
 

Cooperative Digital Healthcare Task Scheduling and
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Abstract: The rapid growth of digital healthcare applications has led to an increasing demand for efficient and

reliable  task  scheduling  and  resource  management  in  edge  computing  environments.  However,  the  limited

resources  of  edge  servers  and  the  need  to  process  delay-sensitive  healthcare  tasks  pose  significant

challenges.  Existing  solutions  often  need  help  to  balance  the  trade-off  between  system  cost  and  quality  of

service,  particularly  in  resource-constrained  scenarios.  To  address  these  challenges,  we  propose  a  novel

cooperative  task  scheduling  and resource  management  framework  for  digital  healthcare  applications  in  edge

intelligence systems. Our approach leverages a two-step optimization strategy that combines the Multi-armed

Combinatorial  Selection  Problem  (MCSP)  for  task  scheduling  and  the  Sequential  Markov  Decision  Process

(SMDP) with alternative reward estimation for computation offloading. The MCSP-based scheduling algorithm

efficiently  explores the combinatorial  task scheduling space to  minimize healthcare task completion time and

costs.  The SMDP-based offloading strategy incorporates alternative reward estimation to improve robustness

against dynamic variations in the system environment. Extensive simulations using real-world healthcare data

demonstrate  the  superior  performance  of  our  proposed  framework  compared  to  state-of-the-art  baselines,

achieving significant  improvements in  cost,  task success rate,  and fairness.  The proposed approach enables

reliable and efficient digital healthcare services in resource-constrained edge computing environments.
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1　Introduction

With  the  widespread  use  of  mobile  devices,  such  as
smartphones,  sensors,  and  wearables,  numerous

intelligent mobile applications have emerged, including
facial  recognition,  video  analytics,  and  digital
healthcare.  These  applications  are  data-intensive  and 

   Xing Liu is with Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China. E-mail:
liux2@jzmu.edu.cn.

   Jianhui Lv is with Department of Inaging, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China, and with
Department of Networks, Peng Cheng Laboratory, Shenzhen 518057, China, and also with Tsinghua Shenzhen International Graduate
School, Shenzhen 518055, China. E-mail: lvjh@pcl.ac.cn.

   Byung-Gyu Kim is with Department of Information Technology Engineering, Sookmyung Women’s University, Seoul 04310, Republic
of Korea. E-mail: bg.kim@sookmyung.ac.kr.

   Keqin  Li is  with Department  of  Computer  Science,  State  University  of  New  York,  New  Paltz,  NY  12561,  USA. E-mail:
lik@newpaltz.edu.

   Hongkai Jin is with School of Life Sciences, Jinzhou Medical University, Jinzhou 121001, China. E-mail: jinhk@jzmu.edu.cn.
   Wei Gao is with the School of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, China. E-mail: gaowei@jzmu.edu.cn.
   Jiayuan  Bai is  with  the School  of  First  Clinical  Medicine,  Jinzhou  Medical  University,  Jinzhou  121001,  China. E-mail:

baijy@stu.jzmu.edu.cn.
* To whom correspondence should be addressed.
    Manuscript received: 2024-06-04; revised: 2024-07-21; accepted: 2024-07-31 

TSINGHUA  SCIENCE  AND  TECHNOLOGY
ISSN   1007-0214        01 /01      pp1−20
DOI:  10 .26599 /TST.2024 .9010140
V o l u m e   x ,   N u m b e r   x ,   x x x x     x x x x

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

mailto:liux2@jzmu.edu.cn
mailto:lvjh@pcl.ac.cn
mailto:bg.kim@sookmyung.ac.kr
mailto:lik@newpaltz.edu
mailto:jinhk@jzmu.edu.cn
mailto:gaowei@jzmu.edu.cn
mailto:baijy@stu.jzmu.edu.cn
https://doi.org/10.26599/TST.2024.9010140
http://creativecommons.org/licenses/by/4.0/


delay-sensitive,  and  high  computation  latency  can
impact  the  quality  of  service[1, 2].  Edge  computing
deploys  computing  infrastructure  at  the  network  edge,
providing  high-performance  computing  and  low-
latency services[3–5]. Therefore, offloading computation
tasks from mobile devices to nearby servers is feasible.
By offloading some or all  of  the application tasks,  the
quality  of  service  for  mobile  applications  can  be
improved.  However,  due  to  the  limited  resources  of
edge  servers  and  base  stations  and  the  need  to
simultaneously  serve  multiple  mobile  devices,  the
quality  of  task  processing  may  degrade  when  a  large
number of service requests arrive, resulting in long task
waiting delays and task timeouts[6, 7].

After  tasks  are  offloaded  to  the  edge  server,  the
scheduling  order  among  tasks  will  further  affect  the
processing  delay  and  whether  tasks  exceed  their
deadlines. Especially when the number of users is large
and available  resources  are  limited,  the  impact  of  task
queueing time will be more significant[8–10]. Generally,
tasks  that  are  allocated  to  processors  first  are  more
likely  to  have  shorter  completion  time.  For  delay-
sensitive tasks, completing them within their deadlines
and  returning  the  results  is  a  key  criterion  for
evaluating the quality of service[11]. This places higher
demands  on  resource  allocation  for  tasks.  Moreover,
optimizing the scheduling order among tasks offloaded
from  different  mobile  devices  can  coordinate  the
optimization  objectives  of  multiple  devices[12, 13].
Commonly  used  scheduling  methods,  such  as  first-
come-first-served,  may  result  in  devices  with  stable
channel  conditions  and  small  data  transmission
consistently  getting  quick  responses,  while  tasks
offloaded  from  devices  with  poor  channel  conditions
and  large  data  transmission  always  fail  to  complete
within their deadlines, making it difficult to balance the
optimization objectives of multiple devices.

The  integration  of  edge  computing  and  artificial
intelligence  has  given  rise  to  edge  intelligence.  This
paradigm  enables  the  deployment  of  intelligent
algorithms  on  edge  devices  closer  to  the  data
sources[14–17].  This  approach  is  particularly  beneficial
for  digital  healthcare  applications,  where  real-time
processing  of  medical  data  and  prompt  decision-
making  are  critical.  Digital  healthcare  applications
often  involve  processing  large  volumes  of  sensitive
patient  data  in  real-time,  which  requires  low  latency
and  secure  computing  resources.  Edge  intelligence
systems are  well-suited  to  meet  these  requirements  by

bringing computing resources closer to the data sources
and  enabling  faster,  more  efficient  processing  while
ensuring  data  privacy  and  security.  Furthermore,  the
increasing  adoption  of  wearable  devices  and  IoT
sensors  in  healthcare  necessitates  the  development  of
efficient  task  scheduling  and  resource  management
techniques  in  edge  environments  to  support  the
growing demand for  personalized and real-time health
monitoring  and  interventions.  By  leveraging  edge
intelligence,  healthcare  providers  can  analyze  patient
data, monitor vital signs, and detect anomalies in real-
time without relying on cloud servers or facing latency,
privacy,  and connectivity  issues[18, 19].  Moreover,  edge
intelligence  enables  personalized  and  adaptive
healthcare  services,  as  intelligent  algorithms  can  learn
from  the  patient’s  data  and  provide  tailored
recommendations  and  interventions[20, 21].  The  fusion
of  edge  intelligence  and  digital  healthcare  has  the
potential  to  completely  transform  healthcare  delivery,
leading to better patient outcomes, fewer expenses, and
an overall improvement in the quality of treatment.

Given this,  we propose  a  joint  optimization  strategy
for  task  offloading  and  scheduling  based  on
reinforcement  learning  for  delay-sensitive  digital
healthcare  tasks  in  resource-constrained  edge
computing  scenarios  with  a  single  base  station  and
multiple  mobile  devices.  The  two-step  strategy
includes  a  task  offloading  scheme  with  alternative
rewards  using  deep  reinforcement  learning  and  a  task
scheduling  scheme  based  on  the  Multi-armed
Combinatorial  Selection  Problem  (MCSP).  In  each
decision  slot,  the  offloading  decision  unit  first
generates  control  signals  for  each  mobile  device  to
indicate  whether  to  offload  tasks.  Mobile  devices
offload  health-related  tasks,  such  as  medical  image
analysis  or  real-time  patient  monitoring,  to  the  edge
server for execution or to process locally based on the
control  signals.  After  collecting  the  offloaded  tasks
from  the  devices,  the  edge  server  schedules  the  tasks
according to the scheduling priorities generated by the
scheduling unit. It feeds the reward signals back to the
task scheduling unit for continuous optimization of the
task scheduling strategy. The main contributions of this
paper are as follows:

•  We  propose  a  novel  cooperative  task  scheduling
and resource management framework for digital health
applications  in  edge  intelligence  systems.  The
framework  addresses  the  challenges  of  efficient  and
reliable task scheduling and computation offloading in
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resource-constrained  environments  while  considering
the  unique  requirements  of  healthcare  tasks,  such  as
strict deadlines and data privacy.

