
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
Published online 17 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3734

SPECIAL ISSUE PAPER

Practical parallel AES algorithms on cloud for massive users and
their performance evaluation

Xiongwei Fei1,2, Kenli Li1,2,*,† , Wangdong Yang1,2 and Keqin Li1,2,3

1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2National Supercomputing Center in Changsha, Hunan University, Changsha 410082, China
3Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

SUMMARY

Many e-business or social network servers have been constructed on cloud. On such open environments,
private data of massive users have to be protected by encrypting, such as using Advanced Encryption
Standard (AES), and furthermore, this process must be finished in a short time for users’ better experience.
This gives huge pressure on cloud servers, especially common servers, such as web servers. We urgently
need an inexpensive and highly efficient method to relieve cloud servers’ pressure. Fortunately, many cores
of a graphics processing unit (GPU) can undertake this hard mission because of stronger computing power
and lower price. The GPU environments can be virtualized on demand by cloud through the vCUDA
technology. Of course, for those clouds not equipped with a GPU, a central processing unit (CPU) can still
work as multithreads in parallel. Thus, in a cloud, AES can be parallelized using many cores of a GPU or
multicores of a CPU with high efficiency and low cost. For typical cloud applications, such as web services,
there are massive users and each one has short plaintext. If we simply parallelize AES in such an application,
we cannot obtain better performance because of the GPU’s extra data transferring cost. Thus, we
coalesce the massive users’ data and cut these data into same-length slices for improving the performance of
parallel AES as much as possible. So we design six parallel AES algorithms using GPU parallelism or CPU
parallelism, which differ in parallel scope and whether data are coalesced or cut to slices. Specifically, they
are coalescent and sliced GPU (GCS), coalescent and unsliced GPU, uncoalescent GPU, coalescent and
sliced CPU, coalescent and unsliced CPU, and uncoalescent CPU. Moreover, we implement them on two
representative platforms and evaluate their performance. Through comparing their performance, GCS has the
best performance among these algorithms. In a cloud with Nvidia GPUs, GCS is a more powerful algorithm
for massive users’ data encrypting, relatively. Copyright © 2015 John Wiley & Sons, Ltd.

Received 6 January 2015; Revised 31 August 2015; Accepted 11 November 2015

KEY WORDS: Advanced Encryption Standard; cloud; coalescent; CPU parallelism; GPU parallelism;
performance evaluation; slice

1. INTRODUCTION

Currently, more and more people use e-business or social network services. Thus, the servers are
suffering heavy workloads on one side and must offer data security for users’ private data on the
other side, usually by encrypting with Advanced Encryption Standard (AES). However, the servers
are hard to upgrade for satisfying these constantly increasing demands because of extra investment
or difficulties of redeploying.

Fortunately, many servers have been constructed on the clouds with CPUs and graphics pro-
cessing units (GPUs). Through vCUDA[1], a cloud can virtualize a suitable GPU environment on

*Correspondence to: Kenli Li, College of Computer Science and Electronic Engineering, Hunan University, Changsha
410082, China.

†E-mail: lkl@hnu.edu.cn

Copyright © 2015 John Wiley & Sons, Ltd.



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4247

demand for an application. Of course, for those clouds not equipped with GPUs, a CPU can still
work as multithreads for high-performance computing. Thus, in a cloud, AES can be parallelized
using many cores of a GPU or multicores of a CPU with high efficiency and low cost. Furthermore,
the servers’ embarrassing situation can be relieved by GPU parallelism or CPU parallelism.

In some typical applications, massive users’ data are usually short but may be different in length.
For example, in a secure socket layer (SSL), transferring data usually varies from 35 to 150 KB, but
different user’s data may have a different length [2]. If we just use GPU parallelism or CPU paral-
lelism to accelerate encrypting in this situation, it does not fully utilize the computing performance
of a CPU or GPU, because a GPU or CPU often encounter these short plaintexts. Especially, GPU
parallelism will fall into the difficulty of transferring massive little plaintexts.

This paper endeavors to solve the effective encrypting problem for massive users with short
plaintexts. We propose six efficient parallel AES algorithms and evaluate their performance on two
different platforms.

In short, our main contributions are summarized as follows.

� For the first time in existing research, we consider parallel AES encrypting for common
applications with massive users, where each user has short but possibly different length data.
� We improve the encrypting efficiency of such applications by the methods of coalescing and/or

slicing.
� We design a series of parallel AES algorithms for cloud either equipped with a GPU or CPU.

These parallel AES algorithms cover all aspects, such as parallel scope, coalescing, and slicing.
� We implement these six algorithms and evaluate their performance on two representative

platforms.

The rest of this paper is organized as follows. Section 2 reviews some related work on parallel
AES algorithms. In Section 3, we present and analyze six different CPU-parallel or GPU-parallel
AES algorithms for massive users’ data encrypting. Next, Section 4 describes our experiments and
compares the performance of these practical parallel AES algorithms and then discusses and ana-
lyzes the experimental results. In Section 5, we make a conclusion for all the work and look forward
to our future work.

2. RELATED WORK

Advanced Encryption Standard (AES) [3, 4] is widely used in enterprises or organizations for
encrypting/decrypting data, which is chosen as a standard for higher efficiency and stronger security
than its competitors, such as RC6, etc.

In the past decade, the CPU has had multicores and continues to increase the number of cores,
while the GPU has developed to many cores as well, and more GPUs have evolved to support
general-purpose computing. Thus, we can use many threads in a CPU or GPU to quickly solve some
problems in parallel. Without exception, there are many researches about improving AES efficiency
by using GPU parallelism or CPU parallelism, especially the latter.

There are mainly two reasons for the popularity of GPU parallelism. One reason is that GPU pro-
gramming becomes easy, because it is supported by new frameworks, such as Computing Unified
Device Architecture (CUDA) offered by Nvidia. The other reason is that GPU parallelism can pro-
duce powerful computing, because a GPU usually has hundreds (currently thousands on high-end
GPU) of processing cores and very-high data bandwidth. For example, Li et al. [5] improved the
performance of sparse matrix-vector multiplication on a GPU using probabilistic modeling.

The first paper [6], which uses CUDA to parallelize AES on a GPU, achieved about 20 times
speedup for OpenSSL (Open Secure Socket Layer) data. Li et al. [7] achieved the maximum per-
formance of around 60 Gbps throughput using CUDA on an NVIDIA Tesla C2050 GPU. Maistri
et al. [8] implemented parallel AES using CUDA and obtained good performance with excellent
price/performance ratio. In addition, some further analysis and optimization for parallel AES on
GPU can be found in [9–17].

If a cloud is not equipped with a GPU, another possible parallelism is CPU parallelism. Currently,
a CPU usually has multicores and these cores can perform some workloads in parallel. In such

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4248 X.I FEI ET AL.

a CPU, shared memory parallel programs can be designed by the mature OpenMP (Open Multi-
processing) parallel technology. OpenMP can also be easily used to develop parallel programs. This
is because multithreads can be supported by a set of simple directives in OpenMP. AES of course can
be parallelized on a CPU by means of multiple threads, which are indicated by OpenMP directives.

