
Future Generation Computer Systems 74 (2017) 220–231
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

EDS: An Efficient Data Selection policy for search engine storage
architectures
Xinhua Dong a, Ruixuan Li a,∗, Heng He a, Xiwu Gu a, Mudar Sarem b, Meikang Qiu c,
Keqin Li d
a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
b School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
c Department of Computer Science, Pace University, New York, NY 10038, USA
d Department of Computer Science, State University of New York, New York, NY 12561, USA

h i g h l i g h t s

• We introduce, define and analyze the knapsack problem in different storage architectures.
• We find some critical factors via derivation and comparison.
• We present an Efficient Data Selection (EDS) policy for search engine cache management.
• We carry out a series of experiments to study essential factors of the data selection.
• Extensive experiments show that the EDS policy using static cache further improves the performance of search engines.

a r t i c l e i n f o

Article history:
Received 15 September 2015
Received in revised form
1 February 2016
Accepted 23 February 2016
Available online 21 March 2016

Keywords:
Search engine
Data selection
Solid state disk
Hybrid storage architecture
Cache

a b s t r a c t

Caching is an effective optimization in search engine storage architectures. Many caching algorithms
have been proposed to improve retrieval performance. The data selection policy of search engine cache
management plays an important role, which carefully places the data inmemory or other storage, such as
solid state disks (SSDs). Considering that the historical query log has a guiding role for the future query,
we present an Efficient Data Selection (EDS) policy for search engine cache management, which views
cache media as a knapsack, and views results and posting lists as items. The best benefit of EDS can be
computed by greedy algorithms. We carry out a series of experiments to study the essential factors of
the data selection in different architectures, including hard disk drive (HDD), SSD, and SSD-based hybrid
storage architectures. The hybrid storage architecture is a two-level cache architecture, which uses SSD
as a secondary cache for the memory. Our main goal is to improve the performance of the search engines
and reduce the cost of the servers on two-level cache architecture. The experimental results demonstrate
that our proposed policy improves the hit ratio by 20.04% as well as the retrieval performance on HDD,
SSD, and hybrid architecture by 31.98%, 28.72% and 23.24%, respectively.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

With the development of computer technology in hardware,
the low I/O performance of hard disk drive (HDD) becomes the
major bottleneck in modern large-scale search engines. Fortu-
nately, the emerging solid state disk (SSD) technology brings new

∗ Corresponding author.
E-mail addresses: xhdong@hust.edu.cn (X. Dong), rxli@hust.edu.cn (R. Li),

heheng@hust.edu.cn (H. He), guxiwu@hust.edu.cn (X. Gu), mudar66@hotmail.com
(M. Sarem), mqiu@pace.edu (M. Qiu), lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.future.2016.02.014
0167-739X/© 2016 Elsevier B.V. All rights reserved.
and promising opportunities to I/O-intensive applications. Unlike
traditional rotating media, the SSD is based on semiconductor
chips which provide many desired technical merits, such as low
power consumption [1], compact size, shock resistance, and most
importantly, ultra-high performance for random data access. For
example, the random reads in the SSD are one to two orders of
magnitude faster than in the HDD [2]. As a result, the SSD has been
employed in many industrial settings, including Facebook [3], Mi-
crosoft Azure [4], Google [5] and Baidu [6] which has already used
SSD to completely replace the HDD in its infrastructure.

However, two potential issuesmay complicate the full adoption
of the SSD in large-scale search engines. First, the current average

http://dx.doi.org/10.1016/j.future.2016.02.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.02.014&domain=pdf
mailto:xhdong@hust.edu.cn
mailto:rxli@hust.edu.cn
mailto:heheng@hust.edu.cn
mailto:guxiwu@hust.edu.cn
mailto:mudar66@hotmail.com
mailto:mqiu@pace.edu
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.future.2016.02.014

X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231 221
cost per GB of the SSD is 7 times more than that of the HDD [7].
In addition, the existing data in large-scale search engines is
extraordinarily large, and it is not suitable to store all the data on
the SSD. For example, Google makes the use of a large number of
cheap servers with the HDD to provide high quality services [8].
Second, since the SSD has a limit on block erasure count, the
combination of more stressful workload and fewer available
erasure cycles reduce the useful lifetime of the SSD, in some cases,
to less than one year [9]. Without any major change to the existing
HDD-based storage systems used in search engines, our team has
proposed an SSD-based hybrid storage architecture with memory
as the first-level cache and an SSD as the second-level cache [10].

In a modern search engine, caching is the preferred technique
for attaining performance. Two types of cached data (namely re-
sults and inverted lists) are dominant. There are some differences
between caching the results and the inverted lists. First, the result
entries are small and similar in size, while the inverted list entries
are usually large and variable in size [10]. In addition, only parts of
the inverted lists are required during computing. Second, the re-
sults are prominently relevant to the queries and time-sensitive,
while the inverted lists are relatively stable. Over the past years,
many caching techniques have been developed and used in search
engines. In order to reduce the query response time, the search
engines commonly dedicated portions of the servers’ memory to
cache certain query results [11–14], posting list [15–17], intersec-
tion [18], document [19], score, and snippet [20]. Caching means
copying frequently or recently accessed parts of the data from
high-capacity but slow storage devices (HDD) to low-capacity but
fast storage devices (Memory or SDD). The data selectionmeans se-
lecting the effective data placed in the memory or the SSD. These
caches avoid excessive disk access and repeated computation. As
the traditional evaluation indexes, the hit ratio and the average
query latency are considered in the performance evaluation of our
experiments.

Due to the wide speed gap between the random read and the
sequential read in the HDD, the benefit of the cache hit has been
largely attributed to the saving of the expensive random read op-
erations. Therefore, the early studies focused on the improvement
of the hit ratio in HDD-based search engine architecture, and put
forward some classic policies [16,17], such as Freq, FreqSize etc. In
an SSD-based search engine infrastructure, now the benefit of the
cache hit should impute to the saving of the random read and the
subsequent reads. Since SSD is replacing HDD, the cache hit ratio is
no longer a reliable reflection of the actual query latency because
a larger data items being found in the cache yields a higher query
latency improvement over a smaller data items [2]. The frequency
was found to be as a core factor in the SSD experiments. In an SSD-
based hybrid search engine infrastructure, our previous proposed
CBSLRU [10] algorithm gained higher hit ratios than the traditional
LRU.

However, by empirical value, the frequency and the size are the
major consideration factors in some related work. Due to the lack
of theoretical guidance, it is difficult to find other factors that af-
fect the performance in the related literature. So, the applications
may not work well in different hardware environments. We as-
sume that the historical query log has a guiding role for the future
query [12]. Then, a set of query features could be found through
query log. When the user submits a query, the data selection pol-
icy is tuned to use these features. In order to improve the efficiency
of the data selection, we have introduced the knapsack problem,
which views cachemedia as knapsack and views result and posting
list as items, and thenwe have used a greedy algorithm to calculate
the retrieval time. Thus, our proposed EDS value is not only associ-
ated with the frequency and the size, but also related to the hard-
ware and the software parameters, such as the seek time and the
rotational latency of the HDD, the time of obtaining a block from
the HDD, etc. The EDS can be better applied to different storage
architectures. The extension of EDS can also improve the response
time in the HDFS, and enhance the real-time ability of the retrieval.

We have made three main contributions in our work. First, we
have described and analyzed the knapsack problem in different
storage architectures. Second, through derivation and comparison,
we have found some critical factors which affect the performance
of the search engines. Third, we have proposed EDS policy which
places the efficient data to be cached either in the memory or in
the SSD.

The rest of the paper is organized as follows. In Section 2,
we introduce the background of the caching techniques and the
storage architectures of the search engines, and discuss the related
work. Section 3 presents different storage architectures for search
engines. In Section 4, we analyze the knapsack problem in different
storage architecture. In Section 5, we perform the derivation of the
EDS in different storage architectures. Section 6 shows the results
of the performance evaluation. Finally, in Section 7, we conclude
this study and discuss the future work.

2. Background and related work

In the following subsections, we will introduce the caching
techniques used in search engines, the storage architecture of a
search engine, and the knapsack problem.

