
An Efficient In-Memory Checkpoint Method
and its Practice on Fault-Tolerant HPL

Xiongchao Tang , Jidong Zhai, Bowen Yu, Wenguang Chen, Weimin Zheng, and Keqin Li , Fellow, IEEE

Abstract—Fault tolerance is increasingly important in high-performance computing due to the substantial growth of system scale and

decreasing system reliability. In-memory/diskless checkpoint has gained extensive attention as a solution to avoid the IO bottleneck of

traditional disk-based checkpoint methods. However, applications using previous in-memory checkpoint suffer from little available

memory space. To provide high reliability, previous in-memory checkpoint methods either need to keep two copies of checkpoints to

tolerate failures while updating old checkpoints or trade performance for space by flushing in-memory checkpoints into disk. In this

paper, we propose a novel in-memory checkpoint method, called self-checkpoint, which can not only achieve the same reliability of

previous in-memory checkpoint methods, but also increase the available memory space for applications by almost 50 percent. To

validate our method, we apply self-checkpoint method to an important problem: High-Performance Linpack (HPL) with fault tolerance.

We implement a scalable and fault tolerant HPL based on this new method, called SKT-HPL, and validate it on two large-scale systems.

Experimental results with 24,576 processes show that SKT-HPL achieves over 95 percent of the performance of the original HPL.

Compared to the state-of-the-art in-memory checkpoint method, it improves the available memory size by 47 percent and the

performance by 5 percent.

Index Terms—Fault tolerance, fault-tolerant HPL, in-memory checkpoint, memory consumption

Ç

1 INTRODUCTION

THE substantial growth of system scale in High Perfor-
mance Computing (HPC) makes fault tolerance increas-

ingly important. A long-running HPC application can last
for hours, or even days on an HPC system. Unfortunately, a
large-scale system’s mean time between failures (MTBF)
may be too short to afford a complete fault-free run. For
example, large-scale systems such as Blue Waters and Titan
have failures every day [25], [29]. This problem becomes
evenworse as systems scale up towards exascale computing.

Significant research efforts have been made trying to
overcome this problem. A series of algorithm-based fault-
tolerant (ABFT) applications [8], [10], [34], [37] have been
proposed. The main idea is to modify an application’s algo-
rithm for fault tolerance [21]. A recent study, called red-
MPI [17], employs a strategy of redundant execution to
increase system reliability. All computation and communi-
cation are duplicated in redMPI. Thus, if there is any copy
that survives a failure, the program can tolerate the failure
and continue running. However, since everything is
duplicated, the system efficiency is relatively low (no more
than 50 percent).

Although ABFT and redundant execution provide a cer-
tain fault tolerance for HPC applications, their ability to tol-
erate faults highly depends on underlying runtime libraries.
Message Passing Interface (MPI) is a de-facto standard for
HPC applications. In the ABFT and redundant execution, it
is assumed that MPI programs can be suspended after a
node failure. A node failure means that a node is perma-
nently lost, such as power down and network disconnect.
Based on our observation, almost all current MPI imple-
mentations force the whole program to abort after a node
failure is detected. On most MPI runtime, none of ABFT or
redundant execution methods can tolerate a permanent
node loss, which is quite common on a real HPC system [14],
[30]. Some fault-tolerant MPI implementations [5], [12] sup-
port ABFT and redundant execution, with additional per-
formance overhead.

Checkpoint-and-Restart (CR) is a classic strategy [13] that
works under extreme cases such as a permanent node loss.
Traditional CR methods save checkpoints to underlying
storage systems, and leads to significant performance
degradation for applications. Since memory has higher
bandwidth than disks, in-memory/diskless CR methods
effectively reduce the overhead of saving checkpoints, and
have gained extensive attention [19], [28], [42].

Although the in-memory CR significantly reduces check-
point overhead, it poses a new challenge for applications.
Unlike disks, memory is a kind of relatively scarce resource.
Checkpoints saved in memory occupy some space so that
there is less available memory for applications. What’s
more, to maintain high reliability, in-memory checkpoint
needs to maintain at least two copies of checkpoints [42]. A
second checkpoint is used to tolerate failures when updat-
ing an old checkpoint. This results in only one third of

� X. Tang, J. Zhai, B. Yu, W. Chen, and W. Zheng are with the
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China. E-mail: {txc13, yubw15}@mails.tsinghua.edu.cn,
{zhaijidong, cwg, zwm-dcs}@tsinghua.edu.cn.

� K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 26 May 2017; revised 6 Oct. 2017; accepted 30 Nov.
2017. Date of publication 8 Dec. 2017; date of current version 9 Mar. 2018.
(Corresponding author: Jidong Zhai.)
Recommended for acceptance by Y. lu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2781257

758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1692-3964
https://orcid.org/0000-0002-1692-3964
https://orcid.org/0000-0002-1692-3964
https://orcid.org/0000-0002-1692-3964
https://orcid.org/0000-0002-1692-3964
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:
mailto:
mailto:

memory left for applications. A solution is to use memory as
a cache of disks, and flush in-memory checkpoints into
disks periodically. Several multi-level checkpoint frame-
works have already been proposed [3], [25]. However, copy-
ing checkpoints from memory into disks involves disk
operations, which is much slower than memory operations
and introduce additional overhead. So multi-level check-
point frameworks loses the performance advantage of in-
memory checkpoint.

To address this problem, we propose a novel method for
in-memory checkpoint, called self-checkpoint. Our method
not only achieves the same reliability of in-memory check-
point using two copies of checkpoints, but also increases
available memory for applications by almost 50 percent. We
use the term workspace to call the memory space where the
original data is stored. The core idea of our method is to
make the workspace of applications also as a checkpoint.
For in-memory checkpoint methods, when updating a
checkpoint, we need to copy data from the workspace of
applications into checkpoint. It means that the data in the
workspace and the updated checkpoint are the same, and
both of them are in memory. Based on this observation, we
propose a novel encoding mechanism, self-checkpoint.
With the self-checkpoint, there is no need to save multiple
checkpoints in memory, thus more memory is available for
applications. Specifically, more available memory has dif-
ferent meanings to different programs. For some programs,
more available memory means that the program can run for
larger problem sizes with the same nodes. For some others,
they can solve fixed-size problems with fewer nodes.

To verify and evaluate the self-checkpoint method, we
apply it to a challenging problem, fault-tolerant HPL. High-
Performance Linpack (HPL) is a prominent benchmark used
in the TOP500 ranking list [1] of HPC systems. However, a
future large-scale system may not afford a complete HPL
test because of decreasing system reliability. Despite previ-
ous efforts on fault tolerant HPL, existing approaches either
fail to tolerate a permanent node loss on a real system
(algorithm-based fault tolerant methods) [34], [37], or intro-
duce too much overhead (traditional CR methods saving
checkpoints in disks) [13], [32], thus they are not practical
for a performance benchmark.

In-memory checkpoint is a promising solution for fault
tolerant HPL. However, HPL has several characteristics that
make it even more difficult for in-memory checkpoint. First,
the memory usage of HPL is configurable, and generally
larger memory is much better for performance. For this rea-
son, HPL needs as much memory as possible for high per-
formance, while checkpoint itself should use as little
memory as possible. Second, as the consequence of high
memory usage, it will take a long time to flush checkpoints
from memory into disks. So multi-level checkpoint methods
are not suitable for fault-tolerant HPL. Third, HPL has a big
memory footprint. Almost every byte is modified between
two checkpoints. As a result, incremental checkpoint meth-
ods [2], [27], [33] are not efficient for this problem.

To this end, we implement a fault-tolerant HPL based on
the self-checkpoint mechanism, called SKT-HPL.1 It can not

only achieve very high performance but also tolerate a per-
manent node loss. We evaluate SKT-HPL on two large sys-
tems, Tianhe-1A and Tianhe-2 (ranked TOP#2 in TOP500
list). Experimental results show that with 24,576 processes
on Tianhe-2, the self-checkpoint method improves the avail-
able memory size by 47 percent. SKT-HPL achieves over
95 percent of the original HPL’s performance, and 5 percent
higher than using previous in-memory checkpoint methods.
We also perform powering-off experiments to validate SKT-
HPL can tolerate a real node failure.

In summary, we make the following contributions in
this work.

� We propose a novel in-memory checkpoint method,
self-checkpoint, which can not only keep the same reli-
ability of in-memory checkpoint using two copies of
checkpoints, but also significantly increase the available
memory space of applications by almost 50 percent.

