
This article has been accepted and published on J-STAGE in
advance of copyediting. Content is final as presented.

 DOI: 10.1587/elex.22.20250364
 Received: June 19, 2025
 Accepted: June 30, 2025
 Publicized: July 9, 2025

Copyright © 2025 The Institute of Electronics, Information and Communication Engineers

IEICE Electronics Express, Vol.21, No.1, 1–6

LETTER

TrojanHound: Structure-Aware Subgraph Analysis for Hardware Trojan
Detection in Gate-Level Designs

Xing Hu1, 2, Yang Zhang1, 2, a), Huan Guo1, 2, Jiahe Shi1, 2, Haowen Wang1, 2, Zhenyu Zhao1, 2, and Keqin Li3

Abstract The integration of third-party IP cores into IC designs signif-
icantly increases the risk of stealthy hardware Trojans (HTs). Existing
detection approaches, based on functional testing, logic verification, or ma-
chine learning, often focus on individual gates and overlook the structural
patterns across Trojan circuits. Moreover, they lack diagnostic capabili-
ties and typically require manual inspection. This work presents Trojan-
Hound, a hierarchical detection framework that unifies gate-level analysis
and circuit-level diagnosis. It leverages a graph neural network with adap-
tive neighborhood aggregation to identify suspicious nodes, merges related
components into candidate subcircuits using subgraph fusion, and verifies
HT presence through topology-aware analysis based on betweenness cen-
trality. Experiments on 14 TrustHub benchmarks show that TrojanHound
achieves a 95.64% true positive rate and a 97.44% F1-score, without false
positives. By integrating structural learning with topological reasoning,
this method enables accurate and automated HT detection in complex ICs.
Keywords: Hardware Trojans, gate-level netlist, graph neural networks,
subgraph fusion, betweenness centrality
Classification: Integrated circuits

1. Introduction

The integration of third-party intellectual property (IP) cores
into modern chip designs has become a cornerstone of effi-
cient and cost-effective semiconductor development. Mean-
while, insufficiently secured electronic design automation
(EDA) tools introduce stealthy attack vectors during critical
design phases. However, this practice introduces significant
security risks in the form of hardware Trojans (HTs), which
can be embedded during the design phase to compromise
system functionality or confidentiality.

Contemporary HT detection methodologies predomi-
nantly employ three technical paradigms: functional test pat-
tern generation, logic-level signature analysis, and machine
learning-based anomaly detection. However, our evaluation
of TrustHub benchmarks reveals critical limitations in these
approaches when confronting modern HT implementations.
Foremost, single-gate analysis techniques—though compu-
tationally efficient—exhibit false positive rates due to their
inability to distinguish malicious functionality from benign
logic redundancy, particularly in power gating structures

1 College of computer science and Technology, National Univer-
sity of Defense Technology, Changsha, China

2 Key Laboratory of Advanced Microprocessor Chips and Sys-
tems, China

3 State University of New York, USA
a) zhangyang@nudt.edu.cn

and error correction circuits. More critically, these methods
fundamentally misapprehend HTs’ structural nature as coor-
dinated multi-gate circuits. Compounding these issues, cur-
rent subgraph analysis frameworks lack systematic mapping
between topological patterns and attack semantics. These
cascading deficiencies underscore the imperative for a uni-
fied detection paradigm that synergistically combines gran-
ular gate-level feature extraction with macroscopic circuit-
level topological reasoning, enabling both precise HT detec-
tion and diagnosis.

To address the limitations of existing methods, we propose
TrojanHound, a betweenness-centric subgraph morphome-
try that offers significant innovations in HT detection and
diagnosis. The key contributions of our work are as follows:

1) TrojanHound introduces a three-stage pipeline that
seamlessly integrates gate-level analysis with circuit-level
understanding. This approach bridges the granularity gap
between individual gates and multi-gate HTs, enabling com-
prehensive detection and .

2) TrojanHound introduces Multi-Suspect Subgraph Fu-
sion (MSSF), which clusters suspicious nodes into candi-
date HT components through dual functional-structural con-
straints. By leveraging HTs’ intrinsic connectivity patterns,
MSSF generates context-aware subgraphs that address de-
tection blind spots in complex interconnect topologies in-
herent to conventional subgraph-based methods.

3) TrojanHound introduces a betweenness centrality met-
rics that aligns subgraph center with known HT structure
characteristic. By integrating topological morphology anal-
ysis with node betweenness centrality metrics, this method
precisely identifies triggers. Then graph-based visualization
is employed to present the analyzed structures.

4) TrojanHound pioneers the integration of topological
structural analysis with graph neural networks (GNNs), at-
taining a 97.4% F1-score metric while revealing signature
”dumbbell-shaped” circuit configurations in HTs.

