
Velocity-Aware Parallel Encryption Algorithm with
Low Energy Consumption for Streams

Xiongwei Fei , Kenli Li , Senior Member, IEEE, Wangdong Yang, and Keqin Li , Fellow, IEEE

Abstract—In the environment of cloud computing, the data produced by massive users form a data stream and need to be protected

by encryption for maintaining confidentiality. Traditional serial encryption algorithms are poor in performance and consume more

energy without considering the property of streams. Therefore, we propose a velocity-aware parallel encryption algorithm with low

energy consumption (LECPAES) for streams in cloud computing. The algorithm parallelizes Advanced Encryption Standard (AES)

based on heterogeneous many-core architecture, adopts a sliding window to stabilize burst flows, senses the velocity of streams using

the thresholds of the window computed by frequency ratios, and dynamically scales the frequency of Graphics Processing Units

(GPUs) to lower down energy consumption. The experiments for streams at different velocities and the comparisons with other related

algorithms show that the algorithm can reduce energy consumption, but only slightly increases retransmission rate and slightly

decreases throughput. Therefore, LECPAES is an excellent algorithm for fast and energy-saving stream encryption.

Index Terms—Advanced encryption standard, flow control, low energy consumption, parallel encryption, scaling frequency, velocity-aware

Ç

1 INTRODUCTION

1.1 Motivation

HETEROGENEOUS many-core architecture has the advan-
tages of better performance and energy efficiency com-

pared to homogeneous many-core architecture [1]. This is
because the coprocessors in the heterogeneous architec-
ture, such as GPUs, have simple control and high
throughput. Therefore, super computers, such as the
TOP 500 [2] supercomputers, widely adopt heterogenous
architecture currently. Therein the architecture of CPU +
GPU becomes the mainstreams thanks to powerful com-
puting capacity, low price, and supporting general com-
puting of GPUs. Despite all of these, for example, Titan,
the second place of the TOP 500 computers listed in
Nov. 2015, employs Nvidia K20x and still consumes a
large amount of 8.208 MW on average. Thus, the prob-
lem of lowering energy consumption of GPUs is signifi-
cant, and then is hotly studied currently.

Cloud computing provides resources by the demands
of users with perfect elasticity and scalability, so it is
used widely. However, in this open environment, user
data are off the control of the owners and more likely to

be stolen by adversaries. Encryption is a basic technology
to protect user data from stealing. There are massive
users in cloud computing. These users produce a large
amount of data in the manner of streams. If adopting
encryption to protect these data, cloud servers will under-
take heavy computation burden.

Cloud servers must efficiently deal with the encryption of
data streams; otherwise users experience will be impacted
and services will even be disrupted. In order to improve effi-
ciency of encryption, parallel technologies that usemany het-
erogenous cores provide a feasible solution, but with the
increase of frequencies and the number of cores, energy con-
sumption increases correspondingly. This causes some prob-
lems of heat dissipation, system stability, even environment,
etc. Hence, it is emergent to parallelize encryption of data
streams in a low energy consumption fashion.

However, in practice, user data streams have the proper-
ties of burstiness, variance, realtime, etc. Without consider-
ing these properties, parallelism technologies will consume
more energy because slow streams will waste energy. For
reducing the energy consumption, a feasible solution is first
to sense velocity and then to scale the frequencies of GPUs
correspondingly. The key point is how to sense the velocity
of streams. In this work, we use a sliding window to buffer
stream data and sense its used volume in real time.

With the rapid development of electronic commerce and
network finance, encryption has become an important mea-
sure in protecting secret data of these applications. AES is
the symmetric encryption/decryption standard due to its
higher security and performance compared to its compe-
titors [3]. AES has several modes, of which the Counter
(CTR) mode can be parallelized fully and have the property
of provable security [4]. Thus, we choose the CTR mode of
AES to encrypt stream data in this work.

In summary, the motivation of this paper is to encrypt
stream data of cloud users, especially the data of electronic

� K. Li and W. Yang are with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha 410082, China.
E-mail: {lkl, yangwangdong}@hnu.edu.cn.

� X. Fei is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China and the School of Informa-
tion Science and Engineering, Hunan City University, Yiyang 413000,
China. E-mail: feixiongwei@hnu.edu.cn.

� K. Li with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China and the Department of
Computer Science, State University of New York, New Paltz, NY 12561.
E-mail: lik@newpaltz.edu.

Manuscript received 29 Nov. 2016; revised 2 Mar. 2017; accepted 20 Apr.
2017. Date of publication 24 Apr. 2017; date of current version 30 Aug. 2021.
Recommended for acceptance by S. Yu, P. Mueller, J. Pei, and K. Liu.
Digital Object Identifier no. 10.1109/TBDATA.2017.2697446

IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021 619

2332-7790 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5329-4741
https://orcid.org/0000-0001-5329-4741
https://orcid.org/0000-0001-5329-4741
https://orcid.org/0000-0001-5329-4741
https://orcid.org/0000-0001-5329-4741
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:
mailto:
mailto:

commerce or network finance, in low energy consumption
and high performance fashion using parallelism and scaling
frequencies methodologies. The key points include sensing
the velocity of the data streams and scaling the frequencies
of GPUs.

1.2 Our Contributions

In this paper, our contributions include four aspects as
follows:

1) We adopt dynamic scaling frequency technology to
save energy consumption in stream data encryption.

2) We adopt a sliding window to control streams and
sense current velocity based on thresholds.

3) We design and implement a velocity-aware parallel
encryption algorithm with low energy consumption
for streams, called LECPAES.

4) We evaluate LECPAES from energy consumption,
throughput, and retransmission rate through com-
parisons of CPU Serial (CS), CPU Parallel (CP), and
GPU Parallel (GP) AES algorithms for streams.

1.3 Organization

The remainder of this paper is organized as follows.
Section 2 reviews some related works. Section 3 introduces
some models which will be used in this work. Section 4
gives the algorithms. Section 5 introduces the experiments.
Section 6 discusses the experimental results. Section 7
provides conclusions and a look to the future.

2 RELATED WORK

Currently, there are two research directions on GPU energy
consumption. One is saving the energy consumption, and
the other is evaluation and prediction of energy consump-
tion. These two directions will be described in Sections 2.1
and 2.2, respectively. In addition, some works on paralleliz-
ing AES are described in Section 2.3.

2.1 Saving Energy Consumption

Some recent research on the first direction are described as
follows. Abe et al. [5] analyzed GPU-accelerated systems on
power and performance and found that the total energy
reduction is trivial using voltage and frequency scaling of
CPUs, but can be achieved by scaling voltage and frequency
of GPUs.

Ge et al. [6] found that GPU frequencies and energy con-
sumption have a linear relationship in compute-intensive
applications. Therefore, scaling down GPU frequencies can
reduce energy consumption effectivley.

Ma et al. [7] dynamically distributed workload to CPUs
and GPUs based on the previous execution time and
dynamically scaled the frequencies to reduce the energy
consumption. Arora et al. [8] accurately predicted idle dura-
tions and then adopted power gating to save energy con-
sumption of GPUs.

Tang et al. [9] proposed a secret sharing protocol using
Elliptic Curve Cryptosystems (ECC) and a proactive share
refreshing protocol, which are both efficient and can save
energy consumption in communications and processing.
Further, they derived a multi-party signature scheme suitable

for low-power devices in wireless networks. Liu et al. [10]
introduced MoTE-ECC, a highly optimized yet scalable ECC
library, which saves energy consumption of nodes through
reducing the execution time of two scalarmultiplications.

In this work, we adopt the idea of scaling voltage and fre-
quency of GPUs in [5]. Because AES is also a compute-inten-
sive application, which will be analyzed in Section 3.2, the
energy consumption of AES can be saved by scaling down
GPU frequencies based on [6]. Our work differs from [7] in
that our work scales GPU frequencies based on the current
velocity of stream.