2.1. Caching techniques in search engines

In general, search engine caches can be classified into two cat-
egories: static caches [15] and dynamic caches [21]. The static
caches try to capture the access locality of the data items. Past
data access logs are utilized to determine the data that should be
cached. Typically, the items that are more frequently accessed in
the past are preferred over the infrequently accessed items for
caching. The static caches need to be periodically updated, depend-
ing on the variation of the access frequencies of the items. On the
other hand, the dynamic caches try to capture the recency of the
data access. The data that is more likely to be accessed in the near
future remains in the cache. The challenge reported in the previous
research was to develop cache eviction policies [13,22]. Recently,
the current challenge is to devise effective policies to keep the in-
verted lists and the results used search terms in cache [23].

Caching is an effective optimization in search engine. The
caching techniques can be classified into Two-Level caching and
Multi-Level caching in search engines. Saraiva et al. [24] evaluated
a two-level caching architecture using result and list caching on the
search engine TodoBR. The result caching filtered out the repetition
in the query streamby caching the complete results of the previous
queries for a limited timewindow [21,13]. At the lower level inside
each index server, the list caching was used at a lower level in each
participating machine to keep the inverted lists of the frequently
used search terms in main memory. Besides the result and the list
caching, adding other cached object can be considered as a Multi-
Level caching. Long and Suel [25] proposed and evaluated a three-
level caching scheme that added an intermediate level of caching.
On this basis,Wang et al. [2] also carried out a series of experiments
on documents and snippets in the proposed web search engine
architecture. Ozcan et al. [18] suggested a five-level static cache
architecture for web search engines.

2.2. Storage architecture of search engine

In one-level architecture, the cache is amemory region adopted
to store the most frequently used data. Normally, most of the
data is stored in secondary storage medium such as HDD or

222 X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231
Fig. 1. One-level search engine architecture.
SSD. However, there are some search engines such as Baidu
which has already used SSD to completely replace HDD in their
infrastructures [6]. That is to say, there are two situations in one-
level architecture, one can be called ‘‘Memory + HDD’’ and the
other is called ‘‘Memory + SSD’’.

Considering the special I/O performance of the SSD, the
researches have been attracted on such SSD-based hybrid storage
architecture. With its excellent random read performance, the SSD
can work well as a read cache in front of a larger HDD [26,27]. G.
Soundararajan et al. [9] proposed Griffin, a hybrid storage device
using the HDD as a write cache for an SSD. Suk et al. [28] suggested
a hybrid file system, called hybridFS, where the primary objective
of which is to put together attractive features of the HDD and the
SSD devices, to construct a large-scale virtualized address space
with a minimum cost. Jaechun No [29] proposed a hybrid file
system using N-hybridintegrating SSD and HDD devices in a cost-
effective manner to build a large-scale virtual storage capacity. Kai
et al. [30] introduced a Hybrid SSD approach that combined DRAM,
Phase Changed Memory (PCM), and Flash. The performance gap
between the HDD and the DRAM was narrowed by using Hybrid
SSD more than using the pure Flash SSD while delivering a longer
endurance life.

2.3. Knapsack problem

The knapsack problem is a problem in combinatorial optimiza-
tion. Given a set of items, each with a weight and a value, deter-
mine the number of items to be included in a collection so that
the total weight is less than or equal to a given limit and the total
value is as large as possible. Under the condition of memory ca-
pacity restriction, the results and the posting lists to be cached are
as many as possible in search engine cache management. The sce-
nario of our study is similar to the knapsack problem. Therefore,
we use knapsack problem to optimize the choice of the cache. The
most common problem being solved is the 0–1 knapsack problem,
which restricts the number xi of copies of each kind of item to zero
or one. Knapsack problem has been developed and used in search
applications [31,32]. Huang and Xia [33]modeled a knapsack prob-
lembased on the bandwidth and the capacity for a search engine to
allocate the inverted index in the flashmemory. And they also pro-
posed the standard greedy algorithm to approximate the optimal
solution. However, they aimed tomaximize the amount of inverted
indexes which had been allocated in the flash memory, but they
lacked theoretical derivation for the model. Chan et al. [34] pro-
posed a cache replacement policy called Location Dependent Co-
operative Caching (LDCC) to improve the performance of the LDISs
and presented a 0–1 knapsack problem and an approximate algo-
rithm to solve the cache replacement problem. Also, they advised a
comprehensive cost functions in cache replacement and integrat-
ing factors like cache size, access frequency, energy consumption,
and the validity probability obtained.

3. Storage architectures of search engines

In this section, we briefly present the storage architecture of
a search engine, including one-level and two-level architectures.
And then, we give the data management process of the two-level
search engine architecture.

3.1. One-level architecture

The cache storage structure can be divided into two levels:
level 1 cache (L1 cache) and level 2 cache (L2 cache). L1 cache
refers to the memory, and its capacity is usually several GB to
dozens of GB. While, L2 cache refers to the SSD, and its capacity
is usually dozens of GB to hundreds of GB. The normal search
engine employs one-level architecture (Fig. 1). Upon receiving a
user’s query q with n terms t1, t2, . . . , tn, the system checks the
result cache in the memory firstly. If the results of q are found in
the result cache, the system returns the cached results of q to the
user directly. If the results of q are not found in the result cache,
the system retrieves the corresponding posting list of each term
of the query in the memory cache. If the term is not found in the
memory cache, the system retrieves the global inverted list on the
HDD (or the SSD), and then sorts and obtains the documents and
generates the snippet. Finally, the system returns the results to the
user. The memory cache is used to store all of the intermediate
results, including result cache, posting list cache, snippet cache,
and document cache. The storage medium is either HDD or SSD.
The global inverted indexes are stored on the HDD or the SSD.
When there is insufficientmemory, the solution is to buildmemory
swap with a secondary storage medium (HDD/SSD).

3.2. Two-level architecture

Because of excellent random read performance of the SSD, a
two-level architecture uses the SSD as a secondary cache for the
memory (Fig. 2). Due to the memory constraints, it is not possible
to put all of the posting lists into the memory. Considering that
more time is spent in reading the posting list from the HDD, an
SSD layer is added between the memory and the HDD, which

X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231 223
Fig. 2. Two-level search engine architecture.
Fig. 3. The data management process of two-level search engine architecture.

is used to store warm posting lists. If the term is not found in
the memory cache, the system retrieves the partly inverted list
on the SSD. If the term is not found on the SSD, the system
retrieves the global inverted list on the HDD. In the same way,
some documents are stored on the SSD, reducing the time to obtain
the document. Considering the shared data from the memory and
the SSD, there are three caching schemes in the two-level cache,
inclusive scheme, exclusive scheme, and hybrid scheme. With a
page as the smallest cache unit, the three schemes can be described
as follows.

Inclusive scheme. Whenever a page is in the memory, it is also
cached on the SSD. That is to say, if the system caches a page in the
memory, it should also write the page to the SSD.

Exclusive scheme. No page is stored on both the memory and
the SSD at the same time. A page brought from the SSD to the
memory is removed from the SSD, and vice versa.

Hybrid scheme. A page in the memory may or may not be
cached on the SSD, depending on a criteria either set by the user
or decided based on the current workload.

In this paper, we adopt the hybrid scheme, although itwill bring
some loss in the performance. The main reasons for adopting the
hybrid scheme are as follows. If we use the inclusive scheme, the
SSD and the memory share most of the cached data, which cannot
bring the expected advantages of the SSD into full play. Also, if
we take the exclusive scheme, the data should be removed when
they are read from the SSD, which will cause a number of block
erasure operations inside the SSD and shorten the life-span of the
SSD. While in the hybrid scheme, all the hot data will be cached
in the memory first. Once the cache in the memory is full, some of
the least recently used data will be evicted and then written into
the SSD according to some eviction policies. When the available
capacity of the SSD is exhausted, the fresh data evicted from the
memory will overwrite the cold data in the SSD. It is noted that if
the data cached in the SSD is hit, they will be read from the SSD to
the memory without deleting.

3.3. The data management process of the two-level architecture

Fig. 3 shows the data management process of the two-level
search engine architecture which is described as the following
steps.