2. RELATED WORK

2.1 Functional Testing Methods
Functional testing detects HTs by analyzing circuit responses
to specific input stimuli. The Unused Circuit Identification
(UCI) method [1] identifies potentially infected regions by
detecting logic never activated by any test pattern. Saha et al.
[2] enhance test vector generation using a genetic algorithm
to solve the Boolean satisfiability problem. Lyu et al. [3] im-
prove rare trigger activation by generating test patterns based

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.
Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

1

mailto:zhangyang@nudt.edu.cn
https://creativecommons.org/licenses/by-nc-nd/4.0/deed

IEICE Electronics Express, Vol.21, No.1, 1–6

on repeated maximum clique sampling with SMT solvers.
However, functional testing is limited by incomplete access
to third-party IP cores and increasing design complexity. It
also struggles to detect HTs that do not affect observable
behavior, often requiring labor-intensive manual analysis.

2.2 Logical Analysis Methods
Testability metrics such as controllability and observability
assess how easily circuit nodes can be set and observed,
helping to flag low-testability nodes as potential HT targets.
Probability-based methods extend this by analyzing signal
switching activity under test vectors, exploiting HTs’ low ac-
tivation likelihood. The COTD framework [4] models testa-
bility thresholds for localization, while follow-up studies
[5–9] improve sensitivity via refined thresholds and multi-
dimensional correlation. Dynamic models based on switch-
ing probabilities [10, 11] further distinguish HT-infected
from normal circuits. Hybrid methods by Huang et al. [12]
and Su et al. [13] combine structural and behavioral features
into high-dimensional representations, and Chen [14] intro-
duces a multi-level framework incorporating formal verifi-
cation. However, such logic analysis methods often yield
high false positives due to similar low-activity patterns in
benign circuits, requiring additional manual inspection.

2.3 Machine Learning Approaches
2.3.1 Traditional Machine Learning Approaches
Hasegawa et al. [15] pioneer systematic feature engineering,
extracting 51 HT-related features from netlists. By apply-
ing feature importance analysis, they identified 11 optimal
features and used a random forest classifier. Their sub-
sequent work [16] introduce a multi-layer neural network
architecture to end-to-end feature learning. Kurihara [17]
validate the superiority of neural networks in complex pat-
tern recognition tasks. Yamashita et al. [18] enhance adver-
sarial robustness by selecting 24 HT-specific features from
76 candidates. Lu [19] propose an unsupervised cluster-
ing method based on information entropy and density-based
clustering. Kok [20] and Sarihi [21] integrate testability
metrics with structural characteristics, employing machine
learning classifiers to discriminate between standard circuit
gates and HT-infected components. Similarly, Karthikeyan
[22] and Priyadharshini [23] leverage a fusion of controlla-
bility analysis and machine learning techniques to classify
gates as either normal or anomalous.
2.3.2 Graph Neural Network (GNN) Techniques
GNNs excel in processing graph-structured netlist data. Mu-
ralidhar’s GATE Net [24] employs supervised contrastive
learning on signal path subgraphs (spanning gate-level nodes
to inputs). TrojanSAINT [25] accelerates large-scale netlist
analysis using GraphSAINT subgraph sampling. Hasegawa
[26–28] develops a node-level detection framework lever-
aging GNNs and graph transformer architectures to analyze
structural and behavioral anomalies in gate-level netlists,
enabling precise localization of HT-compromised gates.
This approach integrates graph transformer layers to cap-
ture long-range dependencies between circuit components,
while multi-head attention mechanisms enhance anomaly
pattern recognition across hierarchical netlist structures.

The BGNN-HT model [29] introduces bidirectional struc-
tural context awareness with graph attention mechanisms.
This approach effectively captures topological anomalies in
HT-infected units.
2.3.3 Cross-Modal Fusion Methods
Emerging cross-modal techniques treat netlists as linguistic
sequences: gates as ”words” and interconnections as ”syn-
tax.” GramsDet [30] and LMDet [31] utilize neural embed-
dings and language models, respectively.

While machine learning-based detection methods lever-
age learned patterns to identify HTs, they lack in-depth
structural analysis of the malicious circuitry. In-depth
structural/behavioral analysis of detected Trojan candidates
streamlines collaborative analysis workflows.

3. Methodology

3.1 Attack Model

RTL

Code

Gate-level

Netlist
Specification Layout Die

design phase
manufacture

phase
3P-EDA 3P-EDA Foundry3PIP 3PIP 3PIP

Fig. 1 Vulnerabilities in the semiconductor supply chain.