� We apply our proposed self-checkpoint method to
an important problem, fault-tolerant HPL. We imple-
ment a scalable and node failure tolerant HPL (SKT-
HPL) on real HPC systems.

� We evaluate SKT-HPL on two large-scale systems,
Tianhe-1A and Tianhe-2. Results show that SKT-HPL
achieves over 95 percent of the original HPL’s perfor-
mance and improves the memory usage over the
state-of-the-art in-memory checkpoint by 47 percent.

A preliminary version of this work has been published in
PPoPP [31].

2 BASIC IN-MEMORY CHECKPOINT FRAMEWORK

In this section, we discuss the model of failure and recovery
used in this paper. Also, we describe some general funda-
mental techniques for in-memory checkpoint methods. Our
work is constructed on this basic framework.

2.1 The Model of Failure and Recovery

In this paper, a node means a physical machine. Nodes are
connected through network. An MPI parallel program con-
sists of many processes, which are running on many nodes.
There are multiple processes running on a single machine.
In our model, a node failure is that a node loses connection
with others, thus the processes running on it are also lost.
For most MPI programs, a node failure leads to the abortion
of the whole program, i.e., all processes on all nodes abort.
The task of recovery is to restart all processes and continue
their work. Although we need to restart all processes, we
only need to restart failed nodes or replace them by spare
nodes. Other nodes or healthy nodes require no additional
operation. Fig. 1 shows the model of failure and recovery.

2.2 Protecting Data with Encoding

For in-memory checkpoint methods, since checkpoints are
saved in volatile memory, an error-correcting code is neces-
sary to encode in-memory checkpoints. Calculating error-
correcting codes for all processes in a large-scale system is
prohibitive due to large communication overhead, so we
apply a group encoding strategy [3], [25], [39], [40] to reduce
the communication overhead. We partition all the processes
into a number of small groups and build error-correcting
codes for each group separately. To further reduce

1. Source code and documents of self-checkpoint can be down-
loaded from https://github.com/thu-pacman/self-checkpoint.git

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 759

communication contention during building error-correcting
codes within a group, we perform a stripe-based encoding
for each process. The basic idea is that we partition each
process data into N � 1 stripes (each group has N pro-
cesses), and then each process of the group is in charge of
building an error-correcting code for partial stripes. This
method can effectively avoid single-node network conten-
tion during encoding.

Fig. 2 shows an example to illustrate the above encoding
method used in our system, which is similar to the encoding
mechanism used in RAID-5 [26]. Suppose that there are four
processes, P0, P1, P2, and P3, in each group. Each process
partitions its local data into three stripes and allocates four
empty slots. After filling its own three stripes into the slots,
each process has an empty slot for the checksum of stripes
from the other processes within the same group. For exam-
ple, we calculate the checksum of A1, A2, and A3 from P1,
P2, and P3, then store this checksum AS into the empty slot
of P0. Other checksums, BS , CS , and DS , are built in the
same way. A general encoding method is listed below

XS ¼ X1 þX2 þ � � � þXn�1: (1)

X is a stripe in each process. The operator “þ” can be either
a numerical sum or a logical exclusive-or. Note that the
encoding time for each group does not change with the sys-
tem scale and only depends on the group size, which makes
our approach more scalable for a large-scale system.

Using above encoding, each group can tolerate a single
node failure. We can apply more complex encoding meth-
ods, such as RAID-6 [23] and Reed-Solomon [35], to tolerate
more node failures. For a higher degree of fault tolerance,
in-memory checkpoint methods can also be combined with
a multi-level checkpoint framework [3], [11], [25].

2.3 Keeping Checkpoints in Memory

Data saved in in-memory checkpoints needs to be accessible
after applications restart. However, in most modern operat-
ing systems like Linux and Windows, a normal memory
region will be freed after its owner exits. The data saved in
the freed memory region is no longer accessible. To keep
the data always in memory, one method is to mount an in-
memory file system (e.g., ramfs and tmpfs in Linux) and
write the checkpoint into that file system. Alternatively,
Linux provides a shared memory mechanism (SHM).2

A memory region allocated through SHM will not be
automatically freed by OS, even though no process is
attached to it. In our framework, we use the shared memory
mechanism to allocate memory regions for checkpoints.
With this mechanism, all the checkpoint data in healthy
nodes is still accessible after a node failure.

3 IMPORTANCE OF MORE AVAILABLE MEMORY

The core idea of self-checkpoint is to use less memory for
fault-tolerance, and leave more memory for applications.
As mentioned in Section 1, more available memory has dif-
ferent meanings to different applications. In extreme cases,
available memory space determines whether an application
can be launched. For some applications, they can solve
fixed-size problems with fewer nodes. Solving a problem
with less nodes has potential performance benefits for
network-intensive applications. For some others, more
available memory means that programs can run for larger
problem sizes with the same nodes.

Distributed breadth-first search (BFS) is an example of
the former case. As shown in Fig. 3, if we run BFS on less

Fig. 1. The model of failure and recovery. A node is a physical machine
which many processes run on. All processes abort after a node failure.

Fig. 2. Data encoding. Processes in a large-scale application are parti-
tioned into a number of small groups. We use a stripe-based encoding in
each group. AS;BS; CS; and DS in dashed dark blocks are checksums
for Ai, Bi, Ci, andDi respectively.

Fig. 3. Performance of distributed BFS with small and big memory con-
figurations on Sunway-TaihuLight. The big memory configuration has 4�
larger memory space than the small configuration, for each computing
node (8GB versus 32 GB on each node). In the largest case
(vertexes=235), the small memory configuration is run with 32,768 pro-
cesses while the big configuration is just run with 8,192 processes. For
the same problem size, 1=4 nodes with more memory can obtain much
better performance than more nodes with less memory on each node.

2. More information about SHM can be found at http://man7.org/
linux/man-pages/man2/shmget.2.html

760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

nodes with sufficient memory, then the performance can be
much better than on more nodes but each with less memory.
The data are obtained with big and small memory space con-
figurations on Sunway-TaihuLight supercomputer. The big
configuration provides 32 GBmemory on each node, which is
4� larger than the small configuration (8 GB on each node).
With a big configuration, the number of nodes is only 1=4 of
with small configuration, so the network communication over-
head is significantly reduced. Fig. 3 shows thatmore available
memory can lead tomuch performance improvement.

HPL belongs to the latter case. It has an adjustable prob-
lem size, thus larger problems can be solved with more
available memory. Also, HPL has a characteristic that it can
achieve better performance with a larger problem size.
Therefore, we use HPL as an example to show the potential
performance benefits of more available memory.

In the rest of this section, we present the derivation of
HPL efficiency model and give our observation on the rela-
tionship between available memory space and HPL effi-
ciency. Our model indicates that more available memory
leads to higher performance in HPL. This also confirms our
opinion that an in-memory checkpoint method should
occupy as little space as possible.

For a given system, the efficiency of HPL is a ratio
between HPL test performance and the system’s theoretical
peak performance. For example, if the test performance of
HPL is 80 GFlops and the system’s theoretical peak perfor-
mance is 100 GFlops, the efficiency is 80 percent.

The kernel of HPL is to solve a dense linear equation
Ax ¼ b, where A is an N �N matrix. The computational
complexity of HPL is OðN3Þ and its communication volume
and memory access are OðN2Þ. Therefore, if we omit the lin-
ear and constant computational work in HPL, themain work
of HPL can bemodeled by anOðN3Þ part plus anOðN2Þ part.

Since the total computational work in HPL is OðN3Þ, the
theoretical execution time without including any communi-
cation or memory access overhead can be modeled as gN3.
Considering various performance overhead and loss, the
actual execution time of HPL can be modeled as aN3 þ bN2,
where a > g. And bN2 is an estimation for memory access
and communication overhead. Therefore, the HPL efficiency
EðNÞ can be calculated as follows:

EðNÞ ¼ gN3

aN3 þ bN2
¼ N

aN þ b
: (2)

Here we have a ¼ a=g > 1 and b ¼ b=g. In this model,
given an invariant system and fixed process mapping, the
parameters a and b are independent of the problem size.

Fig. 4 shows that this model fits well with real experi-
mental data on a local cluster. The dots in Fig. 4 represent
the real data when executing 192 MPI ranks on a local clus-
ter with different problem sizes. The line is fitted with our
model. In Section 7.5, we will validate this model in two
larger systems.

From above efficiency model, we can get an interesting
finding for the HPL performance. For a given system, the
HPL performance increases with the input problem size.

