
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:6995–7015
https://doi.org/10.1007/s11227-021-04126-3

1 3

The g‑extra diagnosability of the balanced hypercube 
under the PMC and MM* model

Xinyang Wang1,2  · Lijuan Huang1,2 · Qiao Sun1,2 · Naqin Zhou3 · 
Yuehong Chen4 · Weiwei Lin5 · Keqin Li6

Accepted: 4 October 2021 / Published online: 4 November 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2021

Abstract
Fault diagnosis plays an important role in the measuring of the fault tolerance of an 
interconnection network, which is of great value in the design and maintenance of 
large-scale multiprocessor systems. As a classical variant of the hypercube, the Bal-
anced Hypercube, denoted by BHn(n ≥ 1), has drawn a lot of research attention, and 
its g-extra diagnosability has been studied to improve the network diagnostic ability. 
However, the current literatures on g-extra diagnosability of BHn under the PMC 
model only cover the cases of g < 6 , and what’s more, seldom involve its g-extra 
diagnosability under the MM* model, which is a great limitation on the research of 
BHn diagnosability. In this paper, the upper and lower bounds of the g-extra diagnos-
ability of the balanced hypercube are proved, respectively, based on the g-extra con-
nectivity by the contradiction method, and finally, the g-extra diagnosability of BHn 
for 2 ≤ g ≤ 2n − 1 under the PMC and MM* model is obtained, i.e., 
2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g . In addition, as a special case, the g-extra diagnosability of 

the balanced hypercube for g = 2n is proved to be 22n−1 − 1 under the PMC and 
MM* model. In the end, simulation experiments are conducted to verify the effec-
tiveness of our proposed theories. The conclusion of this paper has certain theory 
and application value for the research of BHn fault diagnosis.
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1 Introduction

Due to the rapid development of network technology and the expansion of net-
work scale, there are more and more processors in large-scale multiprocessor sys-
tems, in which the existence of faulty nodes is often inevitable, and it is necessary 
to make in-depth explore on fault diagnosis features of interconnection networks.

Preparat et al. proposed the PMC model in 1967 [1], and it stipulates that any 
two processors that are neighbors in the system could test each other. After dec-
ades, Sengupta et al. put forward the MM* model [2], that any test node w in the 
system can test any two adjacent nodes. If the system G could diagnose all the 
faulty nodes at the same time, and the number of faulty nodes does not exceed 
t, the system G is called t-diagnosable [1]. It requires that the number of correct 
nodes must be greater than the number of failed nodes, which imposes certain 
restrictions on the diagnosis of node diagnosis [3]. In 2005, the conditional diag-
nosability was proposed by setting more restrictions [4]. The conditional diag-
nosis method requires that the neighbors of each node cannot fail at the same 
time, which covers most of the failure cases and greatly improved the diagnos-
ability of interconnection networks. But the conditional diagnosis strategy per-
forms not well enough with the increase of interconnection network dimensions 
[3], because it only assumes one non-faulty neighbor node, and the assumption is 
not so practical for high-dimensional networks. In 2012, based on Rg connectiv-
ity, the g-good-neighbor diagnosability was proposed [5], and it requires at least 
g faulty-free neighbor nodes for each non-faulty node. The g-good-neighbor diag-
nosability is more suitable for the high-dimensional interconnection networks 
than the conditional diagnosability. However, the g-good-neighbor diagnosabil-
ity only imposes certain restrictions on the correct nodes, but not on the failed 
nodes [6]. In 2015, Zhang et  al. proposed a new diagnostic method, called g-
extra diagnosability, which is defined under the assumption that each connected 
component of G − F has at least (g + 1 ) fault-free nodes, where F denotes fault 
node set and F ⊆ V  [7]. Deriving from the g-good-neighbor diagnosability, the 
g-extra diagnosability draws much research attention owning to its stronger fault 
diagnosability and higher accuracy of reliability measurement in heterogeneous 
environments. In literatures [7–12, 28], the g-extra diagnosability of some classic 
interconnection networks are explored under the PMC and MM * models, includ-
ing the hypercube, the folded hypercube, the twisted cube, arrangement graphs, 
and the crossed cube. Some researchers also investigated the relationship between 
reliability and diagnostics, for example, Liu [13] et al. established the relationship 
between g-extra conditional diagnosability and g-extra connectivity of graphs 
under the MM* model.

In recent years, as an important variant of hypercubes, researches on topologi-
cal properties of the balanced hypercube have been made, such as the structural 
fault tolerance of the balanced hypercube [14], the connectivity of the structure 
and substructures [15], the problem of two node-disjoint paths with 2n − 3 faulty 
vertices [16], g-extra connectivity [17], Hyper-Hamiltonian laceability [18], and 
conditional diagnosability under the MM* model [19]. Studies on the reliability 
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[20] and g-extra diagnosability of the balanced hypercube are made under the 
PMC model as well. In 2019, Lin et al. proved the g-extra diagnosability of BHn 
when 1 ≤ g ≤ 3 [21], and in 2019, Zhang et al. further proved the g-extra diagnos-
ability for 4 ≤ g ≤ 5 [22]. However, their conclusions applies only to 1 ≤ g ≤ 5 
and do not consider the cases of 6 ≤ g . Therefore, in this paper, we will mainly 
discuss the g-extra diagnosability of BHn when g ≥ 6 under the PMC model. At 
the same time, we find that there is even few research on the g-extra diagnosabil-
ity of BHn under the MM* model, so we will also prove the g-extra diagnosability 
when g ≥ 2 under the MM* model.