This study investigates vulnerabilities in the semiconduc-
tor supply chain (Fig. 1) that enable HT insertion through
third-party intellectual property (3PIP) components, with
particular emphasis on risks arising during integrated cir-
cuit (IC) design phases. The increasingly distributed and
collaborative paradigm of modern chip development intro-
duces critical security gaps that malicious actors can exploit
to infiltrate design workflows. Specifically, unvetted 3PIP
vendors may deliberately supply compromised cores con-
taining concealed circuitry, while geographically dispersed
design teams contracted for specialized tasks could lever-
age their privileged access to implant malicious logic. Be-
yond untrusted IP sources, vulnerabilities persist in tech-
nical workflows - insufficiently secured electronic design
automation tools could surreptitiously insert Trojans dur-
ing critical translation phases such as automated conver-
sion of register-transfer-level designs to gate-level netlists.
Unlike foundry-level attacks, these design-phase compro-
mises enable more profound system penetration by allow-
ing adversaries to strategically embed malicious payloads
within mission-critical functional blocks prior to manufac-
turing. The analysis highlights how the semiconductor in-
dustry’s growing dependence on external partnerships and
automated toolchains, while economically imperative, inad-
vertently creates an expanded attack surface for sophisticated
hardware exploits. This paper primarily concentrates on HT
attack scenarios targeting gate-level netlist implementations.

3.2 Overall Framework
The proposed framework systematically addresses HT detec-
tion through a three-stage pipeline, as illustrated in Fig. 2.
The framework initiates with suspect node screening lever-
aging GateGNN, a hybrid model combining graph neural
networks (GNN) with gating mechanisms to prioritize nodes
exhibiting abnormal signatures. This stage filters noise

2

IEICE Electronics Express, Vol.21, No.1, 1–6

from circuit graphs, generating candidate nodes for further
analysis. Subsequently, the multi-suspect subgraph fusion
(MSSF) module dynamically aggregates localized circuit
regions centered on these candidates. The final subgraph
analysis stage employs topology-aware detection techniques
to identify HTs’ characteristic dumbbell-shaped patterns.

Graph

construction

Suspect Node

Screening

subgraph

classification

Final

Decision

Output Result

Input Data

Subgraph

Expansion

module test（A，SUM);

input [31:0] A;

output [31:0] SUM;

wire[31:2] carry;

NOR2X0 U1 (.IN1(n2459),

.IN2(n2309), .QN(Tj_OUT1));

NOR2X0 U2 (.IN1(n2237),

.IN2(n2279), .QN(Tj_OUT2));

Fig. 2 Overall Framework.

3.3 Suspect Node Screening (GateGNN)
The GateGNN architecture comprises three specialized lay-
ers to achieve suspect node screening (shown in Fig. 3). 1)
Embedding layer: Translates raw circuit graph nodes into
feature vectors encoding functional properties (e.g., logic
gate type). 2) GNN layers: Process node relationships via
graph convolution mechanisms enhanced with hardware-
aware constraints. Each layer iteratively refines node embed-
dings by adaptively aggregating neighborhood features. 3)
Linear classification layer: Classify nodes as normal nodes
or HT nodes. The basic architecture of the graph attention
network is detailed in [32]. Through graph-based detec-
tion, this stage produces refined candidate nodes for further
analysis.

Fig. 3 The GateGNN architecture.

3.4 Multi-Suspect Subgraph Fusion (MSSF)
Following suspect node screening via GateGNN, the MSSF
module dynamically constructs context-aware subgraphs by
leveraging the intrinsic connectivity of Trojan structures,
which is shown in Algorithm 1.

Algorithm 1 Multi-Suspect Subgraph Fusion with k-Hop
Connectivity
Require:
1: V𝑠 ⊆ 𝑉 : Set of suspect nodes
2: 𝐺 = (𝑉, 𝐸): Circuit graph
3: 𝑘: Maximum expansion hops (default: 3, chosen based on

Trojan structure and synthesis variations)
Ensure:
4: G 𝑓 : Set of fused subgraphs
5: Initialize candidate queue Q ← V𝑠

6: Initialize fused subgraphs G 𝑓 ← ∅
7: Initialize visited nodesV𝑣 ← ∅
8: while Q ≠ ∅ do
9: 𝑣𝑖 ← Q.dequeue()

10: if 𝑣𝑖 ∉ V𝑣 then
11: V𝑣 ←V𝑣 ∪ {𝑣𝑖}
12: N𝑘 (𝑣𝑖) ← kHopNeighborhood(𝑣𝑖 , 𝑘)
13: for all 𝑣 𝑗 ∈ V𝑠 \ {𝑣𝑖} do
14: B𝑖 𝑗 ← N𝑘 (𝑣𝑖) ∩ N𝑘 (𝑣 𝑗) \ V𝑠