Next, we analyze the efficiency of HPL when reducing
available memory space. Suppose that a system has effi-
ciency e1 for the problem size of N1 with the total available
memory, then we have

e1 ¼ EðN1Þ ¼ N1

aN1 þ b
: (3)

Thus the value of b is

b ¼ ð1� ae1ÞN1

e1
: (4)

If only partial memory is available for HPL, and ratio is k
ð0 < k < 1Þ, then the problem size N2 will be

ffiffiffi
k

p
N1. Com-

bining Equations (2), (3) and (4), we have the efficiency for
the problem size ofN2 as

e2 ¼
ffiffiffi
k

p
e1

1� ð1� ffiffiffi
k

p Þae1
>

ffiffiffi
k

p
e1

1� ð1� ffiffiffi
k

p Þe1
: (5)

The last step is because a > 1. Equation (5) gives a lower
bound of HPL efficiency for different problem sizes.

To make the relationship between available memory
space and HPL efficiency more clear, Fig. 5 shows the effi-
ciency of HPL for the top 10 supercomputers in the latest
TOP500 list with different availablememory space according
to our model. We can find that these systems can achieve
higher performance using more memory and improve
11.96 percent of the efficiency on average from one third of
the memory to half of the memory. In consequence, it would
be much better if an in-memory checkpoint method uses less
memory space and leavesmore for applications.

Fig. 4. Fitting of the efficiency model with experimental data. Experi-
ments are conducted with 192 MPI ranks on a local cluster with Xeon
E5-2670(v3) and 100 Gbps Infiniband network.

Fig. 5. Modeled HPL efficiency of the top 10 supercomputers with differ-
ent available memory space. The green mesh bars represent officially
reported performance. The hatched and red bars are results only using
one third and half of the memory size respectively, drawn by our model.

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 761

4 SELF-CHECKPOINT MECHANISM

4.1 Methodology

In this section, we elaborate our proposed self-checkpoint
mechanism. To demonstrate its advantage over previous
approaches, we first give a short introduction to single
checkpoint and double checkpoint mechanisms.

Fig. 6 shows the strategy of single in-memory checkpoint.
The main advantage of the single checkpoint strategy is its
low memory consumption. Almost half of the memory can
be used for useful computation. The user’s data of the origi-
nal program is represented by rectangle A. B stands for the
memory space for checkpoint, and C is the checksum of B.
The single checkpoint strategy can handle a node failure
during the program’s computation by rolling back the pro-
gram using the checkpoint B and checksum C (CASE 1 in
Fig. 6). However, the single checkpoint cannot tolerate a
node failure while updating a checkpoint or a checksum
(CASE 2 in Fig. 6), because at this time, the checkpoint B
and checksum C are in an inconsistent state.

To tolerate the node failure during checkpointing, a
straight-forward solution is to maintain two copies of check-
points and overwrite the old one when making a new
checkpoint, as shown in Fig. 7. Since there are two check-
points and at least one is available when updating, this
strategy can tolerate a node failure at any time. This strategy
is widely used in traditional checkpoint methods, which use
disks and have sufficient storage space for checkpoints. The
state-of-the-art in-memory checkpoint systems [41], [42]
also adopt this strategy. However, this strategy has high
memory consumption and significantly reduces available
memory space for useful computation (only 1/3), which is
prohibitive in a system with limited memory resource.
Another solution is to flush the old checkpoint into a perma-
nent device like hard-disks, but it will lose the performance
advantage of in-memory checkpoint.

To address above problems, we propose a novel self-
checkpoint strategy, which can significantly increase the
available memory space while tolerating a node failure dur-
ing checkpointing. Instead of maintaining two copies of
checkpoints as shown in Fig. 7, we store two copies of
checksums in memory. This method is inspired by an obser-
vation that a checksum is much smaller than a checkpoint in
a group encoding method. More specifically, a checksum is

only 1=ðN � 1Þ of the checkpoint size when a group has N
processes. Fig. 8 illustrates an ideal case using the self-
checkpoint strategy to handle different situations of failures.

Whenmaking a new checkpoint, a checksumD is first cal-
culated for the user’s data A, and then the memory space of
A and D is flushed into B and C. As shown in CASE 1 of
Fig. 8, when a node failure is detected while calculating the
checksumD, we can recover the program from checkpointB
and checksum C. How do we recover the program if a node
failure is incurred while updating checkpoints? As shown in
CASE 2 of Fig. 8, we can recover the programusing the user’s
dataA and its checksumD. In other words, the memory space for
computation itself is served as a checkpoint. Therefore, we call
our proposedmethod a self-checkpointmechanism.

As discussed in Section 2.3, we use shared memory to
keep data in memory. In principle, all variables of a program
can be allocated in sharedmemory. However, there are some
strategies to reduce the modification of source code. Big
arrays in C/C++ code are often allocated in heap, by calling
library functions. Therefore, a function wrapper can be used
to easily change the locations of these variables. For example,

Fig. 6. The strategy of single in-memory checkpoint. This method cannot
recover data from a failure during checkpoint updating. Shading means
a part of memory space is updated to newer data.

Fig. 7. The strategy of double checkpoints. While updating checkpoints,
at least one checkpoint and its checksum which are consistent can be
used for recovery. Its main disadvantage is that too much memory space
is wasted. Shaded areas are updated to newer data.

Fig. 8. The strategy of self-checkpoint. In CASE 1, if there is a failure dur-
ing calculating a new checksum, the program can recover from B and C.
In CASE 2, if there is a failure while updating checkpoints, the program
can recover from A andD.

762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

a malloc statement p=malloc(...) is transferred into an
SHM statement p=shmget(...). A program may also
have some small variables allocated in stack, such as loop
iterators and temporal variables. It can introduce a lot of
work to change all the code to use shared memory. There-
fore, as a trade-off, small local variables (A2 in Fig. 9) are still
allocated in regular memory. We use a small second-buffer
(B2 in Fig. 9) to save their copies for simplicity.

Fig. 9 illustrates the complete workflow of the self-
checkpoint mechanism. A1 denotes the data which is stored
in the shared memory.A2 denotes the data which is stored in
the user’s space and we need additional checkpoint space for
A2, but the size ofA2 can bemuch smaller thanA1. Thework-
flow of the self-checkpointmechanism is listed as below:

1) Store most of the user’s data A1 in shared memory.
2) Copy the data of A2 into B2.
3) CalculateD, which is the checksum of A1 and B2.
4) Copy (A1, A2) into B, and copyD into C.
Before the last step, we can recover the program from the

old checkpoint B and checksum C. Once we get the check-
sum D, the program can be recovered from A1, B2, and D.
In summary, a single node failure can always be tolerated
with our proposed self-checkpoint mechanism.

More detailed analysis about the memory usage is dis-
cussed in Section 4.2. Section 7 gives the detailed perfor-
mance data of the self-checkpoint mechanism.

4.2 Analysis of Memory Usage

Selecting a suitable strategy for group partitioning is impor-
tant for the performance of the self-checkpoint mechanism.
In this section, we discuss the relationship between the
group size and memory usage for different in-memory
checkpoint methods.

Suppose that each group has N processes, and each pro-
cess needs M units of memory for the user’s computation.
In the self-checkpoint mechanism, as we save most of data
in the shared memory (A1 in Fig. 9) and only partial local

variables in the user’s space (A2 in Fig. 9), so the size of A2
and B2 is negligible.

Table 1 lists the memory usage for each part of the self-
checkpoint mechanism. Each process usesM of memory size
for the original work (A1 and A2 in Fig. 9) and B is also M.
Due to the negligible size, B2 is omitted for simplicity.Accord-
ing to the encoding method described in Section 2.2, a check-
sum has the size of M=ðN � 1Þ. Therefore, the total memory
usage of the self-checkpoint mechanism is the sum of A1, A2,
B, C, andD, so it is 2MN=ðN � 1Þ. The available memory for
applicationwith the self-checkpointmechanism is

Uself � M

2MN=ðN � 1Þ ¼
N � 1

2N
: (6)

Similarly, we can calculate the available memory space of
the double checkpoint method shown in Fig. 7

U2ckpt ¼ M

M þ 2MN=ðN � 1Þ ¼
N � 1

3N � 1
: (7)

And the available memory with the single checkpoint
shown in Fig. 6 is

Usingle ¼ M

M þMN=ðN � 1Þ ¼
N � 1

2N � 1
: (8)

We illustrate the available memory space of different in-
memory checkpoint methods with several typical group
sizes in Fig. 10. The single checkpoint has the least memory
consumption andmost availablememory space among three
methods, but it is not fully fault tolerant and cannot recover
from a failure during checkpointing updating. The double
checkpoint method is fully fault tolerant but has much less
available memory (less than 1=3). The available memory of
our self-checkpoint method is slightly less than the single
checkpoint but much higher than the double checkpoint. At
the same time, our method is fully fault tolerant. For a large

Fig. 9. The complete workflow of self-checkpoint. Most data is allocated
in the shared memory, represented by A1 and little data is stored in the
user’s space, represented by A2.D is the checksum of A1 and B2.

