
⋃

u ∈U u is a GSky if and only if

|G | = l , and G with |G | > l could be pruned safely.

Proof. This lemma is correct due to Theorem 4.12. �

Lemma 4.14. Assume that the groupsGmaxl_i are the G-Skylines with max_layer(Gmaxl_i) = i . For a

GSkyGmaxl_j with max_layer(Gmaxl_j) = j, if j > i , then DomSize(Gmaxl_j) <max DomSize(Gmaxl_i).
Here max DomSize(Gmaxl_i) is the maximum dominance size for all Gmaxl_i .

Proof. Consider a GSky Gmaxl_j with j > i . Due to Property 1, we have DomSize(Gmaxl_j) =

DomSize(G ′) for G ′ = Gmaxl_j − (Gmaxl_j ∩ ∪j
t=i+1 SLt). By selecting |Gmaxl_j ∩ ∪j

t=i+1 SLt | points
within SL1 −Gmaxl_j and adding them toG ′, we get a new GSkyG ′

maxl_i
with max_layer(G ′

maxl_i
) =

i . Since Gmaxl_j ∩ SL1 ⊂G ′maxl_i
, it holds that DomSize(Gmaxl_j) < DomSize(G ′

maxl_i
) on the basis

of Property 1. Because DomSize(G ′
maxl_i

) < max DomSize(Gmaxl_i), we have DomSize(Gmaxl_j) ≤
max DomSize(Gmaxl_i) and this lemma holds. �

In Figure 1, consider the G-Skylines Gmaxl_1, which are {h1,h2,h3}, {h1,h2,h4}, {h1,h3,h4}, and
{h2,h3,h4}. These G-Skylines Gmaxl_1 only consist of points within the first skyline layer, and the
maximum layers of these G-Skylines are 1. The maximum dominance size of the groupsGmaxl_1 is

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:13

equal to max DomSize({h1,h3,h4}) = 10700. Based on Lemma 4.14, for any GSkyGmaxl_j with j > 1,
it holds that DomSize(Gmaxl_j) < max DomSize(Gmaxl_1) = 10700. This means that the dominance
size of any GSky Gmaxl_j for j > 1 is less than max DomSize(Gmaxl_1) = 10700. Accordingly, the
GSky Gmaxl_1 = {h1,h3,h4} with the maximize dominance size 10700 could be outputted directly.

Based on Lemma 4.14, we have the maximum dominance size of the G-Skylines Gmaxl_i with
maximum layer i for 1 ≤ i < l is always larger than the G-Skylines whose maximum layers are
larger than i . Accordingly, we introduce the layered strategy into the kGSky query, and present
the LU algorithm depicted in Algorithm 2.

ALGORITHM 2: Layered Unit-based (LU) Algorithm for the kGSky query

Require: A LMDG LM over D, a group size l , and number of results k
Ensure: kGSky query results

1: Initialize a set RSky←∅ that stores the final results of the kGSky query
2: Initialize the kth highest dominance size r←0
3: for i←1 to l do

4: MaxDomSize←0
5: Initialize a set CanSky

6: CanSky←GSkySearcher(LM, i , l)
7: for each G ∈ CanSky do

8: if DomSize+ (G) > r then

9: DomSize(G)←DomSize(G ∩ SL1) //Lemma 4.4
10: if DomSize(G) ≥ r then

11: Update RSky and r using <G,DomSize(G)>
12: if DomSize(G) >MaxDomSize then

13: MaxDomSize←DomSize(G)
14: end if

15: end if

16: end if

17: end for

18: Report the G-Skylines G ∈ RSky whose dominance sizes exceed MaxDomSize due to Lemma 4.14
19: end for

20: Return the G-Skylines within RSky

As shown in Algorithm 2, it takes the LMDG LM, the group size l , and the number of results
k as the inputs. Line 1 first defines the set RSky which is the final result set of the kGSky query
and the current kth highest dominance size r is set to 0 (line 2). Lines 3–19 are a for-loop which
is executed to compute k G-Skylines with the highest dominance sizes. Here, the G-Skylines are
generated based on unit groups within different skyline layers, respectively. To report the final
results in a progressive manner, line 4 defines MaxDomSize to represent the maximum dominance
size of the G-Skylines generated in each iteration. In the first iteration, it builds the G-Skylines G
that consist of just l points within SL1 by invoking GSkySearcher(LM, 1, l), selects k G-Skylines
with the highest dominance sizes, and finally adds them to the set RSky. The G-Skylines within
RSky whose dominance sizes exceed MaxDomSize are returned and removed from RSky. Thereafter,
the unit groups within the ith skyline layer for 2 ≤ i ≤ l are taken into account. It builds the G-
Skylines that contain just j points within SLi for 1 ≤ j ≤ l − i + 1 by invoking the GSkySearcher
algorithm in Algorithm 3. Lines 8–16 identify the G-SkylinesG with DomSize(G) ≥ r and use them
to update RSky, r , and MaxDomSize. Due to Lemma 4.14, the maximum dominance size of the G-
Skylines generated based on the unit groups u ∈Ui is always larger than the dominance sizes of
the G-Skylines G that contain at least one point within SLj for j > i . Therefore, the G-Skylines
within RSky whose dominance sizes exceed MaxDomSize are final results of the kGSky query and

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:14 X. Zhou et al.

ALGORITHM 3: GSkySearcher

Require: A LMDG LM, layer i , and a group size l ′

Ensure: A point group set CanSet

1: Initialize a set CanSet←∅
2: if i = 1 then

3: Add groups G ⊆ SL1 of size l ′ to CanSet //Property 2
4: else

5: Compute a unit group set Ui←{up |p ∈ SLi } which includes the unit groups of the points p ∈ SLi

6: Generate unit group sets U ′ ⊆ Ui of size j for 1 ≤ j ≤ l ′ − i + 1 // Lemma 4.8
7: for each unit group set U ′ do

8: Generate a new group G ′←⋃
u ∈U ′ u

9: if |G ′| = l ′ then

10: Insert the group G ′ to CanSet //Lemma 4.13
11: else

12: if |G ′| < l ′ then

13: Compute a LMDG LM′ that consists of points within ∪i−1
t=1SLt −G ′

14: for j←1 to i − 1 do

15: Generate groups G ′′←GSkySearcher(LM′, j, l ′ − |G ′|) //Lemma 4.8
16: for each group G ′′ do

17: if G ′∪G ′′ = l ′ then

18: Insert the group G ′ ∪G ′′ to CanSet due to Lemma 4.13
19: end if

20: end for

21: end for

22: end if

23: end if

24: end for

25: end if

26: Return CanSet

can be returned as soon as possible. It is because these G-Skylines are with the current largest
dominance sizes and their dominance sizes are larger than all the unseen G-Skylines generated in
the remaining iterations.