15: if B𝑖 𝑗 ≠ ∅ then
16: Construct subgraph 𝐺𝑖 𝑗 ←

InducedSubgraph({𝑣𝑖 , 𝑣 𝑗 } ∪ B𝑖 𝑗)
17: G 𝑓 ← G 𝑓 ∪ {𝐺𝑖 𝑗 }
18: for all 𝑏 ∈ B𝑖 𝑗 do
19: if 𝑏 ∉ Q ∧ 𝑏 ∉ V𝑣 then
20: Q.enqueue(𝑏)
21: end if
22: end for
23: end if
24: end for
25: end if
26: end while
27: Merge overlapping subgraphs:
28: G 𝑓 ← MergeConnectedComponents(G 𝑓)

The MSSF algorithm dynamically connects suspect nodes
through their k-hop neighborhoods to identify potential Tro-
jan trigger paths. Starting with an initial set of suspect nodes,
the algorithm iteratively: 1) discovers bridge nodes connect-
ing pairs of suspects within k hops, 2) constructs candidate
subgraphs containing these suspects and bridge nodes, and 3)
expands the search by adding bridge nodes to the processing
queue. A key innovation is the dual-phase connectivity anal-
ysis that first establishes local k-hop neighborhoods around
individual suspects, then detects inter-suspect connections
through shared bridge nodes. The final merging phase com-
bines overlapping subgraphs using connected component
analysis, effectively reconstructing complete Trojan topolo-
gies from fragmented initial detections. Thus, the MSSF
aggregates suspicious nodes into context-aware subgraphs
through dual functional-structural constraints.

The hyperparameter 𝑘 determines the maximum neigh-
borhood distance allowed for merging suspect nodes. In
principle, Trojan nodes are typically tightly coupled and
located within 1-hop proximity. However, due to structural
transformations introduced by synthesis or obfuscation, such
proximity may not always hold. Therefore, we conserva-
tively set 𝑘 = 3 to ensure robust subgraph reconstruction.
This choice balances the risk of missing interrelated Trojan
nodes (if 𝑘 is too small) and incorporating excessive benign
logic (if 𝑘 is too large), and has been empirically validated
across multiple benchmarks.

3

IEICE Electronics Express, Vol.21, No.1, 1–6

3.5 HT Diagnosis: Subgraph Analysis Based on Be-
tweenness Centrality

In IC security, subgraph analysis establishes itself as a struc-
tural feature-based methodology for HT diagnosis. This
approach enables trigger node localization and HT identi-
fication through mining anomalous topological patterns in
netlists. The foundational principle stems from the obser-
vation that HTs – designed for covert activation and func-
tional manipulation – inherently form distinctive subgraph
structures. Quantitative pattern matching of these structures
provides precise malicious component localization.

The HT triggering mechanism requires control signal
propagation across multiple functional modules, generating
unique betweenness centrality characteristics. To identify
potential trigger nodes, we compute the betweenness cen-
trality (CB) of each node within a suspicious subgraph and
select the node with the highest CB value as the trigger can-
didate. This strategy reflects the assumption that the core
trigger node serves as a central interconnection point in the
HT’s control path, typically exhibiting the most prominent
structural influence in the subgraph.

Through decomposition of the global circuit graph into
suspicious subgraphs using the aforementioned methods, we
compute node-level betweenness centrality to quantify hub
status:

𝐶𝐵(𝑣) =
∑︁
𝑠≠𝑣≠𝑡

𝜎𝑠𝑡 (𝑣)
𝜎𝑠𝑡

(1)

where 𝜎𝑠𝑡 denotes the total number of shortest paths be-
tween nodes 𝑠 and 𝑡, with 𝜎𝑠𝑡 (𝑣) specifically counting paths
traversing node 𝑣. The node with the maximum CB value in
each subgraph is selected for further analysis.

HTs often adopt dumbbell-shaped topologies for covert
activation and payload delivery. This structure typically in-
cludes three parts: a frontend trigger cluster with multi-input
logic, a backend payload cluster linked to critical units, and
a narrow trigger channel with minimal-node paths. Mor-
phological analysis is then used to detect such distinctive
connection patterns.

By combining topological morphology with node be-
tweenness centrality, this method accurately identifies trig-
ger nodes. The resulting structures are visualized graphi-
cally, enabling clear interpretation of concealed HT patterns
while minimizing manual analysis effort through reduced
global noise interference.

