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Abstract—Distributed data storage (DDS) in mobile
crowdsensing (MCS) systems has recently gained popularity.
Data should be briefly saved on participants’ mobile devices
before being gathered once the centralized cloud servers resume
normal operations. For MCS systems, the existing DDS strategies
briefly considered reconstructing the scene as precisely as
possible without thinking about the costs of each step. However,
our goal is to obtain a sufficiently accurate approximation of
the sensing data from mobile participants with as few costs
as possible. We note a crucial observation: when a specified
number of participants have been transmitted to a central server,
the sensing data has already been well reconstructed, and the
accuracy advancement with additional transmitted participants
is minimal. In our scheme, two stopping criteria are proposed
for DDS in compressive MCS, which aims to enhance recovery
performance while reducing the costs of the whole process. In
the first stopping criterion, we established a rule to stop the
continued recruitment of participants. The algorithm adaptively
increases the number of participants until the reconstruction
accuracy meets the requirement. Another stopping criterion
of the reconstruction algorithm is designed to find a more
accurate number of iterations than the original. The experiment
results demonstrate that the first stopping criterion can reduce
participants’ collection while obtaining an approximate value.
The second stopping criterion assists the reconstruction algorithm
in terminating at a more appropriate number of iterations,
saving computing costs while ensuring accuracy.

Index Terms—Adaptive participant, compressive sensing (CS),
crowdsensing, distributed storage, stopping rules.

I. INTRODUCTION

IN RECENT years, mobile crowdsensing (MCS) has
emerged as a promising paradigm to facilitate urban sensing

applications [1], [2], including road conditions [3], mobility
models [4], noise maps [5], and WiFi maps [6]. Without
deploying dedicated sensor networks, the MCS systems assign
multiple tasks to move participants to complete the requesters’
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demands in the platform. It contributes to the completion of the
sensing goal by leveraging participants’ mobility and sensing
various urban data in regions at a low cost in order to realize
large-scale distributed data collection.

Doing more with fewer measurements is encouraged by
various variables, including the rivalry for limited sensor
resources on a single phone or total transmission stress on
network infrastructure. To address this issue, a compressive
MCS paradigm in which participants perceive only a portion
of the city’s subareas, with the remaining data being inferred
from the sensed data [7], [8], compressive sensing (CS) is a
technology that holds promise for sampling and reconstructing
data at a lower cost [9], [10], [11]. Crowdsensing systems can
benefit from CS for low-cost sampling and highly accurate
reconstruction [1].

Nowadays, massive CS-based compressive crowdsensing
systems have been introduced, enlisting the assistance of
mobile users to collect and submit environmental sensing data
to centralized cloud servers [5], [12]. Through WiFi/4G/5G
mobile network infrastructure, the corresponding sensing data
collected by participants equipped with portable sensing
devices are uploaded to centralized cloud servers [13], [14].
Unfortunately, the centralized cloud servers may not regularly
receive the sensing data submitted by the participants due
to network disruptions in certain conditions, such as an
earthquake or other unforeseen events, creating a distributed
data storage (DDS) problem [8], [15], [16].

Recently, several DDS strategies for MCS have been
researched [15], [16], where participants must temporarily
store their sensing data till the network and cloud servers are
operational again. Zhou et al. [15] proposed a CS-based DDS
scheme for MCS systems called DDS-MCS. By introducing a
virtual sensor network abstraction to a target sensing area, the
strategy formulated the local trajectories of the participants as
the CS encoding processes for the entire data. The DDS-MCS
provides the most information about the data field but requires
the most participants to get the data, which makes it possible
for additional participants to provide less improvement in
accuracy. Furthermore, Zhou et al. [16] introduced a decen-
tralized and compressive data storage approach for MCS. In
the event of data recovery requirements, the process is carried
out on a cloud platform equipped with abundant computational
resources. However, these approaches consistently aim to
optimize reconstruction accuracy without taking into account
the costs of MCS.

We have an important observation that each participant
stores data equally in a distributed storage scheme. Due to
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the characteristics of CS, the actual data can be reconstructed
by collecting some of the stored data. By the time a certain
number of participants are transmitted to the central server, the
sensing data is already well reconstructed, and the accuracy
increase for further transmission of participants is relatively
small.

In this article, we propose two stopping criteria for DDS
in MCS systems, which try to use as little costs as possible
to approximate the data field as accurately as feasible. The
following is a summary of this work’s contributions.

1) We establish a rule to stop the continuing recruitment of
participants after considering the enormous cost of data
transfer from participants to the cloud. The original data
can be reconstructed using the reconstruction algorithm
after getting storage details from a few participants. If
the accuracy is insufficient, increase the number of par-
ticipants until it does, then stop recruiting participants.

2) We present the stopping criterion of the reconstruction
algorithm. The stop-of-reconstruction algorithm in a
distributed storage scheme has limitations, which cannot
consistently achieve an excellent factual reconstruction
error under different data types. We propose a new
stopping criterion that can reach a more accurate error
estimation than the existing methods.

3) We perform simulation experiments and contrast the
results with those of other methods on two real data sets.
The experiments demonstrate that our stopping algo-
rithm may significantly reduce costs while maintaining
comparable reconstruction accuracy.

The remainder of this article is organized as follows.
Section II reviews the related work of storage approaches
in wireless sensor networks (WSNs) and MCS. Section III
briefly introduces the fundamentals of CS based on DDS in
compressive crowdsensing. Section IV presents the details of
our two stopping criteria. The theoretical analysis is shown
in Section V, and the experimental results are discussed in
Section VI. Finally, the conclusion is presented in Section VII.