TABLE 1
The Memory Usage of the Self-Checkpoint

Mechanism for Each Part in Fig. 9

Item A1+A2 B C D Total

Size M M M
N�1

M
N�1

2MN
N�1

The group size isN .

Fig. 10. The memory usage of different in-memory checkpoint methods
with group sizes of 2, 3, 4, 8, and 16.

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 763

group size, our method has more available memory space
than the double checkpoint, up to nearly 50 percent.

4.3 Grouping Strategy

In this section, we give our strategies in determining suit-
able group partitioning in a large-scale system. From
Fig. 10, we can find that a larger group size always has
more available memory, but a larger group is not good for
the data encoding. The communication time during the data
encoding is positively correlated with the group size (at
least OðlogðNÞÞ for N nodes). Therefore, a smaller group
size introduces much lower communication overhead. Fur-
thermore, a small group size is also beneficial for the sys-
tem’s reliability. Currently, our system only tolerates a
single node failure in each group. The more processes a
group has, the more likely more than one process will fail.
In an extreme case, if a group includes the whole system,
only a single failure can be tolerated. If each group has only
two processes, the system can tolerate failures for half of the
processes at the same time.

As a consequence, a large group is good for the memory
space, but increases the communication overhead and is
more likely to fail. Conversely, a small group encodes the
checkpoint quickly, but less memory space is left for useful
computation. As shown in Fig. 10, The available memory of
a group with 16 processes is 47 percent and is close to the
upper bound of 50 percent. We find that in a large system a
larger group size provides little benefit for available mem-
ory space but causes much overhead in communication. As
a result, we select the group size of 16 for our experiments .

For better performance and reliability, an appropriate
process mapping strategy should be considered. To tolerate
a permanent node loss, processes within a group must be
distributed onto different physical nodes. At the same time,
for better communication performance, a group tends to
select some neighboring nodes. But for high reliability, a
group should also spread its nodes as far as possible to tol-
erate a single rack or switch failure. Based on previous stud-
ies [14], [30], as most failures in HPC systems are single
node failures, and rack and network failures are minor, we
give high priority to the performance in our current group-
ing strategy. Exploring more mapping strategies within one
group is left for future work.

4.4 Supporting Accelerators

Accelerators like Graphics Processing Units (GPU) and
Xeon Phi are increasingly important for high performance
computing. There are no fundamental obstacles to use self-
checkpoint on a supercomputer with accelerators. However,
since we cannot assume all accelerators support the shared
memory mechanism, self-checkpoint does not save data
inside the memory of an accelerator.

For many applications, accelerators are used to solve
some critical kernels, and data are transferred between
main memory and accelerators over iterations. For these
applications, self-checkpoint can be used without extra
code modification. If an application has some data
remaining in accelerators during a whole run, then we
need to explicitly transfer data back to main memory for
fault tolerance.

5 THEORETICAL ANALYSIS FOR LARGE SCALE

In this section, we give a theoretical analysis for the perfor-
mance and the reliability of applications using self-check-
point that run on an even larger HPC system under short
MTBF.

5.1 Performance Under Different MTBFs

We use a checkpoint interval based on the following estima-
tion formula [9]:

t ¼
ffiffiffiffiffiffiffiffiffiffi
2Md

p
1þ 1

3

d

2M

� �1
2

þ 1

9

d

2M

� �" #
� d; (9)

where d is the time cost for a checkpoint, and the optimal
interval to next checkpoint is t.

Based on that formula, we calculate the total time used
for checkpoints during a whole run, called Tc. We call the
time for an application without any failure Th. If MTBF isM
, there will be ðTh þ TcÞ=M failures during the test, and each
recovery costs Rþ d, where D is the failure detection time.
The efficiency is

eff ¼ ThM

ðTh þ TcÞðM þDþ dÞ : (10)

We analyze the cases in which an application runs on a
system with 256,144 nodes and MTBF=15 min, 30 min,
1 hour, and 3 hours. The results are shown in Fig. 11. The
left part of Fig. 11 illustrates the relative performance under
different MTBFs, compared to a fault-free case. The over-
head introduced by the checkpoints is less than 10 percent
when MTBF is longer than 30 minutes. As a redundant exe-
cution uses half of the processors, its efficiency is no more
than 50 percent, which is far lower than ours.

5.2 Reliability Analysis of SKT-HPL

In this section, we analyze the reliability of the self-
checkpoint and compare it with the single-checkpoint. We
assume that the failure obeys a Poisson-Process, then the time
between two failures x follows an exponential distribution

fðxÞ ¼ �e��x; � ¼ 1

MTBFsystem
: (11)

If the whole system has Nt processes and a group has Ng

processes, the MTBF of a single group is

Fig. 11. The left side shows efficiency compared to fault free case. The
right side is probability to complete successfully. All results use 256K
nodes under different MTBFs. Even under a short MTBF, self-checkpoint
still has high efficiency and high reliability.

764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

MTBFgroup ¼ Nt

Ng
MTBFsystem: (12)

The probability of a failure occurs during checkpoint updat-
ing is

P1 ¼ 1� ea;a ¼ � checkpoint time

MTBFsystem
� checkpoints: (13)

A fault-tolerant application using the single-checkpoint
method cannot handle this situation. Although the self-
checkpoint can tolerate a failure during checkpoint updat-
ing, it fails if a second failure occurs in the same group dur-
ing recovery. The probability of this situation is

P2 ¼ 1� eb;b ¼ � recovery time

MTBFgroup
� failures: (14)

Therefore, the success probabilities for the single-checkpoint
and self-checkpoint are

Psingle ¼ ð1� P1Þ � ð1� P2Þ ¼ eaþb (15)

Pself ¼ ð1� P2Þ ¼ eb: (16)

We consider a situation with following configurations:
The whole system has Nt ¼ 160; 000 processes and each
group has processes Ng ¼ 16. Based on the data of Fig. 19,
both the checkpoint time and recovery time are assumed to
be 20 seconds; Checkpoints are done every 13.6 minutes,
based on the estimation method of [18]; A failure occurs
every MTBFsystem, which is 5 hours. A simulation result is
presented in Fig. 12.

Based on above simulation results, the self-checkpoint
has a probability of over 99 percent to successfully complete
an application executing for 100 hours. This means that an
application can successfully finish in most cases. In contrast,
an application with the single-checkpoint has a probability
of 39 percent to fail for such a long-running application. In
conclusion, the self-checkpoint achieves high reliability
while keeping large available memory space.

6 SKT-HPL IMPLEMENTATION

In this section, we discuss some details of implementing
SKT-HPL on a large-scale system.

6.1 SKT-HPL Overview

The kernel of HPL is to solve a linear equation Ax ¼ b,
where A is an N �N matrix. This equation is solved by
Gaussian Elimination with Partial Pivoting (GEPP). In gen-
eral, HPL can be divided into the following four steps:

1) Initialization. The first step is to initialize MPI run-
time, generate and partition data. The coefficient
matrix A and vector b are allocated at runtime and
filled by random numbers.

2) Elimination. The original equation Ax ¼ b is then
transformed into an upper triangle equation Ux ¼ y.
This is the most time-consuming part in HPL, and its
computational complexity is OðN3Þ. This step is
done in a loop that iterates over all rows of A.

3) Back Substitution. This step finally obtains the solu-
tion of x ¼ U�1y ¼ A�1b: Solving the upper triangle
equation Ux ¼ y is much easier, and the computa-
tional complexity is only OðN2Þ.

4) Report. After solving above equation, HPL verifies
the solution of x and then reports the final perfor-
mance. The computational complexity of this step
is OðN2Þ.

Fig. 13 illustrates the workflow of SKT-HPL. The white
blocks stand for operations in the original HPL as described
above, and the shaded ones are added by SKT-HPL. SKT-
HPL makes checkpoints during the elimination step at the
end of loop iterations, the main computational step in HPL.
After a node failure is detected, some necessary data struc-
tures need to be rebuilt in the initialization step and SKT-
HPL can restore the program’s data from the checkpoint.
SKT-HPL do not make checkpoints for the other steps,
because they normally take far less time than MTBF and
even less than a typical checkpoint interval.