4. Experimental Analysis

4.1 Experimental Setup and Metrics
The dataset is obtained from TrustHub [33]. Within the
GateGNN framework, we adopt a leave-one-out method,
ensuring that the test data remains unseen during the
training phase. The detection performance is quanti-
fied using standard statistical metrics derived from con-
fusion matrix elements: true positives (𝑇𝑃), true neg-
atives (𝑇𝑁), false positives (𝐹𝑃), and false negatives
(𝐹𝑁). Key evaluation measures include: True Posi-
tive Rate (𝑇𝑃𝑅/𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), False Positive
Rate (𝐹𝑃𝑅)=𝐹𝑃/(𝐹𝑃 + 𝑇𝑁), 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=𝑇𝑃/(𝑇𝑃 + 𝐹𝑃),

𝐹1=2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙).

4.2 Results Comparison
To address the precision limitations and interpretability con-
straints of existing learning-based HT detection methods (
[26–28], collectively referred to as GateGNN), our frame-
work incorporates graph fusion and subgraph-level analy-
sis to enhance structural reasoning. Recognizing the lack
of standardized datasets and the considerable variation in
experimental settings across prior works—including differ-
ences in dataset construction, model depth, and hyperpa-
rameters—we adopt an internal ablation-style evaluation.

Specifically, we perform a controlled comparison between
the full TrojanHound framework and its base GateGNN com-
ponent, under identical training configurations, data splits,
and optimization settings. This design isolates the incre-
mental contributions of the subgraph fusion and topolog-
ical diagnosis modules. Although external benchmarking
against third-party methods is limited by inconsistent public
benchmarks and implementation details, our evaluation of-
fers a fair and reproducible way to quantify the added value
of our structural extensions.

The comparative results on 14 TrustHub datasets are
shown in Fig. 4, Fig. 5, and Fig. 6, demonstrating consistent
improvements in true positive rate and F1-score, alongside
a reduction in false positives. These improvements validate
the effectiveness of incorporating structural topology into
node-level detection for hardware Trojan identification.

Fig. 4 Comparison of TPR between GateGNN and TrojanHound.

The comparative TPR evaluation demonstrates signifi-
cant improvements in Trojan detection accuracy through
the proposed TrojanHound framework. As shown in the
benchmark results, TrojanHound achieves perfect recall
(TPR=1.0) across 11 of 14 test cases, outperforming the
baseline GateGNN approach that attains maximum recall
in only 6 instances. Particularly noteworthy are the critical
scenarios where TrojanHound resolves detection failures of
the pure machine learning method: 1) In s15850-T100, re-
call improves by 60% (0.615 vs 0.385); 2) For s35932-T100,
detection capability reaches full coverage (1.0 vs 0.615); 3)
Complex Trojans like s38417-T300 show complete mitiga-
tion of previous 9.3% false negatives.

The comparative FPR evaluation reveals critical insights
into the operational characteristics of TrojanHound versus
the baseline GateGNN approach. Notably, both method-
ologies demonstrate perfect false positive rate (FPR) sup-
pression (0.00%) across 10 of 13 test cases, including
all RS232 and s15850 circuit variants. However, sub-

4

IEICE Electronics Express, Vol.21, No.1, 1–6

Fig. 5 Comparison of FPR between GateGNN and TrojanHound.

tle differences emerge in complex scenarios: TrojanHound
achieves absolute FPR elimination (0.00%) for s35932-T300
and s38417 series, while GateGNN exhibits residual false
alarms (0.0079% for s35932 variants, 0.0078% for s38417-
T200/300). This 100% false positive mitigation in challeng-
ing cases confirms the enhanced specificity of our graph
fusion mechanism. The persistent 0.00% FPR suggests ro-
bust discrimination between legitimate circuit patterns and
sophisticated HTs, addressing a critical limitation in ML-
based detection systems.

Fig. 6 Comparison of F1 between GateGNN and TrojanHound.

The comprehensive F1 evaluation demonstrates substan-
tial performance enhancements achieved by the Trojan-
Hound framework compared to the baseline GateGNN
methodology. As evidenced by the benchmark results, Tro-
janHound attains perfect F1 (1.00) in 11 of 14 test cases,
including all RS232 variants and critical s35932 configu-
rations (T100-T300), while GateGNN achieves maximum
scores in only 5 instances.

Table I Average TPR, FPR, and F1 Score Comparison: GateGNN vs.
TrojanHound.

