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Abstract Detecting hardware Trojans (HTs) in mixed-signal circuits is
challenging due to structural complexity and cross-domain vulnerabilities
between analog and digital components. Existing methods often rely on
post-silicon analysis, circuit modifications, or focus solely on leakage, lim-
iting practicality. We propose HGAT4TJ, a pre-silicon detection approach
based on heterogeneous graph attention networks, which models gate- and
transistor-level structures in a unified graph. This enables effective cross-
domain HT detection directly from netlists without requiring golden mod-
els. Experimental results on benchmark circuits indicate that HGAT4TJ
achieves 100% detection rate at the circuit level and over 97% accuracy
at the node level, making it a non-invasive solution for HT detection in
mixed-signal circuits.
Keywords: hardware Trojan, mixed-signal circuits, pre-silicon detection,
heterogeneous graph, gate-level, transistor-level
Classification: Integrated circuits

1. Introduction

With the globalization of integrated circuit (IC) design and
manufacturing, a single chip’s development now involves
multiple parties, including CAD tool providers, Intellectual
Property (IP) vendors, and foundries. As ICs move through
various stages, there are many opportunities for adversaries
to introduce security risks. Hardware Trojan (HT) is one of
such threats [1, 2]. A hardware Trojan refers to a malicious
modification in the design or manufacturing process of an
integrated circuit, often inserted to alter its functionality or
introduce vulnerabilities. HTs are particularly concerning
for industries, governments, and defense due to their poten-
tial to cause significant damage, including data breaches,
system failures, or unauthorized control. Consequently, de-
tecting HTs has been a major focus of research for the past
two decades [3–5].
As the complexity of modern ICs increases, the preva-

lence of mixed-signal circuits, which combine both analog
and digital components, is also increasing. This integration
introduces new challenges for HT detection, particularly for
HTs that exploit interactions between the digital and analog
domains to build themselves [6]. These Trojans, such as the
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A2 Trojan [7, 8], are often more difficult to detect than dig-
ital ones, as they involve subtle modifications to the analog
circuitry, triggering malicious behavior in the digital do-
main. Recent studies have underscored the severity of these
threats [9]. Unfortunately, most existing detection methods
are specifically designed for either digital circuits [10–14]
or analog circuits [15–17] and are ineffective at detecting
threats in mixed-signal designs. As such, there is a pressing
need for effective detection solutions tailored to the unique
challenges posed by mixed-signal circuits.
Several approaches have been proposed to address HT

detection in mixed-signal circuits. Hou [18, 19] introduces
an on-chip mechanism that detects Trojans by monitoring
abnormal signal toggling. [20, 21] present an information
flow tracking method that identifies cross-domain data leak-
age. Abedi [22] proposes a current signature-based detec-
tion technique applicable to both runtime and production
phases. Pavlidis [23] proposes a built-in self-test method
for detecting Trojans by monitoring internal node symmetry
and using invariant signals with tolerance-based checkers.
Deng [24] develops a ring oscillator-based structure along
with two post-fabrication detection schemes to efficiently
detect A2 Trojans. Sakamoto [25] and Su [26] utilize near-
infrared imaging for non-destructive detection of logic cell
modifications linked to hardware Trojans.
Despite these efforts, existing mixed-signal HT detection

methods have notable limitations. Many rely on post-silicon
analysis, which incurs high costs and risks, as detecting a HT
after fabrication renders the design unusable, leading to sig-
nificant economic losses. Other methods focus exclusively
on detecting information leakage-based Trojans or require
modifications to the circuit design, which will reduce their
effectiveness and applicability.
To address the above challenges, we propose HGAT4TJ, a

novel approach that modelsmixed-signal circuits as a unified
heterogeneous graph, rather than treating digital and analog
components separately. By explicitly capturing the inter-
actions between digital logic gates and analog transistors
within a single model, HGAT4TJ enables the detection of
hardware Trojans that exploit cross-domain vulnerabilities.
The key contributions are as follows:
1. To the best of our knowledge, we are the first to model

the entire mixed-signal circuit as a unified heterogeneous
graph, rather than treating the digital and analog compo-
nents separately. Unlike traditional methods, our model is
capable of handling cross-domain interactions. It differen-
tiates between digital logic gates and analog transistors as
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Fig. 1 Overview of HGAT4TJ (Graph Representation: the mixed-signal circuit is represented as a heterogeneous
graph, where nodes correspond to circuit components and edges capture their interconnections. Training: node features
are encoded and refined through GAT layers based on neighborhood information. The trained model is then evaluated
for its effectiveness in detecting HTs during testing).

