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a b s t r a c t 

Encryption plays an important role in protecting data, especially data transferred on the Internet. How- 

ever, encryption is computationally expensive and this leads to high energy costs. Parallel encryption 

solutions using more CPU/GPU cores can achieve high performance. If we consider energy efficiency to 

be cost effective using parallel encryption solutions at the same time, this problem can be alleviated 

effectively. Because many CPU/GPU cores and encryption are pervasive currently, saving energy cost by 

parallel encrypting has become an unavoidable problem. In this paper, we propose an energy-efficient 

parallel Advance Encryption Standard (AES) algorithm for CPU-GPU heterogeneous platforms. These plat- 

forms, such as the Green 500 computers, are popular in both high performance and general computing. 

Parallelizing AES algorithm, using both GPUs and CPUs, balances the workload between CPUs and GPUs 

based on their computing capacities. This approach also uses the Nvidia Management Library (NVML) to 

adjust GPU frequencies, overlaps data transfers and computation, and fully utilizes GPU computing re- 

sources to reduce energy consumption as much as possible. Experiments conducted on a platform with 

one K20M GPU and two Xeon E5-2640 v2 CPUs show that this approach can reduce energy consump- 

tion by 74% compared to CPU-only parallel AES algorithm and 21% compared to GPU-only parallel AES 

algorithm on the same platform. Its energy efficiency is 4.66 MB/Joule on average higher than both CPU- 

only parallel AES algorithm (1.15 MB/Joule) and GPU-only parallel AES algorithm (3.65 MB/Joule). As an 

energy-efficient parallel AES algorithm solution, it can be used to encrypt data on heterogeneous plat- 

forms to save energy, especially for the computers with thousands of heterogeneous nodes. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

For large-scale compute-intensive applications, users want

aster computers. In the past, computer manufacturers improved

erformance by integrating more transistors and enhancing the

requency of cores, but this often led to higher energy consump-

ion or higher operating temperatures. The former means spend-

ng more money, the latter may affect hardware functionality, even

amage it. Thus, users need to seek highly energy-efficient com-

uters with more cores but cores of relatively low-frequency. This

an be seen by reviewing The green 500 list-No. 2018 [1] that pri-

arily evaluates computers based on their energy efficiency. The
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ainstream computers on the Green 500 list are built on CPU +

vidia GPU heterogeneous architecture. 

CPU-GPU heterogeneous platforms are popular not only for su-

ercomputers but also for general computers because of the high

ost-to-performance ratio of GPUs. GPUs support general purpose

omputing and are easy to program using frameworks offered by

heir manufacturers. Nvidia provides the Computing Unified Device

rchitecture (CUDA) to facilitate programming for general purpose

pplications. The most important point is that GPUs show high en-

rgy efficiency due to simple control and high throughput. For this

eason, we choose this type of platform to research and develop

nergy-Efficient Parallel (EEP) AES algorithm as a popular and mar-

etable approach. 

.2. Our contributions 

In this work, we first analyze the opportunities for improv-

ng the energy efficiency of AES algorithm on CPU-GPU heteroge-

eous platforms. The energy consumed by GPUs is measured by

https://doi.org/10.1016/j.parco.2020.102621
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
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Table 1 

Some previous works on AES parallelizing. 

Contributors Language Platform Performance 

Duta et al. [4] CUDA, OpenCL, OpenMP Unknown CUDA: 25.51x Speedup; OpenCL: 18x Speedup; 

OpenMP: 11.29x Speedup 

Pousa et al. [11] OpenMP, MPI, CUDA 2 Intel Xeon E5405 (1 node); Cluster with 4 nodes; 

Nvidia Geforce GTX 560Ti 

CUDA: 507.29x Speedup; MPI (32 cores): 31.67x 

Speedup; OpenMP (8 cores): 7.82x Speedup 

Ortega et al. [12] CUDA, OpenMP Quadro FX 1800; Intel Core i7 960 CUDA: 18.31x Speedup; OpenMP: 3.05x Speedup 

EEP CUDA + OpenMP NVIDIA Tesla K20M; Intel Xeon E5-2640 v2 108.06x Speedup 
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the NVML library [2] , which is able to acquire the power and ad-

just the frequencies of Nvidia GPUs. The energy consumed by CPUs

can be measured by the Intel Power Gadget Application Program

Interfaces (APIs) [3] , which can acquire the energy of Intel CPUs

by energy Model-Specific Registers (MSRs). Then, we propose the

corresponding methods to achieve an energy-efficient parallel AES

algorithm. We evaluate the energy efficiency of EEP by comparing

it with CPU-only parallel (CP) AES algorithm proposed in [4] and

GPU-only parallel (GP) AES algorithm presented in [5] . Note that

GP refers to the main encryption performed on GPUs in parallel,

which still need the assistance of CPUs for such tasks as transfer-

ring data, executing key extensions, etc. 

In summary, our contributions are listed as follows. 

• We systematically analyze five opportunities for achieving en-

ergy efficiency of parallel AES algorithm. 
• We propose an energy-efficient parallel AES algorithm

called EEP, which synthetically adopts the methods of hy-

brid parallelizing, workload balancing, frequency adjusting,

communication-computation overlapping, and best occupancy. 
• We evaluate EEP in several aspects, including energy ratio, en-

ergy saving, energy efficiency, and so on, and compare EEP with

CPU-only parallel AES algorithm, GPU-only parallel AES algo-

rithm, and some previous works. 

1.3. Organization 

The remainder of this paper is organized as follows:

Section 2 reviews some related works. Section 3 , describes

two opportunities to save energy. Section 4 provides the corre-

sponding methodologies. Section 5 presents the algorithm for EEP

that adopts the aforementioned methods. Section 6 describes the

experiments conducted, then provides and evaluates their results.

Section 7 provides conclusions and a look to the future. 

2. Related works 

2.1. Parallel AES algorithm 

AES algorithm [6] is a symmetric block cipher and suitable

for improving performance through parallelism when it works in

ECB (Electronic Code Book) or CTR (Counter) mode. Some works

that have enhanced the performance of AES algorithm relying

on GPUs or CPUs are listed in Table 1 . For comparison, this ta-

ble also lists the performance of the EEP, which is discussed in

Section 6.2.1 later. 

Manavski first [7] used CUDA to parallelize AES algorithm on a

GPU and achieved about 20 times speedup. Maistri et al. [8] also

implemented parallel AES algorithm using CUDA and got good per-

formance with excellent price/performance ratio. Iwai et al. [9] im-

plemented parallel AES algorithm by use of CUDA on GPU and

analyzed the effectiveness of AES algorithm implementation from

the conditions of parallel processing granularity, memory alloca-

tion, etc. They found that the granularity at 16 Bytes/thread, and

the shared memory of allocating T table and round keys are ef-

fective. Nishikawa et al. [10] got 48:6 Gbps throughput of parallel
ES algorithm on Nvidia Telsa C2050. And then, Li et al. [5] fur-

her achieved around 60 Gbps throughput as the maximum per-

ormance on Nvidia Tesla C2050 GPU by using CUDA. 