•  We  develop  an  MCSP-based  task  scheduling
algorithm  that  efficiently  explores  and  exploits  the
combinatorial  task  scheduling  space  to  minimize
healthcare  task  completion  time  and  costs.  The
algorithm  adapts  to  the  dynamic  nature  of  the  edge
computing  environment  and  optimizes  the  scheduling
decisions  based  on  the  current  system  state  and  task
requirements.

•  We design  a  Sequential  Markov  Decision  Process
(SMDP)-based  computation  offloading  strategy
incorporating alternative reward estimation to improve
robustness  against  variations  in  the  system
environment.  The  strategy  learns  the  optimal
offloading  policy  through  interactions  with  the
environment  and  considers  the  long-term  impact  of
offloading  decisions  on  system  performance  and  user
satisfaction.

The rest of this paper is organized as follows. Section
2 introduces the system model and problem description
in  the  edge  environment.  Section  3 presents  the  joint
optimization scheme for task offloading and scheduling
based  on  reinforcement  learning.  Section  4 evaluates
the  algorithm  performance  through  simulation
experiments  and  analyzes  the  results.  Section
5 summarizes our work.

2　System Model and Problem Description

In  this  section,  we  introduce  the  scenario  of  a  typical
edge  computing  framework  with  a  single  base  station
and multiple mobile devices, as shown in Fig. 1.

2.1　Decision  model  for  digital  healthcare
applications

In  digital  healthcare  applications,  we  examine  a
framework in which various mobile devices, including
smartphones,  wearables,  and  IoT  devices,  produce
health-related  activities  that  necessitate  processing.
These  tasks  may  include  real-time  analysis  of
physiological  data,  medical  image  processing,  or
machine  learning  inference  for  disease  diagnosis.  The
objective  is  to  optimize  the  performance  of  these
digital  healthcare  applications  by  balancing  the
workload between local devices and edge servers while
minimizing the overall system cost and ensuring timely
task completion.

ULet  denote  the  set  of  the  mobile  devices.  Each

U ψt
u = ⟨u, κu,γu, δu⟩

t u κu

γu

δu

device participating in  the digital  healthcare system in
the set  produces a task  during time
slot .  Here,  represents  the  index  of  the  device, 
denotes  the  size  of  the  input  data  (such  as  medical
images or sensor readings),  indicates the number of
CPU  cycles  needed  to  process  the  task,  and 
represents  the  deadline  for  task  completion.  It  is
believed that the tasks created by different devices are
not influenced by each other and may be considered as
separate and unrelated.

t
(βu, αu)

u
βu ∈ {0,1}

βu = 0
βu = 1 αu ∈ M

M

At  the  start  of  each  time  slot ,  the  offloading
decision unit produces a control signal  for each
device  depending on the current system status. Here,

 indicates  whether  the  task  should  be
executed locally on the device ( ) or offloaded to
the edge server ( ). If the task is offloaded, 
represents  the  selected  wireless  channel  for  data
transmission, where  is the set of available channels.

tThe  system  states  at  time  slot  includes  the
following information:

ψt
1, ψ

t
2, . . . , ψ

t
|U | |U |

U
• Task  characteristics: ,  where 

denotes the number of devices in set .
(x1,v1), . . . , (xu,vu), . . . , (x|U |, v|U |)

(xu,vu) u
|U | U

• Device locations: ,
where  represents  the  coordinates  of  device ,

 denotes the number of devices in set .
η1, η2, . . . , ηu• Local processing queue state: .

βu

Once the offloading decisions have been determined,
tasks with a  value of 1 are sent to the edge server for
execution.  The  offloaded  jobs  are  inserted  into  the
server’s  processing queue.  The task scheduling unit  at

 

Edge server (cloud)

Task queue

Offloading 
decision unit

Task 
scheduling unit

 
Fig. 1    Single base station multi-user system model.
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the edge server establishes the sequence in which tasks
are  executed  by  considering  their  deadlines  and  the
system’s  performance  objectives.  Priority  is  given  to
tasks  with  tighter  deadlines,  and  the  scheduling  unit
aims  to  maximize  the  number  of  tasks  completed
within their  respective deadlines while minimizing the
overall system cost.

By  jointly  optimizing  the  offloading  decisions  and
the task scheduling order, the proposed system aims to
provide  efficient  and  responsive  digital  healthcare
services to users, ensuring timely completion of critical
health-related tasks and minimizing the overall cost of
the system.

2.2　Local processing on mobile devices

ψt
u

u
When  a  digital  healthcare  task  is  decided  to  be
processed locally on the mobile device , it is assigned
to  its  local  processing  unit.  The  duration  of  the  task
execution  depends  on  several  elements,  such  as  the
device’s  processing  capacity,  the  computational
resources used by the task, and its present burden.

u
ζu

τl
u ψt

u u

The computational  capability of  device  is  denoted
as  and  is  measured  in  CPU cycles  per  second.  The
computation  time  for  the  task  on  device  may
be determined by
 

τl
u =

γu

ζu
+ηu (1)

εl
u

ψt
u u

The energy  consumption  of  executing  a  task  locally
on  a  mobile  device  is  another  important  consideration
in  digital  healthcare  applications,  as  it  directly  affects
the device’s battery life[22]. The energy consumption 
for  executing task  on device  can be estimated in
the following:
 

εl
u = γuϕuϑ (2)

ϕu

u

ϑ

where  represents  the  energy consumption per  CPU
cycle  of  device ,  which  depends  on  the  device’s
hardware  characteristics  and  power  management
techniques.  is  a  coefficient  that  converts  energy
consumption to monetary cost, considering factors such
as  the  price  of  electricity  and  the  device’s  battery
replacement cost.

ϕuIn practice, the value of  can be determined based
on  the  device’s  specifications  and  empirical
measurements. For example, we can use the following
approximation:
 

ϕu = ξ (ζu)c (3)

ξ cwhere  and  are constants that depend on the device’s

ξ = 10−11 c = 2
architecture  and  manufacturing  process,  typical  values
are  and .  However,  these  may  vary
depending on the specific device model and the nature
of the digital healthcare application.

Cl
u

δu ψt
u

ρ

The  overall  cost  of  executing  a  task  locally  on  a
mobile device, denoted by , combines the execution
time  and  the  energy  consumption  cost.  To  ensure  the
timely  completion  of  digital  healthcare  tasks,  we
introduce  a  deadline  constraint  for  each  task .  If
the  task  is  completed  within  the  deadline,  the  cost  is
simply  the  energy  consumption  cost.  However,  if  the
deadline  is  exceeded,  an  additional  penalty  term  is
added to  the  cost  to  account  for  the  potential  negative
impact  on  the  user’s  health  or  the  quality  of  service.
Thus,  the  local  execution  cost  can  be  expressed  as
follows:
 

Cl
u =

εl
u, if τl

u ⩽ δu;

εl
u+ρ, otherwise

(4)

ρThe  penalty  term  is  chosen  based  on  the  specific
requirements  of  the  digital  healthcare  application.  It
can  be  adjusted  to  prioritize  either  the  timely
completion  of  tasks  or  the  minimization  of  energy
consumption on mobile devices.

The proposed digital healthcare system can optimize
its  performance  and  user  experience  by  accurately
analyzing  the  local  execution  time,  energy
consumption,  and  deadline  constraints.  Based  on  this
analysis,  the  system can determine whether  to  process
tasks on the mobile devices or offload them to the edge
server.

2.3　Task  offloading  processing  for  digital
healthcare applications

ψt
u uOffloading  a  task  from  a  mobile  device  to  the

edge  server  entails  delivering  the  required  data,
performing  the  task  on  the  server,  and  returning  the
results  to  the  mobile  device.  This  process  introduces
additional  costs  in  terms  of  transmission  time,  energy
consumption,  and  server  usage,  which  need  to  be
considered  in  the  overall  optimization  of  the  digital
healthcare system.

u
αu M

ru

Initially, we analyze the duration it takes to transmit
data and the energy used to transfer a task to a remote
server.  Assume  that  the  mobile  device  chooses  a
wireless  channel  from  the  set  to  send  the  task
data to the edge server.  The Shannon-Hartley theorem
may  determine  the  uplink  data  rate  between  the
mobile device and the server,
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ru = B log2

1+ puhu

σ+
∑

v∈U\u, αv,αu

pvgu, v

 (5)

B pu

u pv

hu

u
σ gu, v

u v

where  represents  the  channel  bandwidth, 
represents  the  transmission  power  of  device , 
represent  the  transmission  power  of  server v, 
represents  the  channel  gain  between  device  and  the
edge  server,  represents  the  noise  power,  and 
represents  the  channel  gain  between  devices  and .
The  second  term  in  the  denominator  represents  the
interference  from  other  devices  transmitting  on
different channels.