As listed in Algorithm 3, the GSkySearcher algorithm takes the LMDG LM, the layer i , and
the group size l ′ as inputs. When taking into account the unit groups within the first skyline
layer, it creates the groups G that just contain l ′ points within SL1, and adds them to the set
CanSet. Otherwise, lines 5–24 are executed. Line 5 computes the unit group set Ui that consists
of all the unit groups of the points within SLi . For example, in Figure 1, SL2 = {h5,h6,h7,h8},
u5 = {h1,h2,h5}, u6 = {h3,h4,h6}, u7 = {h4,h7}, and u8 = {h4,h8}. Therefore, U2 = {u5, u6,u7,u8} =
{{h1,h2,h5}, {h3,h4,h6}, {h4,h7}, {h4,h8}}. Line 6 builds the unit group sets U ′ ⊆Ui of size j for
1 ≤ j ≤ l ′ − i + 1 due to Lemma 4.8. For each unit group set U ′, a new candidate group G ′ is gen-
erated (line 8). If |G ′ | > l ′, it could be pruned directly. The group G ′ of size l ′ is added to the
set CanSet. For the group G ′ whose size is less than l ′, lines 13–21 are executed to generate new
groups of size l ′ by invoking the GSkySearcher algorithm recursively. It computes the LMDG LM′

over the points within ∪i−1
t=1SLt −G ′. Next, for the unit groups within the first i − 1 skyline layers,

GSkySearcher(LM′, j, l ′ − |G ′ |) is executed to compute the groupsG ′′ which are combined withG ′

to build new groups G ′ ∪G ′′. The groups G ′ ∪G ′′ of size l ′ are inserted to the set CanSet. Finally,
CanSet contains all the G-Skylines that contains at least a point within SLi .

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:15

Example. Consider the example in Figure 1 with l = 3 and k = 5. We first compute the G-
Skylines {h1,h2,h3}, {h1,h2,h4}, {h1,h3,h4}, and {h2,h3,h4} that only consist of the points within
SL1. The above G-Skylines are all added to RSky, and the GSky {h1,h3,h4} with the highest
dominance size is returned. For the unit group set U2 = {u5,u6,u7,u8}, unit group sets U ′ ∈
{{u5}, {u6}, {u7}, {u8}, {u5,u6}, {u5,u7}, {u5,u8}, {u6,u7}, {u6,u8}, {u7,u8}} are generated. Taking into
account each unit group set U ′, we could get new candidate groups. For U ′ = {u5}, a new GSky
G = {h1,h2,h5} is generated and added to the set RSky. Now r is modified as DomSize({h1,h2,h5}) =
5650. Next, based on the unit group set U ′ = {u6}, we get the GSky {h3,h4,h6}, and RSky =

{{h1,h2,h3}, {h1,h2,h4}, {h2,h3,h4}, {h3,h4,h6}}. The fifth highest dominance size is r = 8250. For
the unit group set U ′ = {u7}, we have a candidate group {h4,h7} and the GSkySearcher algorithm
is applied to compute G-Skylines based on it. By combining {h4,h7} with groupsG ′ ⊆ SL1 − {h4} =
{h1,h2,h3} of size l − 2 = 1, we gain new G-Skylines {h4,h7} ∪ {h1} = {h1,h4,h7}, {h4,h7} ∪ {h2} =
{h2,h4,h7}, and {h4,h7} ∪ {h3} = {h3,h4, h7}. The G-Skylines {h1,h4,h7} and {h2,h4,h7} are uti-
lized to refresh the set RSky and r . After computing the G-Skylines containing {h4,h8}, RSky

is updated as {{h1,h2,h4}, {h2,h3,h4}, {h2,h4,h7}, {h2,h4,h8}}, r = DomSize({h2,h4,h7}) = 10,200,
and MaxDomSize = 10,200. For the unit groups {u5,u6}, {u5,u7}, {u5,u8}, {u6,u7}, and {u6,u8}, the
sizes of the new candidate groups generated based on it are all larger than l = 3, and they are
pruned directly. For the last unit group {u7,u8} withinU2, we get a new GSkyu7 ∪u8 = {h4,h7,h8}.
Since DomSize({h4,h7,h8}) = 8800 < r = 10,200, it is pruned directly. After taking into account all
the unit group sets U ′ ⊆U2, the G-Skylines {h1,h2,h4}, {h2,h3,h4}, {h2, h4,h7}, {h2,h4,h8} within
RSky whose dominance sizes are no less than MaxDomSize are returned and RSky = ∅. Consider
the unit group set u12 in SL3. We have a new GSky {h4,h8,h12}. Since its dominance size is less
than r = 10,200, it is not added to the set RSky, and there is no new result generated.

Complexity. As pointed out in Liu et al. [2015], the G-Skylines only consist of the points within
the first l skyline layers. Here, l is the group size. Assume that �i denotes the size of SLi and

� =
∑l

i=1 �i for 1 ≤ i ≤ l . The maximum cardinality of the G-Skylines is
(
�

l

)
. Due to Lemma 4.8,

the candidate groupsG including more than l − i + 2 points p ∈ SLi are not G-Skylines. The size of
candidate groups generated in the LU algorithm is:

(
�

l

)
−

l∑
i=2

k∑
j=l−i+2

(
�i

j

)
×

(
� − �i

l − j

)
<

(
�

l

)
−

l∑
i=2

(
�i

k

)
.

In the worst case, the LU algorithm computes the dominance sizes for all the candidate groups

with the time complexityO (((�
l
) −∑l

i=2 (�i

k
)) × 2l). As analyzed above, the time complexity of the

LU algorithm is

O�
�
�
�

(
�

l

)
−

l∑
i=2

(
�i

k

)
�
�
× 2l�

�
< O�

�

(
�

l

)
× 2l�

�
.

4.3 The Top-down Point-based (TP) Algorithm

The GA and LU algorithms both compute the G-Skylines first and then identify the k G-Skylines
with the highest dominance sizes. In this subsection, we propose the top-down point-based algo-
rithm, which only generates the G-Skylines that are most likely to be the final results of the kGSky
query. In addition, we redefine the structure of the node in the LMDG as [layer index, point index,
ancestor set, and direct descendant set]. Here, each node stores the direct descenders instead of all
the descenders.