II. RELATED WORK

With the advent of the Internet of Things, a novel sensing
paradigm termed MCS has emerged. This approach leverages
the mobility of mobile users and the sensors integrated into
mobile devices, along with the existing wireless infrastructure,
to collect environmental data and enhance urban sensing
efforts. Organizers of MCS programs have made maintaining
data quality a priority while adhering to budgetary con-
straints. However, achieving this goal can be a huge challenge,
as high-quality sensed data is usually costly and there is
often a tradeoff between sensing quality and cost, and there
usually exists a tradeoff between sensing quality and cost.
Fortunately, numerous CS techniques can be employed within
MCS to reduce costs without compromising data quality.
These techniques take advantage of the strong spatial and
temporal correlation between subareas of the sensed data,
resulting in superior data collection while reducing costs. This
combination of CS and MCS techniques is often referred to
as CCS.

All of these research studies in CCS are predicated on
the coordination of a central server to achieve comprehensive
data collection on a global scale. Balancing the quality of
sensing with the associated costs is a serious challenge for
CCS systems. As an illustration, Yuan et al. [17] proposed
an adaptive compressive data collection scheme based on
matrix completion theory, but this depends on prior knowledge
of the target region or the availability of historical training
data sets. Wang et al. [18] introduced a task allocation
framework known as CCS-TA, with the primary objective of
reducing the volume of data gathered during each iteration,
all the while maintaining the necessary data quality standards
stipulated by the organizers. However, these CCS systems
are dependent on a central server for the aggregation and
processing of data, which may give rise to unforeseen
incidents resulting in the temporary storage of data on par-
ticipants’ mobile devices, consequently giving rise to a DDS
problem.

It is worth mentioning that recent research has introduced
decentralized storage techniques for WSNs [19], [20], [21].
In these approaches, sink nodes deviate from the traditional
practice of receiving sensed data for various specific rea-
sons. After a sensor node generates a sensor reading, that
reading is propagated throughout the network instead of
being immediately uploaded to the central sink node. Each
node then receives and stores the readings sent by the other
nodes. Talari and Rahnavard [20] introduced a probabilistic
broadcasting approach for the distribution of data, where nodes
utilize CS techniques to encode the received data, effectively
conserving storage space while incurring a reasonable energy
cost. Zhou et al. [21] introduced an algorithm referred to as
region-based compressive networked storage (CNS), with the
primary goal of reducing the decoding ratio, enhancing data
accuracy, and minimizing the dissemination cost. Nevertheless,
it is important to note that crowdsensing operates differently
from WSNs. In MCS systems, the participants equipped
with sensing devices are regarded as network nodes, and
the distribution of sensing data among these participants is
challenging due to their mobility and unpredictable movement
patterns. Consequently, the storage strategies designed for
WSNs are not suitable for MCS systems.

Inspired by the decentralized storage strategy with
WSNs, several DDS strategies for MCS have been
researched [15], [16], where participants are required to
temporarily retain their sensing data until both the network
and cloud servers become operational again. Zhou et al. [15]
introduced a DDS scheme for MCS systems, named DDS-
MCS, which is based on CS technology. In DDS-MCS, sensing
data is distributed across the network, and when the central
server is back up and running, many participants send their
stored data packets to the cloud to reconstruct the data.
The number of participants is calculated based on empirical
redundancy transmission, which enables the reconstructed data
to achieve high accuracy. Further, Zhou et al. [16] introduced
a decentralized and compact data storage approach for MCS.
Within this method, various participants autonomously manage
data storage without dependency on cloud servers for support.
In the event of data recovery requirements, the process is
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carried out on a cloud platform equipped with abundant
computational resources.

However, these methods are excellent at improving recon-
struction accuracy but fail to assign sufficient importance to
the cost of MCS. In CS-based distributed storage schemes,
a central server enables high-precision data reconstruction
by collecting a subset of the participants’ measurements.
An important characteristic of CS is that, when a certain
number of measurements are acquired, the effect of the
additional measurements on the improvement of the accuracy
significantly declines. Similarly, existing CS reconstruction
algorithms exhibit this behavior in terms of the number of
reconstruction iterations, which implies that the improvement
in accuracy is minimal after the number of iterations exceeds
a certain threshold. Obviously, increasing the number of mea-
surements and iterations when the number of measurements
and iterations is almost already saturated causes unnecessary
overhead.

III. DISTRIBUTED DATA STORAGE

In distributed compressive crowdsensing systems, partici-
pants’ mobile devices must temporarily store the sensing data
before it can be collected once the central cloud servers are
back up and running [15], [22]. Unlike direct sensing data
collection, participants randomly walk around the target area to
complete measurements, storing the required information on a
mobile device. The measurement matrix used in reconstructing
the sensed data consists of a predefined Gaussian random
matrix and the participants’ trajectory matrices. That is A =
�×�, where � is a predefined CS measurement matrix, and
� is the participant’s trajectory matrix.

Participant i randomly walks each subarea and carries
package dpi to finish their walks based on the routing. Indeed,
the ith participant’s sensing data and movement trajectory are
recorded by dpi. Let � i be the sampling matrix that was
conducted from the Pi trajectory. The total data for the sensing
area is denoted by X, and Xi denotes the partial sample result.
The sampling process of Pi is then generalized as

Xi = � i ◦ X. (1)