τm
u ψt

u

Based on the uplink data  rate,  the transmission time
 for  offloading  the  input  data  of  task  can  be

calculated as
 

τm
u =

κu

ru
(6)

εd
u

The  energy  consumption  for  transmitting  the  task
data, denoted by , is given by
 

εd
u = puτ

m
u (7)

ζe

τe
u

ψt
u

Next,  we  consider  the  execution  time  and  cost  of
processing  the  task  on  the  edge  server.  Let  denote
the computational capability of the edge server in terms
of  CPU  cycles  per  second.  The  execution  time  of
task  on the edge server can be expressed as
 

τe
u =

γu

ζe
+ηu

e (8)

ηu
ewhere  is the task’s waiting time in the edge server’s

queue.

Ce
u

The  cost  of  executing  the  task  on  the  edge  server,
denoted  by ,  includes  the  server  usage  cost  and  the
transmission energy consumption,
 

Ce
u = γuψe+ε

d
uϑ (9)

ψewhere  is the cost per CPU cycle for using the edge
server.

δu

Co
u

Similar to the local processing scenario, the deadline
constraint  for  each  offloaded  task  to  ensure  timely
completion.  The  overall  offloading  cost,  denoted  by

, is defined as
 

Co
u =

Ce
u, if τm

u +τ
e
u ⩽ δu;

Ce
u+ρ, otherwise

(10)

2.4　Long-term  delay  constraint  model  for  digital
healthcare applications

In  a  digital  healthcare  system  with  multiple  mobile

devices sharing the edge server’s resources, it is crucial
to  ensure  that  each  device’s  offloaded  tasks  are
completed  within  a  reasonable  time  frame[23].  This  is
particularly  important  for  health-related  tasks,  where
delays can seriously affect the patient’s well-being. To
tackle this  problem, we propose implementing a delay
constraint  model  that  ensures  a  minimal  standard  of
service  quality  for  every  mobile  device  over  an
extended period.

λu

u
ωt

u

u
t

Let  denote the minimum required success rate for
offloaded  tasks  from  mobile  device .  We  define  a
binary  variable  to  indicate  whether  an  offloaded
task from device  is  completed within its  deadline in
time slot :
 

ωt
u =

1, if τm
u +τ

e
u ⩽ δu;

0, otherwise
(11)

To  ensure  that  each  mobile  device  receives  a  fair
share  of  the  edge  server’s  resources  and  maintains  a
minimum  level  of  service  quality,  we  introduce  the
following long-term delay constraint:
 

lim
T→+∞

1
T

T∑
t=1

E [ωt
u] ⩾ λu, ∀u ∈ U (12)

E
T

u λu

λu

where  is  the  represents  the  expected  value.  This
constraint  ensures  that  over  a  time  horizon ,  the
expected  success  rate  of  offloaded  tasks  from  each
mobile  device  is  at  least .  By  setting  appropriate
values  for ,  the  digital  healthcare  system  can
prioritize  the  tasks  from  different  devices  based  on
their criticality and the patient’s needs.

In order to meet the need for a delay limitation over a
lengthy  period,  the  edge  server  must  efficiently
distribute its resources among the tasks offloaded from
various mobile devices.  This may be accomplished by
modifying  the  sequence  in  which  tasks  are  scheduled
and allocating resources based on the system’s present
condition and each device’s past performance.

Q (t) = (Qt
1, Qt

2, . . . , Qt
|U |)

u t Qt
u

An  effective  method  to  satisfy  the  long-term  delay
requirement is to employ virtual queues to monitor the
performance  of  individual  mobile  devices.  Denote

 as the virtual queue length for
device  at time slot . A larger value of  indicates a
higher “backlog” or accumulated deficit in meeting the
performance  requirements  for  mobile  device.  It
changes according to
 

Qt+1
u =max

(
Qt

u+λu−ωt
u, 0

)
(13)
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λu

u
ωt

u = 0 1−λu

ωt
u = 1

The  virtual  queue  length  increases  by  if  the
offloaded  task  from  device  is  not  completed  within
the deadline (i.e., ) and decreases by  if the
task is  successful  (i.e., ).  By keeping the virtual
queue  lengths  stable  over  time,  the  edge  server  can
ensure  that  each  mobile  device’s  long-term  delay
constraint is satisfied.

By  incorporating  the  long-term  delay  constraint
model into the digital healthcare system, we can ensure
that  the  offloaded  tasks  from  each  mobile  device  are
completed  promptly,  which  is  essential  for  providing
high-quality  healthcare  services.  This  model  also
promotes  fairness  among mobile  devices  and  prevents
any single device from monopolizing the edge server’s
resources at the expense of others.

2.5　Optimization objective

The major objective of the digital healthcare system is
to  lower  total  expenditure  while  assuring  the  prompt
execution  of  activities  and  upholding  equity  across
mobile  devices.  To do this,  we devise an optimization
problem  that  considers  the  costs  associated  with  local
processing,  offloading,  and  the  limits  on  long-term
latency.

The  optimization  problem’s  objective  function  may
be  stated  as  the  next  offloading  decision  subproblem
(P1),
 

(P1) min

 T∑
t=1

|U |∑
u=1

(
(1−βu) ·Cl

u+βu ·Co
u

) (14)

βt
u ψt

u Cl, t
u

ψt
u Co, t

u

ψt
u

where  is the offloading decision for task ,  is
the  local  processing  cost  for  task ,  and  is  the
offloading cost for task . The first constraint ensures
that the offloading decision is binary, while the second
constraint represents the long-term delay constraint for
each mobile device.

Cl, t
u

Co, t
u

The local processing cost  and the offloading cost
 are calculated based on the equations presented in

Sections  2.2 and  2.3,  respectively.  These  costs  are
considered  in  terms  of  execution  time,  energy
consumption,  and  the  penalty  for  missing  the  task
deadline.

In  real-world  digital  healthcare  scenarios,  the  trade-
off  between  overall  cost  and  task  dropping  rate  has
significant  implications  for  patient  care  and  health
outcomes.  On  the  one  hand,  minimizing  the  overall
cost  is  essential  for  the  sustainable  operation  of
healthcare  systems  and  ensuring  the  accessibility  of

digital  healthcare  services  to  a  wide  range  of  patients.
On the other hand, a high task dropping rate can lead to
missed or delayed diagnoses, inadequate monitoring of
patient  conditions,  and  potentially  life-threatening
situations.  Therefore,  healthcare  providers  must
carefully  balance  this  trade-off  based  on  different
healthcare  applications’ specific  requirements  and
priorities.  For  example,  in  emergency  response
scenarios,  such  as  remote  monitoring  of  critically  ill
patients,  a  higher  emphasis  should  be  placed  on
minimizing  the  task  dropping  rate  to  ensure  timely
intervention and prevent adverse events.

To solve this optimization problem, we need to find
the  optimal  offloading  decisions  for  each  task  and  the
optimal  task  scheduling  order  on  the  edge  server.
However, due to the time-coupling nature of the long-
term delay constraint, this problem is difficult to solve
directly using conventional optimization techniques.

In order to address this challenge, we can decompose
the  original  problem  into  two  smaller  problems:  the
subproblem  of  determining  whether  to  offload  tasks
and the subproblem of scheduling tasks.

The  task  scheduling  subproblem  can  be  defined  as
minimizing  the  overall  cost  of  performing  the
offloaded  tasks  on  the  edge  server  while  meeting  the
long-term delay limitations.
 

(P2) min

 T∑
t=1

|U |∑
u=1

ωt
uγuψe

 ,
s.t., ωt

u ⩽ βu (15)

In  the  task  scheduling  subproblem  (P2),  the  first
constraint  ensures  that  only  the  offloaded  tasks  are
considered for scheduling on the edge server, while the
second  constraint  represents  the  long-term  delay
constraint for each mobile device.

By solving these two subproblems iteratively, we can
obtain  the  optimal  offloading  decisions  and  task
scheduling order that minimizes the overall cost of the
digital healthcare system while satisfying the long-term
delay  constraints.  This  approach  allows  us  to  handle
the  time-coupling  nature  of  the  original  problem  and
provides a more tractable solution.