As a CPU has multiple cores, another parallelism is to use

he CPU to parallelize AES algorithm. This attracts the atten-

ion of researchers as well. Some recent research is listed in

able 1 too. Duta et al. [4] parallelized AES algorithm using CUDA,

penMP (Open Multi-Processing), and OpenCL (Open Computing

anguage) respectively and found that their performance descend

y CUDA, OpenCL, and OpenMP. We choose the parallelized version

f OpenMP to compare with our EEP and denote it as CP. POUSA

t al. [11] implemented parallel AES algorithm by using OpenMP,

PI (Message Passing Interface), and CUDA respectively, and the

ast one also outputs the highest efficiency. Besides, Ortega et al.

12] parallelized AES algorithm using OpenMP and CUDA on multi-

ore CPUs and many-core GPUs respectively, and observed that the

atter outperforms the former. These results prove that paralleliz-

ng AES algorithm by CUDA is a strong and effective method. 

Based on the above research for CPU-GPU heterogeneous com-

uters, parallelizing AES algorithm by GPUs and CPUs simultane-

usly can be done with GPUs taking part of workload in CUDA

anner and CPUs taking the remaining workload in OpenMP man-

er. This combination improves performance. Such heterogeneous

latforms can also achieve energy efficiency due to the high energy

fficiency of GPUs. We will analyze the reason in Section 3.2 and

atch it as an opportunity to develop EEP. 

.2. Energy efficiency 

As saving energy is as important as improving performance, it

s hotly studied by many researches naturally. Some previous re-

earch effort s on energy efficiency are listed in Table 2 with the

omparison of EEP. 

Leng et al. [20] proposed a GPGPU power model and integrated

t into GPGPU-sim, which is a cycle-level simulator modeling con-

emporary graphics processing units. It shows energy saving by uti-

izing dynamic voltage scaling, frequency scaling, and clock gating.

rice et al. [21] investigated how temperature, frequency, and volt-

ge impact on the energy efficiency of GPUs. They showed the ef-

ect of improving energy efficiency of GPUs for xGPU, a compute-

ound application, by lowering voltage, increasing frequency, and

aintaining a low die temperature. 

In summary, scaling frequency is an important and basic tech-

ology in saving energy. Of the 16 works cited in Table 2 , scal-

ng frequency was used in works from 2 to 10 and from 12 to

4. For greater improvement in energy efficiency, scaling frequency

hould be combined with other technologies. This can also be seen

n Table 2 . Work 3 combined CPU frequency scaling. Work 4 com-

ined voltage adjustment. Work 6 combined workload distribution.

ork 8 combined clock gating. Work 9 combined lowering both

oltage and temperature. Work 10 combined task migration. Work

2 combined dynamically scaling the number of cores. Work 13

ombined the parallelism degrees of applications. Work 14 com-

ined distribution of workload. 
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Table 2 

Previous works on energy efficiency. 

No. Contributors Methods Platform Energy Measure Energy Efficiency 

1 Hong and Kim [13] Selecting the number of active cores Nvidia GTX 280 Extech 380,801 power 

analyzer 

Energy saving: 10.99% 

2 Ge et al. [14] DVFS Dual Intel Sandy Bridge E5-2670, 

Nvidia K20c 

RAPL, SMI Energy efficiency: GPU 4.6x than CPU 

for Matrix Multiplication, 8.7x for TSP 

and FSM 

3 Paul et al. [15] Coordinated and dynamic energy 

management 

AMD A10-5800 Power management firmware Energy-delay squared product: up to 

30% 

4 Mei et al. [16] Scaling down GPU core voltage and 

frequency 

Intel Core i5-750, Nvidia GeForce GTX 

560 Ti 

Power meter Energy saving: 19.28%, Performance 

decrease: < = 4% 

5 Huang et al. [17] GPU parallelism Intel Core2 Duo, Nvidia Geforce GTX 

280 

Power meter Energy efficiency of GEM: GPU version 

better than serial 763x and 

multi-threaded 237x 

6 Abe et al. [18] Scaling core and memory frequencies 

of GPU appropriate to the workload 

characteristics 

Core i5 2400, Nvidia GeForce GTX 480 Power meter Energy saving: 28%, Performance 

decrease: 1% 

7 Jiao et al. [19] Scaling frequencies by application 

intensity 

Intel Core 2 Quad Q6600, Nvidia GTX 

280 

power meter Energy efficient improvement: 4% for 

matrix multiplication, 8 ~ 9% for 

Matrix Transpose 

8 Leng et al. [20] DVFS and clock gating Nvidia Geforce GTX 480, Nvidia 

Quadro FX 5600 

GPGPU-Sim Energy saving: 6.6% ~ 13.6% 

9 Price et al. [21] Lowering voltage, increasing 

frequency, and maintaining a low die 

temperature 

Intel i7-2600, Nvidia K20 N/A Energy efficiency improvement of 

xGPU: 37% ~ 48% 

10 Sarood et al. [22] DVFS and task migration Cluster of 32 nodes (128 cores), each 

of which has a Intel Xeon X3430 

Liebert power distribution unit Cooling energy saving: up to 63% 

11 Chiesi et al. [23] Scheduling jobs by minimum 

power-slot policy on heterogeneous 

nodes 

2 Intel Xeon E5520 and 2 Nvidia 

GeForce GTX 590 in a node, 4 nodes 

totally 

Current sensing board, 

acquisition and elaboration PC 

Peak-power reduce: 10% ~ 24%, Time 

increase: 2% 

12 Lee et al. [24] DVFS and dynamically scaling the 

number of cores 

Modeled GPU by GPUGPU-Sim Formula computing Throughput improvement: up to 38%, 

nearly 20% on average 

13 Lee et al. [25] Trading off the frequency and the 

parallelism degrees of applications 

Intel i7 720QM N/A Energy saving of JPEG: up to 60% 

14 Ma et al. [26] DVFS and distributing workload AMD Phenom II X2, Nvidia GeForce 

8800 GTX 

Power meter Energy saving: 21.04% 

15 Wang and Ren [27] Distributing workload Intel Core i7, AMD 4870 Power meter Energy saving: 14% 

16 Arora et al. [28] Power gating AMD A8-5600K APU Hardware Energy saving: 8% (avg), up to 36% 

17 EEP Hybrid parallelism, workload Balancing, 

frequency adjustment, and 

communication-computation 

overlapping 

NVIDIA Tesla K20M; Intel Xeon E5-2640 

v2 

RAPL and NVML Saving 74% energy of CPU-only parallel 

AES algorithm and 21% energy of 

GPU-only parallel AES algorithm 

Note: DVFS (Dynamic Voltage and Frequency Scaling), RAPL (Running Average Power Limit), SMI (Nvidia System Management Interface). 
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Works 1, 11, 15, and 16 also employed other technologies. Work