In this paper, based on the g-extra connectivity [23] of BHn , which is the mini-
mum cardinality of g-extra cuts and is necessary to prove the g-extra diagnosability, 
we prove the g-extra diagnosability of BHn (denoted by tg

(
BHn

)
 ) under the PMC and 

MM* model, respectively, and obtain a unified g-extra diagnosability formula, i.e., 
2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g for 2 ≤ g ≤ 2n − 1 . In addition, we also prove that the g-

extra diagnosability of BHn is 22n−1 − 1 when g = 2n under the PMC and MM* 
model.

The primary contributions of our work are as follows:

• We investigate the g-extra diagnosabilities of BHn under PMC and MM* model.
• We prove that tg

�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g for 2 ≤ g ≤ 2n − 1 , and 

tg
(
BHn

)
= 22n−1 − 1 for g = 2n under the PMC model. We extend the existing g-

extra diagnosabilty of the balanced hypercube under the PMC model to a more 
general condition, i.e., 2 ≤ g ≤ 2n.

• We prove that tg
�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g for 2 ≤ g ≤ 2n − 1 , and 

tg
(
BHn

)
= 22n−1 − 1 for g = 2n under the MM* model, which is seldomly 

reported in current literatures.

A comparative analysis of the g-extra diagnosability in this paper and previous 
studies on the g-extra diagnosability of BHn under the PMC and MM* model is 
shown in Table 1.

The rest of this paper is organized as follows. Section 2 introduces some basic 
knowledge of graph theory and fault diagnosis model. Sections 3 and 4 prove the 
g-extra diagnosability of the balanced hypercube under the PMC model and MM* 

Table 1  Comparative analysis 
of the resssults of this work and 
previous studies

Diagnostic 
model

tg
(1 ≤ g ≤ 3)

tg
(4 ≤ g ≤ 5)

tg
(this paper)

PMC 4n-4 + g 
[21]

6n-8 + g [22]
2

[

(n− 2)
⌈

g−1

2

⌉

+ n

]

+ g

(2 ≤ g ≤ 2n − 1)

2
2n−1 − 1 (g = 2n)

MM* − −
2

[

(n− 2)
⌈

g−1

2

⌉

+ n

]

+ g

(2 ≤ g ≤ 2n − 1)

2
2n−1 − 1 (g = 2n)
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model. In Sect. 5, simulation experiments are conducted to verify the correctness 
of the conclusion. Section 6 concludes the paper.

2  Preliminaries

2.1  Notations

A multiprocessor system is always abstracted as a simple graph G = (V ,E) , where 
V  denotes the processor set, E denotes communication link set, and |V| denotes 
the processor number. For any node v ∈ V(G) , we define NG(v) as the node set 
adjacent to v, and u is a neighbor node of v where u ∈ NG(v) . The degree of a node 
v refers to the number of its neighbor nodes in graph G. Let U be a node set of 
graph G, and G-U denotes a subgraph by deleting all nodes and all related edges 
in U from graph G. Given a non-empty node subset V ′ ⊂ V, the induced subgraph 
of V ′ in G is denoted with G

[
V ′
]
 . Let the symmetric difference of two node sets 

F1 ⊆ V(G) and F2 ⊆ V(G) be F1ΔF2 = (F1 − F2) ∪ (F2 − F1) . Let S ⊆ V(G) , NG(S) 
indicates the set (∪v∈SNG(v)) − S , CG(S) indicates the set NG(S) ∪ S , and S denotes 
the node set V(G) − S . The degree of a node v is denoted with dG(v) , and a graph 
G is k-regular if for any node v , dG(v) = k . The connectivity (denoted with KG ) of 
a graph G is the minimum number of removed nodes that may result in the graph 
G to be disconnected or just one node left [24].

Definition 1 [7] For a graph G = (V ,E) , a faulty set F ⊆ V  is called a g-extra faulty 
set if every component of G − F has at least (g + 1) nodes.

Definition 2 [23] A g-extra faulty set F is a g-extra cut of G if G − F is discon-
nected. G is g-extra connected if G has a g-extra cut. The minimum cardinality of 
g-extra cuts is called the g-extra connectivity for the g-extra connected graph G , 
denoted by k̃g(G).

Definition 3 [8] The g-extra diagnosability of G is the maximum value of t such that 
G is g-extra t-diagnosable, denoted by tg(G).

Theorem 1 [8] A system G = (V ,E) is g-extra t-diagnosable under the PMC model 
if and only if there is an edge uv ∈ E with u ∈ V�

(
F1 ∪ F2

)
 and v ∈ F1ΔF2 for each 

distinct pair of g-extra subsets F1 and F2 of V
(
BHn

)
 with ||F1

|| ≤ t and ||F2
|| ≤ t.

Theorem 2 [25] For any two distinct faulty subsets F1 and F2 in a system G = (V ,E) , 
the sets F1 and F2 are distinguishable under the PMC model if and only if there exist 
a node u ∈ V�

(
F1 ∪ F2

)
 and a node v ∈ F1ΔF2 such that uv ∈ E (see Fig. 1).



6999

1 3

The g‑extra diagnosability of the balanced hypercube under…

Theorem  3 [2] In a system G = (V ,E) , G is g-extra t-diagnosable under the 
MM * model if and only if each distinct pair of g-extra faulty subsets F1 and F2 of V 
with ||F1

|| ≤ t and ||F2
|| ≤ t satisfies any of the following conditions (see Fig. 2):

(1) There exist two nodes u,w ∈ V�
(
F1 ∪ F2

)
 , and there exists a node v ∈ F1ΔF2 

such that uw, vw ∈ E (see situation (1) in Fig. 2).
(2) There exist two nodes u, v ∈ F1�F2 , and there exists a node w ∈ V�

(
F1 ∪ F2

)
 

such that uw, vw ∈ E (see situation (2) in Fig. 2).
(3) There exist two nodes u, v ∈ F2�F1 , and there exists a node w ∈ V�

(
F1 ∪ F2

)
 

such that uw, vw ∈ E (see situation (3) in Fig. 2).