This attracts the attention of researchers as well. For instance, Navalgund et al. [18] implemented
a parallel AES using OpenMP and achieved attractive performance improvement. Duta et al. [19]
parallelized AES using CUDA, OpenMP, and OpenCL (Open Computing Language), respectively,
and the rank of their performance is CUDA, OpenCL, and OpenMP in descending order. Besides,
Pousa et al. [20] implemented three parallel AES algorithms by means of using OpenMP, MPI, and
CUDA, respectively, and parallel AES by CUDA also exhibits higher efficiency. Recently, Nagendra
and Sekhar [21] used OpenMP to implement a parallel AES, which costs 40–45% less time than the
sequential one. Ortega et al. [22] parallelized AES on multicores CPU using OpenMP and on GPUs
using CUDA, respectively, and observed that the latter is superior to the former. These research
progresses consolidate that parallelizing AES using CUDA is a strong and effective method.

In addition, Banu et al. [2] accelerated AES by combining hardware parallelism made by field-
programmable gate array and software parallelism (i.e., OpenMP). Currently, Liu and Baas [23]
parallelized AES on an Asynchronous Array of Simple Processors and gained better performance
with higher energy efficiency. The hardware parallelism techniques demonstrate higher efficiency
than the software techniques but have the drawbacks of lacking of flexibility of implementation and
needing extra costly investment.

All in all, for a cloud equipped with Nvidia GPUs, it is a better method to parallelize AES using
CUDA. Whereas, for a cloud server not deploying NVIDIA GPUs, it can still accelerate AES by
CPU parallelism using OpenMP.

The final aim of improving AES efficiency by parallel techniques is to apply it to practical appli-
cations, such as SSL or HTML (Hyper Text Markup Language) services. This is a key step and
should consider the actual situations as well. Some researchers have explored the applications of
parallel AES. As mentioned before, the first paper [6] using CUDA to parallelize AES on GPU is
finally used to accelerate encrypting of the data of OpenSSL applications. Besides, Jang et al. [24]
implemented a parallel SSL on a GPU, including AES, RSA, and HMAC-SHA1, and obtained the
speed of 21.5K SSL transactions per second. Moreover, in database applications, Fazackerley et al.
[25] implemented Cypher Block Chained parallel AES on GPU.

These researches do not concern the massive users’ data. But with the number of network users
increasing stably, definitely, the massive users’ data should be effectively protected by encrypting in
open environments. Among them, one of the typical applications is HTML, whose features include
that the data usually vary from 35 KB to 150 KB, and that massive users offer data at the same time,
such as e-order for buying train tickets (e.g., on a common holiday) or e-business for goods on sales
(e.g., during an important festival), and so on. The data of one user are little and must be quickly
encrypted for good experience of users. Thus, we cannot avoid the fact of cloud servers’ suffering
from the demands of massive users’ data encrypting. So, we consider adopting CPU parallelism and
GPU parallelism to solve this problem effectively.

To the best of our knowledge, this is the first time to consider how to effectively design parallel
AES for practical applications with massive users.

3. PRACTICAL PARALLEL ADVANCED ENCRYPTION STANDARD ALGORITHMS

In this section, we will propose and analyze six different GPU-parallel or CPU-parallel AES
algorithms for massive users’ little plaintext encrypting.

3.1. Introduction to Advanced Encryption Standard

Advanced Encryption Standard (AES) is a symmetric group cipher. In details, it uses the same key
and the same operating structures for encrypting and decrypting, and its group is as long as 16 bytes.
Its key can be as long as 16, 24, or 32 bytes, so AES-128, AES-192, and AES-256 are named respec-
tively after the number of bits of key. A different length of key means different operating rounds.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4249

AES-128 runs 10 rounds, while AES-192 and AES-256 run 12 and 14 rounds, respectively. Each
round includes four phrases: SubBytes, ShiftRows, MixColumns, and AddRoundKey, except before
the first round there is an extra AddRoundKey and the last round does not have a MixColumns.
The key is expanded to round keys for AddRoundKey. Because there is an extra AddRoundKey
before the first round, AES-128, AES-192, and AES-256 expand their 16-byte keys to 11, 13, and
15 round keys, respectively. Each group of plaintext is called state and is expressed as a 4 � 4
array. AddRoundKey performances XOR operation on round key and state for blinding. SubBytes
executes non-linear byte substitution and can be implemented by SBox, which is a fixed table.
ShiftRows cyclically shifts each row of state by 0, 1, 2, and 3 bytes, respectively. MixColumns per-
forms multiplications on each column of the state by a polynomial 0030x3 C0 010x2 C0 010x C0 020

modulo x4C1. Obviously, this is a time-consuming process but can be accelerated by precomputed
T tables.

Once AES expands its key to round keys, these round keys can be used by all the state of the plain-
text needed to be encrypted. The encrypting of each state is independent and the round operators are
major workloads. In addition, GPUs offered by Nvidia can support general integer computing. For
GPUs, the key expansion only executes once in serial and the states of plaintext that have the same
encrypting workloads can be encrypted on GPU in parallel. Thus, AES can perform on many-core
GPU efficiently in parallel. Of course, AES can also run on a CPU in parallel but has less parallelism
because of less cores.

In practical, AES employs a certain mode to add extra security for large amounts of data. There
are five modes [26], including Electronic Code Book, Cipher Feedback, Output Feedback, CTR
(Counter), and CBC (Cipher Block Chaining). CTR and CBC are more notable, but CBC does not
support parallel encrypting because of data dependence within groups. CTR is a new added mode
and is strongly recommended by Lipmaa et al. [27] for provable security and supporting parallel
operation. Thus, we adopt the CTR mode to achieve our parallel AES algorithms.

3.2. Parallel Advanced Encryption Standard Algorithms

Parallel AES algorithms adopt different parallel schemes. They are coalescent and sliced GPU
(GCS), coalescent and unsliced GPU (GCNS), uncoalescent GPU (GNC), coalescent and sliced
CPU (CCS), coalescent and unsliced CPU (CCNS), and uncoalescent CPU (CNC). GCS means
such a parallel scheme, which coalesces the massive users’ little plaintexts and cuts them into slices
evenly, and then a GPU encrypts these slices simultaneously. GCNS first coalesces massive users’
little plaintexts but does not cut them into slices, then uses GPU to encrypt these data in parallel.
Whereas, GNC does not coalesce the massive users’ little plaintexts and directly executes encrypting
on GPU in parallel.

In fact, GNC is based on the approach proposed by Duta et al. [19], which neither coalesces nor
slices the data of users. We adapt it to accommodate the environment of massive users. So, we name
it as GNC for the convenience of comparing.

Similarly, CCS, CCNS, and CNC work by CPU parallelism comparing with the former three
algorithms. Likewise, CNC neither coalesces nor slices the data of users. In fact, CNC is based on
the approach proposed by Navalgund et al. [18]. We adapt it to make it suitable for the data of
massive users and name it as CNC for the convenience of comparing.

The details of coalescing and slicing can be seen in Figures 1. For better showing these algo-
rithms’ difference, we list their main features in Table I. In practical applications, a server could
face massive users’ encrypting requests, and it can buffer these users’ plaintexts and adopt these six
parallel AES algorithms to encrypt them.

Coalescent and sliced GPU (GCS) coalesces the buffered users’ plaintexts and cuts them into
same-length slices and then sends these slices to a GPU. A GPU executes these encryption works
simultaneously by using its many cores. Because these slices have almost the same length and one
slice is in charged of one block, threads in a block have about the same amount of workload. This is
beneficial to fully utilize GPU computing resources.

Whereas, GCNS coalesces users’ plaintexts but does not cut them into same-length slices. Thus,
GCNS arranges one user’s data to one block, and each thread of block encrypts some groups of

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4250 X.I FEI ET AL.

Figure 1. (a) The buffered users’ data are coalesced and cut into slices of the same length. The key location
of each slice is stored in KeyLocs. (b) The buffered users’ data are just coalesced but not cut into slices.