Definition 4.15 (Direct descender set). Given a point p ′, p ′ is a direct descendant of p if in the
LMDG there is an edge connecting the nodes of p and p ′ directly. For a given point p, its direct

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:16 X. Zhou et al.

descendant set DDesSet(p, i) contains all the direct descendants ofp in the ith skyline layer. Besides,
for a given group G, we have the direct descendant set DDesSet(G, i) = ∪p ∈G DDesSet(p, i).

Considering the hotel h4 in Figure 1, we have DDesSet(h4, 2) = {h6,h7,h8}. For the hotel group
{h2,h3}, it holds that DDesSet({h2,h3}, 2) = {h5,h6}.

Property 3. For a given GSky G of size l , G contains i points within SL1 for 1 ≤ i ≤ l .

Lemma 4.16. For a GSky G, it is not a final result of the kGSky query if DomSize(G ∩ SL1) < r .

Here, r is the current kth highest dominance size.

Proof. Due to Property 1, dominance size of the GSky G is computed as DomSize(G) =
DomSize(G ∩ SL1). On the assumption that DomSize(G ∩ SL1) < r , it holds that DomSize(G) < r .
Therefore,G is not a final result of the kGSky query due to Definition 3.8 and this lemma holds. �

Lemma 4.17. For G-Skylines Gi that contain i points within SL1, we have DomSize(G j) ≤
max DomSize(Gi) for all G j with |G j ∩ SL1 | = j < i .

Proof. Based on Lemma 4.4, the dominance size of a GSky G depends on the dominance size
of G ∩ SL1. Since |G j ∩ SL1 | = j < i , similarly to Lemma 4.14, it holds that there is at least a GSky
Gi satisfying DomSize(G j) < DomSize(Gi), and DomSize(G j) < max DomSize(Gi) accordingly for
all Gi . Therefore, this lemma holds. �

Due to Lemma 4.17, the G-Skylines containing more points within SL1 may have large domi-
nance sizes.

Lemma 4.18. Assume that the G-Skylines with more points within the first skyline layer SL1 are

generated and processed in prior, the G-SkylinesGi contain i points within SL1 and DomSize(Gi) > r .

Here r is the current kth highest dominance size. Considering the G-Skylines Gi−1 that include i − 1
points within SL1, the G-Skylines Gi could be reported as final results of the kGSky query if their

dominance sizes exceed max DomSize(Gi−1) ≥ r for allGi−1. Furthermore, the G-SkylinesGi−1 whose

dominance sizes are just equal to max DomSize(Gi−1) can also be reported directly as final results.

Proof. For the G-Skylines Gi−1 and G j with j < i − 1, we have DomSize(G j) <
max DomSize(Gi−1) due to Lemma 4.17. Since the G-Skylines Gi satisfy DomSize(Gi) ≥
max DomSize(Gi−1), it holds that DomSize(Gi) > DomSize(G j) for j ≤ i − 1. The G-Skylines
with more points within SL1 are generated and given priority to be processed. This means that
DomSize(Gi) and max DomSize(Gi−1) are larger than those of the left G-Skylines that have not
been accessed. For max DomSize(Gi−1) is larger than r which is the current kth highest dominance
size, the G-Skylines Gi whose dominance sizes exceed max DomSize(Gi−1) could be returned as
the final results of the kGSky query. Moreover, the G-Skylines Gi−1 whose dominance sizes are
exactly equal to max DomSize(Gi−1) are final results of the kGSky query and can be reported
directly too. �

Consider the example in Figure 1 with l = 3 and k = 5. Let G3 and G2 denote the hotel
groups which are G-Skylines containing three and two hotels within the first skyline layer SL1,
respectively. First, we compute the hotel groups {h1,h2,h3}, {h1,h2,h4}, {h1,h3,h4}, {h2,h3,h4},
which are G-Skylines consisting of l = 3 hotels within the first skyline layer SL1. As shown in
Table 1, the G-Skyline {h1,h3,h4} is with the maximum dominance size max DomSize(G3) = 10,700,
and it can be reported as a final result directly due to Lemma 4.18. Second, the hotel groups
{h1,h2,h5}, {h1,h4,h7}, {h1,h4,h8}, {h2,h4,h7}, {h2,h4,h8}, {h3,h4,h6}, {h3,h4,h8} including two ho-
tels within SL1 are generated. The maximum dominance size of these groups is max DomSize(G2) =
10,200. On the basis of Lemma 4.18, the hotel groups G3, which are {h1,h2,h4} and {h2,h3,h4},

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:17

can be reported as final results because their dominance sizes exceed 10,200. In addition, consid-
ering the hotel groups {h2,h4,h7} and {h2,h4,h8} which include two hotels within SL1 can also
be returned as results of the kGSky query. This is because their dominance sizes are equal to
max DomSize(G2) = 10,200.

Based on Lemmas 4.16–4.18, we develop the top-down point-based algorithm as follows.
In Algorithm 4, it first initializes a set RSky to store the final results of the kGSky query (line 1).

Line 2 initializes the kth highest dominance size r to 0. Then, line 3 computes the G-Skylines G
directly due to Property 2 and adds them to a set V0. These G-Skylines consist of just l points
belonging to SL1. Next, k G-Skylines G ⊆V0 with the highest dominance sizes are computed and
inserted to the set RSky (Lines 4 to 10). The left part of Algorithm 4 (Lines 11–43) generates other
G-Skylines whose dominance sizes may exceed r . In each iteration, it generates groups Gi

1 that
consist of i points within SL1. Here i is reduced from l − 1 to 1 due to Lemma 4.17. By this way,
the G-Skylines most likely to be the final results are generated in priority. In line 13, the groupsGi

1
whose dominance sizes exceed r are added to the set Vi . Lines 14 to 18 define MaxDomSize as the
maximum dominance size of the G-Skylines generated based on the groups G ′ ∈Vi . IfVi is empty,
then MaxDomSize is set to r . In line 19, the G-Skylines G ∈ RSky with DomSize(G) ≥ MaxDomSize

are returned as final results. Lines 20–42 are a while-loop to generate the G-Skylines based on each
candidate group within Vi . If Vi is not empty, the groups within Vi are sorted in non-increasing
order of their dominance sizes (Line 21). For each candidate group G ′ ∈Vi with DomSize(G ′) ≥
r , it computes the maximum layer of points p ∈G ′ (line 24). Considering each nonempty subset
DC′ ⊆DDesSet(G ′,max_layer + 1) of size no more than l − |G ′ |, line 26 checks whetherG ′ contains
AncSet(DC′). This ensures G ′ contains all the ancestors of points within DC′. If it returns “yes,” a
new group G ′′ is generated. The new group G ′′ with |G ′′ | < l is added to the set Vi , and the ones
of size l are utilized to refresh the set RSky and r . Line 37 removes the group G ′ that has been
processed from the set Vi . If the dominance size of the group G ′ ∈Vi is less than r , then the left
groups within Vi can be overlooked by modifying Vi as ∅ in line 39. This is because the groups
within Vi are sorted in non-increasing order of their dominance sizes and the dominance sizes of
the groups ranked after G ′ are all less than r if DomSize(G ′) < r . At the end of the TP algorithm,
the G-Skylines within RSky are reported.