3  The balanced hypercube

For the convenience of proof, we provide the definition of the balanced hyper-
cube as follows.

Definition 4 [26] An n-dimensional balanced hypercube BHn consists of 22n nodes (
a0, a1,… , ai−1, ai, ai+1,… , an−1

)
 where a0 and ai ∈ {0, 1, 2, 3} ( 1 ≤ i ≤ n − 1 ). 

Every node 
(
a0, a1,… , ai−1, ai, ai+1,… , an−1

)
 connects the following 2n nodes:

(1) ((a0 ± 1 ) mod4,a1,…,ai−1,aj,ai+1,…,an−1);
(2) (

(
a0 ± 1

)
 mod4,a1,…,ai−1,(ai + (−1)

a0)(mod4),ai+1,…,an−1 ), where i is an integer 
with 1 ≤ i ≤ n − 1.

Fig. 1  Two distinguishable sets 
under the PMC model

Fig. 2  Two distinguishable sets 
under the MM* model
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Definition 5 [26] BHn is constructed hierarchically as follows (see Fig. 3):

 (1) BH1 is constructed from four nodes connected as a ring. These four nodes are 
labeled 0, 1, 2, 3, respectively (see subgraph 1 in Fig. 3);

 (2) BHk+1 is constructed from four BHks . These four BHks are labeled BH(0)

k
,BH(1)

k

,BH(2)

k
 , and BH(3)

k
 , where each node in BH(i)

k
(0 ≤ i ≤ 3) has i attached as the 

new k-th outer index. Every node v = (a0, a1,… ak−1, i) in BH(i)

k
(0 ≤ i ≤ 3) has 

two extra connections (see subgraph 2 in Fig. 3):
 (2.1) BH(i+1)

k
∶ ( a0 ± 1 , a.1,…,ak−2, i + 1 ) if a0 is even;

 (2.2) BH(i−1)

k
 : ( a0 ± 1 , a1,…,ak−2, i − 1 ) if a0 is odd.

3.1  The PMC and MM* model

Preparat et al. proposed the PMC faulty diagnosis model in 1967[1], which sup-
pose that each processor has two states, i.e., faulty and faulty-free, and two adja-
cent nodes can test each other. A test for any two adjacent nodes u and v , per-
formed by u on v , is denoted with an ordered pair (u, v) . Suppose the node u is 
fault-free, the test result is treated as reliable, and the outcome of a test (u, v) is 
either 1 or 0 [12], where 1 represents that v is a fault node, and vise versa. Con-
versely, the result is unreliable if the test node u is a fault node [1]. The PMC 
model can correctly diagnose the state of other processors through the faulty-free 
processors.

As another classic fault diagnosis model, the MM model assumes that all diag-
nosis can be implemented by a central processing unit to perform comparison 
operations and locate faulty processors. The MM model was further generalized 
to the MM* model by Sengupta and Dahbura in 1992. In the MM* model, a fault-
free processor w can perform comparative diagnostic test on v and u if and only 
if v and u are both the neighbor of w. If w diagnoses that at least one of v and u is 
in a fault state, the output result is 1, denoted by �(v, u)w = 1 ; on the contrary, if w 
diagnoses that u and v are both in a fault-free state, the output result is 0, denoted 
by �(v, u)w = 0 . If the tester w is faulty, the output result is random.

Fig. 3  The structure of BH
1
 

and BH
2
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4  The g‑extra diagnosability of the balanced hypercube 
under the PMC model

In this part, we will prove tg(G) of the balanced hypercube under the PMC model by 
determining the upper and lower bounds for 2 ≤ g ≤ 2n − 1 ( n ≥ 2 , n denotes the 
dimension of the balanced hypercube).

Theorem 4 [17] k̃g
�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
 , 2 ≤ g ≤ 2n − 1.

For any node v ∈ G, {v} ∪ NG(v) forms a connected subgraph  Gsub_c. it can devide 
into the following two cases:

(1) (1) If there is no faulty node in G, |  Gsub_c |=2n +1;
(2) If  Gsub_c contains at least one faulty node making itself an independent subgraph, 

by ignoring the faulty nodes, there is |Gsub_c|≤ 2n. According to the definition of 
g-extra connectivity, |Gsub_c|≥ g + 1. So g + 1 ≤|Gsub_c|≤ 2n, i.e., g ≤ 2n-1.

Lemma 1 For arbitrary number g where 2 ≤ g ≤ 2n − 1(n ≥ 2) , 
tg
�
BHn

�
≤ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g under the PMC and MM* model.

Proof Let F be the node set of a connected component BHn(F) (where |F| = g + 1 ), 
the neighbor node set of F be NBHn

(F) , and NBHn
(F) be the minimum g-extra cut of 

BHn . Suppose.

By Theorem 4 and Definition 2,��F1
�� = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
 , ��F2

�� = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ (g + 1) , 

so the inequality ��Fi
�� ≤ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ (g + 1) holds (i = 1, 2) . Since 

F1 = NBHn
(F) is a g-extra cut of BHn , each connected component of BHn − F1 has at least 

g + 1 nodes. According to the definition of F2, every connected component in BHn − F2 must 
be contained in BHn − F1 , and also has at least g + 1 nodes. Thus, by Definition 1, F1 and F2 
are two g-extra faulty sets. From F2 = F ∪ F1 , we have F1ΔF2 = F . Note that NBHn

(F) is the 
neighbor node set of F, and NBHn

(F) ⊆ F1 ∪ F2 , there is no connected edge between F1ΔF2 
and V

(
BHn

)
�
(
F1 ∪ F2

)
 . From Theorems 1 and 3, it can be drawn that 

tg
�
BHn

�
≤ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g under the PMC and MM* model.