different node types, capturing their unique characteristics.
The edges of the graph represent the signal flow, creating a
structured framework for effective graph-based learning.
2. We adapt the Heterogeneous Graph Attention Net-

work (HGAT) to exploit the heterogeneity of mixed-signal
circuits, integrating structural analysis to enhance the ac-
curacy of hardware Trojan detection. By modeling inter-
actions between different circuit components and learning
their structural dependencies, our approach achieves over
97% detection accuracy in mixed-signal circuits.
3. HGAT4TJ conducts structural analysis of the circuit’s

netlist during the pre-silicon phase, providing an efficient
and non-invasive solution for hardware Trojan detection
specifically in mixed-signal circuits. This method does not
require any changes to the circuit design or additional test
patterns, making it compatible with existing design flows.

2. Proposed methodology

2.1 Motivation
Detecting HTs in mixed-signal circuits is challenging due
to the intricate interactions between digital and analog com-
ponents. Traditional methods primarily focus on digital
circuits, yet fail to address the complexities introduced by
mixed-signal designs. To capture both the topological struc-
ture and the diverse interactions within mixed-signal cir-
cuits, we propose using HGAT, a heterogeneous graph-like
network, to model and address these challenges.
2.1.1 IC design is graph-like
ICs inherently exhibit a networked structure, where compo-
nents interact throughwell-defined connections. This makes
a graph-based representation a natural fit for modeling cir-
cuit behavior. In this representation, nodes correspond to
fundamental circuit elements, while edges represent inter-
connections.
A graph model not only captures the structural topology

of digital circuits but also extends to mixed-signal circuits,
where interactions between digital and analog components
must be considered. By leveraging this structure, graph-
based models facilitate systematic circuit analysis, enabling
the detection of hardware anomalies, such as irregular con-
nections or signal flows indicative of HT activity.

2.1.2 Heterogeneity in mixed-signal circuit
Unlike purely digital circuits, mixed-signal circuits integrate
both binary-driven digital components and continuous-value
analog components, introducing fundamental differences in
their behaviors and interactions. Digital circuits operate on
discrete logic states, while analog circuits process continu-
ous signals, leading to diverse computational principles.
To address this heterogeneity, heterogeneous graph mod-

els differentiate between different types of nodes (e.g., logic
gates, transistors, capacitors) and edges (e.g., signal paths,
control signals). This enables a unified representation that
preserves the distinctions between digital and analog do-
mains while allowing cross-domain interactions to be effec-
tively modeled.
By leveraging heterogeneous graph learning, the model

differentiates between digital and analog components by
encoding their distinct electrical behaviors and structural
characteristics into separate feature spaces. As a result,
the model effectively distinguishes normal circuit structures
from HT-infected patterns by identifying irregular interac-
tions or anomalies. This capability enhances pre-silicon HT
detection accuracy in mixed-signal circuits, ensuring adapt-
ability to various circuit designs and HT attack strategies.
In summary, heterogeneous graph-based models provide

a powerful tool for modeling and analyzing mixed-signal
circuits by incorporating their structural complexity, cross-
domain interactions, and diverse component behaviors.

2.2 Overall architecture of HGAT4TJ
HGAT4TJ consists of three main phases: generation of het-
erogeneous graph, HGAT construction, and HGAT training
and testing, which are shown in Fig. 1. In the phase of
heterogeneous graph generation, the mixed-signal circuit is
represented as a heterogeneous graph, where nodes repre-
sent components (ports, transistors, gates), and edges cap-
ture the relationships between them. The construction phase
of HGAT involves initializing and encoding node features,
as well as constructing a GAT-based network. Finally, in
the training and testing phase, HGAT refines node repre-
sentations to distinguish between HT-infected and normal
components. The trained model is tested for its accuracy
in identifying potential HTs, enabling detection across both
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Fig. 2 The netlist and its structure in the digital domain.

Fig. 3 The netlist and its structure in the analog domain.

digital and analog domains by analyzing intricate interac-
tions within the circuit.