Although the current implementation of SKT-HPL
does not use accelerators, self-checkpoint can be used to
implement fault-tolerant HPL that supports accelerators.
Accelerators usually have data in their own memory, but
operations like checkpointing and recovering are normally
performed in main memory. As a result, updated data in
accelerators’ memory should be explicitly transferred back
to main memory before making a new checkpoint.

Fig. 12. Simulation results for the reliability of the self-checkpoint and
single-checkpoint. Results show that the self-checkpoint is more reliable
for a long-running program while its available memory is as much as
using single-checkpoint.

Fig. 13. The workflow of SKT-HPL. Checkpoints are made at the end of a
certain iteration during the elimination step. If a node failure is detected,
SKT-HPL restores the data from the checkpoint in the initialization step.

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 765

6.2 Failure Detection and Restart

During an SKT-HPL test, a daemon runs on a master node
that is assumed not to fail. Since the master node is a single
node, its MTBF is very long and this assumption is reason-
able. Deploying the daemon on a reliable distributed system
is an alternative choice. If one MPI process aborts, the dae-
mon can detect it by checking the return value of mpirun
command or the output of a job management system in a
typical supercomputer.

To recover the program, SKT-HPL should restart and put
each process in the right position. Most MPI implementa-
tions support specifying the layout of processes. Normally a
ranklist file is used to assign each process to a certain node.
After all the MPI ranks exit due to a node failure, the dae-
mon checks the connection for each node in the ranklist.
Lost nodes are replaced by other healthy nodes, which can
be spare nodes or repaired nodes.

Next, the daemon restarts SKT-HPL according to a new
ranklist file. All the processes that ran on healthy nodes con-
tinue to run on the same nodes and just attach to the check-
points saved in their local memory. The processes that ran
on the failed node will be restarted on a fresh node where
there is no checkpoint. SKT-HPL can skip the generation of
matrix A and b, because they are already in the checkpoints.
However, some data structures need to be rebuilt in the ini-
tialization step.

6.3 Optimization

Besides the general approach described in Section 4, we
make special optimization for HPL.

For SKT-HPL, a checkpoint only needs to save the
updated part ofmatrixA and vector b. Since the size of vector
b is so small, we simply save the whole b in each checkpoint.
We discuss the checkpoint size of matrixA in this section.

Matrix A is eliminated from the top left corner to the bot-
tom right corner. Fig. 14 presents three strategies to save
data. A straightforward strategy is to save the whole matrix
in every checkpoint, as shown in strategy (a) in Fig. 14,
which produces checkpoints with a constant size of N2.
Strategy (b) saves the right side continuous part. If the tail-
ing matrix is k� k, it produces a checkpoint of size N � k.
Strategy (c) in Fig. 14, which saves the corner submatrix,
produces the smallest checkpoints of size k2. We mark Sx as
the total size of all checkpoints for strategy (x) during a
fault-free execution. If a checkpoint is made after eliminat-
ing each row, the total size of all checkpoints can be calcu-
lated for each strategy.

The checkpoints produced by this strategy are between
the strategies (a) and (c). If a checkpoint is made after elimi-
nating each row, during a fault-free execution, the total size
of all checkpoints in the optimal case (c) is

Scorner ¼
XN
i¼1

i2 ¼ NðN þ 1Þð2N þ 1Þ
6

: (17)

And the total data size for method (b) is

Sside ¼
XN
i¼1

N � i ¼ N2ðN þ 1Þ
2

: (18)

The size using strategy (a) is also given here

Swhole ¼
XN
i¼1

N �Nð Þ ¼ N3: (19)

We can calculate their ratios as below:

Sa : Sb : Sc � 3 : 1:5 : 1: (20)

This reduces communication traffic to half or one third by
applying an incremental checkpoint strategy.

SKT-HPL does not need to make a checkpoint after each
iteration, but this conclusion is still correct. For example, a
checkpoint is made after eliminating R rows of an N �N
matrix. It is equivalent to making a checkpoint after each
iteration for a matrix with order N=R.

There are additional requirements for the size of matrix
A. As mentioned above, SKT-HPL uses an incremental
checkpoint strategy. Therefore, all processes must have the
same partition size as matrix A. For example, to solve a
matrix of N �N with P �Q MPI ranks, we eliminate NB
rows in each iteration during the elimination step. The
matrix order N must be an integral multiple of both
P �NB and Q�NB at the same time, as described by the
following formula:

ðNB� P Þ jN and ðNB�QÞ jN: (21)

6.4 Calculating Checksums

We use MPI_Reduce to calculate checksums of check-
points, taking full advantage of underlying well-tuned MPI
library.

MPI_Reduce (datatype, operator, ...)

Supported by most MPI implementations, both exclusive
or (XOR) and numeric addition (SUM) encoding methods are
supported in our approach:

MPI_Reduce (MPI_LONG_LONG, MPI_BXOR, ...)

MPI_Reduce (MPI_DOUBLE, MPI_SUM, ...)

On some platforms, the logical XOR operation is much
faster than the numerical SUM. Our implementation uses
XOR by default, but SUM is also supported.

7 EVALUATION

7.1 Methodology

We perform our evaluation on two large-scale HPC sys-
tems, Tianhe-1A and Tianhe-2 [1]. The configuration of a
single node for both platforms is listed in Table 2. Table 2
shows that Tianhe-2 has more powerful CPU and larger

Fig. 14. Incremental checkpoints in SKT-HPL. Data in blue and white
need to be saved. The region in the red dashed block is saved for differ-
ent checkpoint strategies: (a) Saves the whole matrix, (b) Saves the right
side continuous region, and (c) Only saves the right bottom corner.

766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

memory size than its predecessor, Tianhe-1A. However,
each processor core of Tianhe-1A has more memory than
that of Tianhe-2 (4 GB/core versus 2.4 GB/core). The band-
width of point-to-point communication is similar to both
systems. Besides these two large systems, we also use a local
cluster connected by EDR Infiniband network for experi-
ments that need to power-off computing nodes. Each node
is equipped with 2-way Xeon E5-2670 v3 processors (24 pro-
cessor cores in total) and 64GB of memory size.

Compared to a double-checkpoint method, self-
checkpoint provides more available memory for applica-
tions. It is a general method and not tied to any specified
application. However, some usual benchmarks such as NPB
are fixed-size, or have multiple sizes that differ too much.
As a result, 50 percent more available memory does not
enable a larger-size problem, so they are not proper for
demonstrating our idea. Instead, we use HPL, which has an
adjustable problem size, to verify our idea.

7.2 Comparison with State-of-the-Art Methods

In this section, we compare SKT-HPL with state-of-the-art
methods for fault-tolerant HPL, including an algorithm-
based fault tolerant HPL (ABFT-HPL) [37], a traditional
checkpoint-and-restart method (BLCR) [20], and a multi-
level checkpoint system (SCR) [25]. As some experiments
have special requirements, e.g., mounting ramfs, installing
SSD [43] (Solid-State Drive), and powering-off computing
nodes, which are not allowed on supercomputing centers,
we perform these experiments on our local cluster. We com-
pare different methods for fault-tolerant HPL and report
their performance. Since BLCR is a system level tool and
automatically saves all data, the optimization in Section 6.3
cannot be applied. For a fair comparison, we disable the
optimization in SKT-HPL. Every time of making a check-
point, all methods will save all data. Moreover, to validate
the reliability of different methods under a permanent node
failure, we power off a computing node during HPL tests.
All tests of fault-tolerant HPL are run with 128 MPI pro-
cesses. Each process has 4GB of memory space. Limited by

the scale of this local cluster, which has 8 nodes, the group
size is set to 8. Table 3 shows experimental results.

In our experiment, ABFT-HPL [37] fails to tolerate a
power-off event, because MPI runtime cannot recover the
user program’s data structures after a node loss. The over-
head of such fault-tolerant algorithms is inversely propor-
tional to the number of processes. So its performance is not
good in this small-scale experiment and it only achieves
78.61 percent of the original performance.

BLCR [20] is a classic checkpoint-and-restart framework.
We perform our experiments on both hard disk drives
(HDDs) and SSD devices. When the checkpoints are written
into hard disk drives, its performance only achieves 72.53
percent of the original HPL, shown with BLCR+HDD in
Table 3. Therefore, it is not practical to use the traditional
CR method as a performance benchmark.