First, when the user submits a query, the Lucene will read the
data from the HDD (i.e., the inverted lists), and put it in the mem-
ory. Second, once the memory buffer overflows, the Lucene will
eliminate some of the data (according to the cache replacement
strategy). The data is eliminated by the filter of a data selection
module. The threshold is the mean of the selected data, by screen-
ing (EDS > Threshold), the data will be added to the write buffer
(called Write Buffer). Third, when the Write Buffer overflows, the
Lucenewill brush the data of theWriter Buffer into the SSD accord-
ing to either the data placement strategy or the data replacement
strategy. Fourth, as the data in the SSD is hit, the Lucene will read
the corresponding data from the SSD to the memory.

4. Knapsack problem analysis for storage architectures

In this section, we describe the knapsack problem in the follow-
ing different storage architectures: the HDD architecture, the SSD
architecture, and the SSD-based hybrid storage architecture. First,
we analyze the different situations of data access in these three ar-
chitectures, and then we introduce the knapsack problem into the
retrieval process. Finally, we give the derivation of the general for-
mula.

224 X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231
Table 1
Retrieval under different situations in HDD architecture.

Situation Memory HDD Probability Time cost

S1 R P1 T1 = Cmpr
S2 I P2 T2 = Cmpl+C0
S3 I P3 T3 = Chpl +C0

4.1. Knapsack problem in HDD architecture

During the retrieval process based on the HDD-based storage
architecture, there are three kinds of basic situations of data access
in Table 1.

From above Table 1, we note that Memory and HDD denote
where the data read, R denotes the results, and I denotes the in-
verted lists. Probability represents the probability that the corre-
sponding situation takes place. Time Cost is the average retrieval
time accordingly. In the calculation formula of the time cost, Cmpr
is the time cost of obtaining the search results directly fromMem-
ory. Cmpl is the time cost of obtaining the inverted lists fromMem-
ory, and Chpl is the time cost of obtaining the inverted lists from
HDD. So, C0 = Crank + Cdoc + Csnip. This formula describes the
sum of the time cost of obtaining the search results by sorting, ob-
taining documents, and generating snippet. It is easy to know that
T3 > Tk (1 ≤ k ≤ 2). From the table, we get the average retrieval
time as Formula (1).

AVG(T) =

3
i=1

Ti × Pi. (1)

In order to minimize the average retrieval time, we need to
make full use of the advantages of the first-level cache by an-
alyzing the different situations in Table 1. This means that the
probabilities of ‘‘S1’’ and ‘‘S2’’ should be increased. Therefore, we
analyze the time cost and the frequency of the single item, includ-
ing the result and the inverted list. Suppose that there are n re-
sults andm inverted lists, each itemwill be accessed with a certain
frequency. Considering that an item may either be cached in the
Memory(‘‘MM’’ denotes memory.), or be obtained from the HDD
indirectly, Formula (2) can then represent the mathematical ex-
pectations of the retrieval.

E(T) =

n
i=1

(T1 · xiMM + T3 · (1 − xiMM)) · fi

+

m
j=1

(T2 · xjMM + T3 · (1 − xjMM)) · fj

=

n
i=1

T3 · fi −
n

i=1

[(T3 − T1) · fi · xiMM]

+

m
j=1

T3 · fj −
m
j=1

[(T3 − T2) · fj · xjMM] (2)

xi(storage) = 1 represents that item i is cached in the storage
medium, otherwise xi(storage) = 0. For example, xiMM = 1 repre-
sents that item i is cached in main memory. For the purpose of
minimizing the average retrieval time, we hope to keep the math-
ematical expectations of the access time as small as possible, and
thus, we can get Formula (3).

min AVG(T) ⇔ minE(T)

⇔ max
n

i=1

[(T3 − T1) · fi · xiMM]

+

m
j=1

[(T3 − T2) · fj · xjMM]. (3)
Table 2
Retrieval under different situations in SSD architecture.

Situation Memory SSD Probability Time cost

S1 R P1 T1 = Cmpr
S2 I P2 T2 = Cmpl+C0
S3 I P3 T3 = Cspl +C0

In the objective function, we can take (T3 − Tk)fi as the value
of the item. It means the time savings by the cache. xi indicates
whether the item is to be cached in the limited cache space or not.
Thus, it is a 0–1 knapsack problem. Considering the items loaded
into the knapsack, including n search results and m inverted lists,
we can note that each item has its own size (Wi), access frequency
(fi), and retrieval time (as it can be seen in Table 1). The items also
need to meet the limitations of the memory capacity CMM . Due to
the goals and these condition constraints above, the 0–1 knapsack
problem can be described as a mathematical model (presented in
the following Formula (4)).

max
n

i=1

[(T3 − T1) · fi · xiMM]

+

m
j=1

[(T3 − T2) · fj · xjMM]

s.t.
n

i=1

Wi · xiMM +

m
j=1

Wj · xjMM ≤ CMM

xiMM = 0 or 1, (1 ≤ i ≤ n)
xjMM = 0 or 1, (1 ≤ j ≤ m).

(4)

For the unbounded knapsack problem, the greedy algorithmcan
achieve the optimal solution. In this model, the size of a single
item is far smaller than the capacity of the allocated memory.
Thus, the greedy algorithm can closely approximate the optimal
solution. Besides, the greedy algorithm is famous for its time
efficiency. Therefore, for saving the computing cost, we use the
greedy algorithm to solve the knapsack problem. First, we sort
the items in ascending order according to the value per unit (UV),
which is shown in the following Formula (5).

UV =
(T3 − Tk)fi

Wi
(1 ≤ k ≤ 2). (5)

4.2. Knapsack problem in SSD architecture

Based on the SSD storage architecture, three kinds of basic
situations of data access are presented in Table 2.

From above Table 2, we can notice that the SSD denotes where
the data read. In the calculation formula of the time cost, Cspl
signifies the time cost of obtaining the correlative inverted lists
from the SSD. Again,C0 = Crank+Cdoc+Csnip. The document fetching
and the snippet generation can be processed on the SSD. According
to the character of the SSD, the time cost of fetching a document
Cdoc and generating a snippet Csnip can be decreased so as to reduce
the total time cost.

In similar way, we complete the same steps in Section 4.1. In
contrast, the object is converted from the HDD to the SSD. Also, we
can use themodel of 0–1 knapsack problem (presented in Formula
(4)) and the value per unit (presented in Formula (5)).

4.3. Knapsack problem in hybrid architecture

In view of our proposed hybrid storage architecture, five kinds
of basic situations of data access are displayed in Table 3.

To save the amount of the memory space in the hybrid
architecture, only a part of the results are stored on the SSD. From

X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231 225
Table 3
Retrieval under different situations in hybrid architecture.

Situation Memory SSD HDD Probability Time cost

S1 R P1 T1 = Cmpr
S2 R P2 T2 = Cspr
S3 I P3 T3 = Cmpl+C0
S4 I P4 T4 = Cspl +C0
S5 I P5 T5 = Chpl +C0

Table 4
Cost computations in the cache of search engine.

Notation Computation

Chpl Dseek+Drotation+Dread× | Ij | ×Sp÷Dblock
Cspl Sread× | Ij | ×Sp ÷ Sblock
Crank CPU scoring ×

ti∈q(| Ij | ×Sp)

Cdoc Dseek + Drotation + Dread× | dtop | ÷Dblock
CSdoc Sread× | dtop | ÷Sblock
Csnip CPU snippet× | d |

Cspr Sread× | Rtop | ×Sr ÷ Sblock
Cmpl Mread× | Ij | ×Sp ÷ Dblock
Cmpr Mread× | Rtop | ×Sr ÷ Sblock

Table 3, we see that Cspr is the time cost of obtaining the search
results directly from the SSD. It is easy to know that T5 ≥ Tk (1 ≤

k ≤ 4). The average retrieval time is revealed in the following
Formula (6).

AVG(T) =

5
i=1

Ti × Pi. (6)

The advantages of the hybrid cache made full use of the
system for minimizing the average retrieval time via analyzing
the different situations in Table 3. It means that the probability of
‘‘S1’’, ‘‘S2’’, ‘‘S3’’, and ‘‘S4’’ should be increased. Similarly, considering
that an item may either be cached in the MM or in the SSD, or be
obtained from the HDD indirectly, Formula (7) can then represent
the mathematical expectations of the retrieval.