2.2 Predicting Power and Energy

The second direction is also a research key point because it
can provide analyses and insight on how to save energy.
Some researchers have studied it based on specific models.

Ma et al. [11] adopted statistical analysis to model the
power consumption of Nvidia GPUs but first required to
analyze GPU workloads quantitatively. Nagasaka et al. [12]
proposed a statistical model which used the GPU perfor-
mance counters to estimate power consumption of GPUs.
The model has high accuracy but is invalid for kernels with
texture accesses.

Hong and Kim [13] proposed an analytical model to
estimate the execution time of a GPU parallel program. It is
useful to understand the bottlenecks of performance in a
GPU parallel program and can be used to estimate the
energy consumption of the program.

Wu et al. [14] proposed a machine learning model capable
of predicting the performance and power of GPUs across a
range of hardware configurations. It first gathers a collection
of kernels on a real GPU with various configurations, and
then estimates the performance and power of new kernels
usingmachine learningwith an average error of 15 percent.

Kasichayanula et al. [15] analyzed per-component of
power consumption of GPUs such as floating point units,
shared memory, and global memory using Nvidia Manage-
ment Library (NVML) to measure real-time power and
energy consumption, and analyzed the power and energy
consumption of three kernels on Nvidia Tesla C2075.

In summary, we can get inspiration on energy-saving by
means of energy prediction and analyses. For example, we
can consider the properties of an application and then corre-
spondingly use computing resources energy efficiently.

2.3 Parallelizing AES

CPU + GPU heterogeneous computers are suitable for the
parallel computing on compute-intensive applications, such
as the SParse Matrix and Vector multiplication (SpMV)
problem [16], [17]. Because AES is a compute-intensive
application too (see analysis in Section 3.2) and GPUs sup-
port general computing with the merits of low cost and
powerful computing, naturally much attention is paid to
improve the performance of AES by parallelizing it on the
CPU + GPU architecture.

Manavski [18] first parallelized AES on GPUs using
Compute Unified Device Architecture (CUDA). His work is
significant in two aspects. On one side, the difficulty of pro-
gramming is reduced; on the other side, the performance of
parallel AES is improved about 20 times compared to the
serial AES.

620 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021

Later, Maistri et al. [19] parallelized AES adopting CUDA
also, and got good ratio of performance to price. Then, Iwai
et al. [20] optimized AES from the aspects of parallel granu-
larity and storage distribution, etc., and found that the exe-
cution efficiency of parallel AES can be improved by using
the granularity of 16 byte/thread and storing T tables in
shared memory.

Some other works on optimizing and analyzing parallel
AES on GPUs can be found in Refs. [21], [22], [23], [24], [25],
[26], [27], [28], [29].

The above works [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29] only deal with single data file, and do not
consider the encryption of data stream of users. However,
encryption of data stream becomes more and more usual in
practice, especially in cloud computing. The data streampro-
duced by massive users have the properties of burstiness,
variance, realtime, etc. Therefore, if the data stream is still
encrypted in the pattern of single file, it is likely to result in
the lack of efficiency and even to cause service failure.

3 MODELS

3.1 Stream Encryption Model

In cloud computing environment, users’ data are out-
sourced to cloud servers. These data can be processed by or
stored in a cloud server. If users want some of their data,
these data should be transferred back to users. Because
there are massive users in the environment, these data
transfers form data streams. Due to the openness of the
environment, these data need to be protected by encryption
to keep confidentiality. Fig. 1 illustrates this scenario, where
massive users request some data from a cloud server. The
cloud server responses these requests and will form a user
data stream. This stream should be encrypted to guarantee
data confidentiality.

In practice, encryption of data stream could face the fol-
lowing three problems:

1) If the average inflow velocity of data stream is faster
than the average outflow velocity of encryption,
cloud servers will not achieve all the encryption of
the data stream. This will cause part failure of
services.

2) If the instant inflow velocity of data stream is faster
than the outflow velocity of encryption, but the aver-
age inflow velocity of the data stream is slower than
the outflow velocity of encryption. This can be
solved by buffering the burst throughput to stabilize.

3) If the average inflow velocity of data stream is slower
than the average outflow velocity of encryption,
sometimes cloud servers will be idle but still consume
energy. This will cause high energy consumption.

For the first problem, because the velocity of traditional
serial encryption is lower than the mainstream velocity of
users’ data streams, it can be considered to improve the
velocity of encryption by parallel encryption using the exist-
ing cores of computers. Therefore, in this paper, we propose
a solution which uses CPU parallelism or GPU parallelism
to improve the efficiency of encryption in heterogenous
environment. The details of the solution are described in
Section 3.2.

For the second problem, we propose a solution which
uses a sliding window to tame the burst data flow of users
and achieve robust services. The details of the solution are
described in Section 3.3.

For the third problem, we propose a solution, which first
senses the velocity of data stream and then dynamically
scales the frequencies of GPUs to reduce energy consump-
tion. The details of sensing velocity and saving energy
by scaling frequencies dynamically are described in
Sections 3.4 and 3.5, respectively.

3.2 AES Parallelizing Model

AES is a block ciper. Each block is long as 16 bytes. The
encryption process of a block includes multiple iterations,
each of which is called a round. The number of rounds is
determined by the version of AES. AES has three versions of
128, 192, and 256. For simplicity, we use AES-N to express the
version, where N is one of 128, 192, and 256. A different ver-
sion ofAES needs a keywith different length andwill perform
different number of rounds Nr. Specifically, AES-N needs a
key of lengthN bits andwill performNr ¼ N=32þ 6 rounds.

Fig. 2 describes the encryption process of a block of plain
text. Except round N=32þ 6 misses a MixColumn, each
round has four procedures, i.e., SubBytes, ShiftRows,
MixColumns, and AddRoundKey. AddRoundKey in a differ-
ent round needs a different round key. Note that before the
first round, there is an AddRoundKey also. Therefore,
AddRoundKey will be executed N=32þ 7 times totally. Cor-
respondingly, N=32þ 7 round keys are required.

These round keys are extended from the key of N bits by
the procedure KeyExtension as shown in the left part of
Fig. 2. The procedure needs to be executed in serial due to
data dependence. Nevertheless, once generated, the round
keys can be used in other different blocks. This means that
KeyExtension needs to be executed only one time in serial
in the entire process of encrypting the same plain text.

In a round, SubBytes, ShiftRows, MixColumns, and
AddRoundKey involve some operations as listed below
respectively (Note: We use the following abbreviations. O:
XOR; L: Lookup; R: Rotation;M: Multiplication.).

1) AddRoundKey executes 16 XOR operations (16O) on
a plain text block, called state, and a round key.

2) SubBytes substitutes data using S-Boxes and can be
accelerated by 16 T table lookups (16L).

3) ShiftRows rotates rows by 0, 1, 2, or 3 byte(s) respec-
tively to confuse data, thus it has 6 byte rotations (6R).

4) MixColumns transforms and mixes data in columns
which has 4� 4 ¼ 16 multiplications (16M) and
3� 4 ¼ 12 XORs (12O).

When encrypting a state, AES-N has the number of
operations

Fig. 1. Scenario of encryption of user data stream in cloud computing.

FEI ETAL.: VELOCITY-AWARE PARALLEL ENCRYPTION ALGORITHMWITH LOW ENERGYCONSUMPTION FOR STREAMS 621

OPs ¼ Nr� ðOPsbþOPsrÞ þ ðNrþ 1Þ �OPak

þ ðNr� 1Þ �OPmc;
(1)

where OPak, OPsb, OPsr, and OPmc represent the number
of operations of AddRoundKey, SubBytes, ShiftRows, and
MixColumns, respectively. For example, AES-256 has oper-
ations:

OPs ¼ 14� ð28Oþ 16Lþ 6Rþ 16MÞ þ 16O� 16M � 12O

¼ 396Oþ 224Lþ 84Rþ 208M;

in encrypting a state long as 16 bytes. If not considering the
differences of operations, AES-256 has 912 operations.