Lemma 2 For arbitrary number g where 2 ≤ g ≤ 2n − 1(n ≥ 2) , 
tg
�
BHn

�
≥ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g under the PMC model.

Proof Let t = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g . By Theorem 1, in order to prove BHn is g-

extra t-diagnosable under the PMC model, it is necessary to prove that 
V
(
BHn

)
�
(
F1 ∪ F2

)
 and F1ΔF2 have at least one connected edge, such that F1 and F2 

are two distinct g-extra faulty subsets, where ||F1
|| ≤ t and ||F2

|| ≤ t.

F1 = NBHn
(F) and F2 = F ∪ F1
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We will conduct the proof by contradiction. Suppose F1 and F2 are two distinct 
g-extra faulty node sets, where ��F1

�� ≤ t = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g and ||F2

|| ≤ t = 2

||F2
|| ≤ t = 2 , and there is no connected edge between V

(
BHn

)
�
(
F1 ∪ F2

)
 and 

F1ΔF2 . Without loss of generality, we can obtain F2∖F1 ≠ ∅.

Claim 1 
Note that |||V

(
BHn

)||| = 22n , and for 2 ≤ g ≤ 2n − 1 , we have 
��F1 ∪ F2

�� ≤ ��F1�+�F2
�� ≤ 2t = 2

�
2(n − 2)⌈ g−1

2
⌉ + 2n + g

�
 . Thus,

Let f (x) = 22x − 4x2 + 4x − 6 . f (x) is obviously a strictly monotonically increas-
ing function when x ≥ 2 . We can obtain that f (x) ≥ f (2) = 24 − 16 + 8 − 6 = 2 > 0 . 
Thus, |||V

(
BHn

)||| −
||F1 ∪ F2

|| > 0 , and V
(
BHn

)
≠ F1 ∪ F2.

Claim 2 F1 ∩ F2 is a g-extra cut of  BHn.

Case 1F1∖F2 ≠ ∅.

Since there is no connected edge between V
(
BHn

)
�
(
F1 ∪ F2

)
 and F1ΔF2 (see 

Fig. 4), V(BHn)�(F1 ∩ F2) consists of two parts: F1ΔF2 and V
(
BHn

)
�
(
F1 ∪ F2

)
.

Since F1 and F2 are two g-extra faulty sets, see Fig.  5(1) and 5(2), by Defini-
tion 1, each connected component in V

(
BHn

)
∖F1 has at least g + 1 nodes. Note that 

there is no connected edge between V
(
BHn

)
�
(
F1 ∪ F2

)
 and F1ΔF2 , then each con-

nected component in BHn

[
F2∖F1

]
 has at least g + 1 nodes, see Fig.  5 (1). In the 

same way,BHn

[
F1∖F2

]
 has at least g + 1 nodes, see Fig. 5(2). Therefore, according 

to Definition 2, F1 ∩ F2 is a g-extra cut of BHn.

V
(
BHn

)
≠ F1 ∪ F2

(1)

���V
�
BHn

���� −
��F1 ∪ F2

�� ≥22n − 2

�
2(n − 2)⌈g − 1

2
⌉ + 2n + g

�

22n − 2
�
2
�
n2 − 2n + 2

�
+ (2n − 1)

�

= 22n − 4n2 + 4n − 6

Fig. 4  V(BH
n
)�(F

1
∩ F

2
) con-

sists of two separate parts
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Case 2 F1�F2 = �.

Since F1�F2 = � , we have F1 ⊆ F2 . Then F1 ∩ F2 = F1 is a g-extra faulty 
set and F1ΔF2 = F2�F1 , see Fig.  6. Because there is no connected edge between 
V
(
BHn

)
�
(
F1 ∪ F2

)
 and F1ΔF2 , all the neighbor nodes of F1ΔF2 also exist in 

F1 ∩ F2 . According to Definition 2, F1 ∩ F2 is also a g-extra cut of BHn.

By Theorem 4 and the above Claim 2, ��F1 ∩ F2
�� ≥ 2

�
⌈ g−1

2
⌉n + n − 2⌈ g−1

2
⌉
�
 . 

According to what has been discussed in Fig.  5 and Fig.  6, there is 
��F2�=�F2�F1�+�F1 ∩ F2

�� ≥ (g + 1) + 2

�
⌈ g−1

2
⌉n + n − 2⌈ g−1

2
⌉
�
= t + 1 , a contradic-

tion with ||F2
|| ≤ t . Therefore, tg

�
BHn

�
≥ 2

�
⌈ g−1

2
⌉n + n − 2⌈ g−1

2
⌉
�
+ g.

Combining Lemma 1 and 2, the following theorem is obtained.

Theorem  5 For arbitrary number g where 2 ≤ g ≤ 2n − 1(n ≥ 2 ), 
tg
�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g under the PMC model.

5  The g‑extra diagnosability of the balanced hypercube 
under the MM* model

In this part, we will prove the g-extra diagnosability tg
(
BHn

)
 of the balanced 

hypercube under the MM* model by determining the upper and lower bounds for 
2 ≤ g ≤ 2n − 1 ( n ≥ 3 , n denotes the dimension of the balanced hypercube), i.e., 
tg
�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g.

Fig. 5  F
1
∩ F

2
 is a g-extra faulty 

set when F
1
�F

2
≠ ∅

Fig. 6  F
1
∩ F

2
 is a g-extra faulty 

set when F
1
�F

2
= ∅
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Lemma 3 For arbitrary number g where 2 ≤ g ≤ 2n − 1(n ≥ 3 ), 
tg
�
BHn

�
≥ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g under the MM* model.

Proof Let t = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g . We will prove this lemma by contradiction. 

First, suppose that F1 and F2 are two distinguishable g-extra faulty node sets, where 
��F1

�� ≤ t = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g and ��F2

�� ≤ t = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g . Obvi-

ously, F1 and F2 don’t meet any of the cases in Theorem 3. According to Claim 1 in 
Lemma 2, V

(
BHn

)
≠ F1 ∪ F2.