Let �, a predetermined CS measurement matrix, contain
the ith row as φi. Participant Pi’s encoding process is
demonstrated by using the measuring approach in CS theory
as follows:

yi = φix
T
i (2)

where yi is the encoding result. The encoded measurement
yi is then stored by participant Pi. Participant Pi’s encoding
procedure can be expressed as follows:

yi = φix
T
i

= φi
(
ψ i ◦ X

)T

= (
φi ◦ ψ i

)
xT

= AixT (3)

where Ai = φi ◦ ψ i. The encoding procedure is the same for
each participant. The distributed storage procedure carried out

by m participants in an MCS system is represented by (3),
which reads as

Y = AXT (4)

where A = � ◦�.
According to conventional wisdom, the main factor that

makes it possible to recover signal X from the CS measure-
ments Y relies on two objective conditions, i.e., sparsity and
incoherence. Regarding a sparse transform, sparsity may exist.
The data on temperature, gravity, and particulate matter (PM)
air concentration that we focus on in this article are examples
of real-world signals that are rarely sparse. However, they are
frequently roughly scarce in a transforming domain d. Define
SN as the transform coefficients of X in terms of sT = dxT .
Assume sK is a vector made up of partial coefficients taken
from by keeping the K largest coefficients and setting the rest
to zero. Let (xK)T = d−1(sK)T , where d−1 is the inverse of
matrix ϕ. A nearly sparse signal with power-law distributions
can also be somewhat reconstructed using CS if the ith most
extensive entry of the modified representation fulfills

|xi| ≤ C0 · i−p (5)

for each 1 ≤ i ≤ N, where C0 is a constant and p ≥
1. Additionally, the incoherence between the sensing matrix
A and the transform system D is essential for CS. The
restricted isotropy property (RIP) for an appropriately sparse
signal is typically considered a prerequisite for successful
CS reconstruction. Regarding the DDS scheme described
before, suppose that the signal vector x composed of n
sensor readings is a k-sparse signal on representation basis
D. The sensing matrix A = � × � contains two random
matrices. As a result of the Metropolis-Hastings random walk,
� is an n × n Bernoulli random matrix. Furthermore, � is
a predefined Gauss random matrix. It has previously been
demonstrated [9], [19] that if the measurement matrix has
mutual coherence with the sparsity basis D, then s can be
reconstructed by solving the following:

min‖s‖1, subject to ‖y = F · s‖2
2 ≤ λ (6)

even if m � n. Here, λ is a predefined small constant,
and ‖ · ‖1 and ‖ · ‖2 denote 1-norm and 2-norm, respec-
tively. Several algorithms for CS reconstruction have been
investigated, including matching pursuit [23] and the iterative
D-AMP algorithm [24].

IV. STOPPING CRITERIA STRATEGY FOR MCS SYSTEMS

This section first introduces the system model of DDS in
compressive crowdsensing systems. Then we elaborate on two
stopping criteria, the stopping criterion for participant collec-
tion and the stopping criterion for reconstruction algorithm
iteration.

A. System Model

Fig. 1 shows the general process of DDS in MCS systems.
A cube is used to illustrate all sensing tasks of the target area.
The cube’s initial layer displays the sensing task for the present
period, and the layer below shows the target area’s sensing task
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Fig. 1. Overview of the DDS process.

as time passes. The MCS tasks are created by an MCS central
server and allocated to participants. Each task corresponds to
sensing data at a specific subarea in a particular time cycle.
Participants randomly pass through some subregions of the
target region at any given time and execute a DDS algorithm
for each subregion passed until they exit the target region to
complete a single sampling. Participants upload stored data to
the cloud when the central server posts a demand. Finally, the
server combines all of the sensing data from the participants
to get an aggregate sensed result. In this model, we use the
same storage approach as DDS-MCS and focus on collecting
participant storage data from a central server to reconstruct it
in the cloud.

The stopping criterion for participant collection assists the
central server in adaptively collecting participants’ stored data.
When a certain number of participants transmit data, the
reconstruction accuracy of the data reaches the requirement
and the improvement of reconstruction accuracy becomes
minimal by increasing the number of participants. Then the
central server stops the collection. Based on this stopping rule,
the costs of the participant’s side are significantly saved. The
stopping criterion for reconstruction algorithm iteration guides
the central server side to stop the number of iterations of the
reconstruction algorithm. When the algorithm iterates a certain
number of times, the results of the last few iterations are
analyzed, and the algorithm stops when the stopping condition
is reached. With the least amount of computing overhead, the
method can retrieve the most accurate reconstructed data by
using this stopping rule to iterate to the correct number of
stops.

B. Stopping Criterion for Participants Collection

This section describes the stopping criterion for participant
collection in detail. The sensing data are stored in a distributed
manner on the mobile devices of individual participants. When
the central server or other devices start working, the stopping

Fig. 2. Stopping criterion for participants collection.

guidelines for participant collection direct the server to collect
a determined number of participants.

The common stopping criterion generally considers stop-
ping the transmission of participant data when the error
between the reconstructed data and the accurate data is less
than a given threshold. However, this scheme is not practical
because the actual value of the information is generally not
available in natural MCS systems.

MCS’s two primary concerns are the participants’ cost
and the data quality. While DDS-MCS is mainly concerned
with the quality of the reconstructed data, this article is
more concerned with the overhead of the whole process. To
address the cost challenge, we design a stopping criterion for
participants’ collection framework for DDS in compressive
MCS systems, as shown in Fig. 2. When a sensing target
starts, the first stage is DDS. Each participant randomly travels
to a part of the subregion, and many participants jointly
travel to complete the distributed storage of the whole region.
In Fig. 2, four participants finish their random sample in
MCS. The output of this stage is massive storage samples.
Based on these sensing samples, the second stage, participants
collection, attempts to collect participants’ storage samples
to construct a fulfilled sensing map. In the third stage, the
central server conducts the data quality assessment on the
complete sensing map to see whether the current data quality
can meet the predefined quality requirement. If the quality
requirement is not satisfied, we go back to the second stage,
participants collection, to add more participants for sense;
otherwise, the task allocation iteration terminates, and the
framework outputs the final full sensing map for the current
sensing area. Next, we introduce each step of the stopping
criterion for the participant’s collection.