Table I. Comparison of six practical parallel Advanced Encryption Standard algorithms.

Name Parallel scope Coalescent? Sliced?

GCS Buffered users’ data on GPU Yes Yes
GCNS Buffered users’ data on GPU Yes No
GNC One user’s data on GPU after another user’s No No
CCS Buffered users’ data on CPU Yes Yes
CCNS Buffered users’ data on CPU Yes No
CNC One user’s data on CPU after another user’s No No

GPU, graphics processing unit; GCS, coalescent and sliced GPU; GCNS, coalescent and unsliced
GPU; GNC, uncoalescent GPU; CCS, coalescent and sliced CPU; CCNS, coalescent and unsliced
CPU; CNC, uncoalescent CPU.

16-byte plaintext. Because different blocks may have different encrypting workload, some blocks
may spend more time to encrypt larger data.

Uncoalescent GPU (GNC) has a simpler work process that sends the data of one user to a GPU
once, and then this user’s data are encrypted in parallel on a GPU. Then the other users’ data repeat
the same process one by one. The encrypting works are distributed to many blocks and each block is
in charge of an equal part. For example, each thread of a block encrypts a group of 16-byte plaintext.
If a block is organized as 256 threads/block, it will be in charge of the encrypting of 16 bytes � 256
= 4 KB plaintext.

All CCS, CCNS, and CNC work as CPU parallelism and are similar to the previous GCS, GCNS,
and GNC but can be used on the cloud not equipped with Nvidia GPUs. For conciseness, we omit
their descriptions as readers can infer them from the descriptions of previous GCS, GCNS, and
GNC algorithms.

3.3. Coalescent and sliced graphics processing unit

The GCS algorithm is shown in Algorithm 1. In practice, servers can buffer massive users’ little
plaintexts easily if network users are sufficient. Thus, the GCS algorithm first coalesces and cuts
these data into some equal slices with length of sliceLen.

Obviously, a user’s data can be divided into several slices, so GCS uses an exkeyLocs array to
record the extended key location of each slice for finding the extended key in later GPU encrypting.
In AES-128, the 16-byte key should be extended to 176 bytes for 11 AddRoundKeys. Because a

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4251

Algorithm 1 GCS algorithm
Require:

number of users, users;
buffered users’ plaintext data, uData;
users’ data length, uLens;
users’ keys, uKeys;
slice length, sliceLen;

Ensure: uData are the AES ciphertext
1: coalesce users’ data to coalesceData and divide them to pieces as long as sliceLen;
2: extend each users’ key to exKeys and store the extended key locations exKeyLocs for each slice

data in CPU parallelism;
3: allocate device memory for storing exKeys as dExKeys, T Table as dT, coalesceData as dInput,

exKeyLocs as dExKeyLocs;
4: transfer exKeys, T , coalesceData ,and exKeyLocs from main memory to GPU global memory
5: define dimension of block and grid as dimBlock and dimGrid respectively by device properties
6: execute AES parallel kernel GCS_Cipher <<< dimGrid; dimBlock >>>

.dInput; dExKeys; dT; dExKeyLocs; tLen; users; sliceLen/;
7: copy ciphertext from dInput to coalesceData

user’s data use the same extended key, GCS extends uKeys to exKeys for all users using CPU paral-
lelism as shown in Line 2, and then one of exKeys will be used by each slice. Next, GCS allocates
sufficient device memory to store the data from the main memory, including dExKeys, which stores
exKeys, dT, which stores T Table (a 4 KB constant table, which is used to accelerate AES), dInput,
which stores coalesceData, and dKeyLocs, which stores exKeyLocs.

After this, the users’ data are transferred from the main memory to the GPU global memory, and
then AES is performed by calling the kernel function GCS_Cipher on GPU simultaneously. The
GCS_Cipher works by using the T tables to accelerate speed and allocating shared memory sT for
T tables and sKey for the extended key for alleviating access latency. The T tables have the length
of 4 KB and the length of the extended key is 176 bytes. Thus, the shared memory is enough for
storing them without any problem. Through dExkeys and dKeyLocs, we can get the extended key as
dExKeys[dExKeyLocs[sliceID]] for this slice.

The GCS_Cipher organizes the threads as follows. Each block has a size of Bs D sliceLen=16
threads and is in charge of the encrypting of a slice. In addition, GCS employs two methods to
improve performance as follows:

� using the granularity of 16B/Thread, which is the best granularity discussed in Ref. [16].
� using the block size of 100% occupancy.

Here we describe how to choose the block size Bs of 100% occupancy for GPU parallel AES
algorithms. The occupancy Oc is calculated by

Oc D Aw=Mw � 100%; (1)

where Aw represents the active warps in a multiprocessor, and Mw denotes the maximum possible
warps in a multiprocessor. Aw is limited by maximum warps or blocks per multiprocessor, registers
per multiprocessor, and shared memory per multiprocessor. In other words, the number of active
blocks is limited by the aforementioned factors and must be the minimum of these limitations. For
example, GPUs with computing capacity 3.0 or 3.5 have the parameters as shown in Table II. In
GCS, each thread needs 19 registers and each block needs 4344 bytes shared memory according to
compilation information. There are three possible block sizes whose occupancy is 100%, that is,
256, 512, and 1024. For block size 256, the occupancy is computed as follows:

Firstly, the number of active blocks limited by registers, Nbr , is calculated as:

Nbr D
Rm

Bs � RtCRu�1
Ru � Ru

D
65536

256 � 19C7
8
� 8
D 10; (2)

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4252 X.I FEI ET AL.

Table II. Parameters of graphics processing units with
computing capacity 3.0 or 3.5.

Maximal warps per multiprocessor 64

Maximal thread blocks per multiprocessor 16
Registers per multiprocessor 65,536
Register allocation unit size 8
Shared memory per multiprocessor 49,152
Shared memory allocation unit size 256
Maximum thread block size 1024
Threads per warp 32

Table III. Occupancy of graphics processing units with computing capacity 3.0 or 3.5 for coalescent and
sliced graphics processing unit.

Block size Register lim. SM lim. Max-blocks-warps lim. Warps per block Active warps Occupancy

256 10 11 8 8 64 100%
512 5 11 4 16 64 100%
1024 2 11 2 32 64 100%

where Rm represents registers per multiprocessor, Bs denotes the size of block, Rt represents reg-
isters per thread, Ru represents the size of register allocation unit, and the divisions are exact
divisions.

Secondly, the number of active blocks limited by shared memory, Nbsm, is calculated as:

Nbsm D
Sm

SbCSu�1
Su � Su

D
49152

4344C255
256

� 256
D 11; (3)

where Sm represents shared memory per multiprocessor, Sb denotes shared memory per block, and
Su represents the size of shared memory allocation unit.

Thirdly, the number of active blocks limited by max-blocks-warps, Nbmbw, is calculated as:

Nbmbw D min

�
Mb;

Mw �Ws

Bs

�
D min

�
16;

64 � 32

256

�
D 8; (4)

where Mb represents maximum thread blocks per multiprocessor, Mw represents maximum warps
per multiprocessor, Ws represents the size of warp, and Bs denotes the size of block.

Fourthly, the number of maximum active blocks Ab is the minimum of the above three numbers,
that is,

Ab D min.Nbr; Nbsm; Nbmbw/ D 8: (5)

Fifthly, the total active warps is

Aw D
Ab � Bs

Ws
D
8 � 256

32
D 64: (6)

Finally, the occupancy is Aw=Mw � 100% D 64=64 � 100% D 100%.
The occupancy of block sizes of 512 and 1024 can be computed similarly as shown in Table III.