Therefore, AES-256 has the computing complexity of
OðNÞ ¼ N2:46, where N represents the number of bytes
which want to be encrypted. Similarly, AES-192 and AES-
128 have 780 and 648 operations by using and their comput-
ing complexities are N2:40 andN2:33, respectively.

As a conclusion, AES is a computing-intensive applica-
tion. It is suitable to be executed on GPUs, because GPUs
can support these integer operations through Computing
Unified Device Architecture (CUDA) and efficiently hide
the overhead of transferring data by large-scale parallelism.

AES has five modes, i.e., Electronic Code Book (ECB),
Cipher Block Chaining (CBC), Cipher Feedback (CFB),
Output Feedback (OFB), and Counter (CTR). ECB mode can
be fully parallelized, but cannot hide the mode of plaintext
and probably suffers active attacks from adversaries. CBC
and CFB are hard to suffer active attacks with higher secu-
rity than ECB but are hard to parallelize. OFB possibly suf-
fers active attacks and hard to parallelize. CTR can be fully
parallelized and has proved security, which is strongly rec-
ommended by Lipmaa et al. [4]. Naturally in this work, we
adopt CTR mode and the encryption process of AES can be
parallelized fully among blocks.

Fig. 3 shows the details of parallel encryption in CTR
mode, where IV is the initial value of the counter, Pi repre-
sents the ith block of plain text, and Ci represents the ith
block of cipher text. From the figure, we can see that, after
the key extension executed in serial, different values IV þ i
are encrypted and then added Pi to get Ci in parallel by dif-
ferent threads. It is apparent that both IV þ i and Pi are
independent in different encryptions.

If the number of blocks of the plain text Nb is more than
the number of threads Nt, these blocks will be distributed
evenly, i.e., the thread Ti, 0 � Ti < Nt, will undertake
Nb=Nt þ i < Nb%Nt, where = and% represent the operation
of integer division and remainder, respectively. For exam-
ple, plain text with 8 blocks is encrypted by four threads.
Each thread will encrypt 2 blocks. For another example,
plain text with 10 blocks is encrypted by four threads. Each
of the first two threads will encrypt 3 blocks and each of the
other threads will encrypt 2 blocks.

3.3 Stream Control Model

With the varying of behaviors of users, user data stream
will have different velocity. Sometimes data stream has
high velocity; sometimes data stream has low velocity. For
burst high-velocity stream, a control mechanism should
be adopted to avoid the abruption of services. Therefore, in
this paper, we propose a methodology of employing a slid-
ing window to control the burstiness of stream.

Fig. 3. Encryption parallelizing model of n blocks in CTR mode.

Fig. 2. Encryption process of a block.

622 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021

Fig. 4 depicts the model of a sliding window, where a
user data stream D0; D1; . . . ; Dn; . . . flows into the window
and then flows out under the control of the sliding mecha-
nism. The data stream will be encrypted to the correspond-
ing cipher stream E0; E1; . . . ; En;

The window corresponds to a chunk of storage space
with size of size, which can be set by the profile of the
cloud server. The green part of the window represents
the buffered data, i.e., the data stored in the window
currently.

head points to the start byte of the buffered data and tail
points to the next byte to the end of the buffered data. As
data flow in or out, head and tailwill change cyclically.

Apparently, whether user data can flow in the window is
determined by the current available size as of the window.
How to calculate as? First, the size of the buffered data bs
can be calculated using

bs ¼ tail� head if tail � head
size� headþ tail otherwise:

�
(2)

Second, as ¼ size� bs. Therefore, as can be calculated
using

as ¼ size� tailþ head if tail � head
head� tail otherwise:

�
(3)

Based on the value of as, whether the data of a user Di

with length of lenðDiÞ can flow in the window isFi is
decided by

isFi ¼ ðtail < head ^ head� tail � lenðDiÞÞjj
ðtail � head ^ size� tailþ head � lenðDiÞÞ;

(4)

where “jj” is the operation of “or”.
For example, assume that a window is with size of 10,

i.e., size ¼ 10 and it locates at from addresses 20 to 29. Here,
we denote the starting address of the window as win,
i.e, win ¼ 20. Sometime head and tail are 23 and 26, respec-
tively. Now data of a user with length of 6 want to flow
in the window. Because isFi is true after the calculation
of Eq. (4), these data can flow in the window. Then, the data
will be put into addresses 26, 27, 28, 29, 20, and 21. For
conciseness, we use ½x; y� to denote the space between
addresses x and y. In other words, the data will be put into
½26; 29� [½20; 21�, where [is the operation of union. And
then, tailwill be changed to 22.

Note that once tail goes beyond the next byte to the end
of the window, which will restart from the beginning of the
window. Formally, if isFi is ture and tailþ lenðDiÞ >
winþ size, the data will be put into two separate parts. One
part is from tail to winþ size� 1 and the other is from win
to tailþ lenðDiÞ � size� 1. Then, tail will rollback to tailþ
lenðDiÞ � size. For the above example, because tailþ
lenðDiÞ ¼ 26 þ 6 ¼ 32 > win þ size ¼ 20þ 10 ¼ 30, the
data will be put into from tail ¼ 26 to winþ size� 1 ¼ 29
and from win ¼ 20 to tailþ lenðDiÞ � size� 1 ¼ 26þ 6�
10� 1 ¼ 21. And then, tail changes to tailþ lenðDiÞ�
size ¼ 26þ 6� 10 ¼ 22.

In another aspect, i.e., isFi ¼¼ true and tailþ lenðDiÞ <
winþ size, the data will be put into from tail to tailþ
lenðDiÞ � 1 and then tail will change to tailþ lenðDiÞ. For
the above same window but different lenðDiÞ ¼ 3, the data
will be put into ½26; 28� and tailwill change to 29.

In the last aspect, i.e., isFi ¼¼ true and tailþ lenðDiÞ ¼¼
winþ size, the data will be put into from tail to tailþ
lenðDiÞ � 1 and then tail will change to win. For the above
same window but different lenðDiÞ ¼ 4, the data will be put
into ½26; 29� and tailwill change to 20.

In summary, if data of a user can flow in the window, the
storage space s and tail can be calculated by

s ¼
½tail; tailþ lenðDiÞ � 1� [½win; tailþ lenðDiÞ � size� 1�

if isFi ¼ true ^ tailþ lenðDiÞ > winþ size;
½tail; tailþ lenðDiÞ � 1�

if isFi ¼ true ^ tailþ lenðDiÞ � winþ size;

8><
>:

(5)
and

tail ¼
tailþ lenðDiÞ � size if isFi ¼ true ^ tailþ lenðDiÞ > winþ size;

tailþ lenðDiÞ if isFi ¼ true ^ tailþ lenðDiÞ < winþ size;

win if isFi ¼ true ^ tailþ lenðDiÞ ¼ winþ size;

8><
>:

(6)
respectively.

3.4 Sensing Velocity Model

The sliding window can be used not only to tame a burst
data stream, but also to sense the current velocity of the
stream. We propose a methodology of first sensing the cur-
rent bs of the window and then determining the level of the
velocity by comparing to some pre-set thresholds. Because
the realtime velocity changes constantly, it is hard to sense
the velocity precisely. But we can use bs of the window to
approximate the velocity. Larger bs in the window means
higher velocity of the data stream, and vice versa.

Fig. 5 illustrates an example of sensing velocity. At a
given time, the sliding window has buffered bs data, where

Fig. 4. Stream control model.

Fig. 5. Sensing velocity model.