After finishing the random walk in the target sensing
area, a participant runs the encoding method and stores the
encoded measurement. Fig. 2 illustrates the stopping crite-
rion for participant collection in DDS-MCS. Block chart in
Fig. 2 functions like forwarding dpj from a subregion when
participant Pj travels across the target sensing area while
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Fig. 3. SMAE and real MAE.

carrying dpj. The values of all sensor readings connected to
the subareas that participant Pj passes through are stored in
the data package dpj. In Fig. 2, four participants randomly
walk through each subarea and carry package dp1,2,3,4 to finish
their walks based on the routing which is the black line in the
block chart from Fig. 2. Indeed, the jth participant’s movement
trajectory is recorded by dpj.

When the scheme continues here, participant Pj stores yl

and ψ in their mobile devices. The entire sampling process
Y = AX has been completed. Then our stopping criteria
comes to work. A set of participants are given sensing tasks
when the central server is operational. The central server uses
the stored data uploaded by these participants to reconstruct
the spatiotemporal data set of the target region. As shown in
Fig. 2, the central server processes the data quality assessment
to see if the error reaches the stopping threshold. If the error is
not satisfied, more participants are added for sense; otherwise,
the iteration terminates, and the framework outputs the final
full sensing map for the current sensing area. The detailed
process is described in Algorithm 1.

We adopt the basic idea of stopping criterion for the
participant collection algorithm under DDS crowdsensing
systems. The central server first collects the storage data ym
and Am∗n of m participants. In each iteration, the stopping
criterion for participant collection attempts to add some
participants to upload data. Then the central server runs
the reconstruction algorithm R using m +� participants’
storage data. If the stopping mean absolute error (MAE)
SMAEtimes = [(‖x̂times+1 − x̂times‖2)/n] < T1, then the
central server stops participant upload task and the current
reconstructed data x̂StopDot is regarded as meeting the accuracy
requirements. Otherwise, the central server randomly selects
� new participants to collect storage data.

We utilize a DDS approach to reconstruct actual temperature
data [25]. This reconstruction serves as a practical demon-
stration of our stopping criterion for managing participant
collection in compressive crowdsensing systems. In Fig. 3,
we present results depicting the real MAE alongside the
corresponding Stopping MAE (SMAE). These results are
based on a grid of 128 × 128 sensing points across 16 384
observation sites. Notably, we incrementally increased the total
participant count from 1638 to 4754 by 164 participants at a
time.

Algorithm 1 Stopping Criterion for Participants Collection
Algorithm
Input:
ym,y�: initial random collection of m,� participants sampling
data;
Am∗n,A�∗n; collected sensing matrix with m,� participants
and n total sensing data;
T1: A predefined error threshold to stop participants collect;
R: a distributed data storage scheme(e.g., DDS-MCS);
Max: Maximum number of participants.
Output:
StopDot: times of the participants added when the algorithm
fails;
SMAEstopdot: the Stopping Mean Absolute Error when the
algorithm fails.
y = ym

A = Am∗n

for times=1 to Max do
x̂times = R(y,A)
SMAEtimes = ‖x̂times+1−x̂times‖1

n || T1
if SMAEtimes < T1 then

StopDot = times
break

else
y = (y; y�)
A = (A; A�)

return StopDot,MAEStopDot

In this context, we employed the DAMP reconstruc-
tion algorithm [24]. The figure includes fitted curves that
effectively capture the relationship between the number of
participants and the recovery MAE, expressed in the form of
an exponential function. A key observation from Fig. 3 is the
gradual convergence between the stopping error and the real
error as the number of participants increases. This convergence
becomes particularly evident with a sufficient number of
measurements, such as the case with 3114 participants shown
in Fig. 3.

Given that we lack access to the real error for the true
signal, we leverage the stopping MAE as a surrogate to
assess recovery MAE. When the stopping MAE falls below
the required accuracy threshold, additional participants are
deemed necessary. This requirement can be reasonably esti-
mated using the fitted error function based on the participant
count. The findings in Fig. 3 underscore the practical utility
of our approach by highlighting how the stopping error
closely approximates the real error when an ample number of
participants are involved.

C. Stopping Criterion for Reconstruction Iteration

In this section, we introduce the second stopping criterion
for the reconstruction algorithm, and here the reconstruction
algorithm is DAMP.

Considering the stopping criterion for participant collec-
tion, we can find appropriate stopping points to maximize
the number of participants uploading data, thus significantly
saving the transmission overhead on the user side, which is the
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Algorithm 2 Stopping Criterion for Reconstruction Iteration
Algorithm
Input:
y,A: sampling signals and sensing matrix currently owned
by the central server; T2: A predefined error threshold to
stop reconstruction iteration; ReconeIter: One iter of CS recon-
struction algorithm(e.g., DAMP); Iter: Maximum number of
iterations.
Output:
x̂: final reconstruction results after multiple iterations.
x̂0 = 0
for t=0 to Iter do

x̂t+1 = ReconeIter(y,A, x̂t)

x̂t+2 = ReconeIter(y,A, x̂t+1)

x̂t+3 = ReconeIter(y,A, x̂t+2)

RSEt = ‖x̂t+1−x̂t‖2
‖x̂t‖2

+ ‖x̂t+2−x̂t+1‖2
‖x̂t+1‖2

+ ‖x̂t+3−x̂t+2‖2
‖x̂t+2‖2

if RSEt < T2 then
break

return x̂

main overhead for the user side. But we also increase the com-
putational overhead of the central server, which must find the
most appropriate stopping point by iterative computation many
times. Based on this, we propose an iterative stopping criterion
for the reconstruction algorithm, which guides the algorithm to
find the most suitable stopping point to stop iteration when the
reconstruction accuracy reaches the requirement. The detailed
procedure can be seen in Algorithm 2.