1 selected active cores. Work 11 scheduled jobs on heterogeneous

nodes. Work 15 utilized workload distribution. Work 16 exploited

power gating. The cited research examples illustrate that achiev-

ing an energy-efficient application needs to combine the properties

of both the application and its execution platform. When popu-

lar CPU-GPU heterogeneous platforms and AES algorithm are com-

bined to develop an EEP, the properties of both should be deeply

and systematically studied. Section 3 provides analysis of the op-

portunities of achieving EEP on CPU-GPU heterogeneous platforms.

Works 17 is our proposal EEP, whose energy efficiency is listed

in Table 2 also for comparison. Later, Section 6.2.5 will discuss the

energy efficiency of EEP in details. We can find that EEP is energy

more efficient than other works in Table 2 . 

3. Opportunities 

3.1. AES algorithm parallelism opportunity 

AES algorithm is a block cipher and each block can be en-

crypted or decrypted independently in ECB (Electronic Code Book)

or CTR (Counter) mode. Thus, it can be accelerated in parallel. Its

encryption process for a block (16 bytes data called state ). The

main encryption process for a block (16 bytes data called state )

involves Nr rounds operations and a key extension. Nr is deter-

mined by AES algorithm types AES - N: AES -128, AES -192, and AES -

256. They differ in key length of 128 bits, 192 bits, and 256 bits

respectively. Their Nrs are 10, 12, and 14 respectively. Obviously,

AES algorithm becomes more complicated and more secure as Nr

increases. 

Each round includes four procedures: SubBytes, ShiftRows, Mix-

Columns , and AddRoundKey , except for the last round missing Mix-

Columns . The N 
8 bytes key is used by all the blocks and needs to

be extended by Extend once to meet the requirement of AddRound-

Key . The first AddRoundKey before the first round uses the first

four words of the extended keys, and then each of the Nr rounds

uses every four words of the left extended keys. The Extend only

needs to be executed once in the whole process of encryption, so

it has no large impact on performance. Whereas the four proce-

dures need to be run multiple times for each state . In details, for

a state, SubBytes and ShiftRows need to be executed Nr times; Mix-

Columns and AddRoundKey need to be executed Nr − 1 and Nr + 1

times respectively. 

In a round, the four procedures involve some operations as

listed below (Note: We use the following abbreviations. X: XOR;

L: lookup; R: rotation; M: multiplication.). 

• AddRoundKey executes 16 XOR operations (16X) on a state and

a round key . Its target is to blind data. 
• SubBytes aims to nonlinearly substitute data using S-Boxes and

can be accelerated by 16 T table lookups (16L). 
• ShiftRows rotates rows by 0, 1, 2, 3 respectively to confuse data,

thus it has 6 byte rotations (6R). 
• MixColumns transforms and mixes data in columns which has

4 × 4 = 16 multiplications (16M) and 3 × 4 = 12 XORs (12X). 

For example, when encrypting a state, AES -128 has the number

of operations: 

OP s = Nr × (OP sb + OP sr ) + (Nr + 1) × OP ak + (Nr − 1) × OP mc 

= 10 × (28 X + 16 L + 6 R + 16 M) + 16 X − 16 M − 12 X 

= 284 X + 160 L + 60 R + 144 M, 

where OP ak , OP sb , OP sr , and OP mc represent the number of opera-

tions of AddRoundKey, SubBytes, ShiftRows , and MixColumns respec-

tively. 

If not considering the differences of operations, there are 648

operations for encrypting 16 bytes data. In other words, AES -128
as the computing complexity of O (M) = M 

2 . 33 , where M repre-

ents the number of bytes of plain text, if not considering the dif-

erences of operations. AES -192 and AES -256 can calculate similarly

nd their computing complexities are M 

2.4 and M 

2.46 respectively.

herefore, AES algorithm is a computing-intensive problem. It is

uitable to be executed on GPUs, because GPUs can support these

nteger operations through CUDA and efficiently hide the overhead

f transferring data by large-scale parallelism. 

.2. AES energy-saving opportunities 

For CPU-GPU heterogeneous platforms, power is consumed on

oth CPUs and GPUs with two parts: dynamic power and static

ower [21] [27] . The amount of dynamic power is determined by

untime system, whereas the amount of static power is decided

y circuit technology, chip layout, and so on [21] . For example,

ynamic power depends on the instructions of the kernel run-

ing on the GPU. Compute instructions cosume less energy than

emory accesses on GPUs. A multiply-add instruction consumes

–15 times less energy than accessing L1 memory on an Nvidia

80 [29] . Static power consumption is due to current leakage and

omes from four main sources : reverse-biased junction leakage

urrent, gate-induced drain leakage, gate direct-tunneling leakage,

nd subthreshold leakage [30] . Therefore, static power is constantly

onsumed regardless of transistor switching. 

Power consumption Power can be calculated as: 

 ower = P cs + P cd + P gs + P gd , (1)

here P cs , P cd , P gs , and P gd denote CPU static, CPU dynamic, GPU

tatic, and GPU dynamic power, respectively. While energy con-

umption Energy E is equal to: 

 = P × T 

= (P cs + P gs ) × T + (P cd + P gd ) × T , (2)

here T represents the runtime of a specific application, such as

ES. Because P gs and P gd do not change, reducing T, T × P cd , and/or

 × P gd provides opportunities to lower energy consumption. 

In [31] , P _ gd can be approximately expressed as : 

 _ gd = ACk f α, α = 

γ + 1 

γ − 1 

, k = K 

2 
1 −γ , (3)

here A is the switching activity factor, C is the capacitance, f is

he clock frequency, K and γ are the parameters related to manu-

acturing technique. γ is usually less than 2 and larger than 1, and

 _ gd has the exponential relationship with f. T is inversely propor-

ional to f . This means that there is a suitable f to balance the P _ gd

nd T and achieve good energy efficiency. 

There are five main opportunities to save energy for par-

llel AES algorithm on CPU-GPU heterogeneous platforms in

his work. They are hybrid parallelism, workload balancing, fre-

uency adjustment, communication-computation overlapping, and

ull occupancy. Their rationales will be revealed and discussed in

ections 3.2.1 –3.2.5 . 