However, a larger block size means more data will be padded into slices in GCS. Therefore, GCS
employs a block size of 256 for GPUs with computing capacity 3.0 or 3.5 in our implementation.
That means sliceLen D 16�Bs D 16�256 D 4KB: The grid has tLen/sliceLen blocks, where tLen
denotes the length of coalesceData. Each thread in a block encrypts a group of 16-byte plaintext.

In the kernel GCS_Cipher, each block is in charge of encrypting a slice with the ID of sliceID D
blockIdx:xC blockIdx:y � gridDim:x. Each block allocates shared memory sT and sKey for dT and
dExKeys[dExKeyLocs[sliceID]], respectively. dExKeyLocs[sliceID] represents the location of extend

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4253

key for the slice, while dExKeys[dExKeyLocs[sliceID]] denotes the extend key for the slice. Each
thread of a block executes AES encrypting by using T Tables sT and key sKey.

Once the kernel is finished, the buffered users’ data have been encrypted, so we can copy them
through PCIe (Peripheral Component Interconnect Express) bus from dInput to coalesceData.
Naturally, the latter is the ciphertext of the buffered users’ data. Because we know every user’s
data length through uLens, GCS can easily separate the ciphertext of each user. By now, GCS has
finished all the users’ data encrypting and obtained each user’s ciphertext. Each block encrypts one
slice by means of many threads.

3.4. Coalescent and unsliced graphics processing unit

Now, we present our second algorithm GCNS. There is only one difference, that is, ‘Sliced?’,
between GCNS and GCS as shown in Table I. The details of GCNS can be seen in Algorithm 2.

Massive users’ data can be buffered in a server. Then GCNS coalesces the users’ data and keys to
coalesceData and coalesceKeys, respectively. Because of no cutting the data to slices, GCNS allo-
cates device spaces dKeys to store coalesceKeys, dT to store T tables, dinput to store coalesceData,
and duLen to store uLen, respectively. After this, coalesceData etc. can be transferred from main
memory to these spaces.

Next, GCNS defines users blocks as dimGrid(users) and Bs threads in a block, where Bs is defined
by GPU properties for 100% occupancy. According to compilation information, each thread needs
23 registers and each block needs 4592 bytes shared memory. Similarly, the best block size is calcu-
lated by the previous formulae 1 to 6. There are still three block sizes of 100% occupancy for GPUs
with computing capacity 3.0 or 3.5, that is, 256, 512, and 1024. For comparing, GCNS defines the
block size as 256 as well. Next, GCNS will call the kernel function GCNS_Cipher for encrypting
on GPU simultaneously.

In the kernel GCNS_Cipher, each block is in charge of encrypting a user’s data. Each block
allocates shared memory sT for dT and sKey for the extended key. Then, it computes the block ID
as bid D blockIdx:xC blockIdx:y � gridDim:x and then assigns a thread, such as threadIdx:x D 0,
to extend the key from dKeys[bid] to sExKey. After these, each thread of a block executes AES
encrypting by using T Tables sT and sExKey, but could encrypt several groups of 16-byte plaintext
according to the size of the user’s data.

There are several differences in the kernel function of GCS and GCNS. The first one is that GCNS
uses a block to encrypt a user’s data, thus different user’s data may result in different workloads of
blocks. The second one is that GCNS will compute the extended key dKeys[bid] on a GPU by one
thread of a block, where bid is the ID of blocks. In addition, for the threads in a block, a thread will
encrypt multiple groups of 16-byte plaintext. For instance, if a user has a 64-KB plaintext and a block
has 256 threads, each thread should encrypt sixteen 16-byte plaintext as 16�256�16 byte D 64KB.

Algorithm 2 GCNS algorithm
Require:

number of users, users;
buffered users’ plaintext data, uData;
users’ data length, uLens;
users’ keys, uKeys;

Ensure: uData are the AES ciphertext
1: coalesce users’ data uData to coalesceData and uKeys to coalesceKeys ;
2: allocate device memory for storing coalesceKeys as dKeys, T Tables as dT, coalesceData as

dInput, uLens as dLens;
3: transfer coalesceKeys, T , coalesceData, and uLens from main memory to corresponding GPU

global memory
4: define dimension of block and grid as dimGrid and dimBlock respectively by device properties;
5: execute AES parallel kernel GCNS_Cipher <<< dimGrid; dimBlock >>>

.dInput; dKeys; dLens; dT; users/;
6: copy ciphertext from dInput to coalesceData

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4254 X.I FEI ET AL.

3.5. Uncoalescent graphics processing unit

Next, we will describe our third algorithm GNC, which encrypts massive users’ data without coa-
lescing or cutting them. GNC encrypts one user’s data on GPU in parallel after another user’s data
are encrypted. This means that each user’s data are encrypted on a GPU simultaneously one user by
one user, but different user’s data are dealt in different times. Algorithm 3 shows the parallel pro-
cess of GNC. It encrypts all the user’s data orderly as shown in the loop (Line 1). In the loop body,

Algorithm 3 GNC algorithm
Require:

number of users, users;
buffered users’ plaintext data, uData;
users’ data length, uLens;
users’ keys, uKeys;

Ensure: uData are the AES ciphertext
1: for i D 1 to users do
2: extend uKeysŒi � to uExKey;
3: allocate device memory for storing uExKey as dExKey, T Table as dT, uDataŒi � as dInput;
4: transfer uExKey and uDataŒi � from main memory to GPU global memory;
5: define dimension of grid and block as dimGrid and dimBlock by device properties;
6: execute AES parallel kernel GNC_Cipher <<< dimGrid; dimBlock >>>

.dInput; dExKey; dT; uLensŒi �/;
7: copy ciphertext from dInput to uDataŒi �
8: end for

GNC first extends the current user’s key uKeysŒi � to uExKey, then allocates device memory dExKey,
dT, and dInput for storing uExKey, T tables, and current user’s data uDataŒi �. Next, GNC transfers
uExKey, T , and uDataŒi � from the main memory to the GPU device memory.

Sequentially, it defines block dimension and grid dimension by GPU properties. According to
the compilation information, each thread needs 27 registers and each block needs 4320 bytes shared
memory for T tables, dExKey and so on. For computing capacity 3.0 or 3.5 GPUs, GNC employs
the block size of 256 for high occupancy according to the previous formulae 1 to 6. GNC adopts the
grid size of uLenŒi �=.16 � Bs/.

In the kernel GNC_Cipher, all blocks on GPU are in charge of encrypting a user’s data. Each
block allocates shared memory sT for dT and sExKey for the extended key dExKey. Each thread of
a block executes AES encrypting for a group of 16-byte plaintext of dInput by using T Tables sT
and sExKey.

After the kernel function finishes, GNC can get current user’s ciphertext through copying data
from dInput to uDataŒi �. If the loop finished, all the buffered users’ data have been encrypted.

3.6. Coalescent and sliced CPU

In this subsection, we will propose our fourth algorithm CCS. CCS coalesces and cuts massive users’
data to the same long slices and then encrypts these slices on a CPU simultaneously by means of
multiple threads. If a server is not equipped with Nvidia GPUs, it can use this algorithm to execute
the encrypting of massive users’ data.