E(T)

=

n
i=1

(T1xiMM + T2xiSSD + T5(1 − xiMM − xiSSD))fi

+

m
j=1

(T3xjMM + T4xiSSD

+ T5(1 − xjMM − xjSSD))fj

=

n
i=1

T5fi −
n

i=1

[(T5 − T1)fixiMM + (T5 − T2)fixiSSD]

+

m
j=1

T5fj −
m
j=1

[(T5 − T3)fjxjMM

+ (T5 − T4)fjxjSSD]. (7)

In order tominimize the average retrieval time, themathemati-
cal expectations of the access time should be small asmuch as pos-
sible. And then the Formula (8) can be got.

min AVG(T) ⇔ minE(T)

⇔ max
n

i=1

[(T5 − T1) · fi · xiMM + (T5 − T2) · fi · xiSSD]

+

m
j=1

[(T5 − T3) · fj · xjMM + (T5 − T4) · fj · xjSSD]. (8)

In the objective function, we can take (T5 − Tk)fi as the value
of the item. Similarly, it can be converted to a multi-knapsack
problem. Considering different cache spaces of the Memory and
the SSD, we build a mathematical model of a multi-knapsack
problem. The items loaded into the knapsacks include n search
results andm inverted lists. Each item has its own size (Wi), access
frequency (fi), and retrieval time (as it can be seen in Table 3). Also,
the items need tomeet the limitations of thememory capacity CMM
and the SSD capacity CSSD. There is no intersection between the set
of items cached in the memory and the SSD. According to above
goals and these condition constraints, themulti-knapsack problem
can be described as a mathematical model in Formula (9).

max
n

i=1

[(T5 − T1)fixiMM + (T5 − T2)fixiSSD]

+

m
j=1

[(T5 − T3)fjxjMM + (T5 − T4)fjxjSSD]

s.t.
n

i=1

WixiMM +

m
j=1

WjxjMM ≤ CMM

n
i=1

WixiSSD +

m
j=1

WjxjSSD ≤ CSSD

xiMM + xiSSD = 0 or 1 (1 ≤ i ≤ n)
xjMM + xjSSD = 0 or 1 (1 ≤ j ≤ m)
xiMM = 0 or 1, xiSSD = 0 or 1 (1 ≤ i ≤ n)
xjMM = 0 or 1, xjSSD = 0 or 1 (1 ≤ j ≤ m).

(9)

In this model, the size of a single item is far less than the cache
capacity of the Memory and the SSD. Similarly, we sort the items
in ascending order according to the value per unit in Formula (10).

UV =
(T5 − Tk)fi

Wi
(1 ≤ k ≤ 4). (10)

5. Efficient data selection in storage architectures

In this section,we first define a variety of time costs in the query
process, and then we give detailed derivation steps of the EDS
in different storage architectures and describe the EDS algorithm.
Finally, we compare and analyze the results of the derivation.

5.1. Definitions of saving time terms

In order to explore the changed rule, the time cost associated
with each query step is computed by employing the formulas
shown in Table 4. As it can be seen from this table, Dseek and
Drotation represent the seek time and the rotational latency of the
HDD respectively. Dread, Sread and Mread mean the time cost of
obtaining oneblock of data from theHDD, the SSDand theMemory,
respectively. Dblock is the block size of the HDD, and Sblock is the
block size of the SSD. Ii represents the number of DocId of the ith
posting list and Sp is the size of the storage per DocId. CPU scoring
andCPU snippet represent the scoring cost and the snippet generation
cost respectively. dtop represents the size of the highest scoring
document, and d is the number of documents. Rtop represents
the highest scoring result. And finally, Sr is the average size per
result.

5.2. Derivation of EDS in storage architectures

Compared with the inverted list entries, the result entries
are quite small and similar in size, so we can take common
policy to deal with the results. At the same time, we need some
special selection policies for the inverted list. Therefore, we divide
the effective values into two categories: the effective values of
the result entries and the effective values of the inverted list
entries.

226 X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231
Table 5
The time saving with two types of knapsack in HDD.

Notation Type Time saving

Saving1 T3 − T1 Chpl +C0 −Cmpr ≈ Chpl +C0
Saving2 T3 − T2 Chpl − Cmpl ≈ Chpl

Based on Formula (5) and Formula (10), we find that the
following three factors are associated with the value of UV: the
saving time (T5 − Tk), the access frequency (fi) and the item size
(Wi). We set EDS as the effective values per unit, and put the larger
ones into the knapsack presented in the following Formula (11):

EDS =
Saving × fi

Wi
. (11)

Based on different storage architectures, the EDS can be
analyzed from three aspects: First, according to the time-
consuming listed in Table 1, we suppose that all the result entries
and part of the inverted lists entries are stored in the memory. By
considering the differences of the time saving, we separate these
two types of items, and get two knapsack problems (i.e., the results
knapsack and the inverted lists knapsack). The time saving for each
query step is deduced using the formulas shown in Table 5.

By calculating the parameters of the hardware and analyzing
the query log, we find that the time consumption of Cmpr and Cmpl
can be negligible relative to the time of reading the same result
and inverted list from the HDD. Therefore, the value of Saving1
is approximately equal to Chpl + C0, and the value of Saving2 is
approximately equal to Chpl. By substituting Chpl or (Chpl + C0)
into Formula (11), we can obtain the Formulas (12) and (13),
respectively; where, EDSPL is the EDS of the inverted lists and EDSR
is the EDS of the results in the HDD.

EDSPL =
Freq × Chpl

Wj

=
Freq(Dseek + Drotation + Dread × |Ij| × Sp/Dblock)

Wj

= (Dseek + Drotation)
Freq
Wj

+
Freq × Dread × |Ij| × Sp

Wj × Dblock

= (Dseek + Drotation)
Freq
Wj

+ Freq ×
Dread

Dblock

= C1
Freq
Wj

+ C2Freq
C1 = Dseek + Drotation, C2 =

Dread

Dblock

(12)

EDSR =
Freq
Wi

× (Chpl + C0) ≈
Freq
Wi

× (Chpl + Cdoc)

=
Freq × (Dseek + Drotation + Dread × |Ij| × Sp ÷ Dblock)

Wi

+
Freq × (Dseek + Drotation + Dread × |dtop| ÷ Dblock)

Wi

= 2(Dseek + Drotation)
Freq
Wi

+
Freq × Dread × |Ij| × Sp

Wi × Dblock

+
Freq × Dread × d · K ÷ Dblock

Wi

= (2C1 + C2Wj + C3) ×
Freq
Wi

(C3 = d × K × C2)

= (C6 + C2Wj) ×
Freq
Wi

(C6 = 2C1 + C3). (13)
Table 6
The time saving with two types of knapsack in SSD.

Notation Type Time saving

Saving1 T3 − T1 Cspl +C0 −Cmpr ≈ Cspl +C0
Saving2 T3 − T2 Cspl − Cmpl ≈ Cspl

Table 7
The time saving with each type of knapsack.

Notation Type Time saving

Saving1 T5 − T1 Chpl +C0 −Cmpr ≈ Chpl +C0
Saving2 T5 − T2 Chpl +C0 −Cspr ≈ Chpl +C0
Saving3 T5 − T3 Chpl − Cmpl ≈ Chpl
Saving4 T5 − T4 Chpl − Cspl ≈ Chpl

Second, according to the time-consuming listed in Table 2, and
the same above assumption, the time saving for each query step is
deduced using the formulas shown in Table 6.

As we have discussed before, the time consumption of Cmpr and
Cmpl can be negligible relative to the time of reading the same result
and inverted list from the HDD. Therefore, the value of Saving1
is approximately equal to Cspl + C0, and the value of Saving2 is
approximately equal to Cspl. By substituting Cspl or (Cspl + C0)
into Formula (11), we can obtain the Formulas (14) and (15),
respectively; where, EDSSPL represents the EDS of the inverted lists
and EDSSR represents the EDS of the results in the SSD.