Example. Going back to the example in Figure 1, the TP algorithm first generates
the G-Skylines {h1,h2,h3}, {h1,h2,h4}, {h1,h3,h4}, and {h2,h3,h4} which consist of l = 3
points within SL1. The above G-Skylines are all inserted into the set RSky. Here r = 0.
Next, the groups G2

1 that contain 2 points within SL1 are generated and we gain
V2 = {{h1,h2}, {h1,h3}, {h1,h4}, {h2,h3}, {h2,h4}, {h3,h4}}. On account of MaxDomSize =

DomSize({h2,h4}) = 10,200, we report the G-Skylines {h1,h2,h4}, {h1,h3,h4}, and {h2,h3,h4}
within the set RSky and RSky = {{h1,h2,h3}}. After sorting the groups within V2,
V2 = {{h2,h4}, {h1,h4}, {h3,h4}, {h2,h3}, {h1,h3}, {h1,h2}}. Then we build the G-Skylines based on
the groups {h2,h4}. For the group {h2,h4}, its direct descendant set consisting of the points belong-
ing to SL2 is {h5,h6,h7,h8}. Since AncSet(h7) ⊆ {h2,h4} and AncSet(h8) ⊆ {h2,h4}, we get two new
G-Skylines {h2,h4} ∪ {h7} = {h2,h4,h7} and {h2,h4} ∪ {h8} = {h2,h4,h8}. Here, we have RSky =

{{h2,h4,h7}, {h2,h4,h8}}, r = 10,200, and {h1,h2,h3} is removed from RSky because its dominance
size is less than r . For the next group {h1,h4} ∈V2, DomSize({h1,h4}) = 10,000 < r = 10,200.
Therefore, it is unnecessary to process {h1,h4} and other groups within V2. Moreover, the groups
{h1}, {h2}, {h3}, and {h4} that contain only one point within SL1 are not taken into account. This
is because the dominance sizes of the G-Skylines generated based on them are all less than
r = 10, 200. At last, the G-Skylines {h2,h4,h7} and {h2,h4,h8} within RSky are reported.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:18 X. Zhou et al.

ALGORITHM 4: Top-down Point-based (TP) Algorithm for the kGSky query

Require: A LMDG LM over D, a group size l , and the number of results k
Ensure: kGSky query results

1: Initialize a set RSky←∅ that stores the final results of the kGSky query
2: Initialize r←0 //the kth highest dominance size
3: Compute point groups G ⊆ SL1 of size l and add them to a set V0 //Property 2
4: for each G-Skyline G ∈ V0 do

5: if DomSize+ (G) > r then

6: if DomSize(G) ≥ r then

7: Update RSky and r using <G,DomSize(G)>
8: end if

9: end if

10: end for

11: for i←l − 1 to 1 do

12: Compute groups Gi
1 ⊆ SL1 of size i based on Property 3

13: Add the groups Gi
1 with DomSize(Gi

1) ≥ r into Vi

14: if Vi is not empty then

15: MaxDomSize←maxG ∈Vi
DomSize(G)

16: else

17: MaxDomSize←r
18: end if

19: Report G-Skyline G ∈ RSky as a final result if DomSize(G) ≥ MaxDomSize due to Lemma 4.18
20: while Vi is not empty do

21: Sort groups G ∈ Vi in non-increasing order of the dominance sizes
22: for each candidate group G ′ ∈ Vi do

23: if DomSize(G ′) ≥ r then

24: max_layer←maxp∈G′ p.layer

25: for each DC′ ⊆ DDesSet(G ′,max_layer + 1) with |DC′| ≤ l − |G ′| do

26: if AncSet(DC′) ⊆ G ′ then

27: Generate a new group G ′′←G ′ ∪ DC′

28: if |G ′′| < l then

29: Add G ′′ into Vi

30: else

31: if |G ′′| = l then

32: Update RSky and r using <G ′′,DomSize(G ′′)>
33: end if

34: end if

35: end if

36: end for

37: Vi←Vi − {G ′}
38: else

39: Vi←∅
40: end if

41: end for

42: end while

43: end for

44: Return G-Skylines G ∈ RSky

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:19

Complexity. The TP algorithm first takes O ((�1

l
) × 2l) to compute the groups G ⊆ SL1 of size

l and get their dominance sizes. Then, it takes O ((�1
i

) × 2i) to generate the G-Skylines consisting
of i points within SL1 and compute their dominance sizes. After that, for each group within Vi ,
new candidate groups are generated by adding corresponding direct descendants with the time

complexity O ((�1
i

) × |DC′ |
)
. Suppose that |DC′ | ≤ ∂. The time complexity of the TP algorithm is:

O�
�

l∑
i=1

(
�1

i

)
× 2i +

l−1∑
i=1

(
�1

i

)
× |DC′ |�

�
≤ O (2h1 × (2l + ∂)).

4.4 Discussion

In this subsection, similarly to Gao et al. [2015a], we first prove the correctness of the proposed
exact algorithms, CA, LU, and TP, in theory. Moreover, we also offer theoretical proofs about the
progressiveness of the LU and TP algorithms referring to Tiakas et al. [2016].

Theorem 4.19. The GA, LU, and TP algorithms can return all the exact results of the kGSky query.

Proof. This theorem means that there is no unqualified group returned (i.e., no false positive)
and there is no result missed (i.e., no false negative).

Assume that there is an unqualified groupG returned as a final result. SinceG is an unqualified
result, we have DomSize(G) < r , and in the GA, LU, and TP algorithms, it will be pruned by the
pruning strategies, Lemmas 4.6 and 4.16, or Definition 3.8. Moreover, if some G-Skylines are re-
turned as the final results of the kGSky, it holds that their scores exceed r . This contradicts to the
assumption. Besides, in the GA, LU, and TP algorithms, the pruning strategies (Lemmas 4.6 and
4.14) are utilized to identify and prune unqualified groups whose dominance sizes are less than r .
This can ensure no false negative. �

Theorem 4.20. The LU algorithm can return the results of the kGSky query in a progressive

manner.