FEI ETAL.: VELOCITY-AWARE PARALLEL ENCRYPTION ALGORITHMWITH LOW ENERGYCONSUMPTION FOR STREAMS 623

bs can be calculated by Eq. (2). Then bs compares with the
thresholds. If the value of bs locates in the middle of two
thresholds, i.e., thresholdi � bs < thresholdiþ1, then pro-
cessors will scale to the corresponding frequency fiþ1.

As shown in Fig. 5, bs of the buffer data locates in themid-
dle of threshold2 and threshold3, so the processor will scale
its frequency to f3. Generally, assume that a GPU can work
at n fixed frequencies F ¼ ff1; . . . ; fng and n� 1 thresholds
can be set up to determine which one frequency f should be
chosen. Eq. (7) describes the calculationmethod in detail

f ¼
f1; if bs < threshold1

fiþ1; if thresholdi � bs < thresholdiþ1 ^ i 2 f1; . . . ; n� 2g
fn; if bs � thresholdn�1:

8><
>:

(7)

With the change of velocity, bswill change and result in the
change of frequency dynamically. By this way, the energy
consumption will reduce. The rational will be described in
next Section 3.5. The bs of sliding window can affect the cur-
rent GPU frequency. Because a GPUmust work at some fixed
frequencies F ¼ ff1; . . . ; fng and a certain frequency fi repre-
sents a certain computation speed, a relationship can be estab-
lished as

fx
fy

� thresholdx
thresholdy

; (8)

where fx and fy represent two different fixed frequencies,
respectively; whereas thresholdx and thresholdy represent
two different thresholds, respectively. If knowing a fixed
frequency fx and the corresponding thresholdx, for any fy
in the fixed frequency set, the corresponding thresholdy can
be figured out. Through this ratio relationship, a threshold
can be roughly determined by another.

A GPU has two sorts of different frequencies, one
of which is core frequency fc, and the other is memory
frequency fm. For example, K20M has six pairs of frequen-
cies as listed in Table 1.

When calculating threshold ratio tr, we should consider
these two sorts of frequencies together, but AES is a
compute-intensive application as analysed in Section 3.2.
Therefore, we can grasp the main contradiction, i.e., we can
consider only the core frequency. Therefore we can get five
different threshold ratios tri using Eq. (9) on K20M:

tri ¼ fci
fc6

; i ¼ 1; . . . ; 5: (9)

These tri are calculated and listed in the fourth column of
Table 1. If the sliding widow is large as size, then we can get

the conditions for setting different frequency according to
current bs. For K20M, these conditions are listed in the fifth
column of Table 1. Specifically, because fc1

fc6
¼ 324

758 ¼ 0:43,
when bs < 0:43� size, GPU core frequency and memory
frequency are set to fc1 and fm1, respectively.

3.5 Saving Energy Model

The data stream produced by massive users has the proper-
ties of burstiness, variance, realtime, etc. These properties
will bring the possibility of reducing the energy consump-
tion of streaming encryption. When the velocity of the data
stream becomes slow, scaling down the frequency of pro-
cessors appropriately will reduce energy consumption E.
The rationale will be discussed as follows.

The power of a processor P is consist of static power Ps
and dynamic power Pd, i.e., P ¼ Psþ Pd. Ps is determined
by some factors, such as circuit technology, chip layout, etc.
Ps is not impacted by the frequency of the processor.
Whereas, Pd is determined by the power formula [30] of
CMOS (Complementary Metal Oxide Semiconductor) cir-
cuits shown in

Pd ¼ ACV 2f; (10)

where A is the switching activity factor, C is the capacitance,
V is the supply voltage, and f is the clock frequency. Fur-
thermore, V and f have the relationship as shown in

f ¼ K
ðV � VT Þg

V
; ð1 � g � 2Þ; (11)

where VT is the threshold voltage while K and g are the
parameters related to manufacturing technique.

Because VT can be omitted because its value is usually
very small compared to V [31]. An approximate relation for-
mula is yielded as

f � KV g�1: (12)

Then,

Pd ¼ ACkfa; a ¼ g þ 1

g � 1
; k ¼ K

2
1�g ; (13)

can be yielded from Eqs. (10) and (12). Hence, Pd is propor-
tional to a power of f , where a ¼ gþ1

g�1.
By default, GPUs are set at the second highest frequen-

cies to keep high performance and good stability. After
sensing velocity of sliding window, energy can be saved by
scaling the frequency of GPUs corresponding to the velocity
of data stream.

Fig. 6 demonstrates the rational. In the top of the figure, a
data stream with variant velocity flows in a sliding window,
and then it flows out and is shaped to a fixed velocity.

When the stream is encrypted, two different solutions are
shown in the figure. One is non-scaling frequency as shown
in the part pointed by the arrow marked b. The other is scal-
ing frequency as shown in the part pointed by the arrow
marked a.

The non-scaling frequency encrypts the data stream in
the fixed frequency and consumes energy unchangeably.
The scaling frequency encrypts the data stream at different
frequencies according to the velocity. Scaling down the

TABLE 1
Characteristics of K20M

fc (MHz) fm (MHz) tr condition

1 324 324 0.43 bs < 0:43� size

2 614 2,600 0.81 0:43� size � bs < 0:81� size

3 640 2,600 0.84 0:81� size � bs < 0:84� size

4 666 2,600 0.88 0:84� size � bs < 0:88� size

5 705 2,600 0.93 0:88� size � bs < 0:93� size

6 758 2,600 NA bs � 0:93� size

624 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021

frequency will cause low energy consumption according to
Eq. (13).

In addition, because the default frequency is the second
highest, the non-scaling frequency will consume more
energy than scaling frequency. The reddish slash grid repre-
sents the static energy consumption, which is the same
in the two solutions. The blue back slash grid represents
the dynamic energy consumption. Therefore, the yellow
crossover grid represents the saved energy.

4 ALGORITHMS

In this section, a Low-Energy Consumption Parallel AES
(LECPAES) algorithm is proposed based on the above sec-
tions. As comparisons, GPU Parallel, CPU Parallel, and
CPU Serial (CS) AES are described in this section also.

4.1 LECPAES

Algorithm 1 describes the details of LECPAES in the pseudo
code manner. The algorithm can encrypt users’ plain text
streams to cipher text streams.

Nvidia Management Library (nvml) [32] provides the
abilities of setting frequencies of GPUs and retrieving the
energy consumption. Therefore, in Line 1, the algorithm ini-
tializes nvml. If successful, then the algorithm gets the GPU
device handle in Line 2. Because a GPU must work at some
fixed frequencies, the algorithm retrieves all supported
frequencies in Line 3. Based on these frequencies, threshold
ratios can be calculated as Eq. (9) in Line 4. In Line 5, the
algorithm establishes a sliding window with size of size
and sets the initialize head and tail for buffering data and
sensing velocity.

Because this algorithm needs to process users’ data
stream, from Lines 6 to 12, a “while” loop will be performed
continuously until a stop command is issued. In Line 7, the
algorithm selects a frequency combination f based on the
current used ratio of the sliding window using the method
in Eq. (7).

In Line 8, the algorithm uses nvmlDeviceSetApplications-
Clocks in nvml to set GPU frequency to f . After that, the cur-
rent plainStream in the window is encrypted by parallel
AES on the GPU in Line 9. And then, the cipherStream can
be flowed out in Line 10.

Because the state of window changes, head and tail
are moved as described in Section 3.3 in Line 11. If stop com-
mand is issued, the loop will terminate. And then nvml
should be shutdown as shown in Line 13.

Algorithm 1. LECPAES Algorithm

Input:
Plain text stream, plainStream;
Keys, keys;

Output:
Cipher text stream, cipherStream;

1: Initialize nvml;
2: Get GPU device handle;
3: Retrieve supported n kinds of frequencies fc and fm;
4: Compute threshold ratios using Eq. (9);
5: Initialize a sliding window with size size;
6: while (!stop) do
7: Select frequency f by Eq. (7);
8: Set GPU frequency to f ;
9: Encrypt plainStream in current window using keys on

GPU in parallel;
10: Flow out the current encrypted cipher cipherStream;
11: Move head and tail as the description in Section 3.3;
12: end while
13: Shutdown nvml.