EDSSPL =
Freq × Cspl

Wj

=
Freq × (Sread × |Ij| × Sp ÷ Sblock)

Wj

=
Sread
Sblock

× Freq = C4Freq

C4 =

Sread
Sblock

(14)

EDSSR =
Freq
Wi

(Cspl + C0) ≈
Freq
Wi

(Cspl + CSdoc)

=
Freq(Sread|Ij|Sp/Sblock)

Wi
+

Freq(CSdoc)

Wi

= (C4Wj + C4 × d × K)
Freq
Wi

= (C5 + C4Wj)
Freq
Wi

(C5 = d × K × C4). (15)

Third, according to the time-consuming listed in Table 3, we
suppose that part of the result entries and inverted lists entries
are stored either in the memory or the SSD. In the hybrid storage
architecture, we find that there are big differences between
the items cached in the memory and those cached in the SSD.
Therefore, reading data from the memory is significantly faster
than that from the SSD. We can approximate that all of the items
cached in the memory have higher UV values than the items
cached in the SSD. Therefore, we can divide the multi-knapsack
problem into two stages, the memory knapsack problem and the
SSD knapsack problem. Similarly, by considering the differences in
the time saving and the size between the results and the inverted
lists, we separate these two types of items, and get two knapsack
problems. In this way, the multi-knapsack problem is transformed
into four basic 0–1 knapsack problems. The time saving is deduced
using the formulas shown in the following Table 7.

In the sameway, the value of Saving1 is approximately equal to
Chpl + C0, and the value of Saving3 is approximately equal to Chpl.
The time of reading the results and the inverted lists from the SSD
is longer than that from the memory, but due to the high speed
reading performance of the SSD, there are almost two orders of
magnitudebetter than the timeof reading the inverted list from the

X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231 227
HDD. Consequently, the value of Saving2 is approximately equal to
Chpl+C0, and the value of Saving4 is approximately equal toChpl.We
also find that the saving time of reading the inverted lists is Chpl (i.e.,
approximately through observation, it is the same as the values
in Saving3 and Saving4). Similarly, the saving time of reading the
result is Chpl + C0. So, Chpl is the key factor of the saving time of
reading the inverted lists, and Chpl+C0 is the key factor of the saving
time of reading the result. By substituting Chpl or (Chpl + C0) into
Formula (11), we can also obtain the previous two Formulas (12)
and (13), respectively.

As viewed from Formula 12, we can compute the value of C1
and C2 according to the parameters of the hard disk. (For example,
when Dseek = 8.5 ms, Drotation = 4.2 ms, Dread = 4.88 ms, Sp =

8 bytes, and Dblock = 512 bytes, then C1 = 12. 7 and C2 = 0.0095).
In Formula 13, we find that the time consumption of Crank and Csnip
can be negligible relative to the time of Cdoc . Therefore, the value of
C0 is approximately equal to Cdoc ; where, K represents the average
size per document. When the size of the result is fixed (as W is
a constant), then, EDSR is a function of Freq. (For example, when
d = 10, K = 8 kb, andW = 4 kb, then C3 = 780. 8 and EDSR = 0.
22Freq.)

5.3. Efficient data selection algorithm

The efficient data selection algorithm is designed to ensure
that the cached data has a high hit ratio and low query latency
under different storage architectures. Algorithm 1 describes three
strategies under different storage architectures. In the SSD-based
hybrid architecture, the system sorts the term in query log by the
EDSPL in descending order and fills up thememorywith the posting
lists of the sorted term. We assign EDSPL of the last term filled
in the memory as a minimum value EDSmin. If the EDSPL of the
next term is greater than the EDSmin in the query, we use posting
list of the term instead of EDSmin. And then the system sorts and
updates the EDSmin. At the same time, the relationship between the
EDSmin and the threshold is also considered. If the evicted EDSmin is
greater than the threshold, the posting list of the EDSmin is brushed
into the SSD. In the SSD architecture, the key difference is that
the term is sorted and the posting list of the term is replaced by
frequency. In the HDD architecture, here similar to the case of
hybrid architecture, the sorting and the replacement are based on
the EDSPL value.

5.4. Comparison of EDS

In this subsection, our goal is to discover some factors by
comparing the above EDS values. And then, by analyzing we can
discover which one is the dominant among these factors. The
contrast includes two aspects: the inverted lists and the results.

First, by considering the EDS values of the inverted lists
(Formula (12) and Formula (14)), we can note that EDSPL is only
related to the frequency (Formula (14)). As a consequence, the
frequency is a key factor in the SSD storage architecture. In theHDD
storage architecture (Formula (12)), there are two relation factors:
Freq/Wj and Freq. We set C1/Wj = C2 (for example, C1 = 12.7 ms,
and C2 = 4.88ms/512, so,Wj = 1332). Obviously, in this example,
whenWj ≤ 1332, Freq/Wj plays a vital role, but whenWj > 1332,
Freq plays an important role. Therefore, the average length of the
inverted lists is an influence factor for search engine cache.

Second, by considering the EDS values of the results (Formula
(13) and Formula (15)), we can note that EDSR and EDSSR are also
closely related to the frequency. When the size of the results is
fixed, thenWi is a constant. But there are some slightly differences
between EDSR and EDSSR, because the values of C6/C5 or C2/C4 are
all approximated to 600 in our experiments. Therefore, EDSRR =

600EDSSR. That is to say, relative to the HDD, the performance of
Algorithm 1 Efficient data selection
Input: Dseek , Drotation , Dread , Dblock; Query Log; & Document Data Set;
Output: Selected efficient data in memory (EM)& on SSD (ES)
1: Count the number of occurrences of each query term in Query Log: Freq
2: Count the number of documents, where each query term is included in Document

Data Set: Wj
3: Calculate C1 and C2 . C1 = Dseek + Drotation , and C2 = Dread/Dblock
4: Calculate EDSPL of each term, EDSPL = C1Freq/Wj + C2Freq.
5: Calculate Threshold (mean of EDSPL), Threshold =

m
j=1 EDSPL/m

6: Create an inverted index for Document Data Set and use Query Logs to query.
7: Sort the term by EDSPL in descending order: TermEDS .
8: Sort the term by Freq in descending order: TermFreq .
9: switch (architecture)

10: case ‘‘2L: SSD-based hybrid":
11: EM = fill up the memory with the posting lists of TermEDS . Assign EDSPL of the last

term filled in the memory as a minimum value EDSmin .
12: while EDSPL of next term > EDSmin do
13: Use posting list of the term instead of EDSmin
14: If evicted EDSmin > Threshold then
15: ES = brush the posting list of the EDSmin into the SSD
16: end if
17: Update EDSmin: minimum values of TermEDS queue in memory (EM).
18: end while
19: break;
20: case ‘‘1L: Memory+SSD":
21: EM = fill up the memory with the posting lists of TermFreq . Assign Freq of the last

term filled in the memory as a minimum value Freqmin .
22: while Freq of next term > Freqmin do
23: Use posting list of the term instead of Freqmin
24: Update Freqmin: minimum values of TermFreq queue in memory (EM).
25: end while
26: break;
27: case ‘‘1L: Memory+HDD":
28: EM = fill up the memory with the posting lists of TermEDS . Assign EDSPL of the last

term filled in the memory as a minimum value EDSmin .
29: while EDSPL of next term > EDSmin do
30: Use posting list of the term instead of EDSmin
31: Update EDSmin: minimum value of TermEDS queue in memory (EM).
32: end while
33: return EM ,ES

the SSD is closer to the performance of the memory. Similarly,
when we set C6 = C2Wj, we can attain the value of Wj, which
is approximated to 80,000 in our experimental environment. As a
result, whenWj ≥ 80,000, the fetch time of the inverted lists plays
a vital role. But when Wj < 80,000, the fetch time of documents
plays a partly important role.

The above examples can be simplified as shown in Fig. 4. Fig. 4
expresses the impact of the average length of the inverted lists for
the inverted lists cache and the results cache. Therefore, we can
obtain the following conclusion: in the SSD architecture, the higher
Freq of the items, the better the benefit of the inverted list; and the
longer the inverted list, the better benefit of the results cache.