The  long-term  delay  constraint  in  the  optimization
problem  introduces  a  time-coupling  nature,  as  the
constraint  depends  on  the  offloading  and  scheduling
decisions made over multiple time slots. To handle this
time-coupling  nature,  the  proposed  algorithm
decomposes  the  original  problem  into  the  offloading
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decision  subproblem  and  the  task  scheduling
subproblem.  The  offloading  decision  subproblem  is
formulated as an SMDP, which captures the long-term
impact  of  the  offloading  decisions  on  the  delay
constraint.  The  SMDP-based  approach  learns  the
optimal offloading policy through interactions with the
environment,  considering  the  long-term  consequences
of  each  decision.  The  task  scheduling  subproblem  is
addressed  using  the  MCSP-based  approach,  which
optimizes the scheduling order of the offloaded tasks to
minimize  the  overall  cost  while  satisfying  the  long-
term delay constraint.  By iteratively solving these two
subproblems,  the  proposed  algorithm  effectively
handles  the  time-coupling  nature  of  the  optimization
problem  and  finds  the  optimal  offloading  and
scheduling policies.

In  order  to  address  the  offloading  decision
subproblem  (P1)  and  the  task  scheduling  subproblem
(P2),  we  can  utilize  a  range  of  optimization
approaches,  including  reinforcement  learning,
Lyapunov optimization, and approximation algorithms.
The  next  sections  will  thoroughly  examine  these
strategies  as  we  introduce  the  suggested  joint
optimization  framework  for  the  digital  healthcare
system.

We  may  efficiently  reduce  the  overall  cost  of  the
digital  healthcare  system  through  the  meticulous
formulation  of  the  optimization  issue  and  subsequent
decomposition  into  manageable  subproblems.  This
approach also guarantees the timely fulfillment of jobs
and  upholds  fairness  across  mobile  devices.  This
optimization  methodology  is  crucial  for  delivering
healthcare  services  of  superior  quality  and  cost-
effectiveness within digital healthcare applications.

3　Joint  Optimization  of  Computation
Offloading and Task Scheduling

3.1　Lyapunov-based transformation of  scheduling
optimization  problems  for  digital  healthcare
applications

We  employ  the  Lyapunov  optimization  technique  to
solve the task scheduling subproblem (P2) presented in
Section  2.5.  This  approach  allows  us  to  transform the
original  problem with long-term delay constraints  into
a  series  of  easier-to-solve  per-slot  optimization
problems.

Lyap (Q (t))First,  we  define  the  Lyapunov  function 
as follows:

 

Lyap (Q (t)) =
1
2

|U |∑
u=1

(Qt
u)2 (16)

∆ (Q (t))The  Lyapunov  drift  is  defined  as  the
expected  change  in  the  Lyapunov  function  over  one
time slot,
 

∆ (Q (t)) = E [Lyap (Q (t+1))−Lyap (Q (t))|Q (t)] (17)

∆V (Q (t))

To  minimize  the  overall  cost  while  keeping  the
virtual  queues  stable,  we  introduce  the  drift-plus-
penalty function[24, 25] ,
 

∆V (Q (t)) = ∆ (Q (t))+V ·E
 |U |∑

u=1

ωt
uγuψe|Q (t)

 (18)

Vwhere  is  a  non-negative  parameter  that  controls  the
trade-off between the overall cost minimization and the
virtual queue stability.

For  any  feasible  scheduling  policy,  the  drift-plus-
penalty function satisfies the following inequality:
 

∆V (Q (t)) ⩽Cp+

|U |∑
u=1

Qt
uE [λu−ωt

u|Q (t)]+

V ·E
 |U |∑

u=1

ωt
uγuψe|Q (t)

 (19)

Cpwhere  is  a  positive  constant  that  satisfies  the
following condition:
 

Cp ⩾
1
2

|U |∑
u=1

E [(λu−ωt
u)2|Q (t)] (20)

Hence,  we  can  reduce  the  maximum  limit  of  the
drift-plus-penalty  function  to  achieve  the  most
favorable  scheduling  strategy.  This  is  tantamount  to
addressing  the  subsequent  per-slot  optimization
problem,
 

min

 |U |∑
u=1

Qt
u(λu−ωt

u)+V
|U |∑
u=1

ωt
uγuψe

 (21)

By solving this per-slot optimization problem at each
time  slot t,  we  can  obtain  the  optimal  scheduling
decisions that minimize the overall cost while keeping
the  virtual  queues  stable.  This  approach  effectively
transforms  the  original  problem  with  long-term  delay
constraints into more tractable per-slot problems.

G∗
Suppose  the  optimal  value  of  the  per-slot

optimization  problem  is .  By  applying  the
Lyapunov-based  scheduling  policy,  the  time-averaged
overall cost satisfies the following inequality:
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limsup
T→+∞

1
T

T−1∑
t=0

|U |∑
u=1

E [ωt
uγuψe] ⩽G∗+

Cp

V
(22)

Furthermore,  the  virtual  queue  lengths  are  bounded
as follows:
 

lim sup
T→+∞

1
T

T−1∑
t=0

|U |∑
u=1

E [Qt
u] ⩽

Cp+V ·G∗

z
(23)

z =minu∈U
{
λu−λt

u
}

λt
u

u

where  represents  a  small  positive
constant,  and  is  the  optimal  success  rate  for
offloaded tasks from mobile device .

3.2　MCSP-based scheduling optimization problem
solving

In  order  to  address  the  per-slot  optimization  problem
outlined in Section 3.1, we suggest a new method that
relies  on  the  MCSP.  The  MCSP,  or  Multi-
Combinatorial Set Problem, is a variation of the multi-
armed bandit problem. In this issue, the goal is to pick
a  combination  of  arms in  each  round to  maximize  the
predicted  payoff.  This  problem  was  discussed  in
reference[26].

Within  the  framework  of  our  digital  healthcare
application,  we  represent  the  task  scheduling  issue  as
an MCSP, in which each mobile device is regarded as
an arm. The goal is to choose a combination of devices
(a  super-arm)  to  transfer  their  responsibilities  to  the
edge server during each time slot.

K

S (t) ⊆ K
t S (t)

Definition  1  (MCSP  model)　Let  be  the  set  of
arms, where each arm corresponds to a mobile device.
A  super-arm  is  a  subset  of  arms  selected  in
time slot .  The reward of  a  super-arm  is  defined
as the sum of the rewards of the individual arms in the
super-arm,
 

R (S (t)) =
∑

u ∈ S (t)

Rt
u (24)

Rt
u u twhere  is  the  reward  of  arm  in  time  slot .  In

particular,  each  arm  here  is  equivalent  to  the  mobile
device as mentioned above.

uIn our problem, the reward of an arm  is defined as
follows:
 

Rt
u = Qt

u (ωt
u−λu)−Vωt

uγuψe (25)

S ∗(t) t
T

The goal of the MCSP is to select the optimal super-
arm  in each time slot  to maximize the expected
cumulative reward over a finite horizon ,
 

S ∗(t) = arg max
S (t) ⊆ K

E

 T∑
t=1

R (S (t))

 (26)

To  solve  the  MCSP,  we  propose  the  Combinatorial
Upper  Confidence  Bound  (CUCB)  algorithm,  an
extension  of  the  classic  Upper  Confidence  Bound
(UCB) algorithm for the combinatorial setting[27].

Nu (t)
R̂t

u u
The CUCB algorithm maintains a count  and a

reward estimate  for each arm . In each time slot, it
computes  the  UCB  index  for  each  arm,  which  is  an
optimistic  estimate  of  the  arm’s  expected  reward.  The
super-arm  is  then  selected  by  solving  an  optimization
problem that maximizes the sum of the UCB indices of
the  selected  arms.  After  observing  the  rewards  of  the
selected arms,  the algorithm updates each arm’s count
and reward estimate.

The proposed algorithm combines the epsilon-greedy
strategy and the UCB algorithm to balance exploration
and exploitation in the task offloading and scheduling.
The epsilon-greedy strategy is used in the SMDP-based
offloading  component,  where  the  algorithm  chooses  a
random  action  with  probability ε and  the  action  with
the  highest  estimated  Q-value  with  probability  1-ε.
This  ensures  that  the  algorithm  explores  new  actions
while exploiting the best action. The value of ε can be
adjusted  to  control  the  exploration-exploitation  trade-
off.  In  the  MCSP-based  scheduling  component,  the
UCB  algorithm  selects  the  optimal  combination  of
devices  (super-arm)  for  task  offloading.  The  UCB
algorithm maintains a confidence interval for each arm’s
expected  reward  and  selects  the  super-arm  with  the
highest  upper  confidence  bound.  This  approach
encourages  the  exploration  of  less  frequently  selected
arms  while  also  exploiting  the  arms  with  highly
estimated rewards.  By combining these two strategies,
the proposed algorithm effectively balances exploration
and  exploitation  in  the  offloading  and  scheduling
processes,  ensuring  that  the  system adapts  to  dynamic
environmental  changes  while  maximizing  long-term
performance.