Proof. In the LU algorithm, the G-Skylines are generated based on the unit groups of points
within different skyline layers, respectively. We first generate the G-Skylines G based on the unit
groups of points p ∈ SLi for 1 ≤ i < l . Then, we compute MaxDomSize as the maximum dominance
size of these G-SkylinesG. Consider the unseen G-SkylinesG ′ generated based on the unit groups
of points within SLj for j > i . We have DomSize(G ′) < MaxDomSize on the basis of Lemma 4.14.
Accordingly, in the LU algorithm, the G-Skylines within RSky whose dominance sizes exceed the
current maximum dominance size MaxDomSize are final results and can be returned as soon as
possible. As analyzed above, this theorem holds. �

Theorem 4.21. The TP algorithm can report the results of the kGSky query progressively.

Proof. The TP algorithm gives priority to generate the G-Skylines that have higher chance to be
the final results of the kGSky query. The candidate groupsGi

1 ⊆ SL1 for 1 ≤ i ≤ l are computed and
the groupsGi

1 containing i points within SL1 are stored in the setVi . Then, MaxDomSize is defined
as the maximum dominance size of the G-Skylines generated based on the groups G ′ ∈Vi . Due to
Lemma 4.18, MaxDomSize is larger than the dominance sizes of other unseen G-Skylines which
will be generated with considering the groups G ′′ ∈Vj . Here, 1 ≤ j < i . Therefore, the G-Skylines
G ∈ RSky with DomSize(G) ≥ MaxDomSize can be returned as final results before computing other
unseen G-Skylines, and this theorem holds. �

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:20 X. Zhou et al.

5 APPROXIMATE ALGORITHMS FOR THE kGSKY QUERY

The precise results are not necessary in many applications. In this section, we introduce some
approximate techniques to the TP algorithm, which has the best performance among the proposed
exact algorithms, at the expense of accuracy of the results to get better efficiency.

5.1 The βTP Algorithm

In this subsection, we introduce the N -consider technique [Corral and Vassilakopoulos 2005] to
the kGSky query, and develop an approximate algorithm, namely, βTP.

The time complexity of the TP algorithm is prohibitively high because it needs to process a large
size of candidate groups, and for each candidate group, it costs O (2l) to compute its dominance
size. In the βTP algorithm, we introduce theN -consider technique to cut down the size of candidate
groups.

For the TP algorithm, it generates the groupsG ⊆ SL1 of sizes no more than l (lines 3 and 12, Al-
gorithm 4). Based on these groups, the G-Skylines that are likely to be the final results are created.
Different from the TP algorithm, the βTP algorithm first sorts points p ∈ SL1 in descending order
of their dominance sizes. Then, we select a specified portion (top β percentage for 0 < β ≤ 1) of
the points within SL1 and store these points in a new set SL′1. In lines 3 and 12 of the βTP algo-
rithm, it only takes into account the points p ∈ SL′1. By this way, |Vi | for 1 ≤ i ≤ l can be decreased
dramatically, and the size of the candidate groups is reduced in turn.

5.2 The αTP Algorithm

In Gao et al. [2015a], the α-allowance technique is developed to boost the query performance of
the distance-based queries. The quality of the approximate results for the α-allowance method is
very high. Therefore, based on the α-allowance technique utilized in Gao et al. [2015a], we propose
an approximate algorithm, namely αTP.

The αTP algorithm is similar to the TP algorithm. Different from the TP algorithm, it takes the
parameter α as an important input. Moreover, we modify the upper bound pruning strategy and
line 5 of the TP algorithm is adjusted to “DomSize+ (G) × (1 − α) ≥ r .” Accordingly, there are much
more candidate groups that could be pruned by the adjusted upper bound pruning strategy.

In the αTP algorithm, we adjust DomSize+ (G) by multiplying 1 − α because DomSize+ (G) is
always much larger than DomSize(G). By reducing DomSize+ (G) to a certain extent, it can prune
many unqualified results without significantly reducing the accuracy of the results.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed algorithms on both synthetic and real
datasets. All our experiments were conducted on a PC with IntelTM CoreTM I7-6700T 2.81 GHz CPU
(contains four cores), 8 GB main memory, and under the Microsoft Windows 7 operating system.

Datasets. We have conducted experiments on synthetic datasets with three popular distri-
butions: Independent (Ind), Correlated (Cor), and Anti-correlated (Ant), following the work in
Börzsönyi et al. [2001]. Furthermore, we employ the real dataset, NBA, which is also utilized in the
related work [Liu et al. 2015; Liu et al. 2018; Wang et al. 2018]. Specifically, NBA was obtained from
http://stats.nba.com. It contains 5,000 players and each player has 5 attributes, points, rebounds,
assists, steals, and blocks.

The GA, GA+, LU, and TP algorithms for the kGSky query have been implemented. Here, GA
and GA+ are the group-based algorithm in Section 4.1 without and with the upper bound pruning
strategy (Lemma 4.6), respectively. By removing line 11 which checks if DomSize+ (G) exceeds the
current kth highest score r from Algorithm 1, we have the GA algorithm.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

http://stats.nba.com

Efficient Approaches to k Representative G-Skyline Queries 58:21

Fig. 4. Experimental results vs. dimensionality d . (a) Ind; (b) Cor; and (c) Ant.

It is worth to notice that for the kGSky query, LU and TP can report the results in a progressive
manner as proven in Theorems 4.20 and 4.21. This is different from the GA algorithm which cannot
get any results before completing the calculation of the entire result set.

We analyze the effect of the important parameters that are dimensionality d , cardinalities of
datasetsN , group size l , and number of results returnedk , on the proposed algorithms, respectively.
In each experiment, we vary one parameter and other parameters are fixed. The fixed values of
the parameters for the Ind, Cor, and Ant datasets may be different due to the query time. Given
the same parameters, the processing time of the proposed algorithms over the Cor datasets may
be too small and has no significant difference. For the Ant datasets, some algorithms may take
prohibitively long time.

6.1 Performance of the Exact Algorithms

In this subsection, we evaluate the performance of the proposed algorithms in processing the
kGSky query.

6.1.1 Effect of Dimensionality d . In the first set of experiments, we study the influence of the
dimensionality d on the performance of the proposed algorithms.