Algorithm 4 demonstrates the details of CCS. Firstly, this algorithm coalesces and cuts the users’
data to slices equally and computes the key location keyLocsŒi � of each slice in uKeys as shown in
Line 3. Then CCS assigns WORK_THREAD threads to encrypt some slices simultaneously by using
OpenMP. Each thread should first extend the slice’s key uKeys[keyLocs[i]] to get the extended key
exKeys[i] as shown in Line 6, then encrypts a slice’s data coalesceDataŒsliceLen � i �. Then, CCS
uses T tables and exKeysŒi � to encrypt the slice. T tables can accelerate AES encrypting as well.
The workloads of each thread will be allocated by OpenMP and can be kept almost same.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4255

Algorithm 4 CCS algorithm
Require:

number of users, users;
buffered users’ data, uData;
users’ data length, uLens;
users’ keys, uKeys;
slice length, sliceLen;

Ensure: uData are the AES ciphertext
1: coalesce users’ data to coalesceData
2: cut coalesceData to numSlices slices as long as sliceLen
3: compute KeyLocs for each slice
4: #pragma omp parallel for num_threads(WORK_THREADS);//where WORK_THREAD rep-

resents the number of threads in CPU. Usually it equals the number of cores of CPU.

5: for i D 1 to numSlices do
6: extend uKeysŒkeyLocsŒi �� to get a slice’s extended key exKeysŒi �;
7: encrypt a slice’s data coalesceDataŒsliceLen � i � using exKeysŒi � and T tables;
8: end for

3.7. Coalescent and unsliced CPU

The CCNS algorithm will be proposed here. Similarly to GCNS, the difference between CCS and
CCNS is whether the coalesced data are cut into slices. CCNS misses the process of cutting and
looks simpler. The details of CCNS can be seen in Algorithm 5.

The algorithm first coalesces buffered users’ data but does not cut them. Then it defines an array
plainLocs to store the start position of each user’s data in coalesceData. After computing these
locations in Line 2, CCNS uses OpenMP to derive WORK_THREADS threads and these threads will
be assigned some concrete encrypting workloads. The workloads include extending the user’s key
uKeysŒi � to get the corresponding extended key exKeysŒi � and encrypting the user’s data, which start
from coalesceData[plainLocs[i]], with the length uLensŒi �. These threads simultaneously run on a
CPU and fully use the computing resources of a CPU.

Algorithm 5 CCNS algorithm
Require:

number of users, users;
buffered users’ data, uData;
users’ data length, uLens;
users’ keys, uKeys;

Ensure: uData are the AES ciphertext
1: coalesce users’ data to coalesceData;
2: compute the start position of each user’s data plainLocs;
3: #pragma omp parallel for num_threads(WORK_THREADS); //where WORK_THREAD rep-

resents the number of threads in CPU. Usually it equals to the number of cores of CPU.

4: for i D 1 to users do
5: extend uKeysŒi � to get a user’s extended key exKeysŒi �;
6: encrypt a user’s data coalesceDataŒPlainLocsŒi ��, whose size is uLensŒi �, with exKeysŒi � and

T Tables;
7: end for

3.8. Uncoalescent CPU

Now, we put forward the last algorithm CNC of this work. CNC does not coalesce massive users’
data, so this means that it will deal one user’s data after another one. But for a certain user’s

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4256 X.I FEI ET AL.

data, CNC will encrypt them simultaneously by multiple threads of CPU. Obviously, the difference
between CCNS and CNC is that CCNS lets all users’ data to be dealt simultaneously by multiple
threads of CPU, but CNC just lets one user’s data.

We list the details of CNC in Algorithm 6. CNC circularly deals the user’s data one user by one
user as shown in Line 1. In the loop (Line 1), CNC first extends the current user’s key uKeysŒi �
to obtain the extended key exKeysŒi � and then derives WORK_THREADS threads of CPU to per-
form AES encrypting on uDataŒi � with the extended key exKeysŒi � simultaneously as shown in Line
5. Each thread j encrypts a part of the workloads with the size of uLensŒi �=WORK_THREADS.
These workloads are scheduled by OpenMP, thus can be kept in balance. Of course, in the pro-
cess of encrypting, CNC also uses T tables to accelerate AES. After the internal loop ends at
Line 6, which means a user’s data has been encrypted, i will be increased by 1 to continue
encrypting another users’ data. When the external loop ends in Line 7, all the users’ data have
been encrypted.

Algorithm 6 CNC algorithm
Require:

number of users, users;
buffered users’ data, uData;
users’ data length, uLens;
users’ keys, uKeys;

Ensure: uData are the AES ciphertext
1: for i D 1 to users do
2: extend uKeysŒi � to get a user’s extended key exKeysŒi �;
3: #pragma omp parallel for num_threads(WORK_THREADS);//where WORK_THREAD rep-

resents the number of threads in CPU. Usually it equals the number of cores of CPU.

4: for j D 1 to WORK_THREADS do
5: encrypt a part of the i-th user’s data uDataŒi �Œj � uLensŒi �=WORK_THREADS�, whose

size is uLensŒi �=WORK_THREADS;
6: end for
7: end for

3.9. Analysis of parallel Advanced Encryption Standard algorithms

In this subsection, the overhead and encrypting time of parallel AES will be analyzed. The over-
head will be analyzed firstly. GNC transfers users’ data one by one to the device memory and
then encrypts them on a GPU in parallel. Thus, the overhead of GNC for massive N users can be
calculated as:

N �

�
2 � PLC KL

BW
C 2 � delay

�
; (7)

where PL represents the length of plaintext, KL represents the length of key, BW denotes the
bandwidth of transferring, and delay is the communication delay of transferring.

Coalescent and sliced GPU (GCNS) and GCS differ in slicing. If the users’ data are regular, which
means every user’s data are multiple length of slice, the overhead of GCS and GCNS for massiveN
users can be calculated as:

N � .2 � PLC KLC PL=SliceLen � KeyLoc/

BW
C 2 � delay; (8)

N � .2 � PLC KL/

BW
C 2 � delay (9)

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4257

respectively, where sliceLen represents the length of a slice, KeyLoc represents the length of key
location. If the users’ data are irregular, which means users’ data may be not multiple length of
slice, the overhead of GCS for massive N users can be calculated as:

N � .2 � PLC sliceLen=2C KLC PL=SliceLen � KeyLoc/

BW
C 2 � delay; (10)

where sliceLen=2 denotes the average padded data length for a user; the overhead of GCNS is still
calculated by formula (9). In a word, the transferring overhead is decreased by GNC, GCS, and
GCNS. CNC, CCNS, and CCS do not need transfer data, thus coalescing and slicing do not cause
communication overhead.

Next, encrypting data time will be analyzed here. GNC encrypts a user’s data by a grid (kernel)
in parallel. But different users’ data are encrypted one by one serially. For small users’ data, GPU
computing resources will not be fully used. However, GCNS and GCS encrypt all buffered users’
data by a grid. This will fully use the GPU computing resources and reduce encrypting time. Fur-
thermore, GCNS encrypts each user’s data by a block of threads, while GCS encrypts each slice data
by a block of threads in parallel. Because different users may have different length of data, GCNS
may lead to imbalanced workloads for different users. Whereas, each block has the same amount
data to encrypt in GCS, and GCS can finish at almost the same time. Thus, GCS will spend less time
in encrypting buffered users’ data. In a word, for massive users’ buffered data, the encrypting time
is decreased by GNC, GCNS, and GCS.