Claim 1 F1∖F2 ≠ ∅ , then ||F1�F2
|| ≥ g + 1.

Since V
(
BHn

)
≠ F1 ∪ F2 , we have |||V

(
BHn − F2

)||| ≠ �. Because F2 is a g-extra 
faulty set, each connected component in BHn − F2 consists of at least (g + 1) 
nodes for 2 ≤ g ≤ 2n − 1 , then there is no isolated node in BHn − F2 . Moreover, 
F1 and F2 meet none of the cases in Theorem 3, so there exists no connected edge 
between V

(
BHn − F2 − F1

)
 and V

(
F1∖F2

)
 . Note that BHn − F2 consists of two 

parts, namely BHn −
(
F1 ∪ F2

)
 and V

(
F1∖F2

)
 , and F2 is a g-extra faulty set. 

According to Definition 1, it’s easy to know that each connected component in 
V
(
F1∖F2

)
 has at least (g + 1) nodes.

Claim 2 There exists no isolated node in BHn − (F1 ∪ F2).

By contradiction, suppose that there exists at least one orphan node w in 
BHn −

(
F1 ∪ F2

)
 , it can be divided into the following two sub-cases.

Case 1 F1�F2 = �.
Since F1�F2 = � , we have F1 ⊆ F2 . Because F1 is a g-extra faulty set and g ≥ 1 , 

w has at least one neighbor node u such that u ∈ F2�F1 . Note that F1 and F2 meet 
none of the conditions in Theorem 3, w has at most one neighbor node u ∈ F2�F1 . 
Thus, there is exactly one neighbor node u ∈ F2�F1 of w. Since F2 is a g-extra 
faulty set, each connected component in BHn −

(
F1 ∪ F2

)
 has at least (g + 1) 

nodes. Therefore,BHn −
(
F1 ∪ F2

)
 has no isolated node.

Case 2 F1∖F2 ≠ ∅.
Let W be the isolated node set in V

(
BHn

)
�
(
F1 ∪ F2

)
 and let 

S = BHn −
(
F1 ∪ F2 ∪W

)
 , and W  = BHn −W  . For any node w ∈ W  , all neighbor 

nodes of w are in F1 ∪ F2 , that is NG(w) ⊆ F1 ∪ F2 . Since BHn is n-regular and 
|||V

(
BHn

)||| = 22n , we have ���W
��� ∗ 2n =

∑

v∈W

dBHn
(v) ≥ E

�
W,W

�
= �W� ∗ 2n , 

|W| ≤ 22n−1.
From F1∖F2 ≠ ∅ , it’s easy to know that ||F1∖F2

|| ≥ 1 , therefore, 
��F1 ∩ F2

�� = ��F1
�� − ��F1�F2

�� ≤ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g − 1.

Assume that there exist two nodes u, v ∈ F1�F2 such that uw, vw ∈ E
(
BHn

)
 . By 

Theorem 3(2), F1 and F2 are two distinguishable fault sets, a contradiction to the 
above assumptions. If there exists no node u ∈ F1�F2 such that uw ∈ E(

(
BHn

)
 , 

NG(w) ⊆ F2 and w is an isolated node in BHn − F2 . By Definition 1, we can get 
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g = 0 , contradicting with g ≥ 1 . Therefore, there must exist one neighbor node of w 
in F1∖F2 . The same conclusion that w must have one neighbor node in F2∖F1 holds 
(see Fig. 7).

For any node w ∈ W , there are two adjacent vertices v ∈ F1�F2 and u ∈ F2�F1 . 
So, |||NBH

n

(w) ∩
(
F
2
∩ F

1

)||| =
|||NBH

n

(w)
||| −

|||NBH
n

(w) ∩
(
F
2
�F

1

)||| −
|||NBH

n

(w) ∩
(
F
1
�F

2

)|||
=
|||NBH

n

(w)
||| − 2 = 2n − 2 , which implies that ||F1

∩ F
2
|| ≥

|||NBH
n

(w) ∩
(
F
2
∩ F

1

)|||
≥ 2n − 2

.
We assume that V(S) = � . Since ||F1 ∩ F2

|| ≥ 2n − 2 , |W| ≤ 22n−1.,||Fi
|| ≤ t(i = 1, 2) 

and 2 ≤ g ≤ 2n − 1 . Then,

Let f (x) = 22x−1 − 4x2 + 6x − 10 , obviously f (x) is strictly monotonically 
increasing when x ≥ 3 , so f (x) ≥ f (3) = 4 > 0 , i.e., 22x ≥ 4x2 − 6x + 10 + 22x−1 , a 
contradiction with 22n ≤ 4n2 − 6n + 10 + 22n−1 . Therefore, V(S) ≠ �.

Because F1 and F2 don’t satisfy the conditions of (1) and (3) in Theorem 3, and it 
contains no isolated node in S, we can see that there is no connected edge between 
F1ΔF2 and S. Since W is the isolated node set in BHn −

(
F1 ∪ F2

)
 , it is impossible 

to establish one edge between S and W, and hence. BHn −
(
F1 ∩ F2

)
 is disconnected. 

Considering that F1 and F2 are two g-extra faulty sets, each connected component of 
BHn − F1 and BHn − F2 contains at least (g + 1) nodes, and accordingly, each con-
nected component in BHn −

(
F1 ∩ F2

)
 consists of at least ( g + 1) nodes as well. So, 

F1 , F2 and F1 ∩ F2 are all g-extra cuts.