As shown in Figure 4, the dimensionality d has a great impact on the performance of the four
algorithms. The query time of GA, GA+, LU, and TP all increases with the growth of d in most
cases. This is because the query time of the above algorithms is closely related to the number of
points p ∈ SLi for 1 ≤ i ≤ l which grows exponentially with the increase of d . Assume that the
points within the given dataset D are uniformly distributed in each dimension, there are no points
p ∈D sharing the same value in any dimension. The expected cardinality of points p ∈ SLi is:

|SLi | ≈
(lnNi + γ)d−1

(d − 1)!
.

Here, N1 = N , Ni = N −∑i−1
j=1 |SLi | for 2 ≤ i ≤ k , and γ is equal to 0.577 [Ding and Jin 2012]. Ac-

cordingly, we have:
l∑

i=1

|SLi | ≈
l∑

i=1

(lnNi + γ)d−1

(d − 1)!
.

By applying the upper bound pruning strategy, GA+, LU, and TP all outperform GA, and TP gets
the best performance in most cases. This is as expected since TP only generates partial G-Skylines
that may be the potential results of the kGSky query while GA, GA+, and LU need to compute all
the G-Skylines, and then pick out the best k G-Skylines according to their dominance sizes.

6.1.2 Effect of Cardinality N . In this second set of experiments, we demonstrate the impact of
the cardinality N on the proposed algorithms.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:22 X. Zhou et al.

Fig. 5. Experimental results vs. cardinality N . (a) Ind; (b) Cor; and (c) Ant.

Fig. 6. Experimental results vs. group size l . (a) Ind; (b) Cor; and (c) Ant.

Figure 5 depicts the query time of the proposed algorithms with the growth of N . In general, the
query time of the proposed algorithms increases as the cardinality N grows. From Figure 5, GA+
outperforms GA which proves the effectiveness of the upper bound pruning strategy (Lemma 4.6).
Among the four algorithms, TP needs the least query time.

Figure 5(a) also illustrates that it needs less query time to process the Ind dataset withN = 40,000
by the four algorithms than to handle the Ind dataset with N = 20,000. This is reasonable since the
query time of these algorithms is closely related to the size of the index, MDG or our LMDG, but
not the cardinality of the dataset [Wang et al. 2018]. MDG and LMDG both only contain the points

in the first l skyline layers. Generally, we have
∑l

i=1 |SLi | is far less than N , and it may reduce with
the growth of N .

6.1.3 Effect of Group Size l . In this third set of experiments, we study the effect of the group
size l on the performance of the four algorithms.

Figure 6 shows query time of the GA, GA+, LU, and TP algorithms when l increases over the
Ind, Cor, and Ant datasets, respectively. Similarly to the dimensionality d , the group size l affects
the performance of the four algorithms significantly. This is also as expected. As pointed out in
Liu et al. [2015], the G-Skylines only contain the points within the first l skyline layers. As l goes
up, the cardinality of candidate groups sharply goes up. Besides, the larger l , the more G-Skylines.
The time cost to compute dominance sizes of the G-Skylines increases accordingly.

Again, GA+ has better performance than GA. Although TP and LU require comparable time, TP
is slightly better than LU in most cases. This is because LU needs to compute all the G-Skylines
while TP only computes the ones whose dominance sizes exceed r .

6.1.4 Effect of Number of Returned Results k . In the fourth set of experiments, we evaluate the
performance of the proposed algorithms by varying the number of returned results k .

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:23

Fig. 7. Experimental results vs. number of returned results k . (a) Ind; (b) Cor; and (c) Ant.

Fig. 8. Experimental results over NBA. (a) d . (b) N . (c) l (d) k .

As shown in Figure 7, all the four algorithms are insensitive to different k values. This is similar
to the top k dominating query in Miao et al. [2015]. Form Figure 7, GA+ needs less query time
with comparing to GA. As k increases, TP and LU are both better than GA+, and TP gets the best
performance again.

6.1.5 Performance Over the NBA Dataset. In this subsection, we present the experimental re-
sults over the real dataset, NBA, which is a popular dataset also utilized in Liu et al. [2015] and
Wang et al. [2018].

Figure 8 shows experimental results over NBA by varying different parameters. From Figure 8,
the conclusions gained from synthetic datasets can also be verified. The query time of the proposed
algorithms increases sharply with the increase of d or l . Besides, TP is most friendly for large d or
large group size l . Over NBA, the four algorithms are insensitive to the parameters N and k . As
the results over synthetic datasets, TP is better than LU and always requires the least query time
among the proposed algorithms.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:24 X. Zhou et al.

Table 3. Experimental Results vs. Cardinality N over Ant (l = 4,k = 40,d = 3)

N
Processing Time (s) Approximate Ratio

TP βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6) βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6)

2000 144.587 107.015 62.656 34.723 17.569 1.00 0.70 0.40 0.18

4000 439.103 299.039 165.935 95.073 49.751 1.00 0.80 0.55 0.35

6000 569.443 411.377 233.977 125.139 67.231 1.00 1.00 0.50 0.00

8000 976.491 678.733 381.542 224.797 120.198 1.00 1.00 0.00 0.00

10000 1316.960 1003.340 560.908 319.984 181.381 0.98 0.93 0.03 0.00

Table 4. Experimental Results vs. k over Ant (N = 103, l = 4,d = 3))

k
Processing Time (s) Approximate Ratio

TP βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6) βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6)

20 40.861 31.002 17.570 10.205 5.452 1.00 1.00 0.45 0.40

40 41.616 34.219 17.601 10.302 5.403 1.00 1.00 0.53 0.50

60 41.717 31.866 17.566 10.207 5.537 1.00 1.00 0.58 0.52

80 42.115 32.270 18.545 10.301 5.399 0.99 0.99 0.59 0.54

100 43.169 32.515 18.318 11.229 8.729 0.99 0.99 0.56 0.52

Table 5. Experimental Results vs. Dimensionality d over Ant (N = 103, l = 4,k = 40)

d
Processing Time (s) Approximate Ratio

TP βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6) βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6)

2 0.162 0.106 0.065 0.041 0.022 0.95 0.53 0.38 0.28

3 41.495 31.184 17.753 10.305 5.237 1.00 1.00 0.53 0.500

4 839.272 596.882 338.869 179.850 96.369 1.00 1.00 1.00 0.28

5 4412.000 3635.390 2276.360 1290.470 704.826 1.00 0.93 0.08 0.58

6.2 Performance of the Approximate Algorithms

In this subsection, we evaluate the βTP and αTP algorithms by comparing them with the TP algo-
rithm, which is the proposed exact algorithm having the best performance, in term of processing
time and approximate ratio (AR). Here, the AR is the percentage of the approximate results re-
turned by βTP or αTP that also exist in the exact results. The larger the AR, the better the quality
of the approximate results.