When replacing the HDDs with SSD devices, the BLCR
method gets much better performance for the HPL test. The
performance of BLCR+SSD achieves 87 percent of the origi-
nal HPL. In our experiments, both BLCR+HDD and BLCR
+SSD write checkpoints into local devices. It would be
much slower if a distributed file system is used.

SCR [25] is a state-of-the-art multi-level checkpoint sys-
tem , which can write checkpoints to RAM, Flash, or disk of
computing nodes in addition to a parallel file system. In our
experiments, we only present its best performance of writ-
ing checkpoints into RAM. Because SCR needs to save dou-
ble in-memory checkpoints to tolerate a node failure during
checkpoint updating, there is only 1.22GB available memory
(30.5 percent of the total size) for each process to do the HPL
test. Therefore, the problem size SCR solves is the smallest
among these methods. Since our local cluster has very large
memory size per core, it also achieves 92.1 percent of the
original HPL performance.

Thanks to the self-checkpoint mechanism, SKT-HPL has
1.75 GB memory for the HPL test, which is 43 percent higher
than the SCR method. Among these methods, SKT-HPL
achieves the best performance for the HPL test and it is
94.49 percent of the original performance. There are two
main reasons for the best performance of SKT-HPL. One is
that it has much shorter checkpoint time than traditional
checkpoint methods. The other is that it has much more
available memory space than previous in-memory check-
point methods.

7.3 Validation on Large-Scale Systems

Validation experiments on Tianhe-1A and Tianhe-2 are per-
formed by manually removing several computing nodes
during SKT-HPL tests. We kill the SKT-HPL processes of

TABLE 2
Node Configuration of Tianhe-1A and Tianhe-2

Tianhe-1A node Tianhe-2 node

CPU Dual Xeon X5670
�6 cores @2.93 GHz

2Dual Xeon E5-2692(v2)
2�12 cores @2.20GHz

Peak Performance 140 GFLOPS 422 GFLOPS
Memory 48 GB 64 GB
P2P Bandwidth 6.9 GB/s 7.1 GB/s

TABLE 3
Comparison Between Different Methods of Fault-Tolerant HPL

Problem
Size

Runtime (sec.)
(no checkpoint)

Checkpoint
Time (sec.)

GFLOPS and Checkpoints
(checkpoint per 10min)

Available
Memory(GB)

Normalized
Efficiency

Recover after
node powered-off?

Original HPL 234,240 2,338.64 - 3,669.81 (0 chkpt) 4.00 100.00% NO
ABFT 212,224 2,208.55 - 2,885.00 (0 chkpt) 3.28 78.61% NO
BLCR+HDD 234,240 2,338.64 295.20 2,661.83 (3 chkpt) 4.00 72.53% YES
BLCR+SSD 234,240 2,338.64 111.92 3,209.08 (3 chkpt) 4.00 87.45% YES
SCR+Memory 129,280 426.18 4.33 3,380.02 (0 chkpt) 1.22 92.10% YES
SKT-HPL 154,880 709.84 6.21 3,467.64 (1 chkpt) 1.75 94.49% YES

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 767

those nodes and remove those nodes from the resource pool
of job management system. Those nodes are permanently
lost since SKT-HPL can no longer launch processes on them.

In our experiments, SKT-HPL is able to replace the lost
nodes using spare nodes, recover the lost data, continue
running, and finally pass verification. We therefore argue
that SKT-HPL can tolerate real permanent node losses on
two systems.

We further measure the time for each phase during a
work-fail-detect-restart cycle, as shown in Fig. 15. The time
for detecting a failure depends on underlying job manage-
ment systems. The failure detection time varies largely on
Tianhe-1A, and it is about 30 seconds on average, while the
detection time on Tianhe-2 is about 63 seconds. The time for
replacing lost nodes and restarting SKT-HPL is about 10
and 9 seconds respectively. The recovery process is similar
to that used to calculate the checksum. But due to some
additional computation, the recovery time (20 seconds) is a
little longer than that to make a checkpoint (16 seconds).

7.4 Performance of SKT-HPL

We perform the original HPL test on both systems with typ-
ical configurations. We obtain 15.55 TFLOPS (86.38 percent
of the theoretical peak performance) with 1,536 processes
on Tianhe-1A. On Tianhe-2, we do not run HPL from the
beginning to the end, since it consumes too much time and
energy. Instead, we run HPL for minutes and record its
actual FLOPS value. The performance on Tianhe-2 is 367.04
TFLOPS (84.94 percent of the theoretical peak performance),
with 24,576 processes.

To analyze the performance of SKT-HPL, we test SKT-
HPL on both systems with near half of the memory, no
checkpoint is written. The group size for Tianhe-1A is 16
and 8 for Tianhe-2. Therefore, with the self-checkpoint
mechanism, the available memory is 47 and 44 percent of
the total memory on both systems respectively. SKT-HPL
obtains 15.21 TFLOPS (97.81 percent of the original HPL) on
Tianhe-1A and 351.60 TFLOPS (95.79 percent of the original
HPL) on Tianhe-2. Fig. 16 shows the performance of the
original HPL and SKT-HPL.

7.5 Benefits of Self-Checkpoint

To verify the efficiency models presented in Section 3 and
demonstrate the benefits of the self-checkpoint mechanism,
we run SKT-HPL with different memory size on two large

systems. Fig. 17 shows test results and fitting results by our
model. The squares and triangle dots represent the mea-
sured results of Tianhe-1A and Tianhe-2 respectively.
Results show that our efficiency models can fit the test
results very well and also verify the nonlinear relationship
between problem size and HPL efficiency. Using the self-
checkpoint can get 5 percent higher performance than using
the double-checkpoint on Tianhe-2 because of its much
more available memory (44 versus 30 percent).

7.6 Overhead of Building Checkpoints

The time cost of building checkpoints in the self-checkpoint
mechanism includes two parts, calculating checksums or
encoding (network communication) and overwriting old
checkpoints (local memory copying). Overwriting time is
less than one second in experiments, and is insignificant
compared with the communication time for encoding.

As mentioned in Section 6, we use MPI_Reduce to
encode checkpoints. There are two alternatives. One is XOR
and the other is numeric sum. Fig. 18 shows the numeric
sum is better than XOR when a subgroup has more than 4
nodes. Numeric sum has 15 percent speedup over XOR
when a subgroup has 16 nodes. Notably, this phenomenon
depends on particular systems, and this is an option in our
implementation of SKT-HPL. By default, we use XOR for
bit-wise correctness.

Fig. 19 shows the encoding time and checkpoint size for
different group sizes. As a checkpoint is close to half of the
memory as shown in Equation (6), the checkpoint size is
similar for different group sizes. The encoding time on both
systems increases slowly with the group size.

Fig. 15. Time for each phase during a work-fail-detect-restart cycle. All
results are measured on Tianhe-2 with 24,576 MPI processes. The time
value for each phase is presented in the small green rectangles.

Fig. 16. The efficiency of the original HPL and SKT-HPL (without making
checkpoint). The original HPL uses full memory and SKT-HPL uses near
half of the memory.

Fig. 17. The relationship between Memory space used for computation
and the normalized efficiency. Memory space and efficiency are com-
pared with a typical run of the original HPL with full memory. The impact
of memory space is more significant on Tianhe-2 than on Tianhe-1A.

768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

From Table 2 we know that the point-to-point communi-
cation performance of Tianhe-2 is better than Tianhe-1A.
But the encoding time of Tianhe-2 is much longer even with
smaller checkpoints than Tianhe-1. It is because a network
port of Tianhe-2 is shared by 24 processes, while in Tianhe-
1A one port is only shared by 12 processes. As a result, the
bandwidth per process of Tianhe-1A is much higher.

7.7 Decreasing Checkpoint Time

Fig. 20 shows the checkpoint time for three strategies dis-
cussed in Section 6.3. Obviously, the best choice is the strat-
egy (c) in Fig. 14. Therefore, saving the corner submatrix
has the least overhead.

The experimental result fits the analysis in Section 6.3,
but there are still some differences. The time curves are not
perfectly smooth but with some flat segments on them. It is
because SKT-HPL requires that each MPI rank gets the
same size part of checkpoint, as described in Section 6.3.
During the execution, SKT-HPL copies a little more data
than theoretical requirement.

8 RELATED WORK

Checkpoint-and-restart [13] is a classic fault tolerance
method, which saves the intermediate states of an applica-
tion (i.e., a checkpoint) into a reliable storage, and recovers
data from a checkpoint after a failure [38]. As traditional CR
methods save checkpoints to a parallel file system [32] and
introduce large storage overhead, they are only suitable for
medium-scale systems.