Method TPR/Recall FPR F1

GateGNN [26–28] 88.7241% 0.0028% 91.9947%
TrojanHound 95.6371% 0.00% 97.4393%

The comparative evaluation (shown in Table I) demon-
strates measurable improvements in HT detection through
the proposed TrojanHound framework. With a statisti-
cally significant 7.8% increase in true positive rate (95.64%
vs 88.72%) and complete suppression of false positives
(0.00% FPR vs 0.0028%), the methodology achieves en-
hanced detection reliability while maintaining operational
safety—critical requirements for industrial hardware ver-
ification. The 5.4% elevation in F1-score (97.44% vs

91.99%) reflects improved precision-recall balance com-
pared to conventional graph neural network approaches.
These quantitative improvements validate the effectiveness
of integrating structural graph analysis with machine learn-
ing paradigms for hardware security applications, suggesting
practical value for modern IC verification workflows.

4.3 Case Study
The s35932-T100 circuit analysis demonstrates the multi-
stage detection capability of our framework. Initial screen-
ing with GateGNN identified 9 candidate nodes exhibiting
anomalous behavior patterns. Subsequent multi-scale sub-
graph fusion (MSSF) refined these candidates into two struc-
turally distinct subgraphs (𝐺1 and 𝐺2).

Fig. 7 presents a heatmap visualization of betweenness
centrality distribution within the Trojan-affected subgraph
𝐺2 of circuit s35932-T100. The thermal gradient (dark-
ening with centrality increase) reveals a distinctive bipar-
tite structure - a dumbbell-shaped topology connecting two
high-centrality clusters through critical bridge nodes. This
structural pattern aligns with established HT characteris-
tics: 1) Dense interconnectivity between trigger and payload
modules, 2) Strategic placement of high-centrality control
nodes (e.g., 𝑇 𝑗 𝑇𝑟𝑖𝑔𝑔𝑒𝑟, and 3) Concentrated data path-
ways facilitating covert signal propagation. Contrastingly,
subgraph𝐺1 manifests as an isolated node lacking structural
complexity essential for malicious functionality. Our diag-
nostic framework leverages these topological fingerprints to
achieve higher classification accuracy, successfully distin-
guishing all Trojan-embedded nodes in 𝐺2 (true positives)
from benign components in 𝐺1 (true negatives). The spatial
correlation between centrality hotspots and known Trojan
modules validates our graph-theoretic detection criteria for
security-critical circuit analysis.

Fig. 7 Visualization of Trojan Gate Relationships

5. Conclusion

This paper introduces TrojanHound, a hierarchical and
structure-aware framework for detecting HTs in gate-level
netlists. By leveraging adaptive graph neural networks, sub-
graph fusion, and topological analysis, the approach cap-
tures both local and global circuit features for accurate and
automated Trojan identification. Extensive evaluations on
TrustHub benchmarks demonstrate superior detection per-

5

IEICE Electronics Express, Vol.21, No.1, 1–6

formance and zero false positives. The results validate the
effectiveness of integrating graph learning with structural
reasoning in advancing hardware security verification. Fu-
ture work will focus on integrating the diagnostic process
into the neural network framework in an adaptive manner,
jointly optimizing key hyperparameters (e.g., 𝑘-hop expan-
sion and betweenness centrality threshold) during training,
to enable end-to-end Trojan detection and localization with
improved automation and interpretability, so as to adapt to a
wider variety of HT structures.

References

[1] Hicks M, et al.: “Overcoming an untrusted computing base: De-
tecting and removing malicious hardware automatically,” IEEE
symposium on security and privacy. (2010) 2010 159 (DOI:
10.1109/SP.2010.18).

[2] Saha S, et al.: “Improved test pattern generation for HT detection us-
ing genetic algorithm and boolean satisfiability,” Cryptographic Hard-
ware and Embedded Systems–CHES 2015: 17th International Work-
shop. Springer Berlin Heidelberg. (2015) 577 (DOI: 10.1007/978-3-
662-48324-4 29).

[3] Lyu Y, et al.: “Scalable activation of rare triggers in HTs by repeated
maximal clique sampling,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 40 (2020) 1287 (DOI:
10.1109/TCAD.2020.3019984).

[4] Salmani H: “COTD: Reference-free hardware trojan detection and re-
covery based on controllability and observability in gate-level netlist,”
IEEE Transactions on Information Forensics and Security. 12 (2016)
(DOI: 10.1109/TIFS.2016.2613842).

[5] Kok C H, et al.: “Classification of Trojan nets based on SCOAP
values using supervised learning,” IEEE international symposium
on circuits and systems (ISCAS). (2019) 1 (DOI: 10.1109/IS-
CAS.2019.8702462).

[6] Salmani H: “Gradual-N-Justification (GNJ) to reduce false-positive
hardware Trojan detection in gate-level Netlist,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems. 30 (2022) 515 (DOI:
10.1109/TVLSI.2022.3143349).

[7] Salmani H: “The improved cotd technique for hardware trojan detec-
tion in gate-level netlist,” Proceedings of the Great Lakes Symposium
on VLSI 2022. (2022) 449.