.2.1. Hybrid parallelism 

Since GPUs have strong computing capacity, GPU parallel appli-

ations will spend less time than CPU parallel applications gener-

lly. If a hybrid parallel application distribute workload balance to

PUs and GPUs, it will spend less time compared with correspond-

ng GPU parallel or CPU parallel algorithms. 

Let us consider the application AES. Fig. 1 illustrates the power

nd time of CP (CPU Parallel), GP (GPU Parallel), and HP (Hybrid-

arallel) AES algorithms on CPU-GPU heterogeneous platforms. Be-

ause E = P × T , the area of rectangles represents the energy con-

umed. Obviously, HP consumes less energy compared with GP and

P. 
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Fig. 1. Energy-saving model via hybrid parallelism. CP, GP, and HP represent CPU 

parallel AES, GPU parallel AES, and hybrid parallel AES respectively. 

Fig. 2. Workload balancing impact. 
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Fig. 3. Comparison of ”overlapping” and ”no overlapping”. 
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CP only uses CPUs to encrypt data, but GPUs will consume

tatic energy too. In other words, GPUs have no energy efficiency

ecause they consume energy without product. Because of the rel-

tively weak computing capacity of the CPU, CP will spend more

ime on encryption. This gives us an opportunity to reduce time

y migrating the encryption task to GPUs in the GP manner. GP

ncrypts data on GPUs in parallel and will reduce the runtime due

o high computing capacity of GPUs. However, GP will waste the

nergy cost of CPUs because CPUs do not perform any actual en-

ryption. Obviously, using both GPUs and CPUs and letting them

ncrypt data in parallel, will reduce runtime and save energy. 

In this hybrid algorithm, the GPU and in the CPU both spend

tatic energy and dynamic energy. Although both the GPU and the

PU spend more energy than individual single parallel algorithm,

he energy spent totally will be reduced with the cost time de-

reasing. Therefore, hybrid algorithm actually has higher energy ef-

cient in other words. 

Thus, adopting hybrid parallelism is an opportunity to achieve

n energy-efficient parallel AES. 

.2.2. Workload balancing 

The runtime can be reduced by using GPUs and CPUs harmon-

cally. The workload should be balanced between GPUs and CPUs

o avoid the unnecessary synchronization time. 

Fig. 2 illustrates the impact of workload balancing. “Unbalanced

ase 1” assigns too much workload to CPUs and leads to spend-

ng more time on CPUs. Similarly, “Unbalanced Case 2” assigns too

uch workload to GPUs and results in spending more time on

PUs. Because of greater computing capacity of GPUs, “Unbalanced

ase 2” will spend less time than “Unbalanced Case 1”. Obviously

n both of them, CPUs/GPUs have to wait GPUs/CPUs. Whereas

Balanced Case” avoids the wait by assigning the suitable workload

o CPUs and GPUs. 
.2.3. Frequency adjustment 

The NVML library is able to adjust the frequencies of GPU cores

nd memory, which will impact on both P gd and T . To obtain the

mpact, we run GPU-parallel AES on a heterogeneous platform,

here other experiments will be conducted as well. Table 3 de-

icts the configurations of the platform. 

In Table 4 , we have gathered the data of speed at encrypting

laintexts in different size. We normalized the data of speed at

5 to 1, and the other data of speed at different frequencies were

ompared with it and get the relative values. As plain text varies

ize from 100 MB to 800 MB, the relative values of performance of

P shows a proportional relationship with frequencies. 

Comparing the last row with the other rows, the relative values

f performance are very close to the relative values of the core fre-

uencies. This enlightens us about two important facts. One is that

P is compute-bound because its performance is proportional to

ore frequencies. This consolidates our analysis in Section 3.1 . The

ther is that improving core frequencies can reduce the runtime of

ncryption. 

Undoubtedly, this is an opportunity to save energy for parallel

ES. The method of how to adjust frequencies of GPU will be de-

cribed in Section 4.3 . 

.2.4. Communication-computation overlapping 

Furthermore, there is another opportunity, i.e., decreasing the

ransferring overhead by overlapping communication and compu-

ation. The rationale is illustrated in Fig. 3 , where “no overlapping”

rst transfers data to device, then encrypts the data, and then

ransfers the data back to host; while “overlapping” divides data

nto parts and transfers them to device in streams. A GPU can con-

urrently executes asynchronous commands in streams,. Different

treams may execute their commands concurrently or out of order

ith respect to each other. The encryption can overlap with the

ata transfers, so the total runtime decreases. 

For GPU parallel AES, the transfer time T f is relatively less than

he compute time T c because of the compute-intensity of AES as

iscussed above. If employing nStreams streams, it will spend time

f 
T f 

nStreams + T c less than the time of T f + T c spent on the case with-

ut streams in theory. However, more streams do not definitely

ean better performance due to streams’ extra overhead and re-

ource contention. Through some experiments, the relatively better

6 streams are used in our experimental platform, i.e., nStreams =
6 . 

.2.5. Full occupancy 

The last method of saving energy is to reduce runtime by fully

sing GPU resources. The GPU thread resources can be sufficiently

ccupied at 100% percent by customizing thread organization. If

he full occupancy is reached, a GPU has enough warps to be

cheduled and executed, thus reduces possible waits for warps

hich lack resources. This will save runtime. In other words, this

ill save energy. How to customize thread organization for the full

ccupancy will be described in Section 4.5 . 
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Table 3 

Configurations of the experimental platform . 

GPU CPU 

NVIDIA Tesla K20M (13 multiprocessors) 2 Intel Xeon E5-2640 v2 (support hyper-threading) 

6 clock frequencies of core and memory in MHz: (324, 324), (614, 2600), 

(640, 2600), (666, 2600), (705, 2600), (758, 2600) 

clock rate: 2.0 GHz 

Total: 2496 cores Total: 16 cores 
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4. Methodology 

In this section, five methods corresponding to the opportu-

nities in the Section 3.2 will be given. They are hybrid par-

allelizing, adjusting frequencies, balancing workload, overlapping

communication-computation, and full occupying, which will be de-

picted from Subsections 4.1 to 4.5 orderly. 

4.1. Hybrid parallelizing 

Hybrid parallelizing AES can reduce the total runtime and im-

prove energy efficiency because resources are not wasted. In or-

der to achieve hybrid parallelism, a master-slave model is adopted.

CPUs spawn multiple threads working in parallel, one of which,

called service thread, is used to transfer data and call kernel func-

tions and the others of which are used to execute some parts of a

computation task. 

4.2. Balancing workload 

A key issue in reducing runtime in hybrid-parallel AES is how

to maintain workload balance on CPUs and GPUs. Because AES is a

block cipher and deals with data in groups of 16 bytes, the work-

load of each group is the same size. This provides a chance of as-

signing workload balanced based on the computing capabilities of

CPUs and GPUs. 