T
The  expected  cumulative  regret  of  the  CUCB

algorithm over a finite horizon  is bounded by
 

Regret (T ) ⩽
∑
u ∈ U

8lnT
∆u
+

(
1+

π2

3

) ∑
u ∈ U

∆u (27)

∆u

u

where  is  the  gap  between  the  optimal  super-arm’s
expected  reward  and  the  best  super-arm  that  does  not
contain arm .

By  applying  the  CUCB  algorithm  to  the  MCSP-
based  scheduling  problem,  we  can  efficiently  obtain
the  optimal  scheduling  decisions  for  the  digital
healthcare application in each time slot. The algorithm
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balances  the  exploration  and  exploitation  of  different
mobile  devices,  ensuring  that  the  system  learns  the
optimal scheduling policy over time while minimizing
the  overall  cost  and  satisfying  the  long-term  delay
constraints.

3.3　SMDP model for computation offloading

To  make  optimal  offloading  decisions  in  the  digital
healthcare  system,  we  formulate  the  problem  as  an
SMDP.  The  SMDP  model  captures  the  system’s
dynamic  nature  and  enables  us  to  learn  the  optimal
offloading  policy  through  interactions  with  the
environment[28].

⟨X, A, P, R, µ⟩
X A

P

R
µ ∈ [0,1]

An SMDP is characterized by a tuple ,
where  represents  the  set  of  possible  states, 
represents  the set  of  possible actions,  represents  the
function that determines the probability of transitioning
from one state to another,  represents the function that
assigns  rewards  to  state-action  pairs,  and 
represents the discount factor.

π∗ : X→ A
The  SMDP  aims  to  determine  an  optimum  policy

 that  maximizes  the  expected  cumulative
reward with discounting,
 

π∗ = argmaxEπ

 ∞∑
t=1

µt−1
|U |∑
u=1

rt
u

 (28)

µt−1where  decreases  exponentially  as t increases,
meaning  that  rewards  further  in  the  future  are  valued
less than immediate rewards.

Q (x, a)

a x

To  address  the  SMDP,  we  utilize  the  Q-learning
method,  a  reinforcement  learning  technique  that  does
not  require  a  model.  The  Q-function,  denoted  as

,  quantifies  the  anticipated  cumulative  reward,
adjusted  for  discounting,  resulting  from  performing
action  in state  and adhering to the optimum policy
after that.

The  Q-learning  algorithm  updates  the  Q-function
iteratively  based  on  the  observed  state  transitions  and
rewards,
 

Q (xt
u, at

u)← (1−α) ·Q (xt
u, at

u)+

θ ·
(
rt

u+µ ·maxa′Q (xt+1
u , a′)

)
(29)

θ ∈ (0,1] xt
u

u t at
u

u t a′

xt+1
u maxa′

where  is  the  learning  rate,  is  the  state  of
device  at time slot ,  is the action taken by device

 at  time  slot ,  is  all  possible  actions  that  can  be
taken in the next state . The  operation selects
the action that would maximize the Q-value in the next
state.

In  order  to  achieve  a  balance  between  exploration

ε

1−ε

and  exploitation,  we  utilize  the  epsilon-greedy
approach. This method randomly selects an action with
a  probability  of  and  selects  the  action  with  the
greatest Q-value with a probability of .

Given  appropriate  conditions,  such  as  bounded
rewards  and a  learning rate  that  decreases  to  zero,  the
Q-learning  algorithm  will  converge  to  the  optimal  Q-
function with a probability of 1,
 

lim
t→+∞

Q (x, a) = Q∗(x, a) (30)

Q∗(x, a)where  is the optimal Q-function.
By  applying  the  Q-learning  algorithm  to  the  SMDP

formulation, the digital healthcare system can learn the
optimal  offloading  policy  through  environmental
interactions.  The  learned  policy  adapts  to  dynamic
system  conditions,  such  as  the  processing  queue
lengths  and  channel  states,  to  minimize  the  long-term
processing and task dropping costs.

In  real-world  digital  healthcare  scenarios,  mobile
devices  may  have  varying  computational  capabilities
due  to  differences  in  hardware  specifications,  such  as
CPU  frequency,  memory  size,  and  battery  capacity.
The  proposed  MCSP-SMDP-HC  algorithm  considers
this  heterogeneity  in  its  offloading  and  scheduling
decisions. During the offloading process, the algorithm
considers  the  computational  capacity  of  each  mobile
device  when  estimating  the  local  processing  time  and
energy  consumption.  Devices  with  higher
computational  capabilities  are  more  likely  to  process
tasks locally, while devices with lower capabilities are
more  likely  to  offload  tasks  to  the  edge  server.  The
algorithm  prioritizes  tasks  from  devices  with  lower
computational capabilities in the scheduling process to
ensure  fair  resource  allocation  and  prevent  resource
starvation.  Moreover,  the  algorithm  dynamically
adjusts  the  offloading  and  scheduling  decisions  based
on  the  devices’ real-time  computational  load  and
battery  status,  ensuring  that  the  system  adapts  to  the
varying  resource  constraints.  By  considering  the
computational  resource  heterogeneity,  the  MCSP-
SMDP-HC  algorithm  achieves  a  more  balanced  and
efficient  distribution  of  tasks  across  different  mobile
devices,  improving  overall  system  performance  and
user experience.

3.4　Task  offloading  strategy  with  alternative
reward estimation

In the previous section, we formulated the computation
offloading  problem  as  an  SMDP  and  proposed  using
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the  Q-learning  algorithm  to  learn  the  optimal
offloading  policy[29].  However,  in  practice,  the
observed  rewards  may  be  subject  to  noise  and
disturbances, leading to inaccurate estimates of the true
rewards.  To  address  this  issue,  we  introduce  an
alternative  reward  estimation  technique  that  enhances
the robustness and stability of the learning process.

u rt
u

at
u xt

u t

r̃t
u

Consider a mobile device  that observes a reward 
after taking an action  in state  at time slot . Due
to  various  factors  such  as  network  congestion,
measurement  errors,  or  unpredictable  user  behavior,
the  observed  reward  may  differ  from  the  true  reward

, which is unknown to the device.

ϵt
u

We  assume  that  the  observed  reward  is  a  noisy
version of the true reward, subject to a zero-mean noise
term :
 

Rt
u = R̃t

u+ ϵ
t
u, E [ϵt

u] = 0 (31)

Φ (x, a)

We  propose  an  alternative  reward  estimation
technique based on reward shaping to estimate the true
rewards.  The  idea  is  to  learn  a  shaping  function

 that  approximates  the  difference  between  the
true rewards and the observed rewards,
 

Φ (x, a) ≈ E [R̃t
u−Rt

u|xt
u = x, at

u = a] (32)

D

The shaping  function  is  learned  using  a  separate  set
of  observations,  called  the  reward  estimation  set,
denoted by .

The alternative reward estimation technique relies on
a  separate  set  to  learn  the  shaping  function,
approximating  the  difference  between  the  true  and
observed  rewards.  However,  when  the  reward
estimation set is limited or biased, the learned shaping
function  may  not  accurately  capture  this  difference,
leading  to  suboptimal  offloading  decisions.  The
proposed  algorithm employs  an  incremental  update  of
the reward estimation set to mitigate this issue. Instead
of  using  a  fixed  reward  estimation  set,  the  algorithm
can incrementally update the set with new observations
obtained during the learning process.

We parameterize the shaping function using a linear
model,
 

Φ (x, a; nu) = H (x, a)Tnu (33)
H (x, a)

nu

where  is  a  feature  vector  that  depends  on  the
state  and  action,  and  is  a  parameter  vector  to  be
learned.

nuThe  parameter  vector  is  obtained  by  minimizing
the  Mean  Squared  Error  (MSE)  between  the  observed

and the estimated rewards on the reward estimation set.

R̂t
u

Once the shaping function is  learned,  the alternative
reward  is computed by adding the shaping function
to the observed reward,
 

R̂t
u = Rt

u+Φ (xt
u, at

u; nu) (34)

The Q-learning algorithm is then modified to use the
alternative rewards instead of the observed rewards,
 

Q (xt
u, at

u)← (1−µ)Q (xt
u, at

u)+

µ ·
(
R̂t

u+maxa′Q (xt+1
u , a′)

)
(35)

Given  appropriate  conditions  such  as  bounded
incentives, a learning rate that decreases to zero, and an
accurate  reward  estimate,  the  Q-learning  algorithm
with different rewards will converge to the optimal Q-
function with a probability of 1,
 

lim
t→+∞

Q (x, a) = Q∗(x, a), ∀x ∈ X, ∀a ∈ A (36)

The alternative reward estimation technique helps to
mitigate  the  impact  of  noisy  rewards  on  the  learning
process, leading to more accurate estimates of the true
rewards  and  improved  convergence  of  the  Q-learning
algorithm.