As for CPU parallelism, CNC encrypts buffered users’ data one by one serially but each user’s
data by multiple threads. This means that each thread will encrypt almost the same amount data.
But CNC needs more overhead of thread schedule and management. Both CCNS and CNS encrypt
buffered users’ data in parallel and their difference is whether the data has been sliced. CCNS does
not slice users’ data, which means that different thread may encrypt different long data. Whereas,
CCS cuts users’ data to identical length slices, which makes different threads encrypt identical
length data also. But CCS will incur extra padded data such as key locations. So in theory, the
threads of CNC and CCS have more balanced workload than CCNS, but both CNC and CCS need
more overhead at the same time as analyzed before.

4. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, we will implement all our proposed six algorithms and evaluate their performance.
Our experiments are performed on two respective platforms, whose specifications are introduced
in Subsection 4.1. The experimental results and performance evaluation are discussed in 4.3 and
4.4, respectively.

4.1. Experimental platforms

In order to exhibit the effects of our proposed practical parallel AES algorithms for massive users’
data and evaluate their performance, some experiments are operated on two different platforms
whose specifications are shown in Table IV. The platform 1 is a general computer representing
low-end server, but the platform 2 is a powerful computing platform representing high-end server.

Table IV. Configurations of two experiment platforms.

Platform GPU CPU

1 NVIDIA GeForce GT 640M Intel i5 3220 (2 Cores)
Clock Rate: 709 MHz Clock Rate: 2.6 GHz
Total: 384 Cores Total: 2 Cores

2 NVIDIA Tesla K20M 2 Intel Xeon E5-2640 v2 (8 Cores)
Clock Rate: 706 MHz Clock Rate: 2.0 GHz
Total: 2496 Cores Total: 16 Cores

GPU, graphics processing unit.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4258 X.I FEI ET AL.

4.2. Experimental assumptions

� Assumption 1 (Users’ data assumption): We consider the users’ data coming from typical SSL
transactions, whose sizes vary from 35 to 150 KB.
� Assumption 2 (The length of users’ data assumption): First, we assume that the lengths of

user’s data satisfy a normal distribution function.
� Assumption 3 (Normal distribution function assumption): For simulating the behavior of a

normal distribution function, we use the method of ‘Box Muller’ to produce the normally
distributed data.

4.3. Experimental results on platform 1

According to the six algorithms presented in Section 3, we implement them and evaluate their per-
formance by the number of users from 5 to 10,000. We choose regular data and irregular data as
users’ plaintext and give their results in the following 4.3.1 and 4.3.2, respectively.

4.3.1. Regular data. Figure 2 demonstrates the encrypting speed of seven algorithms on platform 1
for regular data whose length is a multiple of sliceLen. Among them, SR represents the serial AES
algorithm for massive users, which encrypts one user’s data serially after another user’s by means
of a single thread. All the experimental results are obtained as the mean value of 100 experiments.

From the figure, SR are slower than the other parallel algorithms. CNC, CCNS, CCS, GNC, and
SR basically keep stable encrypting speed, while GCS and GCNS accelerate their encrypting speeds
with the number users increasing from 5 to 200 and then keep steady encrypting speeds.

Quantitatively, for all the test cases from 5 users to 10,000 users on platform 1,
the average encrypting speed of GCS, GCNS, GNC, CCS, CCNS, CNC, and SR are
0.537388 Gbps, 0.500823 Gbps, 0.279641 Gbps, 0.172115 Gbps, 0.166311 Gbps, 0.162538 Gbps,
and 0.075087 Gbps, respectively. In other words, GCS is faster than GCNS by 7:3% at average
speed, which is calculated by

.SGCS � SGCNS/=SGCNS � 100%;

where SGCS and SGCNS represent the encrypting speed of GCS and GCNS. Similarly, GCS is faster
than GNC, CCS, CCNS, CNC, and SR by 92.17%, 212.23%, 223.12%, 230.62%, and 615.69%,
respectively, at average speed on platform 1.

Figure 2. The encrypting speed of seven algorithms on platform 1 for regular data: coalescent and sliced
graphics processing unit (GCS), coalescent and unsliced graphics processing unit (GCNS), uncoalescent
graphics processing unit (GNC), coalescent and sliced CPU (CCS), coalescent and unsliced CPU (CCNS),
and uncoalescent CPU (CNC) represent our proposed six practical parallel algorithms for massive users,
while serial (SR) denotes CPU serial Advanced Encryption Standard algorithm, which serially encrypts each

user’s data one by one in a single thread.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4259

Figure 3. The encrypting speed of seven algorithms on platform 1 for irregular data: coalescent and sliced
graphics processing unit (GCS), coalescent and unsliced graphics processing unit (GCNS), uncoalescent
graphics processing unit (GNC), coalescent and sliced CPU (CCS), coalescent and unsliced CPU (CCNS),
and uncoalescent CPU (CNC) represent our proposed six practical parallel algorithms for massive users,
while serial (SR) denotes CPU serial Advanced Encryption Standard algorithm, which serially encrypts each

user’s data one by one in a single thread.

4.3.2. Irregular data. For normal distributed users’ data whose length is not a multiple of sliceLen,
we do the same experiments for 100 times to obtain the average encrypting speed of AES algorithms.
The experimental results are shown in Figure 3.

From the figure, we still observe that SR are slower than the other parallel algorithms. CNC,
CCNS, CCS, GNC, and SR basically keep stable encrypting speed, while GCS and GCNS accel-
erate their encrypting speeds with the number users increasing from 5 to 200 and then keep steady
encrypting speeds.

Quantitatively, the average encrypting speed of GCS, GCNS, GNC, CCS, CCNS, CNC, and SR
are 0.528550Gbps, 0.517939Gbps, 0.283295Gbps, 0.168726Gbps, 0.165758Gbps, 0.164906Gbps,
and 0.074718Gbps respectively. In other words, GCS is faster than GCNS, GNC, CCS, CCNS,
CNC, and SR by 2:05%, 86.57%, 213.26%, 218.87%, 220.52%, and 607.39%, respectively, at
average speed on platform 1 for irregular data.

4.4. Experimental results on platform 2

In the previous Subsection 4.3, we give the experimental results on platform 1, which is a notebook
with limited computing resources. We can see the effects of our six algorithms, especially GCS.
To reflect the reality closely, we urgently want to know the effects of the six algorithms on
high-end servers. Thus, we choose platform 2 to evaluate these algorithms. We also choose
regular data and irregular data as users’ plaintext and give their results in the following 4.4.1 and
4.4.2, respectively.

4.4.1. Regular data. The experimental results on platform 2 for regular data are shown in Figure 4.
From the figure, we can find obvious speed improvements over platform 1 and basically the same
trends as platform 1.

Quantitatively, for regular data on platform 2, the average encrypting speed of GCS, GCNS, GNC,
CCS, CCNS, CNC, and SR are 2.536342 Gbps, 0.941182 Gbps, 0.570270 Gbps, 0.688243 Gbps,
0.566662 Gbps, 0.680594 Gbps, and 0.046192 Gbps, respectively. From the aspect of performance
improvement, GCS is faster than GCNS, GNC, CCS, CCNS, CNC, and SR by 30.66%, 344.76%,
268.52%, 347.59%, 272.67%, and 5390.92%, respectively, at average speed for regular data on
platform 2.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4260 X.I FEI ET AL.

Figure 4. The encrypting speed of seven algorithms on platform 2 for regular data: coalescent and sliced
graphics processing unit (GCS), coalescent and unsliced graphics processing unit (GCNS), uncoalescent
graphics processing unit (GNC), coalescent and sliced CPU (CCS), coalescent and unsliced CPU (CCNS),
and uncoalescent CPU (CNC) represent our proposed six practical parallel algorithms for massive users,
while serial (SR) denotes CPU serial Advanced Encryption Standard algorithm, which serially encrypts each

user’s data one by one in a single thread.