4.2 GP

Algorithm 2 shows the pseudo code of GP. The algorithm is
different from LECPAES in scaling GPU frequencies. GP
does not need to scale GPU frequencies, so that it does not
use nvml and does not sense the velocity of the current
stream.

Algorithm 2. GP Algorithm

Input:
Plain text stream, plainStream;
Keys, keys;

Output:
Cipher text stream, cipherStream;

1: Initialize sliding window with size size;
2: while (!stop) do
3: Encrypt plainStream in current window using keys on the

GPU in parallel;
4: Flow out the current encrypted cipher cipherStream;
5: Move head and tail as the description in Section 3.3;
6: end while

GP first initializes a sliding window in Line 1, and then
circularly executes encryption task until a stop command is
issued. The encryption task includes encrypting the users’
data in current window on the GPU in parallel as shown in
Line 3, flowing out the cipher stream as shown in Line 4,
and sliding the window as shown in Line 5.

4.3 CP

Algorithm 3 exhibits the pseudo code of CP. The algorithm
differs GP on parallelism method. CP employs CPU paral-
lelism rather than GPU parallelism adopted in GP. There-
fore, CP derives multiple threads according to the number
of CPU cores in Line 3. If the CPU supports hyper-thread-
ing, CP will derive twice as many of threads of the number
of CPU cores. For example, Two Intel Xeon E5-2640 v2
CPUs support hyper-threading and have 16 cores totally, so
that CP derives a ¼ 16� 2 ¼ 32 threads when running on

Fig. 6. Comparison of energy consumption between scaled freq. and
fixed freq.

FEI ETAL.: VELOCITY-AWARE PARALLEL ENCRYPTION ALGORITHMWITH LOW ENERGYCONSUMPTION FOR STREAMS 625

these CPUs. The derived threads will undertake the encryp-
tion evenly in parallel as shown in Line 4. After the encryp-
tion finished, the current encrypted cipher cipherStream
flows out. And then head and tail are moved as the descrip-
tion in Section 3.3.

Algorithm 3. CP Algorithm

Input:
Plain text stream, plainStream;
Keys, keys;

Output:
Cipher text stream, cipherStream;

1: Initialize sliding window with size size;
2: while (!stop) do
3: Derive a threads according to the numbers of CPU cores;
4: Perform encryption by each thread in parallel for even

users’ data;
5: Flow out the current encrypted cipher cipherStream;
6: Move head and tail as the description in Section 3.3;
7: end while

4.4 CS

Algorithm 4 describes the pseudo code of CS, which differs
CP on whether adopting parallelism. CS does not adopt
CPU parallelism and serially performs encryption for the
buffered data in the window as shown in Line 3.

Algorithm 4. CS Algorithm

Input:
Plain text stream, plainStream;
Keys, keys;

Output:
Cipher text stream, cipherStream;

1: Initialize sliding window with size size;
2: while (!stop) do
3: Perform encryption serially for the buffered users’ data;
4: Flow out the current encrypted cipher cipherStream;
5: Move head and tail as the description in Section 3.3;
6: end while

5 EXPERIMENTS

5.1 Experiment Setup

5.1.1 Experiment Environment

Experiments are conducted on a heterogeneous platform
with two Intel Xeon CPUs and one Nvidia K20M GPU. The
configuration of the platform is listed in Table 2.

Experiments are conducted with four different algo-
rithms for a series of user data streams. The purpose is to
compare them and validate the effect of LECPAES, and fur-
ther find some useful conclusions. The four algorithms are
CPU Serial AES, CPU Parallel AES, GPU Parallel AES, and
LECPAES. They all employ sliding windows but differenti-
ate in encryption manner. CS executes serial encryption
for the buffered data one user by one user on the CPUs,
whereas CP executes parallel encryption for the current
buffered data in the window on the CPUs. GP executes par-
allel encryption for the current buffered data in the window

on the GPU. LECPAES differs GP in dynamically scaling
the frequency to reduce the energy consumption.

The user data stream is mimicked as 12,000 users submit-
ting their data cyclically. The period, called latency, repre-
sents different flow velocity. Longer latency means lower
stream velocity, and vice versa. Thus, the experiments can
implement different streams with different velocity. The
users will produce data with length between 35 KB and
150 KB to simulate the data in typical web accesses ran-
domly, since this length range has been gathered statistics
by Levering et al. [33].

When the velocity of the stream changes, sometimes the
velocity of inflowmay be faster than the velocity of outflow. If
the sliding window has not enough space to load more data,
this will make some data miss, i.e., cannot be encrypted this
time. In this situation, these missed data will be retransmitted
later. In the experiments, the time for retransmission is set to
2� latency.

In order to get the energy consumption of the GPU, the
experiments use nvmlDeviceGetPowerUsage in nvml to get
the instant power gpower every 50 ns and Event mechanism
in CUDA to record the spent time gtime.

In another aspect, the experiments use PowerGadget pro-
vided by Intel to sample the instant power of the CPUs
cpower. PowerGadget bases on RAPL (Running Average
Power Limit) library which can acquire the data of power of
Intel CPUs recorded in MSRs (energy Model-Specific Regis-
ters). The spent time on the CPUs ctime are recorded by
gettimeofday for Linux or QueryPerformanceCounter for
Windows.

Further, the energy consumption Eg on the GPU can be
calculated by Eg ¼ gpower� gtime. Similarly, the energy
consumption Ec on the CPUs can be calculated by Ec ¼
cpower� ctime. Therefore, the total energy consumption on
the CPUs andGPUE can be calculated as:E ¼ EgþEc.

5.1.2 Experimental Process

The experiments first derives five threads to execute differ-
ent tasks. The first thread produces the plain text data for
users every latency to form a data stream. If the sliding win-
dow has enough space, the thread will put the data into the
window and move tail and then continue; otherwise the
thread will wait 2� latency and then continue.

The second thread is in charge of triggering the encryption
task by one of CS, CP, GP, or LECPAES according to different
experiments. Once the encryption completes for the buffered
data, the threadwill move head and then continue.

The next two threads acquire the data of power on the
CPUs and GPU every 50 ns, respectively. The last thread

TABLE 2
Configuration of the Experimental Platform

GPU CPU

NVIDIA Tesla K20M (13 multiprocessors) Two Intel Xeon E5-2,640 v2

(support hyper-threading)

Six groups of supported clock frequencies

of core and memory in unit of MHz: (324,

324), (614, 2,600), (640, 2,600), (666, 2,600),

(705, 2,600), (758, 2,600)

Clock rate: 2.0 GHz

Total: 2,496 cores Total: 16 cores

626 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021

terminates the application when the data stream has been
processed completely. The full process flow can be seen in
Fig. 7.

The experiments are conducted for the four algorithms
separately. For implementing different velocities, the experi-
ments choose seven different latencies, i.e., 100, 500, 1,000,
1,500, 2,000, 2,500, and 3,000 us. The results will be reported
in the next Section.

5.2 Experimental Results

The experimental results will be reported from several
aspects including energy consumption, throughput, retrans-
mission rate, and energy saving, in this section.

5.2.1 Energy Consumption

In the experiments, CS, CP, GP, and LECPAES encrypt
some users’ data streams with different latency separately.
Their energy consumptions are drawn in Fig. 8.

From the figure, CS consumes far more energy than the
other three algorithms. Moreover, CS consumes also the
same energy for the streams with different latency. The
average energy consumption of CS is 10;520:77 J.