Figure  2 illustrates  the  overall  architecture  of  the
proposed  task  offloading  strategy  with  alternative
reward estimation for digital healthcare applications.

By  incorporating  the  alternative  reward  estimation
technique into the SMDP-based offloading framework,
the  digital  healthcare  system  can  learn  a  robust  and
efficient  offloading  policy  that  adapts  to  the  dynamic
environment and mitigates the impact of noisy rewards.

The alternative reward estimation technique relies on
a  separate  reward  estimation  set  to  learn  the  shaping
function.  When the reward estimation set  is  limited or
biased, the learned shaping function may not accurately
capture  the  difference  between  the  true  and  observed
rewards,  leading  to  suboptimal  offloading  decisions.
To  mitigate  this  issue,  the  incremental  update  of  the
reward  estimation  set  is  employed.  Instead  of  using  a
fixed  reward  estimation  set,  the  algorithm  can
incrementally  update D with  new  observations
obtained  during  the  learning  process.  This  approach
allows  the  shaping  function  to  adapt  to  environmental
changes and improve its accuracy over time.

3.5　Performance analysis

We  analyze  the  performance  of  the  proposed  task
offloading  strategy  with  alternative  reward  estimation
for  digital  healthcare  applications.  We  focus  on  two
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key  aspects:  the  convergence  of  the  Q-learning
algorithm  and  the  regret  bound  of  the  MCSP-based
scheduling approach.

Several  factors,  including  the  learning  rate,  the
discount  factor,  the  exploration-exploitation  trade-off,
and  the  problem  instance’s  complexity,  determine  the
proposed  algorithm’s  convergence  behavior.  A  higher
learning  rate  can  accelerate  the  convergence  speed  by
allowing  the  algorithm  to  adapt  more  quickly  to  the
observed  rewards.  However,  it  may  also  lead  to
instability if set too high. The discount factor balances
the importance of immediate and future rewards with a
higher  value emphasizing long-term performance.  The
exploration-exploitation  trade-off,  controlled  by  the
epsilon-greedy  strategy,  determines  the  balance
between  exploring  new  actions  and  exploiting  the
current best policy. A higher exploration rate can help

the algorithm escape suboptimal policies but may slow
down  convergence.  The  complexity  of  the  problem
instance,  such  as  the  number  of  devices,  task
heterogeneity,  and  the  edge  server’s  resource
constraints, can also impact the convergence speed and
stability.

The  convergence  of  the  Q-learning  algorithm  with
alternative  rewards  can  be  analyzed  using  the
stochastic  approximation  theory.  We  assume  that  the
reward  estimation  set D is  sufficiently  large  and
diverse to accurately estimate the shaping function.

O (1/
√

t)

Under  suitable  conditions  (e.g.,  bounded  rewards,
learning  rate  decaying  to  zero,  and  accurate  reward
estimation),  the  Q-learning  algorithm  with  alternative
rewards  converges  to  the  optimal  Q-function  at  a  rate
of :
 

E
[|Q (x, a)−Q∗(x, a)|+∞

]
⩽

Cp√
t
, ∀t ⩾ 1 (37)

| · |+∞where  denotes the maximum norm.
O (1/

√
t)The convergence rate of  is similar to that of

the  standard  Q-learning  algorithm,  indicating  that  the
alternative  reward  estimation  technique  does  not
significantly impact the convergence speed.

For  the  MCSP-based  scheduling  approach,  we
analyze  the  regret  bound,  which  quantifies  the
difference  between  the  cumulative  reward  of  the
proposed approach and that of the optimal policy.

T
The  expected  cumulative  regret  of  the  MCSP-based

scheduling approach over a finite horizon  is bounded
by
 

Regret (T ) ⩽
∑
u∈U

8lnT
∆u
+

(
1+

π2

3

)∑
u∈U
∆u+

T∑
t=1

∑
u∈U

E
[
|(xt

u, at
u; nu)− (R̃t

u−Rt
u)|

]
(38)

The regret bound consists of three terms:
•  The  first  term  is  the  standard  regret  bound  of  the

CUCB  algorithm,  which  grows  logarithmically  with
the time horizon.

•  The second term is  a constant  that  depends on the
reward gaps.

• The third term is the cumulative error in the reward
estimation,  which  depends  on  the  accuracy  of  the
shaping function.

If  the  shaping  function  accurately  estimates  the
difference between the  true  and observed rewards,  the
third term will  be small,  and the logarithmic term will
dominate the overall regret.
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Fig. 2    Overall  architecture  of  the  task  offloading  strategy
for digital healthcare applications.
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n

D

Suppose  the  shaping  function  is  learned  using  a
reward  estimation  set  of  size .  Under  suitable
conditions  (e.g.,  bounded  rewards  and  features,  and
independent  and identically  distributed samples  in ),
the expected reward estimation error is bounded by
 

E
[
|Φ (xt

u, at
u; nu)− (R̃t

u−Rt
u)|

]
⩽

Cp√
n
, ∀t ⩾ 1 (39)

D

The reward estimation error suggests that the reward
estimation  error  decreases  with  the  size  of  the  reward
estimation  set .  As  more  samples  are  collected,  the
shaping  function  becomes  more  accurate,  leading  to
better estimates of the true rewards and lower regret.

Combining  the  above,  we  can  conclude  that  the
proposed  task  offloading  strategy  with  alternative
reward  estimation  achieves  near-optimal  convergence
speed and regret performance, provided that the reward
estimation set is sufficiently large and diverse.

In  practice,  the  digital  healthcare  system  can
continuously update the reward estimation set using the
observed  rewards  from  the  real-time  offloading
decisions,  allowing  the  system  to  adapt  to  changes  in
the  environment  and  improve  the  accuracy  of  the
reward estimation over time.

Compared to existing approaches that  rely solely on
the  observed  rewards,  the  proposed  strategy  is  more
robust to noisy and perturbed rewards, leading to better
offloading  decisions  and  higher  overall  performance.
The  alternative  reward  estimation  technique  helps
mitigate  the  impact  of  reward  disturbances,  ensuring
that the learned offloading policy is stable and effective
in dynamic digital healthcare scenarios.

Furthermore,  the  MCSP-based  scheduling  approach
provides a principled way to handle the task scheduling
problem’s  combinatorial  nature,  considering  the
dependencies  and  constraints  among  the  offloaded
tasks.  By  leveraging  the  CUCB  algorithm,  the
scheduling  approach  efficiently  balances  the
exploration  and  exploitation  of  different  task
combinations,  leading  to  near-optimal  schedules  that
minimize processing and task dropping costs.

In  summary,  the  performance  analysis  demonstrates
the  effectiveness  and  robustness  of  the  proposed  task
offloading  strategy  for  digital  healthcare  applications.
Combining  Q-learning  with  alternative  reward
estimation  and  MCSP-based  scheduling  provides  a
comprehensive  solution  that  adapts  to  the  dynamic
environment,  mitigates  the  impact  of  noisy  rewards,
and  achieves  near-optimal  performance  regarding

convergence speed and regret.

4　Simulation and Results Analysis

In  this  section,  we  conduct  extensive  simulations  to
evaluate  the  performance  of  the  proposed  MCSP  for
scheduling  and  the  SMDP  with  alternative  reward
estimation  for  offloading  (MCSP-SMDP-HC)
algorithm  for  cooperative  digital  healthcare  task
scheduling  and  resource  management  in  edge
intelligence  systems.  We  compare  the  performance  of
MCSP-SMDP-HC  with  six  state-of-the-art  baseline
methods:  CoTask[30],  DRL-DO[31],  SRA-E-ABCO[32],
PASTO[33],  SD-AETO[34],  and  BCCED[35].  CoTask  is
an abbreviation for correlation-aware task offloading in
edge  computing.  The  DRL-DO  framework  is  a
distributed  task  offloading  platform  based  on  Deep
Reinforcement  Learning  (DRL).  SRA-E-ABCO  refers
to  the  process  of  transferring  terminal  tasks  from
cloud-edge-end  environments.  PASTO  facilitates  the
secure  and  efficient  transfer  of  tasks  in  edge  clouds
equipped with  TrustZone technology.  SD-AETO is  an
acronym for service-deployment-enabled adaptive edge
task offloading mechanism in MEC. BCCED stands for
blockchain-empowered  cloud-edge-device  task
offloading.