2.3 Construction of heterogeneous graph
To address the challenge of modeling interactions between
digital and analog components in mixed-signal circuits, we
propose a unified graph representation that captures the
interconnections between both domains. In this model,
nodes represent components from both the digital and ana-
log domains, such as logic gates (AND, OR, etc.), transis-
tors (NMOS, PMOS), and capacitors, while edges represent
the connections between these components, such as signal
paths. The edges are directed to reflect the flow of control
and signal propagation between the components, capturing
both intra-domain (digital-digital, analog-analog) and cross-
domain (digital-analog) interactions.
Figure 2 and Fig. 3 illustrate the netlists and their struc-

tures in the digital and analog domains, respectively. In
Fig. 4, these structures are modeled as a heterogeneous
graph, where nodes represent components such as logic
gates (e.g., NOT), transistors (e.g., NMOS), and ports (e.g.,
source). The edges, such as n1 and net1, are used to repre-
sent the connections between these components.
Specifically, for cross-domain interactions, as shown in

Fig. 4, edge n8 in the digital domain connects to the source
terminal of transistor N0 in the analog circuit. The digital
control signal transmitted through n8 influences the state of
the analog transistor, which is represented as an edge in the
graph, effectively bridging the digital and analog domains.
The model captures these critical interactions, particularly
when a digital signal governs the behavior of the analog
circuit or when an analog signal affects the digital domain.

2.4 Architecture of HGAT
Heterogeneous Graph Attention Network (HGAT) is a
graph-based deep learning model designed to process com-
plex relationships in structured data. In our proposed model,
HGAT efficiently models the interactions between different
types of components in mixed-signal circuits. We represent

Fig. 4 Example of heterogeneous graph construction.

Table I Feature representation of different node types.

the circuit C as a heterogeneous graph G = (V,E), where:
V is the set of nodes representing components in the circuit,
E is the set of edges representing the connections between
components. Our goal is to predict a set of labels y1, · · · , yn
(where yi ∈ {0,1}) for each node, where yi = 1 indicates
the presence of an HT in the i-th node.
2.4.1 Definition and feature construction of nodes
The nodes in the heterogeneous graph are categorized into
five main types: port, transistor, capacitor, resistor, and
gate, each representing a different functional unit in the
circuit (shown in Table I).
Port nodes represent the terminals of a transistor, includ-

ing the source, drain, gate, and body. Each port node is
characterized by its type, which serves as its primary fea-
ture. This feature is encoded as a one-hot vector to distin-
guish between different port types. Each transistor node is
characterized by specific parameters such as the transistor
type (e.g., NMOS, PMOS), along with physical properties
such as width, length, and width-to-length ratio. These
characteristics form the feature vector of the transistor node,
enabling the model to distinguish between different transis-
tor types and configurations. Capacitor and resistor nodes
are characterized by their type, providing distinct features
that capture their electrical behavior. Gate nodes represent
logic gates (AND, OR, etc.), which are fundamental in digi-
tal circuits. Each gate node is encoded with a one-hot vector
based on its type, allowing the model to capture the logical
operations performed by each gate.
2.4.2 Network structure and components of HGAT
HGAT utilizes an attention mechanism to account for the
heterogeneous nature of the graph, where each node can
have different types of neighbors and edges. For each node,
the attention score is computed based on the neighboring
nodes and the connection (edge) between them.
HGAT comprises three main parts: an embedding layer,

GAT layers, and a linear layer. The embedding layer is re-
sponsible for encoding the nodes within the designs, which
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involves generating the nodes, defining their connections,
and initializing their features. The GAT layers use atten-
tion mechanisms to iteratively update node representations
by learning the importance of neighboring nodes and their
connections. The linear layer performs the classification
task, mapping the learned node representations to the final
output labels. HGAT and the linear layers are implemented
according to the design outlined in [27, 28].
Unlike traditional graph convolutional neural networks

that treat all nodes and edges uniformly, HGAT assigns dif-
ferent importance weights to each connection, allowing it
to capture the distinct behaviors of different components in
mixed-signal circuits.

2.5 Training and testing with HGAT
The HGAT model is trained using labeled datasets derived
from mixed-signal circuits, which contain both Trojan-free
and Trojan-infected samples. During training, the model
learns to distinguish betweenHT-free andHT-infected nodes
through supervised learning. To achieve this, it optimizes a
binary classification loss function that guides the model in
accurately identifying HT nodes within the circuit graphs.
In training, each node is assigned a label that identifies

whether it is part of an HT. The loss function, typically a
cross-entropy loss, is minimized to improve classification
accuracy. The model iteratively refines its attention weights
to learn important structural features that distinguish HT-
infected nodes from normal nodes.
Once trained, HGAT is applied to unseen mixed-signal

circuits for HT detection. The previously trained model an-
alyzes the graph structure by leveraging the attention mech-
anism, allowing it to identify anomalous nodes that indicate
potential HTs. Upon detecting an HT node, further analysis
of its connections and neighboring nodes is performed to
assess the extent of the attack and its potential impact.