We report experimental results of the two approximate algorithms over the Ant datasets. Note-
worthy, the conclusions from the experiments over the Ind and Cor datasets are consistent with
the ones obtained from the Ant datasets.

Tables 3–6 depict results of βTP by varying β from 0.9 to 0.6. With the reduction of β , the pro-
cessing time of βTP decreases. It is because only β percent of the points within SL1 are considered,
and a partial candidate groups are generated. When β is set to no less than 0.8, βTP can get a good
AR that is mostly close to 1.00.

Tables 7–10 report results of αTP by varying α from 0.2 to 0.5. As α increases, the processing
time of αTP dramatically reduces in most cases. This is as expected because the adjusted upper
bound pruning strategy could identify and prune much more unqualified groups with the growth
of α . As shown in Tables 7–10, the AR of αTP are almost all close to 1.00 when α is not more than

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:25

Table 6. Experimental Results vs. Group Size l over Ant (N = 103,d = 3,k = 40)

l
Processing Time (s) Approximate Ratio

TP βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6) βTP(0.9) βTP(0.8) βTP(0.7) βTP(0.6)

2 0.011 0.009 0.007 0.007 0.005 1.00 0.93 0.73 0.65

3 0.4532 0.369 0.245 0.164 0.102 1.00 1.00 0.65 0.55

4 41.865 31.574 18.209 10.117 5.437 1.00 1.00 0.53 0.50

5 3065.820 2100.220 1045.090 530.928 243.324 1.00 1.00 0.60 0.58

Table 7. Experimental Results vs. Cardinality N over Ant (l = 4,k = 40,d = 3))

N
Processing Time (s) Approximate Ratio

TP α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5) α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5)

2000 144.587 89.699 59.897 42.737 38.720 1.00 1.00 0.98 0.13

4000 439.103 278.964 184.743 122.412 109.851 1.00 1.00 0.95 0.13

6000 569.443 354.847 239.293 171.250 156.660 1.00 1.00 1.00 0.00

8000 976.491 614.838 413.710 286.902 258.883 1.00 1.00 1.00 0.05

10000 1316.960 810.072 547.860 399.189 382.478 1.00 1.00 1.00 0.13

Table 8. Experimental Results vs. k over Ant (N = 1000, l = 4,d = 3))

k
Processing Time (s) Approximate Ratio

TP α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5) α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5)

20 40.861 24.117 16.552 12.851 12.161 1.00 1.00 1.00 0.35

40 41.616 25.660 16.994 13.087 12.241 1.00 1.00 1.00 0.35

60 41.717 25.176 17.184 13.096 12.274 1.00 1.00 0.98 0.28

80 42.115 25.768 17.584 13.292 12.397 1.00 1.00 0.98 0.30

100 43.169 26.827 18.298 16.875 13.645 1.00 1.00 0.98 0.31

Table 9. Experimental Results vs. Dimensionality d over Ant (N = 1000, l = 4,k = 40))

d
Processing Time (s) Approximate Ratio

TP α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5) α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5)

2 0.162 0.148 0.143 0.127 0.081 1.00 1.00 1.00 0.75

3 41.495 24.696 16.919 13.046 12.178 1.00 1.00 1.00 0.35

4 839.272 591.335 558.586 552.578 551.521 1.00 1.00 0.78 0.05

5 4412.000 4058.140 4035.590 3979.430 3964.244 1.00 1.00 1.00 0.05

Table 10. Experimental Results vs. Group Size l over Ant (N = 1000,d = 3,k = 40))

l
Processing Time (s) Approximate Ratio

TP α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5) α TP(0.2) α TP(0.3) α TP(0.4) α TP(0.5)

2 0.011 0.008 0.008 0.0083 0.008 0.95 0.48 0.20 0.08

3 0.453 0.313 0.277 0.260 0.252 1.00 1.00 0.30 0.05

4 41.865 25.095 17.270 13.382 12.434 1.00 1.00 1.00 0.35

5 3065.820 2125.560 1387.990 755.180 514.248 1.00 1.00 1.00 0.80

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

58:26 X. Zhou et al.

0.4. This means that the approximate results reported by the αTP are very close to the exact results
and in some cases, just the same. However, when varying α from 0.4 to 0.5, the processing time
of αTP gains a little reduction but the AR reduces significantly. This is because many G-Skylines
with large dominance sizes are pruned by the adjusted upper bound pruning and the threshold r
cannot be refreshed in time. As analyzed above, by taking into account the processing time and
the AR, α is better to be set not more than 0.4.

In summary,αTP can get better AR with comparing to βTP. However, βTP is much more friendly
to large or high-dimensional datasets. Besides, with a large group size, βTP performs better than
αTP.

7 CONCLUSIONS

In this article, we formulate the kGSky query which aims to compute the k G-Skylines with the
highest dominance sizes. Besides, we propose some pruning strategies and introduce several new
techniques such as the grouping strategy, the layered optimum strategy, and the hybrid strategy to
boost the query performance. In addition, as well as the exact algorithms, we propose two approx-
imate algorithms to get better efficiency with sacrificing some accuracy of the results. The effi-
ciency, scalability, and accuracy of the proposed algorithms have been demonstrated by abundant
experiments. As our future work, we will study the kGSky query under multi-core environment or
on the GPUs. Moreover, it is also interesting to research the batch G-Skyline query with different
group sizes.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable and helpful comments
on improving the manuscript. Kenli Li is the corresponding author of this article.

REFERENCES

Daichi Amagata, Takahiro Hara, and Makoto Onizuka. 2018. Space filling approach for distributed processing of top-k

dominating queries. IEEE Transactions on Knowledge and Data Engineering 30, 6 (2018), 1150–1163.

Mei Bai, Junchang Xin, Guoren Wang, Luming Zhang, Roger Zimmermann, Ye Yuan, and Xindong Wu. 2016. Discovering

the k representative skyline over a sliding window. IEEE Transactions on Knowledge and Data Engineering 28, 8 (2016),

2041–2056.

Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The skyline operator. In Proceedings of the 17th Interna-

tional Conference on Data Engineering. 421–430.

Yu-Chi Chung, I-Fang Su, and Chiang Lee. 2013. Efficient computation of combinatorial skyline queries. Information Sciences

38, 3 (2013), 369–387.

Antonio Corral and Michael Vassilakopoulos. 2005. On approximate algorithms for distance-based queries using r-trees.

Computer Journal 48, 2 (2005), 220–238.