The assigning method involves two steps, as follows. First, adopt

R = 

G f × N _ Mp × W s 

C f × (α × N _ C − 1) × β
(4)

to calculate the R of the computing capacity of GPUs over CPUs,

and then assign 

1 
R +1 and 

R 

R +1 of the workload to CPUs and GPUs

respectively. 

In the right-hand side of Eq. (4) , the numerator and the de-

nominator represent the computing capacities of GPUs and CPUs

respectively. 

In the numerator, Gf , N _ Mp, and Ws denote the frequency of

the cores, the number of multiprocessors, and the size of warp

on GPUs respectively. The above parameters can be retrieved by

the function of cudaGetDeviceProperties . Because a multiprocessor

schedules and issues threads in units of warp, N _ Mp × W s means

the number of threads running on GPUs simultaneously and G f ×
N _ Mp × W s means all the work ability of these running threads. 

In the denominator, Cf and N _ C denote the frequency of the

cores and the number of cores on CPUs respectively, which can

be retrieved by the library of powerGadget. The coefficients α and

β are used to differentiate hyper-threading. If CPUs support hyper-

threading, they are 2 and 0.7 respectively; otherwise they both are

1. 

If CPUs support hyper-threading, adopting hyper-threading can

yield more threads and improve the performance of the CPUs.This

means CPUs can be assigned more work. Hyper-threading can im-

prove performance by 40–50% according to Intel’s specifications

and yield as twice as many threads as nonhyper-threading, i.e.,

2 × N _ C threads. However, one of them will be used to transfer

data and call the kernel. Therefore, only 2 × N _ C threads will ac-

tually undertake computation. But two hyper-threads have 1.4–1.5
imes the computing ability of one normal thread. We employed

.4 times to calculate conservatively. Thus, C f × (2 × N _ C − 1) × 0 . 7

epresents the computing capacity of hyper-threads except the ser-

ice thread. 

If CPUs do not support hyper-threading, they will derive N _ C

hreads and one of them will serve GPU parallelism, thus C f × (1 ×
 _ C − 1) × 1 expresses the computing capacity of CPUs. 

In this paper, we considered only static allocation, but dynamic

llocation will be considered to suit the change of background pro-

esses in our future work. 

.3. Adjusting frequencies 

Because adjusting frequencies will impact energy consumption,

t can be used to save energy for parallel AES. It can be accom-

lished using the NVML library. In the library, the nvmlDeviceSe-

ApplicationsClocks can be used to set the clocks at which applica-

ions will run. The clocks include the memory clock and the core

lock and must be specified as the clocks supported by the device.

he nvmlDeviceGetSupportedGraphicsClocks and the nvmlDeviceGet-

upportedMemoryClocks can query all supported core and memory

locks respectively. 

.4. Overlapping communication and computation 

Communication-computation overlapping can save time and

ide overhead efficiently. The methodology to achieve this is to

dopt streams and asynchronized transfers. First, allocate host

emory for the data that will be transferred to device memory.

ext, copy data to host memory. Then, create streams. Each stream

xecutes its own data transfers and kernel calls concurrently. The

elow pseudo code in Algorithm 2 illustrates the process of over-

apping communication and computation. 

.5. Full occupancy 

For any given application, the number of activated warps in a

ultiprocessor is limited by the resource usage of the application,

ncluding registers and shared memory, and by the physical limits

f GPUs. Achieving the full occupancy requires the following steps:

1. Obtain the GPU properties by utilizing cudaGetDeviceProperties ; 

2. Get the resource usage of the application using different block

sizes in compiling the application with option − − ptxas −
options = −v ; 

3. Calculate the occupancies of different block size using the

above information, the detailed information can be found in

[32] ; 

4. Choose the block size with the full occupancy to organize

threads. 

Based on calculation by this method, all the GPU occupancy ra-

ios of parallel AES with block sizes of multiple of warp size are

isted in Fig. 4 . Block sizes of 256, 512, and 1024 with 100% occu-

ancy can be chosen. The block size of 512 was employed in this

ork. 
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Fig. 4. GPU Occupancy Ratio.The GPU occupancy ratios with all block sizes of the 

multiple of warp size (32) are portrayed. The full occupancy with ratio of 100% 

exists in the block sizes of 256, 512, and 1024. 
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Algorithm 2 Overlapping communication-computation. 

Require: 

The data to be dealt, data ; 

The number of streams, nStreams ; 

Ensure: 

1: Allocate host memory for data by cudaMal l ocHost() ; 

2: Copy data to host memory by cudaMemcpy () ; 

3: Create nStreams streams streams by cudaStr eamCr eate () ; 

4: for each stream in streams do 

5: Use cudaMemcpyAsync() to asynchrously tranfer the data 

used by the stream : data [ stream ] ; 

6: Call kernel by kernel <<< dg, gb, sm, stream >>> 

(data [ stream ]) ; 

7: Use cudaMemcpyAsync() to asynchrously transfer the results 

produced by the stream back to host; 

8: end for 

9: Destroy streams by cudaSt reamDest roy () . 

Algorithm 3 Encrypt Kernel. 

Require: 
The data to be encrypted, data ; 
The extension key of AES, exKey ; 
The temporary state data, state ; 

Ensure: 
1: Allocate shared memory for T table and exKey ; 
2: Load T tables and exKey to the shared memory; 
3: Synchronize threads; 

4: if thread id tid < 

Len (data ) 
16 then 

5: state ← d ata [ tid × 16] . . . d ata [(tid + 1) × 16 − 1] ; 
6: AddRoundKey( state , exKey [0]); 
7: for each round i = 1 to the number of rounds Nr do 
8: SubBytes( state , T ); 
9: ShiftRows( state , T ); 

10: if i � = Nr then 
. Algorithms 

Based on the previous two sections, we propose an Energy-

fficient Parallel (EEP) AES Algorithm that employs hybrid par-

llelizing, balancing workload, adjusting frequencies, overlapping

ommunication and computation, and full occupancy. EEP can be

een in Algorithm 1 . The details of the kernel in Line 14 of

lgorithm 1 are shown in Algorithm 3 . 
lgorithm 1 Energy-Efficient Parallel AES Algorithm. 

equire: 

The data to be protected with Length of Len , plaintext; 

The key of AES, key ; 

nsure: 

1: Set optimal GPU core frequency and memory frequency by 

NVML; 

2: Get the parameters used in Eq. (4); 

3: Get Len , i.e., the length of plaintext; 

4: Calculate ratio by Eq.(4); 

5: Extend key to exKey ; 

6: Derive α × Ccores threads on CPU; 