We propose a new reconstruction iteration stopping criteria
from deciding the stopping criterion for reconstructing sensing
data in each target area. This stopping criterion requires that
the results of the following three reconstructions all have
a slight error with the results of the current reconstruction.
Compared with the original stopping criterion using one
iteration reconstruction results, the three-iteration reconstruc-
tion comparison has higher stability and achieves the accuracy
requirements more precisely. Especially in the target region
with low correlation, the sparsity of the original data needs to
be increased. When the adjacent two-iteration reconstruction
results reach the threshold requirement, the variance of the
multiple reconstruction results is still significant, and the
reconstruction accuracy is reduced. At this time, our stopping
criterion can stop when each reconstruction result is stable to
ensure the accuracy requirement of the reconstruction result.

The improved three-iteration form of the stop criterion
outperforms the original method by enabling more precise
termination of iterations. However, it does come with increased
computational overhead for the k + 1 and k + 2 iterations.
Thankfully, we can mitigate this burden through cloud recon-
struction, utilizing its robust computing capabilities to handle
this extra workload. As a result, our stopping process remains
highly practical and efficient.

V. THEORETICAL ANALYSIS

In Section III, we detail two stopping criteria, the stopping
criterion for participant collection and the stopping criterion

for reconstruction algorithm iteration. This section mathe-
matically demonstrates that the proposed stopping criteria
strategies can indicate accurate reconstruction accuracy with a
predetermined number of participants in compressive crowd-
sensing systems.

For an appropriately sparse signal, the RIP is thought to be
a prerequisite for successful CS reconstruction. However, it
has only been demonstrated that RIP holds up under perfect
conditions. Candes and Plan [26] describe a system whereby
sensing vectors are independently sampled from a population
F and demonstrate that all we need from F is an isotropy
property and an incoherence property in order to guarantee
successful CS reconstruction.

In the proposed DDS scheme, the measurement matrix �
is a Gaussian random matrix that meets the criteria for a
successful CS reconstruction. Moreover, � is a matrix derived
from the packages dp produced by all m participants. Each
row of ψ j represents the moving trajectory of participant Pj.
Let δ denote the proportion of 1 in ψ , which represents the
sparsity of the trajectory matrix ψ . Then one has A = � ∗
�, and the key to becoming able to use sensing matrix A
as a reconstruction matrix is whether it satisfies the isotropy
property and incoherence property. We say that A holds the
isotropy property if E(ATA) = In, where E(X) represents the
expected value of a random matrix X. In conformity with
the isotropy property, the elements of each row vector in the
measurement matrix A have unit variance and are uncorrelated.
The coherence coefficient is calculated as the sum of the
largest magnitude of the entries in A multiplied by B. The
coherence coefficient μ(A) is defined as the sum of the largest
magnitude of the entries in A multiplied by

√
n, i.e.,

μ(A) = √
n · max

i,j
|aij| (7)

where aij is the element on the ith row and jth column of
matrix A. Incoherence implies that a smaller of coherence
coefficient μ. From the research of Candes and Plan [26],
if μ(A) is a constant of the defined range, then matrix A
satisfies the irrelevance property. The following section will
demonstrate the isotropy and incoherence properties of the
measurement matrix A created in DDS.

Theorem 1: Let measurement matrix � be a Gaussian
random matrix that meets the criteria for a successful CS
reconstruction. � is a matrix derived from the packages dp
produced by all m participants based on the Metropolis-
Hastings random walk. The product of the two matrices,
denoted by A = � ∗ �, possesses the isotropy property and
incoherence property.

Proof: The matrix � meets the condition for CS recon-
struction, which means it satisfies the isotropy property and
incoherence property. So E(�T�) = In, and μ(�) ≤ c�,
where c� is a constant.

In the data storage process of DDS, data dissemination from
various participants perform independent random walk. Thus,
the column vectors in � are independent of each other. Each
row of ψ j represents the moving trajectory of participant Pj.
Let δ represent the proportion of 1 in ψ , which represents the
sparsity of the trajectory matrix ψ .

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 31,2024 at 02:59:02 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: STOPPING CRITERIA FOR DISTRIBUTED DATA STORAGE IN COMPRESSIVE CrowdSensing SYSTEMS 11773

The sensing matrix we used for DDS is A = � ∗ �, we
can derive

E
(

ATA
)

= E
(
(��)T��

)

= E
(
�T�T��

)

= �TE
(
�T�

)
�

= �TI� = I (8)

therefore, the sensing matrix satisfies the isotropy property.
The sensing matrix A satisfies the incoherence property

since the nonzero portion of A truly originates from the �
matrix. The maximum value of coherence coefficient μ(�)
can be set as q. Additionally, A’s nonzero values occur with
probability δ, which means that this matrix’s range of mutual
coherence coefficient is [0, q]. and the mean is equal to qδ ≤ q,
where δ ∈ [0, 1]. According to the definition of matrix A and
μ(A) in (8), μ(A) can be expressed as

μ(A) = √
n · max

i,j
|aij|

= √
n · max

i,j
|
∑

k

φikψkj|

≤ √
n · max

i

∑

k

|φik| · max
k,j

|ψkj|

≤ √
n · c� · q. (9)

This demonstrates that q scaling linearly with n is a sufficient
condition to guarantee that μ(A) is most likely no more than
a constant. Therefore, A satisfies the incoherence requirement.

Theorem 1 proves the sensing matrix A, produced by
the suggested storage method, theoretically meets the CS
reconstruction requirement. In the following, we derive a
theorem comparing the solutions with M participants and
M + δ participants, and if they agree, we declare correct
recovery. In accordance with the theory of CS, to achieve
accurate reconstruction with high probability, the number of
participants M and the signal sparsity k should satisfy M ≥
c · k. Here, c is the sampling coefficient, depending on the
actual application environment. In most cases, it is impossible
to get or properly estimate the sparsity of the sampled
signal in practical applications, and the number of participants
can only be established empirically. This requires as many
participants as possible to ensure that the central server can
be accurately reconstructed. The energy consumed by the
participants in the transmission process is not low. To ensure
accurate reconstruction, the DDS-MCS scheme has to cause
too many participants to transmit a large number of redundant
samples, which obviously wastes a lot of unnecessary energy.
In fact, to save energy on the network, the central server
should stop collecting data from participants once the signal
recovery results achieve a specific accuracy or a predetermined
threshold.