Diskless or in-memory checkpoint, which saves check-
points in memory and uses error-correcting codes to protect

data, was proposed since it has much lower overhead than
disk-based CR and is a potential solution for large-scale sys-
tems [28]. Ibtesham et al. compress the data before making a
checkpoint [22], so that the size of checkpoint is smaller.
Plank et al. proposed an incremental diskless checkpoint
system [27] to reduce memory consumption. In this method,
only data updated will be saved in a new checkpoint. The
impact of compression and incremental checkpoint depends
on the characteristics of applications. In worst cases, i.e.,
data cannot be compressed and all data has been updated,
they cannot save any memory space. Our method is not an
alternative of compression checkpoint or incremental check-
point. In fact, they are orthogonal. Compression or incre-
mental checkpoint tell us what to save and our method
answers where and how to save. To improve scalability, Zheng
et al. proposed an in-memory checkpoint scheme using a
buddy system, which is scalable by dividing nodes into
many two-node groups [41], [42]. This scheme can only use
one third of the memory, making it more suitable for appli-
cations with little memory consumption.

Besides in-memory checkpoint, multi-level CR models
have been proposed, such as SCR [25], 3D-PCRAM [11],
and FTI [3]. Multi-level CR saves checkpoints to fast devices
like memory, PCRAM, and local SSD in a short interval,
and to slower devices (e.g., global file system) in a long
interval. These studies focus on a general CR framework for
parallel applications, while our method focuses on improv-
ing the available memory space of in-memory checkpoint.
Therefore, we can integrate our method into a multi-level
CR framework for better performance.

Some numerical algorithms can obtain redundancy by
pre-processing the original input data. Huang and Abraham
studied algorithm-based fault tolerance for classic matrix
operations such as matrix-matrix multiplication and LU
decomposition [21]. Yao et al. proposed a fault tolerant
HPL [37]. Besides HPL, some other algorithms such as itera-
tive methods and QR decomposition have also been studied
with ABFT [6], [36]. Fault tolerant applications based on
ABFT usually have low overhead. Chen et al. proposed
Online-ABFT [7], which can detect soft errors in the widely
used Krylov subspace iterative methods. Li et al. [24] coor-
dinated ABFT and error-correcting code (ECC) for main
memory, to improve performance and energy efficiency of
ABFT-enabled applications. ABFT methods highly rely on
underlying MPI runtime. If the MPI runtime cannot recover
from a failure, ABFT has no chance to recover data.

Fig. 18. Encoding time with two schemes and different subgroup sizes
on Tianhe-1A. The numeric sum method is asymmetric, since recovery
time is longer than building time. Both are shorter than the XOR method.

Fig. 19. The encoding time of calculating checksums (left) and check-
point size (right) with different group sizes. Encoding time grows slowly
with group size. Checkpoint size is not very sensitive to group size.

Fig. 20. Checkpoint time of three strategies on Tianhe-1A. Using 1,536
processes and problem size N ¼ 552; 960. The time includes both
encoding time and memory copying time.

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 769

To the best of our knowledge, no MPI runtime can toler-
ate node failure with negligible overhead. MPICH-V2 [5]
and RADICMPI [12] are implemented based on message
logging and checkpoints. Thus the performance overhead is
not trivial. Some MPI runtime environments such as Intel
MPI can keep running after a process is aborted, instead of
forcing all processes to exit. But the aborted process is per-
manently lost and cannot be recovered. FT-MPI [15] extends
the semantic of MPI by trying to repair MPI data structures
and restart lost processes after a failure. Based on our
experiments, neither Intel MPI nor FT-MPI can restart the
lost processes after a node being powered off. Bland et al.’s
work [4] shows that a standard MPI runtime can tolerate
permanent node losses with the help of network configura-
tion. This method introduces overhead to MPI library, and
it is not practical for non-privileged users to change the con-
figuration of supercomputers.

The idea of redundant execution uses multiple processes
for a logical MPI rank. Both computation and communica-
tion are duplicated. Ferreira et al. proposed a prototype sys-
tem rMPI [16]. Fiala et al. proposed redMPI [17], which can
not only tolerate fail-stop errors, but also detect and correct
silent data corruption. Similar to ABFT methods, redundant
execution is good at detecting soft-errors but cannot tolerate
node failures. Unlike ABFT, a redundant execution model
has no requirement on algorithms. Nevertheless, its over-
head is much heavier than ABFT. Redundant execution
only uses half of the CPU and memory and has an efficiency
less than 50 percent.

9 CONCLUSION

To reduce the memory usage of in-memory checkpoint, we
propose a new strategy, called self-checkpoint. It not only
achieves the same reliability of in-memory checkpoint using
two copies of checkpoints, but also increases available mem-
ory space for applications by almost 50 percent. Based on the
self-checkpoint mechanism, we further implement SKT-
HPL, a fault-tolerant HPL, which can not only tolerate a real
node failure on a large-scale supercomputer, but also achieve
very close performance with the original HPL. Experimental
results show that with 24,576 processes on Tianhe-2, the self-
checkpoint method improves the available memory size by
47 percent than the state-of-the-art in-memory checkpoint.
Moreover, SKT-HPL achieves over 95 percent of the original
HPL’s performance, and is 5 percent higher than using previ-
ous in-memory checkpoint methods.

ACKNOWLEDGMENTS

The authors sincerely thank the anonymous reviewers for
their valuable comments and suggestions. The authors
thank Heng Lin, and Zhen Zheng for their efforts to
improve this paper. This work is supported by National
Key Research and Development Program of China
2017YFB1003103, NSFC projects 61232008 and 61722208,
Tsinghua University Initiative Scientific Research Program,
and Microsoft Research Asia Collaborative Research Pro-
gram FY16-RES-THEME-095.

REFERENCES

[1] top500 website. (2017). [Online]. Available: http://top500.org/

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in
Proc. Annu. Int. Conf. Supercomput., 2004, pp. 277–286.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault
tolerance interface for hybrid systems,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2011, Art. no. 32.

[4] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and
J. Dongarra, “A checkpoint-on-failure protocol for algorithm-
based recovery in standard MPI,” in Proc. Eur. Conf. Parallel
Process., Aug. 2012, pp. 477–488.

[5] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier,
and F. Magniette, “MPICH-V2: A fault tolerant MPI for volatile
nodes based on pessimistic sender based message logging,” in
Proc. ACM/IEEE Conf. Supercomput., 2003, pp. 25–25.

[6] Z. Chen, “Algorithm-based recovery for iterative methods with-
out checkpointing,” in Proc. 20th Int. Symp. High Perform. Distrib.
Comput., 2011, pp. 73–84.

[7] Z. Chen, “Online-ABFT: An online algorithm based fault tolerance
scheme for soft error detection in iterative methods,” in Proc. ACM
SIGPLAN Symp. Principles Practice Parallel Program., 2013, pp. 167–
176.

[8] Z. Chen, et al., “Fault tolerant high performance computing by a
coding approach,” Proc. ACM SIGPLAN Symp. Principles Practice
Parallel Program., 2005, pp. 213–223.

[9] J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Generation Comput. Syst.,
vol. 22, pp. 303–312, 2006.

[10] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen, “High per-
formance linpack benchmark: A fault tolerant implementation
without checkpointing,” in Proc. Annu. Int. Conf. Supercomput.,
2011, pp. 162–171.

[11] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie,
“Leveraging 3D PCRAM technologies to reduce checkpoint over-
head for future exascale systems,” in Proc. Conf. High Perform.
Comput. Netw. Storage Anal., 2009, Art. no. 57.

[12] A. Duarte, D. Rexachs, and E. Luque, “An intelligent management
of fault tolerance in cluster using RADICMPI,” in Proc. Eur. Paral-
lel Virtual Mach./Message Passing Interface Users Group Meet.,
Sep. 2006, pp. 150–157.

[13] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations
for high performance computing systems,” J. Supercomput.,
vol. 65, no. 3, pp. 1302–1326, Sept. 2013. ISSN 0920–8542, 1573-
0484.

[14] N. El-Sayed and B. Schroeder, “Reading between the lines of fail-
ure logs: Understanding how HPC systems fail,” in Proc. Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw., 2013, pp. 1–12.

[15] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, sup-
porting dynamic applications in a dynamic world,” in Proc. Eur.
Parallel Virtual Mach./Message Passing Interface Users Group Meet.,
2000, pp. 346–353.