6. Performance evaluation

In this section, our evaluation includes three aspects. The first
one is comparing the hit ratios of several proposed algorithms.
The second is verifying that our proposed policy can improve
the retrieval performance of the search engines, including the
HDD architecture, the SSD architecture, and the SSD-based hybrid
storage architecture. The third is verifying that our proposed policy
can also reduce the cost of the search engine servers. We preserve
the notations of the previous sections here.

6.1. Experimental settings

Table 8 summarizes the experimental platform specifications.
In our experiments, the total data size from enwiki data set is
8.9 GB, the number of the total documents is 5,000,000, where the
index size of which is 5.12 GB. The used query log was from AOL.
We have prepared a set of sample queries from the AOL query log,
which performed the index retrieval. Our simulative search engine
is based on Lucene 3.5.0.

228 X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231
(a) The averageWj for the inverted lists cache. (b) The averageWj for the results cache.

Fig. 4. The impact of the average length of the inverted lists.
Fig. 5. The hit ratio comparison in HDD (static).

Table 8
The experiment platform specifications.

Experiment platform environment

IR Tool Lucene 3.5.0
Data Set enwiki-20090805-pages-articles.xml
Query Log AOL-user-ct-collection
SSD Samsung SSD 840 Series 120 GB
HDD Seagate ST2000DM001-1CH164 2 TB
OS Windows 7/Ubuntu 12.04
CPU/RAM Inter(R) Xeon (R) CPU E3 1230 V2/16G

6.2. Hit ratio

There are two existing static query inverted list caching
policies, which we refer them as S_PL_Freq and S_PL_FreqSize,
respectively. The static implementation process of the S_PL_Freq
(S_PL_FreqSize) is as follows. We sort the term of the query log
by frequency (frequency/size) in descending order, and fill up the
memory with the posting lists of the sorted term all at once. These
posting lists will not be updated. In addition, we refer to the new
static caching policy proposed in Section 5.2, as S_PL_EDS.

In our experiments, the number of total documents is 1,000,000,
the query count is 100,000, and the cache size ranges from about
160 to 960MB. Fig. 5 shows the cachehit ratio comparison between
S_PL_Freq, S_PL_FreqSize, and S_PL_EDS. It can be seen from Fig. 5
that the hit ratio will be increased with the increasing of the cache
capacity at a certain range. Also, it can be seen that S_PL_FreqSize,
which tends to cache the popular terms with short posting lists,
has a higher cache hit ratio than S_PL_Freq in the previous stage.
However, if we increase the cache capacity continuously, the hit
ratio of S_PL_Freq exceeds that of S_PL_FreqSize at a later stage. The
reason is that S_PL_Freqsize loads larger posting lists after 480MB,
and loses the advantage of having more posting lists. In the static
case, S_PL_EDS has the highest cache hit ratio among the three
policies. The reason is that S_PL_EDS combined the advantage of
both S_PL_Freq and S_PL_FreqSize.

The dynamic cache version of S_PL_Freq, S_PL_FreqSize, and
S_PL_EDS try to capture the recently data accessed. We refer them
as D_PL_Freq, D_PL_FreqSize and D_PL_EDS, respectively. The dy-
namic implementation process of the D_PL_Freq (D_PL_FreqSize,
D_PL_EDS) is a real-time update of the posting lists of the memory
cache by frequency (frequency/size, EDSPL).

Fig. 6 shows the hit ratio of D_PL_Freq, D_PL_FreqSize,
and D_PL_EDS in the dynamic case. As seen from this figure,
D_PL_FreqSize always has a higher hit ratio than D_PL_Freq. The
hit ratio of D_PL_FreqSize is too higher than that of D_PL_EDS
in the previous stage. However, at a later stage, the hit ratio
of D_PL_EDS exceeds the hit ratio of D_PL_FreqSize. The reason
is that the advantages of the caching popular terms have been
gradually disappearing. We can compare the changes in the hit
Fig. 6. The hit ratio comparison in HDD (dynamic).

Fig. 7. Performance comparison in HDD (static).

Fig. 8. Performance comparison in HDD (dynamic).

ratios of the three policies between the dynamic and the static
cases, respectively. Our proposed D_PL_EDS policy improves the
hit ratio by 20.04% in average compared with the D_PL_Freq and
D_PL_FreqSize policies.

6.3. Retrieval performance on HDD

Our experimental setup is the same as for the last tests
(Section 6.2). Fig. 7 shows the average query time on the HDD. The
query latency of the three selected caching policies is consistent
with the tradition holds: when one policy has a higher cache hit
ratio than the others, its query latency is also shorter than the
others. On the whole, the S_PL_EDS policy has the best query
latency compared with the S_PL_FreqSize and S_PL_Freq policies.
Specifically, we can note that the average query time of S_PL_EDS
is slightly worse than the average query time of S_PL_FreqSize at
160 MB cache memory because the latter has much higher cache
hit ratio.

Fig. 8 shows the average query time on the HDD in the dynamic
case. Compared with the static case, the average query latency of
the dynamic case has the same trends. In comparisonwith LRU, the
average response latency is reduced by 31.98% in the EDS. Since the
search content is dispersed and the periodicity is not strong, the
LRU has no advantage.

6.4. Retrieval performance on SSD

In our experiments, the number of the total documents is
1,000,000, the query count is 100,000, and the cache size ranges

X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231 229
Fig. 9. Performance comparison in SSD (dynamic).

Fig. 10. Average query time with filter.

from about 320 to 1760 MB. Fig. 9 shows the average query time
on the SSD in the dynamic case. The average query time has
followed the same trend in the static case. According to Formula
(14), EDSSPL only related to the frequency, so D_PL_EDS is the same
as D_PL_Freq. However, D_PL_FreqSize becomes poor in terms of
the query latency. The reason is that the benefit brought by the
higher hit ratio of D_PL_FreqSize is watered down by the fewer
sequential read savings caused by the short posting lists. Compared
with FreqSize, the average response latency is reduced by 28.72%
in EDS.

6.5. Retrieval evaluation on hybrid architecture

In our experiments, the number of the total documents is
1,000,000, the query count is 100,000, and the cache size ranges
from about 600 to 1800 MB. In two-level architecture, the data
selection method is relatively complicated. In the dynamic case,
the data selection (filtering) strategy can be implemented when
the data flow from the memory to the SSD. If the data is not
filtered, it is usually the secondary LRUmethod: 2L_LRU thatwill be
implemented. This implementation is very uneconomical because
the posting lists takes up plenty of the SSD space, bringing a certain
degree of wear and tear on the SSD. If the data is filtered, we
can use three strategies (i.e., EDS, Freq and FreqSize). We refer
them as 2L_eds, 2L_f and 2L_fs, respectively, as shown in Fig. 10.
Considering that the selected data will be written to the SSD,
our proposed EDS method only adopt the frequency factor in this
experiment. Fig. 10 shows that the average query time of 2L_eds
(i.e., 2L_f) is significantly better than that of 2L_fs. The reason is a
result of that the cache terms have high frequency saving query
times.

In order to improve the efficiency of the retrieval, we have
also introduced the static cache memory and SSD. The benefit of
the static cache will not be mentioned in this paper since it has
been confirmed in our previous work [10]. Like other relevant
literatures, our previous work also used a single index (Freq or
Freq/size) to measure the effectiveness of the cache. We have
extended our EDSway in this experiment. Our work is to select the
data joined in the static cache, where both the latest data and the
hottest data will be loaded in the static cache. Once those data are
added, they cannot be changed. Three selection ways were used in
this case: the EDS, the Freq and, the FreqSize; which we refer them
50
45
40
35

30
25
20
15
10
5
0

600 1200 1800

cache size (MB)

Fig. 11. Average query time with static cache.

Fig. 12. Average query time with static cache and filter.

as 2L_S_eds, 2L_S_f, and 2L_S_fs, respectively, as shown in Fig. 11.
Fig. 11 shows that, in the case of the static cache, the average query
time is reduced more than in the case of without the static cache.
As viewed from this figure, the 2L_S_eds takes the least amount of
the average query time in all cache policies.

When we filter the obsoleted data from the memory and select
the data which will be added to the static cache, the corresponding
ways have three kinds. We refer them as 2L_eds_S_eds, 2L_f_S_f,
and 2L_fs_S_fs, respectively, as displayed in Fig. 12.