CP, GP, and LECPAES increase energy consumption
with the increase of latency. Specifically, CP increases
energy consumption from 1;259:91 J for the stream with
latency of 100 us to 2;218:47 J for the stream with latency of
3;000 us. GP increases energy consumption from 381.31 J for
the stream with latency of 100 us to 2;839:52 J for the stream
with latency of 3;000 us. LECPAES increases energy con-
sumption from 395.95 J for the stream with latency of 100 us
to 1;974:57 J for the stream with latency of 3;000 us.

LECPAES consumes less energy than GP for the streams
with latency larger than 500 us, but more energy than GP
for the streams with latency less than 500 us. For the stream
with latency of 500 us, GP and LECPAES consume energy
of 641.60 J and 524.89 J, respectively.

GP consumes less energy than CP for the streams with
latency less than 1;500 us, but more energy than CP for the
streams with latency larger than or equal to 1;500 us. For
the stream with latency of 1;500 us, GP and CP consume
energy of 1;522:14 J and 1;378:80 J, respectively.

LECPAES consumes less energy than CP for all the
streams in the figure, but their difference of energy con-
sumption becomes less with the increase of latency. For the
stream with latency of 100 us, LECPAES and CP consume
energy of 395.95 J and 1;259:91 J, respectively. Here, LEC-
PAES consumes 899.96 J less energy than CP. Nevertheless,
for the stream with latency of 3;000 us, LECPAES and CP
consume energy of 1;974:57 J and 2;218:47 J, respectively.
Now, LECPAES consumes 243.90 J less energy than CP.

5.2.2 Throughput

In this Section, throughput will be reported. Here, through-
put represents the efficiency of a stream passing the encryp-
tion server. It is defined as a quotient throughput of the data
volume of the stream dv dividing the pass time pt, i.e.,
throughput ¼ dv

pt. Note that dv refers to the available data
volume, i.e., the same data retransmitted multiple times
will be calculated only one time. In addition, pt represents
the entire time of from the time of the stream flows in to the
time of the stream flows out.

Fig. 9 portrays the throughput of the four algorithms
for the streams with different latencies. From Fig. 9, the
throughput of LECPAES, GP, and CP decreases as the

Fig. 7. Experimental process.
Fig. 8. Energy consumption.

Fig. 9. Throughput.

FEI ETAL.: VELOCITY-AWARE PARALLEL ENCRYPTION ALGORITHMWITH LOW ENERGYCONSUMPTION FOR STREAMS 627

latency increases, but the throughput of CS keeps stable.
Specifically, LECPAES decreases throughput from 282.13
MBps for the stream with latency 100 us to 29.32 MBps for
the stream with latency 3;000 us. GP decreases throughput
from 287.56 MBps for the stream with latency 100 us to 30.31
MBps for the stream with latency 3;000 us. CP decreases
throughput from 61.44 MBps for the stream with latency 100
us to 28.45 MBps for the stream with latency 3;000 us. CS
keeps the throughput between 5.55 MBps and 5.62 MBps.

In the experiments, GP has the highest throughput, but
LECPAES is only a little less than GP. CS has the lowest
throughput. The average throughput of CS, CP, GP, and
LECPAES are 5.57 MBps, 48.02 MBps, 99.18 MBps, and
97.59 MBps, respectively.

5.2.3 Retransmission Rate

When a stream has higher velocity of inflow than that of
outflow, some users’ data can be buffered in the sliding
window. However, when the sliding window does not have
enough space to load more data, current users’ data will be
lost and need to be retransmitted.

Retransmission will take place after 2� latency of the
missing service. Retransmission will reduce the QoS (Qual-
ity of Service) and impact the experience of users. Retrans-
mission rate is defined as the ratio of retransmission to all
transmission and reflects the QoS.

Table 3 lists the retransmission rate processed by differ-
ent algorithms for the streams with different latencies. The
retransmission rates decrease as the latencies decrease. CS
has the highest retransmission rate, and GP has the lowest
retransmission rate.

5.2.4 Energy Saving

Energy saving ratio Esrij represents the saving energy ratio
of one algorithm Ai over another one Aj in this paper. It can

be calculated as Esrij ¼ ðEAj � EAiÞ=EAj, where EAi and
EAj are the energy consumption of Ai and Aj, respectivley.
Table 4 lists the energy saving ratio of LECPAES over the
other three algorithms. The second, third, and fourth col-
umns represent the ratios of LECPAES over GP, CP, and
CS, respectively. The last row represents the average ratios.

The energy saving ratio of LECPAES over GP (L2G)
increases as the latency increases. Its average value is 23:4
percent. The energy saving ratio of LECPAES over CP
(L2CP) decreases as the latency increases. Its average value
is 33:7 percent. The energy saving ratio of LECPAES over
CS (L2CS) decreases as the latency increases. Its average
value is 89:5 percent.

Table 5 lists the energy saving ratios of GP over CP, GP
over CS, and CP over CS, respectively. The last row also
represents the average ratios.

The energy saving ratio of GP over CP (G2CP) decreases
as the latency increases. Its average value is 8:5 percent. The
energy saving ratio of GP over CS (G2CS) decreases as
the latency increases also. Its average value is 85:3 percent.
The energy saving ratio of CP over CS (CP2CS) decreases as
the latency increases. Its average value is 84:9 percent.

5.3 Summary

In summary, the comparison of LECPAES and GP from the
aspects of energy consumption, throughput, and retrans-
mission rate can be seen in Table 6. Because energy saving
ratio is a relative value and its statistical difference is mean-
ingless, it will not be listed in the following Tables 6 to 8.
The differences in the table are calculated by the corre-
sponding value of LECPAES minus that of GP. From the
table, LECPAES costs less energy, but with a little lower
throughput and a little higher retransmission rate, than GP.

TABLE 3
Retransmission Rate

latency (us) CS CP GP LECPAES

100 61.13075 4.60500 0.64567 0.73242
500 14.30458 0.73592 0.01425 0.01492
1,000 6.54617 0.40750 0.00650 0.00667
1,500 4.50083 0.25417 0.00358 0.00458
2,000 3.27467 0.18333 0.00133 0.00258
2,500 2.62733 0.08543 0.00000 0.00000
3,000 2.02175 0.03786 0.00000 0.00000

TABLE 4
Energy Saving Ratio of LECPAES

latency L2G L2CP L2CS

100 �0.03842 0.69446 0.96222
500 0.18190 0.59456 0.94992
1,000 0.28982 0.43694 0.92702
1,500 0.29878 0.22588 0.89846
2,000 0.30019 0.16544 0.86940
2,500 0.30272 0.13169 0.84399
3,000 0.30461 0.10994 0.81167
avg 0.23423 0.33699 0.89467

TABLE 5
Energy Saving Ratio of GP and CP

latency G2CP G2CS CP2CS

100 0.70576 0.96362 0.87636
500 0.50442 0.93878 0.87647
1,000 0.20716 0.89723 0.87038
1,500 �0.10396 0.85519 0.86883
2,000 �0.19255 0.81339 0.84352
2,500 �0.24528 0.77626 0.82033
3,000 �0.27995 0.72917 0.78840
avg 0.08509 0.85338 0.84918

TABLE 6
LECPAES versus GP

latency (us) Energy
Consumption
Difference (J)

Throughput
Difference

(MBps)

Retransmission
Rate Difference

100 14.64789 �5.43462 0.00233
500 �116.70678 �3.58103 0.00172
1,000 �312.04820 �0.13804 0.00233
1,500 �454.78482 �0.84615 0.00050
2,000 �587.49921 �0.05752 0.00075
2,500 �726.29618 �0.08636 0.00000
3,000 �864.94611 �0.99010 0.00000
avg �435.37620 �1.59055 0.00109

628 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021

The trend is that the amount of variation becomes smaller
with higher latency. On average, compared to GP, LEC-
PAES saves energy of 435.37620 J, reduces throughput of
1.59055 MBps, and increases retransmission rate of 0.00109.