4.1　Setup

The simulations are performed on a server with an Intel
Xeon  Gold  6154 CPU  (3.00 GHz,  18 cores)  and
128 GB  of  RAM.  The  edge  computing  environment
comprises  a  single  base  station  and  multiple  mobile
devices.  The  computational  capabilities  of  the  mobile
devices  and  the  edge  server  are  set  to  1.2 GHz  and
3 GHz,  respectively.  The  available  wireless  channels
for  data transmission are modeled using the 3GPP TR
38.901 Urban  Micro  (UMi)  path  loss  model[36].  The
detailed simulation parameters are listed in Table 1.

The  digital  healthcare  tasks  are  generated  based  on
real-world  medical  datasets,  including  the  Medical
Information  Mart  for  Intensive  Care  (MIMIC-III)[37]

and  the  Digital  Retinal  Images  for  Vessel  Extraction
(DRIVE)[38].  The  tasks  are  characterized  by  their  data
size,  computational  requirements,  and  deadlines,  and
they are randomly sampled from the datasets.

The MIMIC-III and DRIVE datasets were chosen for
our  simulations  due  to  their  diversity  and  inclusion  of
various  medical  data  types,  such  as  physiological
signals,  clinical  notes,  and  medical  images.  These
datasets  provide  a  representative  sample  of  the  data
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encountered  in  real-world  digital  healthcare
applications.

Using  MIMIC-III  and  DRIVE  datasets  in  our
simulations  raises  potential  data  privacy  concerns  and
limitations  regarding  task  representativeness.  To
address  data  privacy  issues,  we  ensure  that  all  patient
information  is  anonymized  and  that  no  personally
identifiable information is included in the datasets used
for  our  simulations.  We  also  adhere  to  the  data  usage
agreements and ethical guidelines associated with these
datasets  to  protect  patient  privacy  and  maintain  the
confidentiality  of  sensitive  health  information.
However,  it  is  important  to  acknowledge  that  residual
re-identification  risks  may  exist  even  with
anonymization,  especially  when  dealing  with  high-
dimensional and granular health data.

4.2　Performance metrics

We evaluate  the  performance  of  the  proposed  MCSP-
SMDP-HC  algorithm  and  the  baseline  methods  using
four metrics.

(1)  Average Task Completion Time (ATCT): The
average  time  required  to  complete  a  digital  healthcare
task,  considering  both  local  processing  and  edge
offloading. The ATCT is calculated as follows:
 

ATCT =
1
|U |

|U |∑
u=1

τl
u(1−βu)+βu(τm

u +τ
e
u) (40)

τl
u τe

uwhere  is  the  local  processing  time,  and  is  the
edge server processing time.

(2) Task Dropping Rate (TDR): The percentage of
tasks that fail to meet their deadlines and are dropped.
The TDR is calculated as follows:
 

TDR =
1
|U |

|U |∑
u=1

(1−βu)τl
u+βu(τm

u +τ
e
u) > δu×100% (41)

(3)  Edge  Resource  Utilization  (ERU): The
percentage  of  the  edge  server’s  computational
resources  utilized  by  the  offloaded  tasks.  The  ERU  is
calculated as follows:
 

ERU =
1
T

T∑
t=1

|U |∑
u=1

βuγu

ζe
×100% (42)

(4)  Fairness  Index  (FI): The  fairness  of  offloading
decisions among mobile devices is measured by Jain’s
fairness index[39]. The FI is calculated as follows:
 

FI =

 |U |∑
u=1

d̄u


2

|U |
|U |∑
u=1

d̄2
u

(43)

d̄uwhere  is  the  average  offloading  ratio  of  device u
over the simulation period.

4.3　Results and analysis

First,  we  analyze  the  computational  complexity  of  the
proposed  MCSP-SMDP-HC  algorithm  using  baseline
methods. Table 2 shows the computational complexity
comparison.

|K|
|X|

|A|
Odeployment

Oconsensus

In  Table  2,  represents  the  maximum  number  of
devices  in  a  super-arm,  represents  the  size  of  the
state  space,  represents  the size of  the action space,

 represents  the  additional  overhead  for
service  deployment  in  SD-AETO,  and 
represents  the  additional  overhead  for  blockchain
consensus in BCCED.

 

Table 1    Simulation parameters.
Parameter Value

Number of mobile devices 10−50

ζe

Edge server computational
capability ( ) 3 GHz

ζu

Mobile device computational
capability ( ) 1.2 GHz

BWireless channel bandwidth ( ) 20 MHz
Wireless channel path loss model 3GPP TR 38.901 UMi

σWireless channel noise power ( ) −174 dBm/Hz
Task data size [100, 1000] KB

Task computational requirement [100, 1000] MHz
Task deadline [500, 2000] ms

Edge server queue length limit 10−50 tasks
VTrade-off parameter ( ) 0.1−1.0

θLearning rate ( ) 0.1−1.0
µDiscount factor ( ) 0.9

Exploration probability (ε) 0.1
Simulation time 10 000 time slots

 

Table 2    Computational complexity comparison.
Algorithm Computational complexity

CoTask O (|U |2)
DRL-DO O (|X||A|)

SRA-E-ABCO O (|U | log |U |+ |X||A|)
PASTO O (|U |2 + |X||A|)

SD-AETO O (|U | log |U |+C |U |K + |X||A|)+Odeployment

BCCED O (|U | log |U |+C |U |K + |X||A|)+Oconsensus

MCSP-SMDP-HC O (|U | log |U |+C |U |K + |X||A|)
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Table  2 compares  the  computational  complexity
among the different algorithms. The MCSP-SMDP-HC
algorithm  is  complex  and  depends  on  the  number  of
mobile  devices,  the  maximum number  of  devices  in  a
super-arm, and the sizes of the state and action spaces.
The  CoTask  and  PASTO  algorithms  have  a  quadratic
complexity  concerning  the  number  of  mobile  devices,
while  the  DRL-DO  algorithm’s  complexity  depends
only  on  the  sizes  of  the  state  and  action  spaces.  The
SRA-E-ABCO  algorithm  has  a  complexity  similar  to
MCSP-SMDP-HC  but  without  the  term  related  to  the
maximum number of devices in a super-arm. The SD-
AETO  and  BCCED  algorithms  have  complexities
similar to MCSP-SMDP-HC, with additional overhead
terms  for  service  deployment  and  blockchain
consensus.

Then,  we  investigate  the  impact  of  the  number  of
mobile  devices  on  the  performance  of  the  proposed
MCSP-SMDP-HC algorithm and the baseline methods.
The number of devices varies from 10 to 50, while the
other parameters remain fixed.

Figure  3 shows  the  ATCT  performance  of  the
compared  algorithms.  As  the  number  of  devices
increases, the ATCT of all algorithms increases due to
the higher computational load and resource contention.
However,  MCSP-SMDP-HC  consistently  achieves  the
lowest  ATCT  among  all  algorithms,  with  an  average
reduction  of  28.6% compared  to  the  best-performing
baseline  method,  BCCED.  This  improvement  is
attributed  to  the  efficient  task  offloading  and
scheduling  strategies  employed  by  MCSP-SMDP-HC,
which  consider  the  dynamic  system  state  and  the
alternative reward estimation.

Figure  4 presents  the  TDR  performance  of  the
compared  algorithms.  The  TDR  of  all  algorithms

increases  with  the  number  of  devices  as  more  tasks
compete for the limited edge resources. MCSP-SMDP-
HC  maintains  the  lowest  TDR  among  all  algorithms,
with  an  average  reduction  of  45.3% compared  to
BCCED.

Next,  we  evaluate  the  impact  of  the  edge  server’s
queue length limit on the performance of the compared
algorithms.  The  queue  length  limit  varies  from  10 to
50, while the other parameters remain fixed.

Figure  5 shows  the  ERU  performance  of  the
compared  algorithms.  As  the  queue  length  limit
increases,  the  ERU  of  all  algorithms  increases,  as  the
edge  server  can  accommodate  more  tasks.  MCSP-
SMDP-HC  achieves  the  highest  ERU  among  all
algorithms,  with  an  average  improvement  of  18.9%
compared to BCCED.

Figure  6 presents  the  FI  performance  of  the
compared algorithms. MCSP-SMDP-HC maintains the
highest  FI  among  all  algorithms,  with  an  average
improvement  of  12.5% compared  to  BCCED.  The
cooperative  offloading  and  scheduling  mechanisms  in
MCSP-SMDP-HC  ensure  a  fair  distribution  of  edge
resources  among  the  mobile  devices,  preventing  any
single device from monopolizing the resources.