Xiaofeng Ding and Hai Jin. 2012. Efficient and progressive algorithms for distributed skyline queries over uncertain data.

IEEE Transactions on Knowledge and Data Engineering 24, 8 (2012), 1448–1462.

Yunjun Gao, Lu Chen, Xinhan Li, Bin Yao, and Gang Chen. 2015a. Efficient k-closest pair queries in general metric spaces.

VLDB Journal 24, 3 (2015), 415–439.

Yunjun Gao, Qing Liu, Baihua Zheng, Li Mou, Gang Chen, and Qing Li. 2015b. On processing reverse k-skyband and ranked

reverse skyline queries. Information Sciences 293 (2015), 11–34.

Xixian Han, Jianzhong Li, and Hong Gao. 2017. Efficient top-k dominating computation on massive data. IEEE Transactions

on Knowledge and Data Engineering 29, 6 (2017), 1199–1211.

Hyeonseung Im and Sungwoo Park. 2012. Group skyline computation. Information Sciences 188 (2012), 151–169.

Maria Kontaki, Apostolos N. Papadopoulos, and Yannis Manolopoulos. 2011. Continuous top-k dominating queries. IEEE

Transactions on Knowledge and Data Engineering 24, 5 (2011), 840–853.

Ken C. Lee, Wang Chien Lee, Baihua Zheng, Huajing Li, and Yuan Tian. 2010. Z-SKY: An efficient skyline query processing

framework based on Z-order. VLDB Journal 19, 3 (2010), 333–362.

Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. 2007. Selecting stars: The k most representative skyline operator.

In Proceedings of the IEEE 23rd International Conference on Data Engineering. IEEE, 86–95.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

Efficient Approaches to k Representative G-Skyline Queries 58:27

Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, and Haoyu Zhang. 2015. Finding pareto optimal groups: Group-based skyline. Pro-

ceedings of the VLDB Endowment 8, 13 (2015), 2086–2097.

Jinfei Liu, Juncheng Yang, Li Xiong, Jian Pei, and Jun Luo. 2018. Skyline diagram: Finding the voronoi counterpart for

skyline queries. In Proceedings of the IEEE 34th International Conference on Data Engineering. 653–664.

Hua Lu, Christian S. Jensen, and Zhenjie Zhang. 2011. Flexible and efficient resolution of skyline query size constraints.

IEEE Transactions on Knowledge and Data Engineering 23, 7 (2011), 991–1005.

Matteo Magnani and Ira Assent. 2013. From stars to galaxies: Skyline queries on aggregate data. In Proceedings of the 16th

International Conference on Extending Database Technology. 477–488.

Matteo Magnani, Ira Assent, and Michael L. Mortensen. 2014. Taking the big picture: Representative skylines based on

significance and diversity. VLDB Journal 23, 5 (2014), 795–815.

Xiaoye Miao, Yunjun Gao, Baihua Zheng, Gang Chen, and Huiyong Cui. 2015. Top k dominating queries on incomplete

data. IEEE Transactions on Knowledge and Data Engineering 28, 1 (2015), 252–266.

Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive skyline computation in database systems.

ACM Transactions on Database Systems 30, 1 (2005), 41–82.

Bagus Jati Santoso and Ge Ming Chiu. 2014. Close dominance graph: An efficient framework for answering continuous

top-k dominating queries. IEEE Transactions on Knowledge and Data Engineering 26, 8 (2014), 1853–1865.

Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. 2009. Distance-based representative skyline. In Proceedings of the IEEE 25th

International Conference on Data Engineering. IEEE, 892–903.

Eleftherios Tiakas, George Valkanas, Apostolos N. Papadopoulos, Yannis Manolopoulos, and Dimitrios Gunopulos. 2016.

Processing top-k dominating queries in metric spaces. ACM Transactions on Database Systems 40, 4 (2016), 1–38.

Qian Wan, Raymond Chi-Wing Wong, Ihab F. Ilyas, M. Tamer Özsu, and Yu Peng. 2009. Creating competitive products.

Proceedings of the VLDB Endowment 2, 1 (2009), 898–909.

Changping Wang, Chaokun Wang, Gaoyang Guo, Xiaojun Ye, and Philip Yu. 2018. Efficient computation of g-skyline

groups. IEEE Transactions on Knowledge and Data Engineering 30, 4 (2018), 674–688.

Wenhui Yu, Jinfei Liu, Jian Pei, Li Xiong, Xu Chen, and Zheng Qin. 2020. Efficient contour computation of group-based

skyline. IEEE Transactions on Knowledge and Data Engineering 32, 7 (2020), 1317–1332.

Nan Zhang, Chengkai Li, Naeemul Hassan, Sundaresan Rajasekaran, and Gautam Das. 2014. On skyline groups. IEEE

Transactions on Knowledge and Data Engineering 26, 4 (2014), 942–956.

Zhenjie Zhang, Laks V. S. Lakshmanan, and Anthony K. H. Tung. 2009. On domination game analysis for microeconomic

data mining. ACM Transactions on Knowledge Discovery from Data 2, 4 (2009), 1–27.

X. Zhao, Y. Wu, W. Cui, X. Du, Y. Chen, Y. Wang, D. L. Lee, and H. Qu. 2017. SkyLens: Visual analysis of skyline on

multi-dimensional data. IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 246–255.

Xu Zhou, Kenli Li, Guoqing Xiao, Yantao Zhou, and Keqin Li. 2016a. Top k favorite probabilistic products queries. IEEE

Transactions on Knowledge and Data Engineering 28, 10 (2016), 2808–2821.

Xu Zhou, Kenli Li, Zhibang Yang, and Keqin Li. 2019. Finding optimal skyline product combinations under price promotion.

IEEE Transactions on Knowledge and Data Engineering 31, 1 (2019), 138–151.

Xu Zhou, Kenli Li, Zhibang Yang, Guoqing Xiao, and Keqin Li. 2018. Progressive approaches for pareto optimal groups

computation. IEEE Transactions on Knowledge and Data Engineering 31, 3 (2018), 521–534.

X. Zhou, K. Li, Y. Zhou, and K. Li. 2016b. Adaptive processing for distributed skyline queries over uncertain data. IEEE

Transactions on Knowledge and Data Engineering 28, 2 (2016), 371–384.

Haoyang Zhu, Xiaoyong Li, Qiang Liu, and Zichen Xu. 2020. Top-k dominating queries on skyline groups. IEEE Transactions

on Knowledge and Data Engineering 32, 7 (2020), 1431–1444.

Received August 2019; revised March 2020; accepted April 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 58. Publication date: July 2020.