Fig. 12 shows that the average query time of 2L_eds_S_eds
is slightly better than that of 2L_f_S_f. We believe that the
reason is that the static cache has achieved some benefits for the
2L_eds_S_eds. In this experiment, the average response latency is
reduced by 23.24% in the EDS compared to FreqSize.

6.6. Cost performance evaluation

In this experiment, the number of the total indexed documents
is 5 million, and the query count is 100,000. In Fig. 13, ‘‘1L_HDD’’
denotes one-level cache using thememory and the HDD, ‘‘1L_SSD’’
denotes one-level cache using the memory and the SSD, and
‘‘2L_Hybrid’’ denotes two-level cache taking the memory and the
SSD as the cache. ‘‘HDD’’ denotes that the index files are stored on
the HDD, and ‘‘SSD’’ denotes that the index files are stored on the
SSD. Fig. 13 indicates that our proposed SSD-based hybrid storage
architecture demonstrates the best performance comparing to the
one-level cache architecture with index files stored on the HDD
or the SSD. In Fig. 13, 1L_SSD is better than 1L_HDD. The reason
is that we put the partly inverted indexes and documents on the
SSD. The rapid reading performance of the SSD improves the time
of querying and obtaining documents.

In Fig. 14, ‘‘MM’’ denotes the memory. Fig. 14 represents the
average response time under the same cost conditions (i.e., one
used 0.4G memory while the other used 0.2G memory and 1.4G
SSD). By considering that the cost per GB of the memory is 7 times
than that of the SSD in the current market, so we can store seven
times of the amount of the result cache and the inverted lists on the
SSD in an equivalent memory. The experimental results show that
the two-level cache architecture is superior to the one-level cache
architecture obviously. Therefore, we can reduce the capacity of

230 X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231
Fig. 13. 1L cache and 2L cache comparison.

Fig. 14. Response time under equal cost conditions.

the memory and enlarge the capacity of the SSD without having
any performance degradation in the two-level cache architecture.

The experimental results have shown that our proposed EDS
policy is better than the Freq and the FreqSize policies in the
performance for different architectures. We believe that there are
twomain reasons for this achievement. First, the EDS policy has the
highest cache hit ratio. Second, the EDS policy can be viewed as a
reasonable compromise between these two policies. The value of
the EDS depends on the parameters of the specific storagemedium.
The efficient data are always placed in the cache through the
guidance of the query log and the EDS policy. The EDS policy can
be used in distributed environment. Ideally, each node can add an
SSD to enhance the processing speed of a single node, and thus the
processing speed of thewhole distributed system can be improved.
However, the policy still need to consider the network I/O factors.

7. Conclusion and future work

In this paper, we have described three types of storage
architectures for search engines, and then defined and analyzed
the knapsack problem in different storage architectures. We
have found some critical factors via derivation and comparison.
Meanwhile, we have proposed an EDS policy placing the efficient
data in either the memory or the SSD. Finally, the experimental
results have demonstrated our proposed EDS policy.

There are several interesting problems that need further discus-
sion. First, our work only considers the data selection policies of
the result cache and the posting list cache. In practice, the cache
management of the search engine also includes intersection cache,
document cache, etc. The data selection policies of these caches
are required further study in the future. Second, due to the intro-
duction of the SSD in the cache system, the data placement and
replacement policies also need to be considered based on the char-
acteristics of the SSD, which can further improve the performance
of the search engine.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China under grants 61173170, 61300222, 61370230,
61433006 and U1401258, and the Innovation Fund of Huazhong
University of Science and Technology under grants 2015TS069 and
2015TS071, Science and Technology Support Program of Hubei
Province under grant 2014BCH270 and 2015AAA013, and Science
and Technology Program of Guangdong Province under grant
2014B010111007. Meikang Qiu is supported by the NSF 1457506.
We sincerely thank the anonymous reviewers for their very
comprehensive and constructive comments.

References

[1] S. Chen, P.B. Gibbons, S. Nath, Rethinking database algorithms for phase
change memory, in: The 5th Biennial Conference on Innovative Data Systems
Research, CIDR’11, Online Proceedings, Asilomar, CA, USA, 2011, pp. 21–31.

[2] J. Wang, E. Lo, M.L. Yiu, J. Tong, G. Wang, X. Liu, The impact of solid state drive
on search engine cache management, in: The 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR’13,
ACM, Dublin, Ireland, 2013, pp. 693–702.

[3] Releasing flashcache, 2015. https://github.com/facebook/flashcache/blob/
master/doc/flashcache-sa-guide.txt.

[4] Microsoft azure to use ocz SSDs, 2015. http://www.storagelook.com/microsoft-
azure-ocz-ssds/.

[5] Google plans to use intel SSD storage in servers, 2015.
http://www.networkcomputing.com/storage/google-plans-to-use-intel-ssd-
storage-in-servers/d/d-id/1067741.

[6] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y.Wang, Y.Wang, Sdf: Software-defined flash
for web-scale Internet storage systems, in: The 19th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS’14, ACM, Salt Lake City, UT, USA, 2014, pp. 471–484.

[7] V. Kasavajhala, Solid state drive vs. hard disk drive price and performance
study, Technical Report, Dell PowerVault Technical Marketing, 2011.

[8] Google platform, 2015. https://en.wikipedia.org/wiki/Google_platform.
[9] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, T. Wobber, Extending

SSD lifetimes with disk-based write caches, in: The 8th USENIX Conference
on File and Storage Technologies, FAST’10, USENIX, San Jose, CA, USA, 2010,
pp. 101–114.

[10] R.X. Li, C.Z. Li, W.J. Xiao, H. Jin, H. He, X. Gu, K.M.Wen, Z.Y. Xu, An efficient SSD-
based hybrid storage architecture for large-scale search engines, in: The 41st
International Conference on Parallel Processing, ICPP’12, IEEE, Pittsburgh, PA,
USA, 2012, pp. 450–459.

[11] E.P. Markatos, On caching search engine query results, Comput. Commun. 24
(1) (2001) 137–143.

[12] R. Ozcan, I.S. Altingovde, U. Ulusoy, Static query result caching revisited, in: The
17th International Conference on World Wide Web, WWW’08, ACM, Beijing,
China, 2008, pp. 1169–1170.

[13] Q. Gan, T. Suel, Improved techniques for result caching in web search engines,
in: The 18th International Conference on World Wide Web, WWW’09, ACM,
Madrid, Spain, 2009, pp. 431–440.

[14] E. Rosas, N. Hidalgo, M. Marin, V.G. Costa, Web search results caching service
for structured p2p networks, Future Gener. Comput. Syst. 30 (2014) 254–264.

[15] R.A. Baeza-Yates, F. Saint-Jean, A three level search engine index based in query
log distribution, in: The 10th International Symposium on String Processing
and Information Retrieval, SPIRE’03, Springer,Manaus, Brazil, 2003, pp. 56–65.

[16] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, F. Silvestri,
The impact of caching on search engines, in: The 30th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR’07,
ACM, Amsterdam, Netherlands, 2007, pp. 183–190.

[17] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, F. Silvestri,
Design trade-offs for search engine caching, ACMTrans.Web2 (4) (2008) 1–28.

[18] R. Ozcan, I.S. Altingovde, B.B. Cambazoglu, F.P. Junqueira, U. Ulusoy, A five-level
static cache architecture for web search engines, Inf. Process. Manage. 48 (5)
(2011) 828–840.

[19] A. Turpin, Y. Tsegay, D. Hawking, H.E. Williams, Fast generation of result
snippets in web search, in: The 30th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR’07, ACM,
Amsterdam, Netherlands, 2007, pp. 127–134.

[20] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, F. Silvestri, Caching query-
biased snippets for efficient retrieval, in: The 14th International Conference
on Extending Database Technology, EDBT’11, ACM, Uppsala, Sweden, 2011,
pp. 93–104.

[21] T. Fagni, R. Perego, F. Silvestri, S. Orlando, Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historical
usage data, ACM Trans. Inf. Syst. 24 (2006) 51–78.