7: Assign a portion with LenC = Len × 1 
R +1 of plaintext to threads 

1 ∼ α × N _ C − 1 evenly; 

8: Assign the left portion of plaintext , i.e. LenG = Len − LenC, to 

thread 0; 

9: Encrypt LenT = 

LenC 
α×N _ C−1 of plaintext by each of threads 1 ∼ α ×

N _ C − 1 in parallel; 

10: Allocate LenG space on device memory by thread 0; 

11: Create nStreams streams by thread 0; 

12: for each stream Si in S do 

13: Transfer LenS = 

LenG 
S data to device memory asynchronously; 

14: Call encKernel <<< gDim, bDim, 0 , Si >>> (plaintext + 

LenS ∗ Si, LenS, exKey, T ) which will encrypt LenS data from 

plaintext + LenS ∗ Si with key on GPU and is described in 

Alg. 3; 

15: Transfer LenS = 

lenG 
S data to main memory asynchronously; 

16: end for 

17: Receive the encrypted data from GPU by thread 0; 

18: Finish the encryption by threads 1 ∼ α × N _ C − 1 ; 

19: Return plaintext which has been encrypted. 

11: mixColumns( state , T ); 
12: end if 
13: AddRoundKey( state , exKey [i]); 
14: end for 
15: end if 
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EEP requires the data to be protected plaintext and produces the

orresponding cipher text placed at the same location. It employs

ybrid-parallel AES on CPUs and GPUs, thus needs to distribute

laintext balanced to them. 

The distribution needs the parameters of CPUs and GPUs, so the

lgorithm first sets the optimal GPU core and memory frequen-

ies in Line 1. The details are using nvmlDeviceGetSupportedMem-

ryClocks and nvmlDeviceGetSupportedGraphicsClocks to retrieve the 

upported frequencies of the GPU, and then using nvmlDeviceSe-

ApplicationsClocks to set the highest frequencies. Then get these

arameters in Line 2. Line 3 gets the length of the plaintext re-

uired by calculating the distribution. Next, Line 4 calculates the

atio of computing capacity by Eq. (4) . 

After extending key to exKeys in Line 5 by a single thread,

× N _ C threads are derived in Line 6, because the extension of 

ey needs to run once serially. Subsequently, the plaintext can be

ssigned to CPUs and GPUs in Lines 7 and 8 respectively. In details,

or CPUs, α × N _ C − 1 threads will evenly undertake the encryp-

ion of the portion of 1 
R +1 of the plaintext and the service thread

thread 0) will send the left portion to GPUs for encryption. 

In Line 9, α × N _ C − 1 threads encrypt the data in parallel. In

ines 10–17, thread 0 executes its service at the same time. In

etails, thread 0 first allocates memory for the plaintext in Line

0, and then creates nStreams streams in Line 11. All the streams

ill asynchronously and evenly transfer the plaintext to device

nd back host in Lines 13 and 15 respectively. Of course, the real

ncryption work is done by these streams of GPU in parallel as

hown in Line 14. Every stream is in charge of encrypting data
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Fig. 5. Energy Comparison. The energy includes all the energy of the CPUs and the 

GPU cost by CP, GP, and EEP in encrypting plaintext at different frequencies. The 

different frequencies of the GPU, i.e., Fi , i = 1 . . . 6 , correspond to six frequencies of 

Nvidia K20M listed in Table 4 respectively. 

Table 4 

Relative performance of GPU-parallel AES. 

Size(MB) F1 F2 F3 F4 F5 F6 

100 0.47 0.89 0.93 0.96 1.00 1.06 

200 0.47 0.89 0.87 0.96 1.00 1.07 

400 0.42 0.92 0.90 0.99 1.00 1.11 

800 0.47 0.89 0.90 0.93 1.00 1.06 

RV of core freq. 0.46 0.87 0.91 0.94 1.00 1.08 

Note: F1 (324&324 MHz), F2 (614&2600 MHz), F3 (640&2600 MHz), 

F4 (666&260 0 MHz), F5 (705&260 0 MHz), F6 (758&260 0 MHz), RV 

(Relative Value) 

Table 5 

Performance comparison. 

Plaintext Size (MB) EEP Time (ms) CS Time (ms) Speedup 

100 170.7973 18095.2602 105.9459 

200 335.5173 36231.9162 107.9882 

400 666.97885 72456.1788 108.6334 

600 1025.2082 108590.0984 105.9200 

800 1320.2014 144789.5642 109.6723 

1000 1642.4845 181009.2286 110.2045 
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evenly and organizes the threads in the full occupancy. Once all

the threads on CPU have gotten the encrypted plaintext in Lines 17

and 18, the plaintext can be returned and all the encryption work

has been done. 

Algorithm 3 depicts the details of the kernel in Line 14 of

Algorithm 1 . The kernel is called by thread 0 on CPUs and executed

on GPUs in many threads manner. The threads are organized in

the full occupancy. They encrypt the data transferred to GPUs and

produce the corresponding ciphertext. In Line 1, the algorithm first

allocates shared memory for T table (4KB) and exKey (176 Bytes),

because they will be reused multiple times and can be placed in

shared memory. After this, it loads T table and exKey to the shared

memory in Line 2 and synchronizes the threads to ensure that the

loads finished. If a thread has data to be encrypted that is decided

by the condition in Line 4, this thread will perform AES encryption

as shown from Lines 5–14. 

6. Experiments 

6.1. Experimental setup 

Experiments are conducted on a hybrid CPU-GPU platform with

the configurations in Table 3 . We employ three different algo-

rithms, i.e., CP (CPU-only Parallel), GP(GPU-only Parallel), and EEP,

to encrypt plaintexts with length of 10 0, 20 0, 40 0, 60 0, 80 0, and

10 0 0 MB. Each plain text is encrypted 20 times to get the aver-

age value. In the process of encryption, on one side we sample the

power of the CPUs and the GPU periodically and write them to log

files; on the other side we time the process. After the completion

of encryption, we calculate the average power of the CPUs and the

GPU and then multiply the spent time T to get the energy con-

sumption E as Eq. (2) . 

For EEP, we use NVML to get the power by nvmlDeviceGet-

PowerUsage every 50 ns and Event to record the spent time, thereby

calculate the cost energy of the GPU by Eq. (2) . In CUDA, event

API (Application program interface) can be used to accurately time

events by starting events at different times, and comparing their

start times. The nvmlDeviceGetPowerUsage is called by a single

thread on the CPUs during the encryption. 

We use PowerGadget provided by Intel to get the data of

power of the CPUs. PowerGadget uses RAPL (Running Average

Power Limit) library to get power data periodically. A single

thread on the CPUs is used to gather the power data by calling

get _ pkg _ total _ energy _ consumed in the experiments. 