The comparison of LECPAES and CP can be seen in
Table 7, where the differences are calculated by the corre-
sponding value of LECPAES minus that of CP. In this table,
the tread has changed compared to that in Table 6. LEC-
PAES costs less energy, but with higher throughput and
lower retransmission rate than CP. On average, compared
to CP, LECPAES saves 477.66191 J energy, increases
throughput of 49.56776 MBps, and reduces retransmission
rate of 0.78299.

The comparison of LECPAES and CS can be seen in
Table 8, where the differences are calculated by the corre-
sponding value of LECPAES minus that of CS. In this table,
the tread is same with that in Table 7, but with larger differ-
ent value. On average, compared to CS, LECPAES saves
energy of 9;410:76959 J, increases throughput of 92.02511
MBps, and reduces retransmission rate of 13.60646.

6 DISCUSSION

Through the experiments, we have the following findings.

� For fast streams, LECPAES consumes little more
energy than GP. For slow streams, LECPAES con-
sumes the least energy compared to GP, CP, and CS.
This is because, for faster streams, LECPAES will
result in higher retransmission rate and lower
throughput, but the profits brought by scaling fre-
quency cannot offset them. As the velocity of streams
increases, LECPAES gets more profits from scaling
frequency and becomes saving more energy than
GP. This can be seen that LECPAES, GP, and CP will
consume more energy with the increase of the veloc-
ity of streams. CS consumes almost the same energy
with the increase of the velocity of streams. This is
because CS performs encryption in serial and its
speed is far slower than the speed of inflow. More-
over, faster streams will cause data retransmission
later, thus the energy consumption of CS is deter-
mined by the time of draining the stream. In the
experiments, even the slowest stream is still faster
than the speed of encryption outflow, thus CS will
spend almost the same time of encrypting the data
for streams with different velocity and consume
almost the same energy.

� With the decrease of the velocity of streams, LEC-
PAES, GP, and CP decrease their throughput, but CS
keeps stable throughput. Faster streams will cause
higher retransmission rate, but when calculating
throughput, only the successfully encrypted data are
used. That is to say these streams have the same
amount of data. Because CS encrypts the streams at
the slowest speed and the speed is far slower than the
veloctiy of inflow, CS produces the lowest through-
put and keeps stable. CP produces the second lowest
throughput because of higher encryption speed than
CS but slower encryption speed than GP and LEC-
PAES. For slower streams, CP, GP, and LECPAES
will spend more time to complete the encryption,
thus they decrease throughput for slower streams.
Because GP and LECPAES have higher encryption
speed than CP, thus CP and LECPAES produce
higher throughput than CP. In addition, because
LECPAES dynamically scales the frequency, LEC-
PAES has a little slower encryption speed than GP
and results in a slightly lower throughput thanGP.

� GP and LECPAES are suitable for fast streams, but
LECPAES consumes less energy than GP. For fast
streams, GP and LECPAES consume less energy, pro-
duce higher throughput, and lower retransmission
rate compared to CP and CS. This is because, the
GPU undertakes full workload and produces better
energy efficiency. Because GP and LECPAES encrypt
data at high speed, they have higher throughput
and lower retransmission rate. Moreover, LECPAES
consumes less energy than GP through dynamically
scaling frequency, but only slightly decreases
throughput and slightly increases retransmission
rate. In short, LECPAES is the best algorithm among
them for fast and energy-saving stream encryption.

7 CONCLUSION

In this work, in order to expedite encrypting streams in
cloud environment in energy saving manner, a velocity-
aware parallel encryption algorithm with low energy con-
sumption, called LECPAES, is proposed.

In LECPAES, a sliding window is adopted and used to
sense the velocity of current stream. Then a scaling fre-
quency scheme is employed based on the current sensed
stream velocity. The encryption is performed on the GPU in
many threads fashion. As comparison, CS, CP are also

TABLE 7
LECPAES versus CP

latency (us) Energy
Consumption
Difference (J)

Throughput
Difference

(MBps)

Retransmission
Rate Difference

100 �899.95776 220.68415 �4.40675
500 �769.74009 93.33504 �0.83745
1,000 �593.37253 26.72644 �0.23183
1,500 �311.44435 2.27806 �0.00317
2,000 �271.50469 1.93408 �0.00174
2,500 �253.71760 1.14931 0.00000
3,000 �243.89636 0.86728 0.00000
avg �477.66191 49.56776 �0.78299

TABLE 8
LECPAES versus CS

latency (us) Energy
Consumption
Difference (J)

Throughput
Difference

(MBps)

Retransmission
Rate Difference

100 �10,085.40719 276.50737 �60.13958
500 �9,955.36973 147.90988 �14.66937
1,000 �9,712.35478 77.32657 �7.34900
1,500 �9,444.21666 51.49978 �4.76192
2,000 �9,117.86565 37.80085 �3.47817
2,500 �9,050.31162 29.36779 �2.68150
3,000 �8,509.86151 23.76355 �2.16567
avg �9,410.76959 92.02511 �13.60646

FEI ETAL.: VELOCITY-AWARE PARALLEL ENCRYPTION ALGORITHMWITH LOW ENERGYCONSUMPTION FOR STREAMS 629

designed for suiting stream data and are compared with GP
and LECPAES from the aspects of energy consumption,
throughput, and retransmission rate.

Some experiments are conducted in a server with one
K20M GPU and two Xeon CPUs and show the following
results. (1) LECPAES can reduce energy consumption,
slightly reduce throughput, and slightly increase retransmis-
sion rate comparedwith GP. (2) LECPAES can reduce energy
consumption, increase throughput, and reduce retransmis-
sion rate compared with CP. (3) LECPAES can reduce
energy consumption largely, increase throughput largely,
and reduce retransmission rate largely compared with CS.
Therefore, LECPAES is suitable for fast stream encryption in
energy savingmanner through sensing velocity.

This paper represents our initial work in stream encryp-
tion with low energy consumption. We consider only
the stable streams with fixed inflow speed. In future, we
plan to extend this work to suit streams with complicated
inflow speed.

ACKNOWLEDGMENTS

The authors would like to thank the editors and the anony-
mous reviewers for their comments and suggestions to
improve the manuscript. The research was partially funded
by the Key Program of National Natural Science Foundation
of China (Grant No. 61432005), the National Outstanding
Youth Science Program of National Natural Science
Foundation of China (Grant No. 61625202), the National
Natural Science Foundation of China (Grant Nos. 61370095,
61472124, 61572175), International Science & Technology
Cooperation Program of China (2015DFA11240), National
High-tech R&D Program of China (2015AA015303).

REFERENCES

[1] D. H. Woo and H.-H. S. Lee, “Extending Amdahl’s law for energy-
efficient computing in the many-core era,” IEEE Comput., vol. 41,
no. 12, pp. 24–31, 2008.

[2] top500.org, “The top500 list,” [Online]. Available: http://www.
top500.org/

[3] P. FIPS, “197: Specification for the Advanced Encryption Stan-
dard, 2001,” 2009. [Online]. Available: http://www.csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

[4] H. Lipmaa, P. Rogaway, and D. Wagner, “Comments to NIST
concerning aes modes of operations: Ctr-mode encryption,”
(2000). [Online]. Available: http://www.cs.ucdavis.edu/rogaway/
papers/ctr.pdf

[5] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato,
“Power and performance analysis of gpu-accelerated systems,”
in Proc. USENIX Conf. Power-Aware Comput. Syst., vol. 12, 2012,
pp. 1–5.

[6] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of dynamic voltage and frequency scaling on a K20
GPU,” in Proc. 42nd Int. Conf. Parallel Process., 2013, pp. 826–833.

[7] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “Greengpu:
A holistic approach to energy efficiency in GPU-CPU heteroge-
neous architectures,” in Proc. 41st Int. Conf. Parallel Process., 2012,
pp. 48–57.