[8] Tebyanian M, et al.: “SC-COTD: Hardware trojan detection
based on sequential/combinational testability features using ensem-
ble classifier,” Journal of Electronic Testing. 37 (2021) 473 (DOI:
10.1007/s10836-021-05960-2).

[9] Lo P Y, et al.: “Semi-supervised trojan nets classification using
anomaly detection based on SCOAP features,” IEEE International
Symposium on Circuits and Systems (ISCAS). (2022) 2423 (DOI:
10.1109/ISCAS48785.2022.9937236).

[10] Zou M, et al.: “Potential trigger detection for hardware trojans,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems. 37 (2017) 1384 (DOI: 10.1109/TCAD.2017.2753201).

[11] Mehta U, et al.: “Transition probability-based detection of hardware
trojan in digital circuits,” Proceedings of Sixth International Congress
on Information and Communication Technology. (2021) 619 (DOI:
10.1007/978-981-16-2377-6 57).

[12] Huang K, et al.: “Trigger identification using difference-amplified
controllability and dynamic transition probability for hardware trojan
detection,” IEEE Transactions on Information Forensics and Security.
15 (2019) 3387 (DOI: 10.1109/TIFS.2019.2946044).

[13] Su Y, et al.: “A stealthy hardware trojan design and corre-
sponding detection method,” 2021 IEEE International Symposium
on Circuits and Systems (ISCAS). (2021) 1 (DOI: 10.1109/IS-
CAS51556.2021.9401770).

[14] Chen X, et al.: “Hardware trojan detection in third-party digital intel-
lectual property cores by multilevel feature analysis,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems.
37 (2017) 1370 (DOI: 10.1109/TCAD.2017.2748021).

[15] Hasegawa K, et al.: “Trojan-feature extraction at gate-level netlists

and its application to hardware-Trojan detection using random forest
classifier,” IEEE International Symposium on Circuits and Systems
(ISCAS). (2017) 1 (DOI: 10.1109/ISCAS.2017.8050827).

[16] Hasegawa K, et al.: “Hardware Trojans classification for gate-level
netlists using multi-layer neural networks,” IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS).
(2017) 227 (DOI: 10.1109/ISCAS.2017.8050827).

[17] Kurihara T, et al.: “Evaluation on hardware-Trojan detection at gate-
level IP cores utilizing machine learning methods,” IEEE 26th Inter-
national Symposium on On-Line Testing and Robust System Design
(IOLTS). (2020) 1 (DOI: 10.1109/IOLTS50870.2020.9159740).

[18] Yamashita K, et al.: “Effective Hardware-Trojan Feature Extraction
Against Adversarial Attacks at Gate-Level Netlists,” IEEE 28th Inter-
national Symposium on On-Line Testing and Robust System Design
(IOLTS). (2022) 1 (DOI: 10.1109/IOLTS56730.2022.9897557).

[19] Lu R, et al.: “HTDet: A clustering method using information entropy
for hardware Trojan detection,” Tsinghua Science and Technology. 26
(2020) 48 (DOI: 10.26599/TST.2019.9010047).

[20] Kok C H, et al.: “Net classification based on testability
and netlist structural features for hardware Trojan detection,”
IEEE 28th Asian Test Symposium (ATS). (2019) 105 (DOI:
10.26599/TST.2019.9010047).

[21] Sarihi A, et al.: “ Multi-criteria hardware Trojan detection: A re-
inforcement learning approach,” IEEE 66th International Midwest
Symposium on Circuits and Systems (MWSCAS). (2023) 1093 (DOI:
10.1109/MWSCAS57524.2023.10406091).

[22] K. S, et al.: “Hardware Trojan Detection using Unsuper-
vised Machine Learning Algorithms in the Gate-level Netlist,”
IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT). (2024) 1 (DOI:
10.1109/CONECCT62155.2024.10677111).

[23] Priyadharshini M, et al.: “A hardware trojan detection method for
gate-level netlists employing the CAMELOT measure,” 7th Interna-
tional Conference on Devices, Circuits and Systems (ICDCS). (2024)
183 (DOI: 10.1109/ICDCS59278.2024.10560972).

[24] Muralidhar N, et al.: “Contrastive graph convolutional networks for
hardware Trojan detection in third party IP cores,” IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST).
(2021) 181 (DOI: 10.1109/HOST49136.2021.9702276).

[25] Lashen H, et al.: “TrojanSAINT: Gate-level netlist sampling-based
inductive learning for hardware Trojan detection,” IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). (2023) 1 (DOI:
10.1109/ISCAS46773.2023.10181403).