According to Algorithm 1 , EEP needs to derive α × N _ C = 2 ×
16 = 32 threads on the CPUs, but two of which will be used to

acquire the power of the GPU and the CPUs respectively in our ex-

periments. Additionally, one of these threads will act as the service

thread. Therefore, only 29 threads will encrypt the plain text on

the CPUs. To adapt this change, Algorithm 1 will change the num-

ber of working CPU threads to 29 also, and then calculate the ratio

by this new value. 

For CP, it also derives α × N _ C = 2 × 16 = 32 threads on the

CPUs and two of them will be used to get the power of the CPUs

and the GPU respectively. That is to say only 30 threads will en-

crypt plain text on the CPUs. 

For GP, it will derive 3 threads on the CPUs, two of which will

be used to get the power of the CPUs and the GPU respectively and

one of which will be in charge of serving the GPU. The GPU will

be in charge of all the workload of encryption. 

6.2. Experimental results and discussion 

In this subsection, we will report and discuss the results of the

experiments from five aspects. In details, performance comparison,

energy comparison, energy ratio, effect of adjusting frequency, and
nergy efficiency will be reported and discussed in Sections 6.2.1 –

.2.5 respectively. 

.2.1. Performance comparison 

Table 5 lists the time of EEP and CS (CPU Serial AES algo-

ithm) is spent in encrypting plaintext of different sizes. This table

lso lists the speedup calculated by Speedup = E E P _ T ime/CS _ T ime,

here CS _ T ime means the encryption time of EEP and CS. The av-

rage Speedup is 108.06. In Section 2.1, Table 5 lists the perfor-

ance some previous work, we can see that EEP has relatively high

erformance. 

.2.2. Energy comparison 

Fig. 5 compares the total energy cost in encryption of six dif-

erent amounts of plain text at different GPU frequencies. In this

gure, the energy costs are increased with increased amounts of

lain text, because larger amounts of plain text will lead to more

perations and require more time. EEP costs less energy than GP,

hile GP costs less energy than CP. That is to say, EEP sufficiently

tilizes the energy efficiency of both GPU and CPUs, however GP

tilizes only the energy efficiency of GPUs and CP utilizes only the

nergy efficiency of the CPUs. 

The figure also demonstrates the impact of different GPU fre-

uencies. CP costs more energy at higher GPU frequencies, be-

ause the GPU is not involved in the encryption production, but

osts more energy at higher frequencies. GP costs less energy than

P because the GPU has greater computing capacity and provides
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Fig. 6. Energy ratio of CP to GP. The ratio is calculated by E CP 

E GP 
, where E CP and E GP 

represent the energy cost by CP and GP respectively in encrypting plain text. 

Fig. 7. Energy ratio of GP to EEP. The ratio is calculated by E GP 

E E E P 
, where E GP and E EEP 

represent the energy cost by GP and EEP respectively in encrypting plaintext. 
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igher energy efficiency. GP reduces the energy cost at higher GPU

requencies, because it decreases the runtime. EEP also costs less

nergy at higher GPU frequencies for the same reason. In addition,

PUs contribute energy efficiency in the process of encryption as

ell, so EEP costs less energy than GP. 

.2.3. Energy ratio 

To better show the effect of saving energy by EEP, Fig. 6 shows

he energy ratios of CP to GP, while Fig. 7 exhibits the energy ratios

f GP to EEP. 

In Fig. 6 , The average energy ratio of CP to GP AR = 

A EC 
A EG 

,

here A EC and A EG represent the average energy cost by CP and

P respectively. The theoretical energy ratio T R = 

(T R base ×F i core ) 
F 1 core 

, i =
 . . . 6 , where Fi core represents the ith core frequency of GPU and

R base is set to the average energy ratio at F1. In the figure, regard-

ess of the amount of plain text, the ratios of CP to GP become

reater with the increase of frequencies. The ratio at frequency F 1

as a relatively lower value, 2.26 on average, while these ratios at

requencies F 2 to F 6 have higher values, such as 3.81, 3.90, 4.06,

.18, and 4.36 respectively on average. The reason is that GP costs

ess energy at higher GPU frequencies; whileas, CP is the oppo-

ite. For plain text of 40 0 MB to 10 0 0 MB, the energy ratios are

ery similar to each other and sometimes cross. This is because
he GPU fully uses resources and consumes the maximal energy for

arge amounts of plain text. Note the cross-over lines are caused by

easurement deviation. 

To explain these ratios and verify them further, we analyze and

iscuss them as follows: For GP, the theoretical ratios and the av-

rage ratios are shown in Fig. 6 . From this figure, we find that the

heoretical energy ratios of CP to GP are close to and little greater

han the average energy ratios. This is because the theoretical en-

rgy ratios do not consider the static energy consumption that al-

ays holds a fixed portion of the consumed energy. As a meaning-

ul conclusion, we roughly get the linear relationship between the

nergy ratio and the core frequency of the GPU. 

In Fig. 7 , the average energy ratio of GP to EEP AR = 

A EG 
A EE 

, where

 EG and A EE represent the average energy cost by GP and EEP re-

pectively in experiments. The theoretical energy ratio of GP to EEP

s T R = 1 + 

1 
R 

, where the R is calculated by Eq. (4) . This is because

 R = 

T EG 
T EE 

, where T EG and T EE represent the energy cost by GP and

EP in theory respectively. Omitting the impact of the workload

istributed to CPUs [18] , T R ≈ R +1 
R 

= 1 + 

1 
R 

, because in EEP the

art of R 

R +1 of workload is distributed to the GPU, while in GP the

hole workload is distributed. In the figure, we find that the en-

rgy ratios of GP to EEP have lower values than those of CP to GP.

his is because GPUs have greater computing capacity than CPUs

nd CP will take longer than GP to finish encryption, thus consum-

ng much more energy. Whereas EEP does not have a large com-

uting difference with GP. Currently, GPUs have much more cores

nd consume more energy than CPU with relative less cores. Be-

ause the GPU consumes more energy, these ratios are close. Sim-

larly, the cross-over lines are caused by measurement deviation. 

Another finding is that the energy ratios decrease with the in-

rease of core frequencies of the GPU. Fig. 7 shows the average en-

rgy ratios in the experiments and the energy ratios in theory. As

escribed in the caption, because R is determined by and propor-

ional to the current core frequency of the GPU as shown in Eq. (4) ,

he theoretical energy ratios, i.e., 1 + 

1 
R 

, decrease with the increase

f core frequencies of the GPU. 