V V

V
V

V

We  further  evaluate  the  performance  of  the  MCSP-
based  scheduling  strategy  in  MCSP-SMDP-HC  under
different trade-off parameter  values. The value of 
varies  from  0.1 to  1.0,  while  the  other  parameters
remain  fixed. Figure  7 shows  the  ATCT  and  TDR
performance  of  MCSP-SMDP-HC  with  different 
values. As  increases, the ATCT decreases while the
TDR  increases.  A  larger  value  emphasizes
minimizing  the  overall  system  cost,  leading  to  more
aggressive  offloading  decisions  and  lower  task
completion time. However,  this comes at  the cost of a
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Fig. 3    ATCT performance of the compared algorithms.
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Fig. 4    TDR performance of the compared algorithms.
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V

higher task dropping rate, as some delay-sensitive tasks
may need to be prioritized. The results demonstrate the
ability  of  MCSP-SMDP-HC  to  balance  the  trade-off
between  system  cost  and  task  dropping  rate  by
adjusting the value of .

We  also  evaluate  the  performance  of  the  SMDP-

α α

based  offloading  strategy  in  MCSP-SMDP-HC  under
different learning rate values .  The value of  varies
from  0.1 to  1.0,  while  the  other  parameters  remain
fixed.

α α

α

α

Figure  8 shows  the  ERU  and  FI  performance  of
MCSP-SMDP-HC  with  different  values.  As 
increases,  the  ERU  increases  and  stabilizes,  while  the
FI  exhibits  a  similar  trend.  A  larger  value  enables
faster  learning  and  adaptation  to  the  dynamic  system
state,  leading  to  more  efficient  utilization  of  edge
resources  and  fairer  offloading  decisions.  However,
when  becomes  too  large,  the  algorithm  may
overshoot  the  optimal  policy  and  cause  oscillations  in
the  performance.  The  results  highlight  the  importance
of selecting an appropriate learning rate for the SMDP-
based offloading strategy in MCSP-SMDP-HC.

θ

θ

To demonstrate  the  robustness  of  MCSP-SMDP-HC
in  handling  diverse  digital  healthcare  tasks,  we
evaluate  its  performance  under  different  levels  of  task
heterogeneity.  We define  the  task  heterogeneity  factor

 as  the  ratio  of  the  tasks’ maximum  to  minimum
computational requirement. A larger  value indicates a
more heterogeneous task set.

θ

Figure  9 presents  the  ATCT  and  TDR  performance
of the compared algorithms with different  values. As
the task heterogeneity increases, the ATCT and TDR of
all algorithms increase, as it becomes more challenging
to  accommodate  the  diverse  computational
requirements of the tasks. However, MCSP-SMDP-HC
consistently outperforms the baseline methods, with an
average  reduction  of  32.1% in  ATCT  and  49.5% in
TDR  compared  to  BCCED.  The  alternative  reward
estimation  and  adaptive  scheduling  in  MCSP-SMDP-
HC enable it to effectively handle heterogeneous tasks
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Fig. 5    ERU performance of the compared algorithms.
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Fig. 6    FI performance of the compared algorithms.
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Fig. 7    ATCT  and  TDR  performance  of  MCSP-SMDP-HC
with different V values.
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Fig. 8    ERU and FI performance of MCSP-SMDP-HC with
different α values.
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and maintain a low task dropping rate.
Finally, we evaluate the scalability of MCSP-SMDP-

HC by varying the number of mobile devices from 50
to  500. Figure  10 shows  the  ATCT  and  ERU
performance  of  MCSP-SMDP-HC  and  the  baseline
methods in a large-scale edge computing environment.

As the number of devices increases, the ATCT of all
algorithms  increases  due  to  the  higher  computational
load.  However,  MCSP-SMDP-HC  maintains  its
performance advantage over the baseline methods, with
an  average  reduction  of  26.3% in  ATCT compared  to
BCCED.  These  results  demonstrate  the  scalability  of
MCSP-SMDP-HC  in  handling  many  mobile  devices
and  its  ability  to  efficiently  utilize  edge  resources  in
large-scale digital healthcare scenarios.

To  further  evaluate  the  robustness  of  the  proposed
MCSP-SMDP-HC  algorithm,  we  conduct  simulations
with  different  task  arrival  patterns,  including  Poisson,

bursty,  and  periodic  arrivals. Table  3 shows  the
performance  comparison  under  different  task  arrival
patterns.

The  results  show  the  algorithm’s  performance
advantage  over  the  baseline  methods  across  different
arrival  patterns.  In scenarios with Poisson arrivals,  the
algorithm  achieves  an  average  reduction  of  29.4% in
ATCT  and  47.2% in  TDR  compared  to  the  best-
performing  baseline  method,  BCCED.  Under  bursty
arrival  conditions,  the  algorithm’s  performance  gains
are  even  more  pronounced,  with  an  average  reduction
of 35.1% in ATCT and 52.8% in TDR. The algorithm
still  outperforms  the  baselines  for  periodic  arrivals,
with  an  average  reduction  of  26.7% in  ATCT  and
43.5% in  TDR.  These  results  demonstrate  the
adaptability  of  the  MCSP-SMDP-HC  algorithm  to
various  task  arrival  patterns,  highlighting  its  potential
for real-world deployment in digital healthcare systems
with diverse workload characteristics.

In  summary,  the  simulation  results  demonstrate  the
superior  performance  of  the  proposed  MCSP-SMDP-
HC  algorithm  compared  to  state-of-the-art  baseline
methods  in  various  aspects,  including  task  completion
time, task dropping rate, edge resource utilization, and
fairness.  MCSP-SMDP-HC  exhibits  robustness  in
handling  heterogeneous  tasks  and  scalability  in  large-
scale  edge  computing  environments.  The  efficient
offloading  and  scheduling  strategies  employed  by
MCSP-SMDP-HC  enable  it  to  effectively  address  the
challenges  of  cooperative  digital  healthcare  task
scheduling  and  resource  management  in  edge
intelligence  systems,  providing  reliable  healthcare
services.

5　Conclusion

This paper addresses the challenge of cooperative task
scheduling  and  resource  management  for  digital
healthcare  applications  in  edge  intelligence  systems.
We  proposes  a  novel  framework,  MCSP-SMDP-HC,
which combines the MCSP for task scheduling and the
SMDP  with  alternative  reward  estimation  for
computation  offloading.  The  MCSP-based  scheduling
algorithm  efficiently  explores  and  exploits  the
combinatorial  task  scheduling  space  to  minimize
healthcare task completion time and costs. The SMDP-
based  offloading  strategy  incorporates  alternative
reward  estimation  to  improve  robustness  against
dynamic  variations  in  the  system  environment.  We
conduct  extensive  simulations  using  real-world
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Fig. 9    ATCT  and  TDR  performance  of  the  compared
algorithms with different θ values.
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Fig. 10    ATCT and ERU performance of MCSP-SMDP-HC
and  the  baseline  methods  in  a  large-scale  edge  computing
environment.
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healthcare data to evaluate the performance of MCSP-
SMDP-HC  and  compare  it  with  state-of-the-art
baseline methods. The results demonstrate that MCSP-
SMDP-HC  consistently  outperforms  the  baselines
regarding average task completion time, task dropping
rate,  edge  resource  utilization,  and  fairness.  The
proposed framework significantly improve system cost
reduction,  task  success  rate  enhancement,  and  fair
resource  allocation  among  multiple  users.  MCSP-
SMDP-HC  exhibits  robustness  in  handling
heterogeneous tasks and scalability in large-scale edge
computing  environments,  making  it  suitable  for  real-
world digital healthcare applications.

While  the  proposed  MCSP-SMDP-HC  algorithm
demonstrates  superior  performance  compared  to  the
baseline  methods,  it  is  important  to  acknowledge
potential  limitations  in  handling  large-scale  edge
computing  environments  with  many  mobile  devices.
As  the  number  of  devices  increases,  the  algorithm’s
computational  complexity  may  become  a  bottleneck,
affecting  its  scalability  and  real-time  performance.
Additionally,  the  increased  number  of  devices  may
lead  to  higher  communication  overhead  and  latency,
impacting  the  timely  completion  of  critical  healthcare
tasks.  To mitigate  these limitations,  future work could

explore the development of distributed and hierarchical
architectures,  where  the  computational  load  is
distributed  among  multiple  edge  servers  and  the
decision-making process is decentralized. Furthermore,
incorporating  advanced  communication  technologies,
such  as  5G  and  beyond,  can  help  reduce  latency  and
improve  the  system’s  overall  performance  in  large-
scale scenarios.
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