In this article we propose a sampling stopping criteria based
on the above-designed storage sensing matrix, which aims
to estimate the reconstruction accuracy of the sensing data
with high accuracy from the received measurements to decide

whether the central server needs to stop receiving data from the
participants. In the following theorem, we show theoretically
that our stopping criterion guarantees the accuracy of the
reconstructed data.

Theorem 2: Suppose the N-dimensional signal SN =
[s1, s2, . . . , sn] is the original signal which represents N sensor
subregions. If the central server uses a measurement matrix
of � and receives M measurements from m participants. The
measured value is YM = [y1, y2, . . . , ym] and the reconstructed
signal is SM. And then add � participants L times and get
L reconstruction signals SM+�, SM+2�, . . . , SM+L�. If these
reconstructed signal values are equal, the probability that the
reconstructed signal SM is equal to the original signal satisfies
the following condition:

P
(

SM = S
)
>= 1 − (1 − δ/2)−L. (10)

Proof: Assuming that the reconstructed signal SM is not
equal to the original signal S, there exists a null-space (S −
SM), so that after the first M measurement, the equation
is obtained

aM · S = aM · SM (11)

where aM ∈ W,W = aM|(S)− SM) · aM = 0, aM �= 0.
Obviously, W is both a null-space and an N − 1 dimensional
subspace of an N-dimensional field of real numbers RN . After
adding � participants, the central server can obtain measure-
ment values YM+�. As aM+� is random and independent of
SM and of the previous samples if it satisfies (S−SM)·aM+� =
0, then the Mth reconstructed signal is also applicable as the
result of the (M +�)th reconstructed, also P(aM+� ∈ W) ≈
δ/2. By parity of reasoning, when satisfying SM = SM+� =
SM+2� = · · · = SM+L�, the lower bound on the probability
that SM and S are equal is 1 − (1 − δ/2)−L.

This theorem allows us to stop collecting participants
when a feasible solution has M nonzero elements or in
sparse form has M nonzero elements. The sensing matrix
A, formed by the proposed storage strategy, satisfies the
condition of CS reconstruction in theory for the randomness
of the movements of the participants. Based on the irrelevance
between the sensing matrix and sensing data, the reconstructed
value generated by increasing the measurement several times
SM,SM+�,SM+2�, . . . ,SM+L� varies very little. Thus, one
can say P(aM+� ∈ W) ≈ 1 [27], [28].

Our two stopping criteria are supported by Theorem 2. It
is possible to determine whether to continue or stop sampling
based on predetermined constraints, which gives the stop-
ping criterion for participants collection theoretical support.
Theorem 2 also evaluates the probability that the reconstructed
result is equal to the original signal. The reconstructed results
obtained by several successive incremental participants are
equal, then the higher probability reconstructed results are
equal to the original signal. Based on this principle, the
stopping criterion for reconstruction iteration can assist us to
pick a better number of iterations to make the reconstructed
signal closer to the original signal.
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(a) (b)

Fig. 4. Visual maps of two test data sets of size 128×128. (a) Temperature. (b) PM2.5.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the evaluation scenario and
parameters for performance evaluation. Then, the simulation
results are given to evaluate the efficiency and effectiveness
of stopping criteria. Finally, we compare our algorithms with
the DDS-MCS presented in [15]. The simulation establishes
a credible experimental setting with a quality experimental
design. The Metropolis-Hastings random walk [19], [21] is
adopted to simulate the movement pattern of participants,
and the movement characteristics of participants can be truly
reflected by adjusting the movement probability.

A. Evaluation Scenario

Without loss of generality, we construct a simulated MCS
network where the target sensing area contains S observation
sites. Each observation site is uniformly distributed in a unit
disc or square, generating a continuous stream of time series
data. Massive participants walk around with their mobile sens-
ing devices, gathering and storing sensing data as they pass
through these S sites. The experiment data contain temperature
data from the National Data Buoy Center [25], also the
PM2.5 data from China National Environmental Monitoring
Centre [29]. The two data types are all real-life data sets but
have different data correlations. Fig. 4 displays the visual maps
of the simulation’s temperature and PM2.5 concentration data.
As can be seen from the figure, the temperature data range
is [7.42, 31.08], and the poorly correlated data is PM2.5 data,
where the data range is [0,415].

Suppose the target sensing area is R × C × T size, where
R × C denotes two spatial dimensions and T is the temporal
dimension. And x represents the original spatial-temporal data,
x̂ represents the reconstructed stored data of x in the center
server. In this scenario, T sensing cycles are divided into t
storage cycles. Let n = R · C · T and m = ∑t

l=1 ml, where n
represents the length of the data field being recovered and ml

represents the number of CS measurements in the lth sensing
period of the storage process. Throughout the simulations, we
list the key simulation parameters and give some performance
indexes to evaluate the experiment’s performance. There are 64
observation sites with a spatial 8×8 grid setup. 256 time-series

data are generated for each observation site. The decoding
ratio is set as

dr = m
n
. (12)

It represents the reconstruction capability of the adopted DDS
scheme. Then the decoding ratio can be seen as a performance
metric of data storage. Additionally, the mean absolute and
relative square errors are used to assess the accuracy of the
target area’s recovered data field. The MAE SMAE(xt+1, xt)

and relative square error SRSE(xt+1, xt) are given by

SMAE(xt+1, xt) = ‖xt+1 − xt‖1

n
(13)

SRSE(xt+1, xt) = ‖xt+1 − xt‖2

‖xt‖2
(14)

respectively. Here, ‖ · ‖1 is 1-norm and ‖ · ‖2 denotes 2-norm.
Each participant begins to walk from a random observation
site (r, c) at a random time t and reach another observation
site over s steps where s ∈ [200, 500].