The last finding is that the theoretical ratios are close to but

ess than the average energy ratios. This is because the impact of

treams is omitted. EEP employs 16 streams and reduces the to-

al time roughly to 
T f 
16 + T c , where T f and T c denote the transfer

ime and compute time respectively. Whereas in the calculation, it

s just considered as T f + T c for the convenience of comparison. The

ime spent by EEP in encryption is overestimated, thus the energy

s overestimated also. So the theoretical energy ratios of GP to EEP

alculated by 1 + 

1 
R 

are less than those calculated by 
T EG 
T EE 

. 

.2.4. Effect of adjusting frequency 

To further study the effect of adjusting frequency, we focus on

he energy cost by EEP at different frequencies. In Fig. 8 , energy

as the same trend for all the different amounts of plain text, i.e.,

he energy decreases with the increase of core frequencies of the

PU. This is because higher core frequencies help reduce the total

untime and the static energy consumption of the GPU and the

PUs. Of course, for larger amounts of plain text, the total runtime

ill increase and the energy will increase correspondingly. 

As discussed in Section 6.2.2 , it is beneficial to set the fre-

uency of GPUs to the highest for GP and EEP, while to the low-

st for CP. Fig. 9 demonstrates the energy cost by CP, GP and EEP

t the frequency of F 1, F 6, and F 6 respectively and their energy-

aving percentages. The energy includes the total energy cost by

P at F1, GP at F6, and EEP at F6. GC, EC , and EG represent

he energy-saving percentage of GP over CP, EEP over CP, and

EP over GP, respectively. GC = (1 − Egp 
Ecp ) × 100% , EC = (1 − Eeep 

Ecp ) ×
00% , and EG = (1 − Eeep 

Egp ) × 100% , where Egp, Ecp and Eeep repre-

ent the energy cost by GP, CP, and EEP, respectively. Obviously, EEP
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Fig. 8. Energy cost by EEP in encrypting different amounts of plain text at different 

frequencies. 

Fig. 9. Energy and energy-saving percentage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Energy efficiency at F6 frequency. 
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costs the least energy compared with GP and CP, while GP costs

less energy than CP. The energy-saving percentages of GP over CP,

EEP over CP, and EEP over GP are 67%, 74%, and 21% on average, re-

spectively. This is because both EEP and GP utilize GPU parallelism

and occupy the resources of GPU as much as possible. 

6.2.5. Energy efficiency 

Evaluating energy efficiency EE usually adopts a combined met-

ric of performance Pf and power Power , i.e., EE can be calculated

by EE = 

P f 
Power . 

For AES, the performance Pf can be calculated by P f = 

PS 
T ime 

,

where PS and T represent the amount of plain text and the time

spent in encryption, respectively. 

The Power of EEP, GP, and CP can be gotten by sampling with

NVML for GPUs and Power Gadget for CPUs. Since the Energy E

can be calculated by E = P × T , EE = 

PS 
T ×P = 

PS 
E . For AES, EE has the

unit of MB/J. Fig. 10 shows EE of CP, GP, and EEP at F 6 (758 MHz).

From this figure, there are three observations: 

1. For CP, EE is the lowest among GP and EEP and remains stable,

because it utilizes only CPU energy efficiency and its overhead

is almost the same for different amounts of plain text. 
2. For GP and EEP, the GPU has higher energy efficiency at low

amounts of plain text and has stable energy efficiency at mod-

erate amounts of plain text. This is because the GPU does not

fully use all the resources to encrypt low amounts of plain text

and then spends less energy, while once the plain text is large

enough, the GPU will fully utilize the resources, the energy con-

sumption will remain stable, and the energy efficiency also re-

mains steady. In our experiments, the energy efficiency of GP

decreases as the amounts of plain text increase from 100 MB

to 400 MB, but remains stable from 400 MB to 10 0 0 MB. This

illustrates that 100 MB and 200 MB of plain text are low, but

400 MB to 1000 MB of plain text are moderate. 

3. EEP has a higher energy efficiency than GP for every amount

of plain text in our experiments. This is because GP wastes the

computing resources of CPUs but still consume energy while

the GPU is working. Naturally, EEP has higher energy efficiency

than GP. 

Because F6 is the highest frequency supported by K20M, both

EP and GP have their highest energy-efficiencies correspondingly.

or the other frequencies, both EEP and GP have relatively low en-

rgy efficiencies, while CP has relatively high energy efficiencies

ue to wasting less energy on the GPU at low frequencies. 

To prove the above paragraph, the average energy efficiencies

or CP, GP, and EEP are calculated to exhibit their trends. Fig. 11

hows their average energy efficiencies at frequencies F1–F5. 

First, the trend in Fig. 11 is consistent with that in Fig. 10 . This

tates that different frequencies of the GPU can affect the energy

fficiencies to a certain degree. 

Second, the average energy efficiency of CP is relatively higher

han that in Fig. 10 . Specifically, the energy efficiency of CP on av-

rage is 0.81 MB/J at F6 and 0.88 MB/J at the other frequencies on

verage. CP has the highest energy efficiency of 1.15 MB/J on aver-

ge at F1 compared with the other frequencies. 

Third, for GP and EEP, their average energy efficiencies are rel-

tively lower than that in Fig. 10 . Specifically, the energy efficien-

ies of GP and EEP on average are 3.60 MB/J and 4.66 MB/J at F6

espectively and are 3.14 MB/J and 4.01 MB/J at the other frequen-

ies, respectively. GP and EEP have their highest energy efficiencies

n average at F6 compared with the other frequencies. 

Fourth, in Section 2.2 and Table 2 , we systematically analyzes

revious works on energy efficiency and compare these previous
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Fig. 11. Energy efficiency on average at GPU frequencies F 1 to F 5. 
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orks with EEP on energy efficiency. We can find that EEP in these

orks has better energy efficiency also. 

.2.6. Summary 

We have verified the methods in the experiments and have

hown the effects of EEP. All in all, EEP employs hybrid paralleliz-

ng, workload balancing based on computing capacities, frequen-

ies adjusting, communication-computation overlapping, full occu- 

ancy to achieve energy saving of 74% over CP (F1) and 21% over

P. From the aspect of energy efficiency, EEP has the highest en-

rgy efficiency of 4.66 MB/J higher than both 3.65 MB/J of GP and

.15 MB/J of CP (F1). In Table 2 , EEP also shows better energy effi-

iency than other works. 

. Conclusion 

In this paper, we propose an Energy-Efficient Parallel (EEP) AES

lgorithm for CPU-GPU heterogeneous platforms. We aim to save

nergy and improve the energy efficiency of parallel AES algorithm

n this type of platform based on the properties of AES algorithm

nd its execution platforms. 

This work explores the energy efficiency of parallel AES algo-

ithm for CPU-GPU heterogeneous platforms. In future, we plan to

tudy how to save energy in other applications such as Leukocyte,

otSpot, and so on for CPU-GPU platforms. 
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