(2)

22n =
���V

�
BHn

���� =
��F1 ∪ F2

�� + �W� = ��F1
�� + ��F2

�� − ��F1 ∩ F2
�� + �W�

≤ 2

�
2

�
(n − 2)⌈g − 1

2
⌉ + n

�
+ g

�
− (2n − 2) + 22n−1

≤ 2[2(n − 1)(n − 2) + 4n − 1] − 2(n − 1) + 22n−1

= 2
�
2n2 − 2n + 3

�
− (2n − 2) + 22n−1

= 4n2 − 6n + 10 + 22n−1

Fig. 7  The relationship between 
W, S, F

1
 and F

2
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By Theorem 4, ��F1 ∩ F2
�� ≥ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
 and ��F1

�� ≤ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g , 

we have ��F1�F2
�� = ��F1

�� − ��F1 ∩ F2
�� ≤ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+g − 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
≤ g . 

We can get ||F2∖F1
|| ≤ g in the same way, a contradiction with Claim 1. The poof of 

Claim 2 is finished.
According to Claim 2, BHn −

(
F1 ∪ F2

)
 consists of no isolated node. It’s easy to 

know that, for ∀ u ∈ BHn −
(
F1 ∪ F2

)
 , u has at least one neighbor in 

BHn −
(
F1 ∪ F2

)
 . Since F1 and F2 meet none of the conditions in Theorem 3, u has 

no neighbor in F1ΔF2 . Due to the arbitrariness of u, there is no connected edge 
between BHn −

(
F1 ∪ F2

)
 . and F1ΔF2 , so BHn −

(
F1 ∩ F2

)
 is disconnected. Because 

F1 and F2 are two faulty sets, each connected component in BHn − F1 and BHn − F2 
has at least ( g + 1) nodes, accordingly, each connected component in 
BHn −

(
F1 ∩ F2

)
 has at least ( g + 1) nodes as well. According to Definition 2, 

F1 ∩ F2 is a g-extra cut of BHn . By Theorem 4, s ��F1 ∩ F2
�� ≥ 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
.

On the other hand, since F1 ∩ F2 is a g-extra cut of BHn , ||F1�F2
|| ≥ g + 1 , so 

||F1
|| = ||F1 ∩ F2

|| + ||F1�F2
|| ≥ t + 1 , contradicting with the assumption that 

��F1
�� ≤ t = 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g . The conclusion of this lemma holds.

According to Lemma 1 and Lemma 3, the following Theorem 6 obviously holds.

Theorem  6 For arbitrary number g where 2 ≤ g ≤ 2n − 1(n ≥ 3) , then 
tg
�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g under the MM* model.

The discussions above just explored the g-extra diagnosability of BHn under the 
PMC and MM* model, respectively, for 2 ≤ g ≤ 2n − 1 . Then we will consider 
another special situation when g = 2n.

Theorem 7 [27] Let S1 and S2 be a distinct pair of g-extra faulty subsets of V(G) in a 
system G = (V, E). If S1 ∪ S2 = V  , ( S1, S2) is indistinguishable under the PMC model 
and MM* model.

Theorem 8 For g = 2n, the g-extra diagnosability of BHn under the PMC and MM* 
model is tg

(
BHn

)
= 22n−1 − 1.

Proof. Let F1 and F2 be two distinct g-extra faulty sets, F1 = V(BH
(0)

n−1
 + BH(1)

n−1
) 

and F2 = V(BH
(3)

n−1
 + , then F1 = F2 = 22n−1 . By Theorem 7, F1 and F2 are indistin-

guishable. By Theorem 1 and 3, tg
(
BHn

)
≤ 22n−1 − 1.

(1) According to Theorem 1, in order to prove that BHn is g-extra t-diagnosable 
under the PMC model, we need to first prove that there is at least one connected 
edge between V

(
BHn

)
�
(
F1 ∪ F2

)
 and F1ΔF2 for each distinct pair of g-extra faulty 

subsets F1 and F2 , where ||Fi
|| ≤ 22n−1 − 1(i = 1, 2).
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Since ||F1
|| ≤ 22n−1 − 1 and ||F2

|| ≤ 22n−1 − 1 , we can get V
(
BHn

)
�
(
F1 ∪ F2

)
≠ � , 

i.e., ∃u ∈ V
(
BHn

)
�
(
F1 ∪ F2

)
 . For two distinct g-extra faulty sets F1 and F2 , without 

loss of generality, we might as well suppose F1∖F2 ≠ ∅ , then ∃v ∈ F1�F2 . Note that 
BHn is complete and connected, uv is an edge connecting V

(
BHn

)
�
(
F1 ∪ F2

)
 and 

F1ΔF2 . By Theorem 1, tg
(
BHn

)
= 22n−1 − 1.

(2) According to Theorem 3, in order to prove that BHn is g-extra t-diagnosable 
under the MM* model, it is necessary to prove that there are three nodes u, v , and 
w that satisfy one of three conditions in Theorem 3 for each distinct pair of g-extra 
faulty subsets F1 and F2 , where ||Fi

|| ≤ 22n−1 − 1(i = 1, 2).
Since ||F1

|| ≤ 22n−1 − 1 and ||F2
|| ≤ 22n−1 − 1 , we can get V

(
BHn

)
�
(
F1 ∪ F2

)
≠ � 

and V
(
BHn

)
�
(
F1 ∪ F2

)
≥ 2 , then there are two nodes u,w ∈ V

(
BHn

)
�
(
F1 ∪ F2

)

. Similar to (1), we suppose F1∖F2 ≠ ∅ , then ∃v ∈ F1�F2 . Since BHn is complete 
and connected, we can have that uw ∈ E

(
BHn

)
 , and uv is an edge connecting 

V
(
BHn

)
�
(
F1 ∪ F2

)
 and F1ΔF2 . By Theorem 3, tg

(
BHn

)
= 22n−1 − 1.

Combining Theorems 5, 6, and 8, we summarize the following Theorem 9 s on 
the g-extra diagnosability of the balanced hypercube.