[26] Hasegawa K, et al.: “Node-wise hardware trojan detection based on
graph learning,” IEEE Transactions on Computers. 74 (2023) 749
(DOI: 10.1109/TC.2023.3280134).

[27] Imangholi A, et al.: “FAST-GO: Fast, Accurate, and Scalable Hard-
ware Trojan Detection using Graph Convolutional Networks,” 25th
International Symposium on Quality Electronic Design (ISQED).
(2024) 1 (DOI: 10.1109/ISQED60706.2024.10528759).

[28] Chen M, et al.: “TrojanFormer: Resource-Efficient Hardware Tro-
jan Detection Using Graph Transformer Network,” 7th International
Conference on Electronics Technology (ICET). (2024) 165 (DOI:
10.1109/ICET61945.2024.106727629).

[29] Zhan P, et al.: “ Bgnn-ht: Bidirectional graph neural network for hard-
ware trojan cells detection at gate level,” IEEE International Sympo-
sium on Circuits and Systems (ISCAS). (2023) 1 (DOI: 10.1109/IS-
CAS46773.2023.10181569).

[30] Lu R, et al.: “GramsDet: Hardware Trojan detection based on re-
current neural network,” IEEE 28th Asian Test Symposium (ATS).
(2019) 111 (DOI: 10.1109/ATS47505.2019.00021).

[31] Shen H, et al.: “Lmdet: A “naturalness” statistical method
for hardware trojan detection,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. 26 (2017) 720 (DOI:
10.1109/TVLSI.2017.2781423).

[32] Veličković P, et al.: “Graph attention networks,” arXiv preprint
arXiv:1710.10903. (2017)

[33] B. Shakya, et al., “Benchmarking of Hardware Trojans and Mali-
ciously Affected Circuits,” Journal of Hardware and Systems Security.
(2017) (DOI: 10.1007/s41635-017-0001-6).

6

https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1007/978-3-662-48324-4_29
https://doi.org/10.1007/978-3-662-48324-4_29
https://doi.org/10.1109/TCAD.2020.3019984
https://doi.org/10.1109/TCAD.2020.3019984
https://doi.org/10.1109/TIFS.2016.2613842
https://doi.org/10.1109/ISCAS.2019.8702462
https://doi.org/10.1109/ISCAS.2019.8702462
https://doi.org/10.1109/TVLSI.2022.3143349
https://doi.org/10.1109/TVLSI.2022.3143349
https://doi.org/10.1007/s10836-021-05960-2
https://doi.org/10.1007/s10836-021-05960-2
https://doi.org/10.1109/ISCAS48785.2022.9937236
https://doi.org/10.1109/ISCAS48785.2022.9937236
https://doi.org/10.1109/TCAD.2017.2753201
https://doi.org/10.1007/978-981-16-2377-6_57
https://doi.org/10.1007/978-981-16-2377-6_57
https://doi.org/10.1109/TIFS.2019.2946044
https://doi.org/10.1109/ISCAS51556.2021.9401770
https://doi.org/10.1109/ISCAS51556.2021.9401770
https://doi.org/10.1109/TCAD.2017.2748021
https://doi.org/10.1109/ISCAS.2017.8050827
https://doi.org/10.1109/IOLTS.2017.8046227
https://doi.org/10.1109/IOLTS50870.2020.9159740
https://doi.org/10.1109/IOLTS56730.2022.9897557
https://doi.org/10.26599/TST.2019.9010047
https://doi.org/10.1109/ATS47505.2019.0002
https://doi.org/10.1109/ATS47505.2019.0002
https://doi.org/10.1109/MWSCAS57524.2023.10406091
https://doi.org/10.1109/MWSCAS57524.2023.10406091
https://doi.org/10.1109/CONECCT62155.2024.10677111
https://doi.org/10.1109/CONECCT62155.2024.10677111
https://doi.org/10.1109/ICDCS59278.2024.10560972
https://doi.org/10.1109/HOST49136.2021.9702276
https://doi.org/10.1109/ISCAS46773.2023.10181403
https://doi.org/10.1109/ISCAS46773.2023.10181403
https://doi.org/10.1109/TC.2023.3280134
https://doi.org/10.1109/ISQED60706.2024.10528759
https://doi.org/10.1109/ICET61945.2024.10672762
https://doi.org/10.1109/ICET61945.2024.10672762
https://doi.org/10.1109/ISCAS46773.2023.10181569
https://doi.org/10.1109/ISCAS46773.2023.10181569
https://doi.org/10.1109/ATS47505.2019.00021
https://doi.org/10.1109/TVLSI.2017.2781423
https://doi.org/10.1109/TVLSI.2017.2781423
https://doi.org/10.1007/s41635-017-0001-6