[22] D. Yuan, Y. Yang, X. Liu, J. Chen, A data placement strategy in scientific cloud
workflows, Future Gener. Comput. Syst. 26 (1) (2010) 1200–1241.

[23] B.B. Cambazoglu, F.P. Junqueira, V. Plachouras, S.A. Banachowski, B. Cui, S.
Lim, B. Bridge, A refreshing perspective of search engine caching, in: The 19th
International Conference onWorldWideWeb,WWW’10, ACM, Raleigh, North
Carolina, USA, 2010, pp. 181–190.

http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref1
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref2
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
https://github.com/facebook/flashcache/blob/master/doc/flashcache-sa-guide.txt
http://www.storagelook.com/microsoft-azure-ocz-ssds/
http://www.storagelook.com/microsoft-azure-ocz-ssds/
http://www.storagelook.com/microsoft-azure-ocz-ssds/
http://www.networkcomputing.com/storage/google-plans-to-use-intel-ssd-storage-in-servers/d/d-id/1067741
http://www.networkcomputing.com/storage/google-plans-to-use-intel-ssd-storage-in-servers/d/d-id/1067741
http://www.networkcomputing.com/storage/google-plans-to-use-intel-ssd-storage-in-servers/d/d-id/1067741
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref6
https://en.wikipedia.org/wiki/Google_platform
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref9
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref10
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref11
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref12
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref13
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref14
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref15
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref16
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref17
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref18
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref19
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref20
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref21
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref22
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref23

X. Dong et al. / Future Generation Computer Systems 74 (2017) 220–231 231
[24] P. Saraiva, E. de Moura, R. Fonseca, J.W. Meira, B. Ribeiro-Neto, N. Ziviani,
Rank-preserving two-level caching for scalable search engines, in: The
24th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR’01, ACM, New Orleans, Louisiana, USA, 2001,
pp. 51–58.

[25] X. Long, T. Suel, Three-level caching for efficient query processing in large web
search engines, in: The 14th international conference on World Wide Web,
WWW’05, ACM, Chiba, Japan, 2005, pp. 369–395.

[26] J. Matthews, S. Trika, D. Hensgen, R. Coulson, K. Grimsrud, Intel turbomemory:
Nonvolatile disk caches in the storage hierarchy of mainstream computer
systems, TOS 4 (2) (2008) 1–24.

[27] R. Panabaker, Hybrid hard disk and readydrive technology: Improving
performance and power for windows vista mobile pcs, in: Proc. of the
Microsoft Win-HEC 2006, Microsoft, Los Angeles, CA, 2006, pp. 1–32.

[28] J. Suk, J. No, Y. Kim, Design and implementation of hybridfs, in: The 3rd IEEE
International Conference on Computer Science and Information Technology,
ICCSIT’10, IEEE, Amsterdam, Netherlands, 2010, pp. 501–505.

[29] J. No, Hybrid file system using nand-flash SSD, in: The 2011 International Con-
ference on Cyber-Enabled Distributed Computing and Knowledge Discovery,
CyberC’11, IEEE, Beijing, China, 2011, pp. 380–385.

[30] B. Kai, W. Meng, N. Hongshan, H. Wei, L. Bo, The optimization of the
hierarchical storage system based on the hybrid SSD technology, in: The
2nd International Conference on Intelligent System Design and Engineering
Application, ISDEA’12, IEEE, Sanya, China, 2012, pp. 1323–1326.

[31] H. Ishibuchi, Y. Tanigaki, N. Akedo, Y. Nojima, How to strike a balance between
local search and global search in multiobjective memetic algorithms for
multiobjective 0/1 knapsack problems, in: The IEEE Congress on Evolutionary
Computation, CEC’13, IEEE, Cancun, Mexico, 2013, pp. 1643–1650.

[32] A. Sbihi, Adaptive perturbed neighbourhood search for the expanding capacity
multiple-choice knapsack problem, JORS 64 (1) (2013) 1461–1473.

[33] B. Huang, Z. Xia, Allocating inverted index into flash memory for search
engines, in: The 20th International Conference Companion on World Wide
Web, WWW’11, ACM, Hyderabad, India, 2011, pp. 61–62.

[34] E. Chan, Y. Wang, W. Li, S. Lu, Movement prediction based cooperative
caching for location dependent information service inmobile ad hoc networks,
J. Supercomput. 59 (1) (2012) 297–322.

Xinhua Dong received his M.S. degree from School of
Computer Science and Technology at HuazhongUniversity
of Science and Technology in 2008. Now he is a Ph.D.
candidate in the Intelligent and Distributed Computing
Laboratory, School of Computer Science and Technology,
Huazhong University of Science and Technology. His
research interests include cloud computing, information
retrieval, and big data management.

Ruixuan Li received the B.S., M.S., and Ph.D. degrees from
School of Computer Science and Technology at Huazhong
University of Science and Technology in 1997, 2000, and
2004 respectively. He is currently a professor of School of
Computer Science and Technology at HuazhongUniversity
of Science and Technology, and is the director of the
Intelligent and Distributed Computing Laboratory. His
research interests include cloud computing, big data, and
system security.
HengHe received hisM.S. degree fromSchool of Computer
Science and Technology at Huazhong University of Science
and Technology in 2007. Now he is a Ph.D. candidate
in the Intelligent and Distributed Computing Laboratory,
School of Computer Science and Technology, Huazhong
University of Science and Technology. His research
interests include cloud computing, distributed simulation,
and network security.

Xiwu Gu received his Ph.D. degrees from School of
Computer Science and Technology at HuazhongUniversity
of Science and Technology in 2007. He is currently a
lecturer of School of Computer Science and Technology
at Huazhong University of Science and Technology. His
research interests include distributed system,web service,
and middleware.

Mudar Sarem received his B.S. degree in Electronics
Engineering from Tishreen University, Syria, in 1989, M.S.
and Ph.D. degree in Computer Science from Huazhong
University of Science and Technology, China in 1997 and
2002, respectively. He is currently an Associate Professor
with the School of Software Engineering, Huazhong
University of Science and Technology, Wuhan, China. His
research interests include computer graphics, multimedia
databases, and image processing.

Meikang Qiu received B.E. and M.E. degree in engineering
from Shanghai Jiao Tong University, China, and M.S. and
Ph.D. degree in Computer Science from University of
Texas at Dallas. He is currently an associate professor
of department of Computer Science at Pace University,
ACM/IEEE Senior member. His research interests include
cloud computing, cyber security and privacy, big data and
data analytic, Telehealth system, Embedded systems and
Mobile systems.

Keqin Li received B.S. degree in Computer Science from
Tsinghua University, China, in 1985, and Ph.D. degree in
Computer Science from the University of Houston in 1990.
He is currently a SUNY Distinguished professor of State
University of New York at New Paltz, IEEE Fellow, and
is Intellectual Ventures Endowed Visiting Chair Professor
at Tsinghua University. His research interests are mainly
in the areas of design and analysis of algorithms, parallel
and distributed computing, and computer networking. His
current research interests include lifetime maximization
in sensor networks, file sharing in peer to peer systems,

and cloud computing.

http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref24
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref25
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref26
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref27
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref28
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref29
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref30
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref31
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref32
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref33
http://refhub.elsevier.com/S0167-739X(16)30027-9/sbref34

	EDS: An Efficient Data Selection policy for search engine storage architectures
	Introduction
	Background and related work
	Caching techniques in search engines
	Storage architecture of search engine
	Knapsack problem

	Storage architectures of search engines
	One-level architecture
	Two-level architecture
	The data management process of the two-level architecture

	Knapsack problem analysis for storage architectures
	Knapsack problem in HDD architecture
	Knapsack problem in SSD architecture
	Knapsack problem in hybrid architecture

	Efficient data selection in storage architectures
	Definitions of saving time terms
	Derivation of EDS in storage architectures
	Efficient data selection algorithm
	Comparison of EDS

	Performance evaluation
	Experimental settings
	Hit ratio
	Retrieval performance on HDD
	Retrieval performance on SSD
	Retrieval evaluation on hybrid architecture
	Cost performance evaluation

	Conclusion and future work
	Acknowledgments
	References