[16] K. Ferreira, et al., “Evaluating the viability of process replication
reliability for exascale systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2011, Art. no. 44.

[17] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption
for large-scale high-performance computing,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2012, pp. 1–12.

[18] E. Gelenbe, “On the optimum checkpoint interval,” J. ACM,
vol. 26, no. 2, pp. 259–270, Apr. 1979. ISSN 0004–5411.

[19] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka,
“Distributed diskless checkpoint for large scale systems,” in Proc.
IEEE/ACM Int. Conf. Cluster Cloud Grid Comput., 2010, pp. 63–72.

[20] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart
(BLCR) for Linux clusters,” J. Physics: Conf. Series, vol. 46, 2006,
Art. no. 494.

[21] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance
for matrix operations,” IEEE Trans. Comput., vol. C-33, no. 6,
pp. 518–528, Jun. 1984.

[22] D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira, and
R. Brightwell, “On the viability of compression for reducing the
overheads of checkpoint/restart-based fault tolerance,” in Proc.
Int. Conf. Parallel Process., 2012, pp. 148–157.

[23] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-code: A new RAID-6 code
with optimal properties,” in Proc. Annu. Int. Conf. Supercomput.,
2009, pp. 360–369.

770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

http://top500.org/

[24] D. Li, Z. Chen, P. Wu, and J. S. Vetter, “Rethinking algorithm-
based fault tolerance with a cooperative software-hardware
approach,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2013, pp. 1–12.

[25] A. Moody, G. Bronevetsky, K. Mohror, and B. De Supinski,
“Design, modeling, and evaluation of a scalable multi-level check-
pointing system,” in Proc. ACM/IEEE Int. Conf. High Perform. Com-
put. Netw. Storage Anal., 2010, pp. 1–11.

[26] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 1988, pp. 109–116.

[27] J. S. Plank and K. Li, “Faster checkpointing with N+1 parity,” in
Proc. IEEE 24th Int. Symp. Fault- Tolerant Comput., Jun. 1994,
pp. 288–297.

[28] J. S. Plank, K. Li, andM. A. Puening, “Diskless checkpointing,” IEEE
Trans. Parallel Distrib. Syst., vol. 9, no. 10, pp. 972–986, Oct. 1998.

[29] Y. Robert, “Fault-tolerance techniques for computing at scale,”
Proc. IEEE/ACM Int. Conf. Cluster Cloud Grid Comput., 2014.

[30] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Trans. Depend. Secure
Comput., vol. 7, no. 4, pp. 337–350, Oct. 2010. ISSN 1545–5971.

[31] X. Tang, J. Zhai, B. Yu, W. Chen, and W. Zheng, “Self-checkpoint:
An in-memory checkpoint method using less space and its prac-
tice on fault-tolerant HPL,” in Proc. ACM SIGPLAN Symp. Princi-
ples Practice Parallel Program., 2017, pp. 401–413.

[32] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A job pause ser-
vice under LAM/MPI+BLCR for transparent fault tolerance,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007, pp. 1–10.

[33] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Hybrid
checkpointing for MPI jobs in HPC environments,” in Proc. 2010
IEEE 16th Int. Conf. Parallel Distrib. Syst., 2010, pp. 524–533.

[34] R. Wang, E. Yao, M. Chen, G. Tan, P. Balaji, and D. Buntinas,
“Building algorithmically nonstop fault tolerant MPI programs,”
in Proc. Int. Conf. High Perform. Comput., 2011, pp. 1–9.

[35] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their
Applications. Hoboken, NJ, USA: Wiley, 1999.

[36] P. Wu and Z. Chen, “FT-ScaLAPACK: Correcting soft errors on-
line for scalapack cholesky, QR, and LU factorization routines,” in
Proc. 23rd Int. Symp. High-Perform. Parallel Distrib. Comput., 2014,
pp. 49–60.

[37] E. Yao, R. Wang, M. Chen, G. Tan, and N. Sun, “A case study of
designing efficient algorithm-based fault tolerant application for
exascale parallelism,” in Proc. IEEE 26th Int. Parallel Distrib. Pro-
cess. Symp., May 2012, pp. 438–448.

[38] X. Ye, et al., “An anomalous behavior detection model in cloud
computing,” Tsinghua Sci. Technol., vol. 21, no. 3, pp. 322–332,
2016.

[39] J. Zhang, J. Chen, J. Luo, and A. Song, “Efficient location-aware
data placement for data-intensive applications in geo-distributed
scientific data centers,” Tsinghua Sci. Technol., vol. 21, no. 5,
pp. 471–481, 2016.

[40] Y. Zhao, H. Jiang, K. Zhou, Z. Huang, and P. Huang, “DREAM-(L)
G: A distributed grouping-based algorithm for resource assign-
ment for bandwidth-intensive applications in the cloud,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3469–3484, Dec. 2016.

[41] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++: An in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI,”
in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2004, pp. 93–103.

[42] G. Zheng, X. Ni, and L. V. Kal, “A scalable double in-memory
checkpoint and restart scheme towards exascale,” in Proc. IEEE/
IFIP Int. Conf. Depend. Syst. Netw. Workshops, 2012, pp. 1–6.

[43] K. Zhou, S. Hu, P. Huang, and Y. Zhao, “LX-SSD: Enhancing the
lifespan ofNANDflash-basedmemory via recycling invalid page,”
in Proc. Int. Conf. Massive Storage Syst. Technol., 2017, pp. 1–13.

Xiongchao Tang received the BS degree from
Tsinghua University, in 2013. He is currently work-
ing toward the PhD degree in the Institute of
High-Performance Computing, Tsinghua Univer-
sity. His major research interests include perfor-
mance analysis and optimization for parallel
programs, performance benchmarking and per-
formance variance detection for large-scale high-
performance computing systems, heterogeneous
programming, and fault tolerance.

Jidong Zhai received the BS degree in computer
science from the University of Electronic Science
and Technology of China, in 2003 and the PhD
degree in computer science from Tsinghua
University, in 2010. He is currently an assistant
professor in the Department of Computer Sci-
ence and Technology, Tsinghua University. His
research interests include high-performance
computing, compilers and performance analysis,
and optimization of parallel applications.

Bowen Yu received the BS degree from North-
western Polytechnical University, in 2015. He is
working toward the PhD degree in the Institute of
High-Performance Computing, Tsinghua Univer-
sity. His major interests include MPI, and large-
scale systems in machine learning.

Wenguang Chen received the BS and PhD
degrees in computer science from Tsinghua Uni-
versity, in 1995 and 2000, respectively. He was the
CTO in Opportunity International Inc. from 2000 to
2002. Since January 2003, he has joined Tsing-
hua University. He is currently a professor and an
associate head in the Department of Computer
Science and Technology, Tsinghua University. His
research interests include parallel and distributed
computing and programmingmodel.

Weimin Zheng received the BS and MS degrees
from Tsinghua University, in 1970 and 1982,
respectively. He is currently a professor in the
Department of Computer Science and Technol-
ogy, Tsinghua University. He is currently the direc-
tor in China Computer Federation (CCF). His
research interests include parallel and distributed
computing, compiler technique, grid computing,
and network storage.

Keqin Li is a SUNY distinguished professor of
computer science in the State University of New
York. He is also a distinguished professor of Chi-
nese National Recruitment Program of Global
Experts (1000 Plan), Hunan University, China. He
was an Intellectual Ventures endowed visiting
chair professor in the National Laboratory for
Information Science and Technology, Tsinghua
University, Beijing, China, during 2011-2014. His
current research interests include parallel com-
puting and high-performance computing, distrib-

uted computing, energy-efficient computing and communication,
heterogeneous computing systems, cloud computing, big data comput-
ing, CPU-GPU hybrid and cooperative computing, multicore computing,
storage and file systems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile computing, service
computing, Internet of things, and cyber-physical systems. He has pub-
lished more than 530 journal articles, book chapters, and refereed con-
ference papers, and has received several best paper awards. He is
currently or has served on the editorial boards of the IEEE Transactions
on Parallel and Distributed Systems, the IEEE Transactions on Com-
puters, the IEEE Transactions on Cloud Computing, the IEEE Transac-
tions on Services Computing, and the IEEE Transactions on
Sustainable Computing. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TANG ETAL.: AN EFFICIENT IN-MEMORYCHECKPOINT METHODAND ITS PRACTICE ON FAULT-TOLERANT HPL 771

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