[8] M. Arora, S. Manne, I. Paul, N. Jayasena, and D. M. Tullsen,
“Understanding idle behavior and power gating mechanisms
in the context of modern benchmarks on CPU-GPU integrated
systems,” in Proc. 21st Int. Symp. High Performance Comput. Archit.,
2015, pp. 366–377.

[9] C. Tang, D. O. Wu, A. T. Chronopoulos, and C. S. Raghavendra,
“Efficient multi-party digital signature using adaptive secret
sharing for low-power devices in wireless networks,” IEEE Trans.
Wireless Commun., vol. 8, no. 2, pp. 882–889, Feb. 2009.

[10] Z. Liu, E. Wenger, and J. Groschadl, “MoTE-ECC: Energy-scalable
elliptic curve cryptography for wireless sensor networks,” in Proc.
12th Int. Conf. Appl. Cryptography Netw. Security, vol. 8479, 2014,
pp. 361–379.

[11] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power con-
sumption analysis and modeling for GPU-based computing,” in
Proc. ACMSOSPWorkshop Power Aware Comput. Syst., 2009, pp. 1–5.

[12] H.Nagasaka,N.Maruyama,A.Nukada, T. Endo, and S.Matsuoka,
“Statistical power modeling of GPU kernels using performance
counters,” in Proc. Green Comput. Conf. Int., 2010, pp. 115–122.

[13] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proc. 37th Annu. Int. Symp. Comput. Archit., vol. 38, no. 3,
2010, pp. 280–289.

[14] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and
D. Chiou, “GPGPU performance and power estimation using
machine learning,” in Proc. 21st Int. Symp. High Performance
Comput. Archit., 2015, pp. 564–576.

[15] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore,
and G. D. Peterson, “Power aware computing on GPUs,” in
Proc. Symp. Appl. Accelerators High Performance Comput., 2012,
pp. 64–73.

[16] K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for SpMV on GPU using probabilistic modeling,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 1, pp. 196–205, Jan. 2015.

[17] W. Yang, K. Li, and Z. Mo, “Performance optimization using
partitioned SpMV on GPUs and multicore CPUs,” IEEE Trans.
Comput., vol. 64, no. 9, pp. 2623–2636, Sep. 2015.

[18] S. A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in Proc. Int. Conf. Signal
Process. Commun., 2007, pp. 65–68.

[19] P. Maistri, F. Masson, and R. Leveugle, “Implementation of
the advanced encryption standard on GPUs with the NVIDIA
CUDA framework,” in Proc. Symp. Ind. Electron. Appl., 2011,
pp. 213–217.

[20] K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration of AES
encryption on CUDA GPU,” Int. J. Netw. Comput., vol. 2, no. 1,
pp. 131–145, 2012.

[21] N. Nishikawa, K. Iwai, and T. Kurokawa, “High-performance
symmetric block ciphers on CUDA,” in Proc. 2nd Int. Conf. Netw.
Comput., 2011, pp. 221–227.

[22] X. Fei, K. Li, W. Yang, and K. Li, “Practical parallel AES algo-
rithms on cloud for massive users and their performance eval-
uation,” Concurrency Comput. Practice Exp., vol. 28, pp. 4246–4263,
2016.

[23] Y. Wang, Z. Feng, H. Guo, C. He, and Y. Yang, “Scene recognition
acceleration using CUDA and OpenMP,” in Proc. 1st Int. Conf. Inf.
Sci. Eng., 2009, pp. 1422–1425.

[24] G. Liu, et al., “A program behavior study of block cryptography
algorithms on gpgpu,” in Proc. 4th Int. Conf. Frontier Comput. Sci.
Technol., 2009, pp. 33–39.

[25] F. Shao, Z. Chang, and Y. Zhang, “AES encryption algorithm
based on the high performance computing of GPU,” in Proc. 2nd
Int. Conf. Commun. Softw. Netw., 2010, pp. 588–590.

[26] C. Mei, H. Jiang, and J. Jenness, “CUDA-based AES parallelization
with fine-tuned GPU memory utilization,” in Proc. Int. Symp.
Parallel Distrib. Process. Workshops Phd Forum, 2010, pp. 1–7.

[27] K. Iwai, T. Kurokawa, and N. Nisikawa, “AES encryption imple-
mentation on CUDA GPU and its analysis,” in Proc. 1st Int. Conf.
Netw. Comput., 2010, pp. 209–214.

[28] T. Nhat-Phuong, L. Myungho, H. Sugwon, and L. Seung-Jae,
“High throughput parallelization of AES-CTR algorithm,” IEICE
Trans. Inf. Syst., vol. 96, no. 8, pp. 1685–1695, 2013.

[29] X. Fei, K. Li, W. Yang, and K. Li, “A secure and efficient file
protecting system based on SHA3 and parallel AES,” Parallel
Comput., vol. 52, no. 2, pp. 106–132, 2016.

[30] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS micro-
processor design,” in Proc. 28th Hawaii Int. Conf. Syst. Sci., vol. 1,
pp. 288–297, 1995.

[31] Y. Lin, X. Yang, T. Tang, G. Wang, and X. Xu, “An integrated
energy optimization approach for CPU-GPU heterogeneous
systems based on critical path analysis,” Chin. J. Comput., vol. 35,
no. 1, pp. 123–133, 2012.

[32] N. Corp, “Nvml api reference manual,” (2012). [Online]. Avail-
able: http://developer.download.nvidia.com/assets/cuda/files/
CUDADownloads/NVML/nvml.pdf

[33] R. Levering and M. Cutler, “The portrait of a common HTML web
page,” in Proc. ACM Symp. Document Eng., 2006, pp. 198–204.

630 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 4, OCTOBER 2021

http://www.top500.org/
http://www.top500.org/
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cs.ucdavis.edu/rogaway/papers/ctr.pdf
http://www.cs.ucdavis.edu/rogaway/papers/ctr.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf

Xiongwei Fei received the MS degree in com-
puter science from Hunan University, China, in
2008. He is currently working toward the PhD
degree at Hunan University, China. He is an asso-
ciate professor of computer science and technol-
ogy at Hunan City University, China. His research
interests include parallel computing, cryptogra-
phy algorithms, and cloud computing.

Kenli Li received the PhD degree in computer
science from Huazhong University of Science
and Technology, China, in 2003. He was a visiting
scholar at the University of Illinois at Urbana-
Champaign from 2004 to 2005. He is currently a
full professor of computer science and technol-
ogy at Hunan University and the deputy director
in the National Supercomputing Center in Chang-
sha. His major research areas include parallel
computing, high-performance computing, and
grid and cloud computing. He has published

more than 130 research papers in international conferences and jour-
nals such as IEEE Transactions on Computers, IEEE Transactions on
Parallel and Distributed Systems, Journal of Parallel and Distributed
Computing, ICPP, CCGrid. He is an outstanding member of CCF. He
serves on the editorial board of the IEEE Transactions on Computers.
He is a senior member of the IEEE.

Wangdong Yang received the MS degree from
Central South University, China, in 2006. He is
currently working toward the PhD degree at
Hunan University, China. He is a professor of
computer science and technology, Hunan City
University, China. His research interests include
modeling and programming for distributed com-
puting systems, parallel algorithms, grid and
cloud computing.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-
efficient computing and communication, hetero-
geneous computing systems, cloud computing,
big data computing, CPU-GPU hybrid and coop-
erative computing, multicore computing, storage
and file systems, wireless communication net-
works, sensor networks, peer-to-peer file sharing
systems, mobile computing, service computing,

Internet of things and cyber-physical systems. He has published more
than 470 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Computers, IEEE
Transactions on Cloud Computing, IEEE Transactions on Services
Computing, IEEE Transactions on Sustainable Computing. He is a
fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

FEI ETAL.: VELOCITY-AWARE PARALLEL ENCRYPTION ALGORITHMWITH LOW ENERGYCONSUMPTION FOR STREAMS 631

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