Figure 5. The encrypting speed of seven algorithms on platform 2 for irregular data: coalescent and sliced
graphics processing unit (GCS), unsliced graphics processing unit (GCNS), uncoalescent graphics process-
ing unit (GNC), coalescent and sliced CPU (CCS), coalescent and unsliced CPU (CCNS), and uncoalescent
CPU (CNC) represent our proposed six practical parallel algorithms for massive users, while serial (SR)
denotes CPU serial Advanced Encryption Standard algorithm, which serially encrypts each user’s data one

by one in a single thread.

4.4.2. Irregular data. The experimental results on platform 2 for irregular data are shown in
Figure 5. From the figure, we can find obvious speed improvements over platform 1 and basically
the same trends as platform 1.

Quantitatively, the average encrypting speed of GCS, GCNS, GNC, CCS, CCNS, CNC,
and SR are 2.485290 Gbps, 1.945289 Gbps, 0.563285 Gbps, 0.662577 Gbps, 0.539771 Gbps,
0.661487 Gbps, and 0.045802 Gbps, respectively. From the aspect of performance improvement,
GCS is faster than GCNS, GNC, CCS, CCNS, CNC, and SR by 27.76%, 341.21%, 275.09%,
360.43%, 275.71%, and 5326.17%, respectively, at average speed for irregular data on platform 2.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4261

4.5. Experiment analysis and discussion

We analyze and discuss the experimental results as follows:

1. All SR, CNC, CCNS, CCS algorithms keep stable encrypting speed whether for regular data
or irregular data. This is because they have not data transferring overhead.

2. The encrypting speed of GCS and GCNS increase with the number of users before reach-
ing their peak performance, while GNC almost keeps its encrypting speed stable. For GCS
and GCNS, this is because coalesced users’ data hide the data transferring overhead with
the increasing of users, and enough workloads can fully use GPU resources. Whereas, GNC
encrypts user’s data one by one in parallel, so GNC does not have enough data to hide the
overhead and fully use GPU resources.

3. For regular data, GCS is faster than GCNS, while for irregular data, GCS becomes a little
slower than GCNS when the number of users is enough large. This can be explained as fol-
lows. For regular data, although GCS has more transferring overhead as discussed in 3.9,
GCS has more balanced workloads. Because extra overhead that lies in transferring KeyLoc
(4 bytes/slice) is low, GCS can achieve the benefit from balanced workloads. For irregular
data, GCS needs transfer keyLocs and padded data to make users’ data multiple of sliceLen.
Thus when the number of users is less, GCS still does not fully use GPU resources. GCS can
outperform GCNS because of less computing time as analyzed in 3.9. But when the number
of users is large enough to fully use GPU resources, GCS will be slower than GCNS because
of more data (including padded data) to be encrypted.

4. Uncoalescent GPU (GNC) is faster than CCS, CNC, and CCNS on platform 1 but slower than
them on platform 2. This can be explained as follows. The average data transferring speed
between the device memory and the main memory in platform 1 is 8405:55MB=s, while
in platform 2 is 6348:53MB=s. GNC costs more transferring overhead in platform 2 than
platform 1. In addition, because of powerful CPUs of 16 cores in platform 2, this causes the
performance of GNC to be even worse than CCS, CNC, and CCNS.

5. The speed of CCS, CCNS, and CNC is close. CNC is slower than CCS in our experiments.
CCNS usually has the worst speed among them in our experiments. For the former, because
CCS coalesces massive uses’ data to encrypt in slices, this makes each thread having balanced
workload. CNC encrypts users’ data one by one, each thread also has balanced workloads. But
this needs extra thread managing and schedule overhead. For the latter, because CCNS coa-
lesces users’ data but a thread encrypts some users’s data, different threads may have different
workloads. Thus, CCNS may spend more time in encrypting.

6. Serial (SR) is slowest among these algorithms whether for regular or irregular data, because SR
does not fully use CPU resources and encrypts users’ data using only one thread in serially. The
best speedup of parallel AES to SR is 7.15 in platform 1 and 54.90 in platform 2, calculated
as SGCS=SSR, where SGCS and SSR are the speed of GCS and SR, respectively.

To summarize, GCS has the best performance at average speed in two respective platforms whether
for regular data or irregular data. This proves that coalescing and slicing massive users’ data on a
GPU can produce excellent efficiency.

5. CONCLUSION

We present six practical parallel AES algorithms for massive users’ data encryption on cloud. For
some typical services (e.g., HTML data), users’ data are usually small but quickly need encrypting.
Our algorithms aim at encrypting these data effectively by means of GPU parallelism or CPU par-
allelism. They are classified and named by parallel scope and the means of coalescing and slicing.
Among them, all GCS, GCNS, and GNC use GPU parallelism to accelerate AES speed. All CCS,
CCNS, and CNC use CPU parallelism to improve the speed of encrypting in CPU. GCS works
by coalescing and cutting the massive users’ data to same-length slices, and then these slices are
encrypted on a GPU simultaneously. GCNS works by coalescing but no cutting users’ data, and then
a GPU encrypts the coalesced data in parallel. GNC works by encrypting one user’s data on a GPU

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe



4262 X.I FEI ET AL.

in parallel after another user’s data. CCS works by coalescing and cutting the massive users’ data to
same-length slices, and then the multiple threads of CPU encrypt these slices simultaneously. CCNS
works by coalescing massive users’ data, and then the multiple threads of CPU encrypt the coalesced
data. In CCNS, each thread is in charge of a part of users’ data, which is distributed by OpenMP.
CNC works by one user’s data are encrypted by the multiple threads of a CPU after another user’s.

These six algorithms are implemented on two different but typical platforms. We evaluate their
encrypting speed through the experiments by the number of users from 5 to 10,000 on these plat-
forms. The results of evaluation are listed as follows. For regular data, GCS is faster than GCNS,
GNC, CCS, CCNS, CNC, and SR by 7.3%, 92.17%, 212.23%, 223.12%, 230.62%, and 615.69%,
respectively, at average speed on platform 1. For irregular data, GCS is faster than GCNS, GNC,
CCS, CCNS, CNC, and SR by 2.05%, 86.57%, 213.26%, 218.87%, 220.52%, and 607.39%, respec-
tively, at average speed on platform 1. Whereas, for regular data, GCS is faster than GCNS, GNC,
CCS, CCNS, CNC, and SR by 30.66%, 344.76%, 268.52%, 347.59%, 272.67%, and 5390.92%,
respectively, at average speed on platform 2. For irregular data, GCS is faster than GCNS, GNC,
CCS, CCNS, CNC, and SR by 27.76%, 341.21%, 275.09%, 360.43%, 275.71%, and 5326.17%,
respectively, at average speed on platform 2. Using GCS-parallel AES for massive users’ data,
encrypting can produce higher efficiency than the other algorithms whether on general servers or on
high-end servers.

This work represents our initial work to deal with massive users’ data encryption on cloud and
to correspondingly design a series of GPU-parallel or CPU-parallel AES algorithms for improving
efficiency. In the future, we plan to further study the AES encryption of massive users’ data, such
as considering the users’ dynamic data flows and combining the CPU parallelism and the GPU
parallelism at the same time.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their comments and suggestions to improve
the manuscript. The research was partially funded by the Key Program of National Natural Science Foun-
dation of China (Grant Nos. 61133005, 61432005), the National Natural Science Foundation of China
(Grant Nos. 61370095, 61472124, 61572175), International Science & Technology Cooperation Program of
China (2015DFA11240), the Scientific Research Fund of Hunan Provincial Education Department (Grant
No. 13A011), and the Scientific Research Project of Hunan Provincial Education Department (Grant No.
15C0254).