The entire computation is carried out on a server platform
equipped with two 3.2-GHz Intel CPUs and 256 GB of
memory using the MATLAB R2018b simulator. In order to
conduct a fair comparison, the data field stored by both our
storage strategy and the rival one is recovered using the
identical CS reconstruction algorithm, D-AMP [24] combined
with a BM3D denoiser and BIOR 1.5 wavelet transform.

B. Feasibility of the Stopping Criteria

In this part, we show the experimental results of two stop-
ping criteria to prove the feasibility of the stopping algorithm.
The primary metrics used to measure the performance of the
stopping criteria include the reconstruction accuracy when
the stop condition is met, the number of participants at the
stopping point, and the performance of the stopping criterion
for reconstruction iteration.

1) Reconstruction Accuracy: A series of experiments
were conducted to verify the method’s efficiency and the
performance of two stopping criteria. In this part, we verify
the effectiveness of the stopping criteria. An important fact
is that we cannot take the actual data as prior knowledge, so
the original formula for calculating the error is not practical.
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Fig. 5. Real error of reconstructed data under different thresholds for
temperature.

Fig. 6. Real error of reconstructed data under different thresholds for PM2.5.

Based on this, we describe our method for calculating the
error as our stopping error. The algorithm stops when the
increase of participants is less than a predetermined threshold
T1. SMAE and SRSE are two utterly different evaluation
error indicators. SMAE can evaluate the error intuitively, but
only for comparing the same unit, while SRSE is not intuitive
but can compare the error of different units. Without loss of
generality, SMAE < T1 is used as the index to measure the
algorithm stopping error, but SRSE is used to compare the
stopping error performance of different types of data.

Figs. 5 and 6 show the factual errors our stopping criteria
can achieve at different predetermined thresholds. We choose
an initial number of participants to be collected and add a
small number of individuals to the process until the stop-
ping MAE SMAE is smaller than the predefined threshold
T1. Real sensing data is used for testing. Combining real
and reconstructed data, the real reconstructed error can be
calculated. The vertical value displays the actual error in
reconstructing the data under the current repetition, and the
horizontal coordinate indicates how many times the method is
performed.

The real MAE of reconstructed data under different tem-
perature thresholds is displayed in Fig. 5, where we set the
stop conditions to 0.1, 0.2, and 0.4, respectively. Under these
conditions, 50 repeated simulations were completed. The max
real MAE of the 50 repeated were, respectively, 0.1137,
0.1780, and 0.3598. These maximum MAE represent the

Fig. 7. Number of walkers under different threshold for temperature.

Fig. 8. Number of walkers under different threshold for PM2.5.

maximum error between the reconstructed data and the actual
data at each stop for 50 repetitions. For example, when
T1 = 0.1, it means that under our stopping criteria, the
difference between the reconstructed and actual temperature
data is at most 0.1137 ◦C.

Fig. 6 shows the real MAE for PM2.5 data under different
thresholds. Also, 50 repeated simulations were performed.
For instance, when T1 = 3.5, the difference between the
reconstructed PM2.5 data and the actual PM2.5 data are, at
most 3.5192 μ/m3. From the simulation result, we can find
that with each predefined threshold, The result of sensing
data reconstruction is consistently below a particular error
compared with the real sensing data. And because PM2.5 data
is less correlated, data reconstruction accuracy is also lower.

2) Number of Participants: The reconstruction accuracy
achieved under the stop condition serves as a critical parameter
to validate the effectiveness of the stop criterion. As the desired
accuracy increases, a larger number of participants are required
to ensure reliable results. Additionally, the minimum number
of participants needed to achieve the desired accuracy is a key
indicator of the stopping algorithm’s performance.

Figs. 7 and 8 present the number of walkers under different
temperatures and PM2.5 thresholds, respectively. Each simula-
tion was repeated 50 times to ensure robustness. The maximum
number of walkers required among the 50 repetitions was
2621, 3113, and 3604 for temperature data at threshold values
of 0.1, 0.2, and 0.4, respectively. Similarly, for PM2.5 data,
the maximum number of walkers needed was 2939, 3932,
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Fig. 9. Comparison of three reconstruction errors of the CS algorithm with
different number of iterations.

and 4588 when the threshold values were 3.5, 4, and 5,
respectively. It is worth noting that air concentration data (such
as PM2.5) exhibit lower correlations compared to temperature
data, which leads to a greater need for more participants to
achieve the desired reconstruction accuracy.

Without the use of our stop algorithm, only the participant
with the highest point could be selected for measurement
each time to maintain accuracy below the given threshold
T . However, our proposed stop algorithm ensures that the
required accuracy is achieved while optimizing the number of
participants needed, making the overall process more efficient
and effective.

3) Performance of Stopping Criterion for Reconstruction
Iteration: Both our scheme and DDS-MCS adopt D-AMP
as the CS reconstruction algorithm in light of its supe-
rior performance. In DDS-MCS, the stopping criterion for
reconstruction iteration is (‖x̂t+1 − x̂t‖2/‖x̂t‖2). This stopping
criterion aids the reconstruction algorithm in halting at the
appropriate proportions of iterations since in practice the
original signal is unavailable. However, as can be observed
from Theorem 2, comparing simply the reconstruction out-
comes of the tth and (t + 1)th times does not ensure the
true reconstruction error when the created sensing matrix
A is somewhat sparse, i.e., when δ is quite small. Our
system takes this into consideration while comparing the
reconstructed results from the previous three iterations, where
the stopping condition is RSEstop = (‖x̂t+1 − x̂t‖2/‖x̂t‖2) +
(‖x̂t+2 − x̂t+1‖2/‖x̂t+1‖2) + (‖x̂t+3 − x̂t+2‖2/‖x̂t+2‖2) ≤ T2.
The probability that the reconstructed signal xt is equal to the
original signal P(xt = x) may be extremely near 1 even if δ
is quite small after our stopping criterion for reconstruction
iteration.