Theorem 9 The g-extra diagnosability of the balanced hypercube under the PMC 
model for n ≥ 2 and the MM* model for n ≥ 3 is

Where the conlusion of the situation g = 1 is quoted from reference [21].

6  Simulation and analysis

In this part, we conduct simulation experiments to verify the correctness of g-extra 
diagnosability of BHn . The main flow of the simulation experiment is: (1) connect 
to the graph database neo4j, and establish the BHn network; (2) randomly gener-
ate faulty sets Fk(k = 1,2,…); (3) judge whether Fk is a g-extra faulty set; (4) judge 
whether Fm and Fn (m, n = 1,2,…) are diagnosable according to Theorem 2 and The-
orem 3. The simulation experiment flow chart is shown in Fig. 8.

6.1  Simulation experiment environment

This experimental environment configurations and development tools are listed in 
Table 2.

tg =

⎧
⎪
⎨
⎪⎩

4n − 3, g = 1(under the PMC model)

2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g, 2 ≤ g ≤ 2n − 1

22n−1 − 1, g = 2n

.
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6.2  Distinguishable Decision Algorithms and Computational complexity analysis

6.2.1  Distinguishable Decision algsorithms under the PMC and MM* model

(1) Distinguishable decision algorithm under the PMC model.
The algorithm starts by traversing every node in Fs1ΔFs2 , then finds all neighbor 

nodes of each node, and judges whether all the neighbor nodes are in V�
(
Fs1 ∪ Fs2

)
 . 

If there exists one neighbor node that is not in V∖(Fs1 ∪ Fs2) , Fs1 and Fs2 are distin-
guishable. According to Theorem 2, the system is g-extra t-diagnosable under the PMC 
model.

Start input n,
g, i=0

Calculate the 
node number of 
BHn as num

Encode Every 
node and record 

it in list
length(list)=n? create a node in the 

databasetrue

false

i++i<=num
Find the inner and 

outer adjacent nodes of 
each node

true

false
Establish the connections
among each node and its 
neighbors in the database

BHn is created
Randomly generate

fault sets Fk
(k=1,...)

Simulate fault 
states in the 

network

Traverse the network with 
fault nodes, count the node 

number of the smallest 
subgraph fnum

fnum g+1

true

false

Determine whether Fm and Fn are
distinguishable under the 

PMC/MM* model
Distinguishable

Indistinguishable false

true end

Fig. 8  Simulation experimental flowchart

Table 2  Experimental Environment Configurations and Development Tools

Platform attribute Details

RAM 180G
CPU Intel(R) Xeon(R) Gold 5120 CPU @ 

2.20 GHz 32-core processor
GPU NVIDIA Corporation Device 1eb8 (rev a1)
Operating System Linux 3.10.04
Development tools Python-3.8, neo4j-community-4.3.3, JDK11
Runtime environment python3, JDK 11 or above
Development languages Python, Cyper



7009

1 3

The g‑extra diagnosability of the balanced hypercube under…

(2) Distinguishable decision algorithm under the MM* model.
The algorithm starts by traversing every node in V�(Fs1 ∪ Fs2) , then finds all 

neighbor nodes of each node, and judges whether there exists one neighbor node that 
satisfies any of the conditions in Theorem 3. If there is such a neighbor node, Fs1 and 
Fs2 are distinguishable. According to Theorem 3, the system is g-extra t-diagnosable 
under the MM* model.
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6.2.2  Computational complexity analysis

We now discuss the computational complexity of distinguishable decision algo-
rithms. Under the PMC model, the computation is mainly consumed in judging 
whether the neighbor nodes of all Fs1ΔFs2 nodes are in V�(Fs1 ∪ Fs2) . So, it’s easy 
to get the computational complexity under the PMC model, i.e., O(|Fs1ΔFs2|*2n). 
Under the MM* model, the computation is mainly consumed in judging whether all 
neighbor nodes satisfy one of the conditions in the double layer for loop. Similarly, 
the computational complexity can be obtained, i.e., O (|V�(Fs1 ∪ Fs2)| ∗ 2n).

6.2.3  Application example

In this part, we take BH3 as the example to illustrate the applicability of g-extra 
diagnosability and proposed algrithms.

Example1 Given the network BH3 , and let g = 5. In this example, we randomly gen-
erate a distinct pair of g-extra faulty sets Fm1 and Fm2 , and explain how to judge 
whether Fm1 and Fm2 are distinguishable, so as to determine whether the system is 
5-extra t-diagnosable under the MM* model.
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Step 1 Calculate t5
(
BH3

)
 according to the formula tg

�
BHn

�
= 2

�
(n − 2)⌈ g−1

2
⌉ + n

�
+ g 

in Theorem 9, i.e., t5
(
BH3

)
 = 11.

Step 2 Let ||Fm1
|| ≤ t5

(
BH3

)
 , | Fm2| ≤ t5

(
BH3

)
 , and randomly generate two g-extra 

faulty sets as follows:

Step 3 Randomly select one node (2,0,2) from Fm1 , and calculate all its neigh-
bor nodes NG((2, 0, 2)) . We can find a node (3, 0, 2) ∈ NG((2, 0, 2)) that satisfies 
(3, 0, 2) ∉ Fm1ΔFm2 , and there exists one neighbor node (0,0,1)∈ V�(Fm1 ∪ Fm2) 
(see Fig.  9). By Theorem  3, it is known that Fm1 and Fm2 are distinguish-
able. Similarly, there also exists one node (3,2,2) in Fm2 that makes Fm1 and Fm2 
distinguishable.

Since Fm1 and Fm2 are distinguishable, according to Theorem 3, we can draw the 
conclusion that the system is 5-extra 11-diagnosable.