REFERENCES

1. Shi L, Chen H, Sun J, Li K. vcuda: Gpu-accelerated high-performance computing in virtual machines. IEEE
Transactions on Computers 2012; 61(6):804–816.

2. Banu JS, Vanitha M, Vaideeswaran J, Subha S. Loop parallelization and pipelining implementation of AES algorithm
using OpenMP and FPGA. In 2013 International Conference on Emerging Trends in Computing, Communication
and Nanotechnology (ICE-CCN). IEEE: New York, NY, 2013; 481–485.

3. Daemen J, Rijmen V. Aes proposal: Rijndael (Available from: http://csrc.nist.gov/archive/aes/rijndael/Rijndael-
ammended.pdf) [accessed on 15 November 2014].

4. FIPS P. 197: Specification for the Advanced Encryption Standard. National Technical Information Service 2011:
5–47. (Available from: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf) [accessed on 16 November 2014].

5. Li K, Yang W, Li K. Performance analysis and optimization for spmv on gpu using probabilistic modeling. IEEE
Transactions on Parallel and Distributed Systems 2014; 26(1):196–205.

6. Manavski SA. CUDA compatible GPU as an efficient hardware accelerator for AES cryptography. In IEEE Inter-
national Conference on Signal Processing and Communications, 2007. ICSPC 2007. IEEE: New York, NY, 2007;
65–68.

7. Li Q, Zhong C, Zhao K, Mei X, Chu X. Implementation and analysis of aes encryption on gpu. In IEEE 14th Interna-
tional conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS), 2012. IEEE: New York, NY, 2012; 843–848.

8. Maistri P, Masson F, Leveugle R. Implementation of the advanced encryption standard on gpus with the nvidia cuda
framework. In 2011 IEEE Symposium on Industrial Electronics and Applications (ISIEA). IEEE: New York, NY,
2011; 213–217.

9. Bos JW, Osvik D, Stefan D. Fast implementations of AES on various platforms. IACR Cryptology ePrint Archive
2009. (Available from: http://eprint.iacr.org/2009/501.pdf) [accessed on 19 January 2015].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe

http://eprint.iacr.org/2009/501.pdf


PRACTICAL PARALLEL AES ALGORITHMS FOR MASSIVE USERS 4263

10. Iwai K, Kurokawa T, Nisikawa N. AES encryption implementation on CUDA GPU and its analysis. In 2010 First
International Conference on Networking and Computing (ICNC). IEEE: New York, NY, 2010; 209–214.

11. Le D, Chang J, Gou X, Zhang A, Lu C. Parallel aes algorithm for fast data encryption on gpu. In 2010 2nd Inter-
national Conference on Computer Engineering and Technology (ICCET), Vol. 6. IEEE: New York, NY, 2010; 1–6.

12. Shao F, Chang Z, Zhang Y. Aes encryption algorithm based on the high performance computing of gpu. In Second
International Conference on Communication Software and Networks, 2010. ICCSN’10. IEEE: New York, NY, 2010;
588–590.

13. Mei C, Jiang H, Jenness J. CUDA-based AES parallelization with fine-tuned GPU memory utilization. In 2010 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and phd Forum (IPDPSW). IEEE: New
York, NY, 2010; 1–7.

14. Wang Y, Feng Z, Guo H, He C, Yang Y. Scene recognition acceleration using CUDA and OpenMP. In 2009 1st
International Conference on Information science and engineering (ICISE). IEEE: New York, NY, 2009; 1422–1425.

15. Liu G, An H, Han W, Xu G, Yao P, Xu M, Hao X, Wang Y. A program behavior study of block cryptography
algorithms on gpgpu. In fourth international conference on d/Frontier of computer science and technology, 2009.
fcst’09. IEEE: New York, NY, 2009; 33–39.

16. Iwai K, Nishikawa N, Kurokawa T. Acceleration of AES encryption on CUDA GPU. International Journal of
Networking and Computing 2012; 2(1):131–145.

17. Nhat-Phuong T, Myungho L, Sugwon H, Seung-Jae L. High throughput parallelization of AES-CTR algorithm.
IEICE Transactions on Information and Systems 2013; 96(8):1685–1695.

18. Navalgund SS, Desai A, Ankalgi K, Yamanur H. Parallelization of AES algorithm using OpenMP. Lecture Notes on
Information Theory 2013; 1(4):144–147.

19. Duta C-L, Michiu G, Stoica S, Gheorghe L. Accelerating encryption algorithms using parallelism. In 2013 19th
International Conference on Control Systems and Computer Science (CSCS). IEEE: New York, NY, 2013; 549–554.

20. Pousa A, Sanz V, De Giusti AR. Performance analysis of a symmetric cryptographic algorithm on multicore archi-
tectures. In 2012 Computer Science & Technology Series-XVII Argentine Congress of Computer Science-selected
Papers. EDULP: La Plata, Argentina, 2012; 57–66.

21. Nagendra M, Sekhar MC. Performance improvement of Advanced Encryption Algorithm using parallel computation.
International Journal of Software Engineering and Its Applications 2014; 8(2):287–296.

22. Ortega J, Trefftz H, Trefftz C. Parallelizing AES on multicores and GPUs. In Proceedings of the IEEE International
Conference on Electro/Information Technology (EIT). IEEE: New York, NY, 2011; 15–17.

23. Liu B, Baas BM. Parallel aes encryption engines for many-core processor arrays. IEEE Transactions on Computers
2013; 62(3):536–547.

24. Jang K, Han S, Han S, Moon S, Park K. Accelerating ssl with gpus. In ACM SIGCOMM Computer Communication
Review, Vol. 40. ACM: New York, NY, 2010; 437–438.

25. Fazackerley S, McAvoy SM, Lawrence R. Gpu accelerated aes-cbc for database applications. In Proceedings of the
27th Annual ACM Symposium on Applied Computing. ACM: New York, NY, 2012; 873–878.

26. Dworkin M. Recommendation for block cipher modes of operation. methods and techniques, DTIC Document, 2001.
(Available from: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA400014) [accessed on 23 November 2014].

27. Lipmaa H, Wagner D, Rogaway P. Comments to nist concerning aes modes of operation: Ctr-mode encryption.
(Available from: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/workshop1/papers/lipmaa-ctr.pdf) [acce-
ssed on 18 November 2014].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4246–4263
DOI: 10.1002/cpe


	Practical parallel AES algorithms on cloud for massive users and their performance evaluation
	Summary
	Introduction
	Related Work
	Practical Parallel Advanced Encryption Standard Algorithms
	Introduction to Advanced Encryption Standard
	Parallel Advanced Encryption Standard Algorithms
	Coalescent and sliced graphics processing unit
	Coalescent and unsliced graphics processing unit
	Uncoalescent graphics processing unit
	Coalescent and sliced CPU
	Coalescent and unsliced CPU
	Uncoalescent CPU
	Analysis of parallel Advanced Encryption Standard algorithms

	Experiments and Performance Evaluation
	Experimental platforms
	Experimental assumptions
	Experimental results on platform 1
	Regular data
	Irregular data

	Experimental results on platform 2
	Regular data
	Irregular data

	Experiment analysis and discussion

	Conclusion
	REFERENCES