Fig. 9 gives the results of the stopping criterion for recon-
struction iteration in terms of the relative square error. The
experiment data set is temperature data and the decoding rate
dr is set to 0.16 for previous experiments. Three error lines,
including the real reconstruction error, DDS-MCS stopping
error, and our stopping error are plotted. Fig. 9 also clearly
indicates that the difference between two estimation errors
and real error decreases as iterations increase. When there are
enough iterations, two estimation errors and real error begin to
be coherent with each other very well. However, our proposed

Fig. 10. Energy cost compare for temperature.

error line is a better fit to the real error than the DDS-MCS
error line, especially when the number of iterations is not
enough. Thus, we can use our stopping error estimation to
evaluate the recovery error for its excellent performance.

C. Comparison With DDS-MCS

This section contrasts our scheme with the most recent
technique, DDS-MCS, while using identical network setup
and parameter settings. With the same network configuration
as used earlier, the spatial 8 × 8 grid configuration has
64 observation sites. Each observation site generates 256
time-series data. As a consequence, we can concentrate on
evaluating the effect of the stopping criteria algorithm without
being disturbed by other factors.

1) Comparison With Stopping Criterion for Participants
Collection: We should note that energy cost is a very impor-
tant index in resource-constrained MCS networks [30]. In this
article, we utilized the same storage method as DDS-MCS, but
we also took into account the energy required to acquire and
rebuild data from storage nodes. So the energy consumption
of this step is decided in two parts, participants acquire cost
from each participant and data reconstruct cost in the central
server. The energy cost in our step is

Etotal = Eparticipants + Ecloud (15)

where Eparticipants represents the energy required by the partici-
pants and Ecloud is the amount of energy required by the central
server to reconstruct data. Considering the central server’s
powerful computing and transmission capacity, we focus our
solution on the participants’ energy consumption overhead. In
DDS scheme, participants’ walking and sensing is the most
energy-consuming step. The energy consumption of this step is
decided by two parameters in data storage, i.e., the number of
participants m and the steps s. We define the energy required
for a participant to move once and collect data once as the
unit e, which is convenient but not unfair. The energy cost in
the data storage step on the participants’ side is

Eparticipants = m · s · e. (16)

Figs. 10 and 11 compare the energy consumption of all
participants in the storage phase of the two data sets, including
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TABLE I
MEAN OF ENERGY COSTS FROM DIFFERENT STOPPING THRESHOLDS

Fig. 11. Energy cost compare for PM2.5.

temperature data and PM2.5 data in the distributed storage
under the MCS. For each of the two data iterations of 50
times, these two figures depict the energy overhead required
by the two stopping criterion algorithms for different accuracy
requirements. The horizontal coordinate indicates the number
of repetitions and the vertical coordinate indicates the total
energy overhead of the participants based on (14), where e
is a fixed constant. Regardless of the data set, even though
our proposed stopping algorithms require slightly more energy
overhead in some of these rounds, generally, our energy costs
are significantly lower than DDS-MCS.

We further compute the mean of the energy costs at three
stopping thresholds for all 50 simulations and the results are
shown in Table I. Just like in Figs. 5 and 6, the stopping
thresholds for temperature are set to 0.1, 0.2, and 0.4, and for
PM2.5, they are set to 3.5, 4, and 5, respectively. Compared
to the DDS-MCS method, on average, our system improves
energy costs by 2%.

2) Comparison With Stopping Criterion for Reconstruction
Iteration: The performance of stopping criteria for participant
collection is evaluated in terms of reconstruction accuracy and
the number of participants. Then in this section, we assess the
performance of stopping criteria for reconstruction iterations.
Figs. 12 and 13 list the temperature results compare to our
stopping criteria with the original RSE results and a number
of iterations. In Fig. 12, we compare our proposed stopping
criteria with the DDS-MCS scheme for RSE results until
RSE ≤ 0.05. From Fig. 12, although the actual RSE error
of our proposed and DDS-MCS are all close to 0.05. Our
algorithm gets a minor error closer to 0.05 when the stop
condition is satisfied. Fig. 13 lists the number of iterations the
algorithm requires when the stop condition is reached, which
costs the central server’s computing resources. The central

Fig. 12. RSE compare of reconstruction iterations for temperature.

Fig. 13. Iterations compare of reconstruction iterations for temperature.

server has relatively strong computing power. Although our
stopping criteria require three more iterations on average, the
added computing overhead for the central server is negligible.
Still, the stopping point is more accurate than the original
stopping point.

VII. CONCLUSION

This article proposes two stopping criteria to keep the effi-
ciency and effectiveness of compressive crowdsensing systems
for DDS. The stopping criterion for participant collection can
implement high-precision data reconstruction while reducing
the number of participants when the original signal is unknown
to a central server. The stopping criterion for reconstruction
iteration is then used to conduct the reconstruction algorithm to
stop iteration after a rational number of iterations. Compared
with the previous stopping criteria, it can stop closer to the
actual error. The experiment results show that the first stopping
criterion effectively reduces participant collection while still
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obtaining an approximate value. The second stopping criterion
assists the reconstruction algorithm in stopping at a more
appropriate number of iterations, saving computing costs and
ensuring accuracy.
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