6.3  Simulation experiments and results analysis

To validate the correctness of the g-extra diagnosabilities of BHn proposed above, we 
carry out a series of simulation experiments by setting different values to g under dif-
ferent network dimensions n, and then make judgements on whether two randomly 
chosen faulty sets are distinguishable, shown in Table 3 and Table 4, with the last col-
umn indicating judgement results. Owing to the limitations of network scale and com-
putational complexity ( BH14 contains more than 100 million nodes), we conduct the 
experiments from different node orders of magnitude with n = 14 as the maximum net-
work dimension.

Since the diagnosabilities of BHn under the PMC model have been verified in previ-
ous research, we only consider the cases g ≥ 6 in this paper.

Based on Theorem 9, we define the binary function:

F
m1

= { (1, 1, 2), (2, 1, 1), (2, 0, 2), (3, 2, 1), (2, 2, 1), (1, 3, 1), (0, 3, 1), (3, 3, 1), (2, 3, 1), (3, 3, 2), (2, 3, 2)}

F
m2

= { (2, 2, 1), (3, 3, 1), (0, 3, 0), (1, 3, 1), (3, 2, 2), (2, 3, 2), (1, 0, 1), (0, 3, 1), (3, 0, 1), (2, 0, 0) (1, 1, 0)}

Fig. 9  Some special nodes mak-
ing F

m1
 and F

m2
 distinguishable
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with x and y, respectively, corresponding to g and n in Theorem 9, and z represent-
ing the value of g-extra diagnosability. In function z, the partial derivatives of the 
independent variables x and y are always positive. It can be observed from the three-
dimensional function image in Fig. 10 that, the function value z increases with the 
increase of x or y. Therefore, it is concluded that the g-extra diagnosability of BHn 
increases with the growth of the value g, or with the expanding of network scale n, 
which is a preferable property for the fault diagnosis of large scale BHn networks.

z = 2

�
(y − 2)⌈x − 1

2
⌉ + y

�
+ x (2 ≤ x ≤ 2y − 1)

Table 3  Simulation experiment results under the PMC model

Dimension
n

g
(g ≤ 2n-1)

Number of nodes Number of edges tg Judge result

4
(hundred level)

6
7
8

256
256
256

1048
1048
1048

26
27
31

True
True
True

5
(thousand level)

6
…
9

1024
…
1024

5120
…
5120

34
…
43

True
…
True

6
(thousand level)

6
…
11

4096
…
4096

24,579
…
24,579

42
…
63

True
…
True

7
(tens of thousand level)

6
…
13

16,384
…
16,384

114,688
…
114,688

50
…
87

True
…
True

8
(tens of thousand
level)

6
…
15

65,536
…
65,536

524,288
…
524,288

58
…
115

True
…
True

9
(hundreds of thousand
level)

6
…
17

262,144
…
262,144

2,359,296
…
2,359,296

66
…
183

True
…
True

10
(million level)

6
…
19

1,048,576
…
1,048,576

10,485,760
…
10,485,760

74
…
223

True
…
True

12
(tens of million level)

6
…
23

16,777,216
…
16,777,216

201,326,596
…
201,326,596

90
…
267

True
…
True

14
(hundreds of million level)

6
…
27

268,435,456
…
268,435,456

3,758,096,284
…
3,758,096,284

106
…
315

True
…
True
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Table 4  Simulation experiment results under the MM* model

Dimension
n

g
(g ≤ 2n-1)

Number of nodes Number of edges tg Judge result

4
(hundred level)

2
…
7

256
…
256

1024
…
1024

14
…
27

True
…
True

5
(thousand level)

2
…
9

1024
…
1024

5120
…

18
…
43

True
…
True

6
(thousand level)

2
…
11

4096
…
4096

24,576
…
24,576

22
…
63

True
…
True

7
(tens of thousand level)

2
…
13

16,384
…
16,384

114,688
…
114,688

26
…
87

True
…
True

8
(tens of thousand level)

2
…
15

65,536
…
65,536

524,288
…
524,288

30
…
115

True
…
True

9
(hundreds of thousand
level)

2
…
17

262,144
…
262,144

2,359,296
…
2,359,296

34
…
147

True
…
True

10
(million level)

2
…
19

1,048,576
…
1,048,576

10,485,790
…
10,485,790

38
…
183

True
…
True

11
(million level)

2
…
19

4,194,304
…
4,194,304

4,194,304
…
4,194,304

42
…
223

True
…
True

12
(tens of million level)

2
…
23

16,777,216
…
16,777,216

201,326,592
…
201,326,592

46
…
267

True
…
True

14
(hundreds of million level)

2
…
27

268,435,456
…
268,435,456

3,758,096,284
…
3,758,096,284

54
…
315

True
…
True

Fig. 10  The g-extra diagnos-
ability of BHn increases with 
the growth of the value g or the 
network scale n 



7014 X. Wang et al.

1 3

7  Conclusion

In this paper, we, respectively, proved that tg
(
BHn

)
= 2

[
(n − 2)

⌈
g−1

2

⌉
+ n

]
+ g for 

2 ≤ g ≤ 2n − 1 under the PMC and MM* model, and tg
(
BHn

)
= 22n−1 − 1 for 

g = 2n . At the same time, simulation experiment has been done to verify the cor-
rectness of the conclusions. Compared to existing research literatures, our result 
extends the existing g-extra diagnosabilty of the balanced hypercube under the PMC 
model to a more general condition, i.e., 2 ≤ g ≤ 2n . What’s more, we also obtained 
the g-extra diagnosabilty of the balanced hypercube under the MM* model, which is 
seldomly involved in current research literatures. In the end, simulation experiments 
are conducted to validate the effectiveness our proposed theories. Following the 
research in this paper, we will further focus on the g-extra diagnosabilities of BC 
networks and other regular networks in our future research work.
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