3. Evaluation

3.1 Experimental setup
The experiments are conducted using the PyTorch frame-
work on a server with an Intel i9 processor, clocked at
3.0GHz, and equipped with 16GB of memory. Both train-
ing and hardware Trojan detection tasks are performed using
an NVIDIA GeForce RTX 3090 graphics card.

3.2 Dataset construction
The benchmark dataset aggregates functionally heteroge-
neous circuit architectures from TrustHub [29] and open-
source IP cores [30]. These configurations collectively span
signal conversion, powermanagement, secure data transmis-
sion, and real-time control functionalities, thereby enabling
holistic evaluation of hardware trustworthiness across multi-
domain operational scenarios.
To further clarify the variability of the constructed dataset,

we explicitly detail the injected HTs: digital and mixed-
signal Trojan variants sourced from established benchmark
libraries TrustHub [29] (e.g., T1000–T1600, covering com-
binational, sequential, and rare-event triggers) and MS-
HT [7] (analog/mixed-signal triggers). These HTs are ran-

Fig. 5 Example of dataset with HTs injected.

domly embedded at various circuit nodes, ensuring diverse
activation scenarios with varied signal surroundings and
functional interactions. Each injected HT triggers under
predefined conditions to modify circuit behavior at critical
locations, termed attack points (see Fig. 5), thereby closely
simulating realistic malicious scenarios. Table II summa-
rizes the 31 benchmarks, clearly identifying the benchmark
circuits, the integrated HTs, and the functionalities.

3.3 Dataset splitting and evaluation metrics
To ensure effective HGAT model training and evaluation,
the 31 circuits were partitioned into 80% (24 circuits) for
training and 20% (7 circuits) for testing, maintaining strict
circuit-level segregation to prevent data leakage between
the training and testing sets. The training set captures dis-
criminative features between normal and HT-infected nodes,
while the test set contains exclusively unseen circuits for rig-
orous generalization assessment.
We classify nodes as HT-free or HT-infected using these

metrics: True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN). Evaluation metrics in-
clude the true positive rate (TPR = TP / (TP + FN)), the false
positive rate (FPR = FP / (FP + TN)), and the precision (Acc
= (TN + TP)/(TN + TP + FN + FP)).

3.4 Results and discussion
As demonstrated in Table III, the proposedHGAT4TJ frame-
work achieves perfect circuit-level HT detection (100% HT
detection) across all evaluated mixed-signal circuits, with
an overall detection accuracy of 97.66% and a minimal false
positive rate of 1.88%. Note that the HT detection rate
indicates whether a circuit-level HT presence is detected,
while the detection accuracy measures node-level classifica-
tion correctness across all circuit nodes. This performance
is consistently effective for both digital and analog Trojan
variants without relying on circuit redesign or golden ref-
erence models. Although the 72.14% average recall re-
flects partial node-level detection, the framework strate-
gically identifies critical subsets of HT nodes (33%–95%
per instance)— sufficient to disrupt malicious functional-
ity through key component localization, as modern HTs re-
quire coordinated activation of multiple nodes. Specifically,
in cases with lower recall scores (e.g., RS232-NSupport-
T1300), certain Trojan nodes closely mimic normal node
characteristics, making them more difficult to distinguish
from legitimate nodes. Nonetheless, the proposed method
reliably detects crucial activation nodes within these subsets,
effectively neutralizing the potential threat despite partial
node-level identification.
While false-positive nodes are observed, their number

is extremely limited and they are spatially isolated without
structural correlation. These nodes are insufficient to form a
functional HT and can be effectively removed through a sim-

4



IEICE Electronics Express, Vol.22, No.12, 1–6

Table II Benchmark circuits for hardware Trojan detection.

Table III Experimental results of HGAT4TJ framework.

Table IV Results on HT-free benchmarks.

ple filtering strategy applied after the HGAT4TJ inference.
Specifically, we adopt a manual neighborhood consistency
rule: nodes predicted as HT but unsupported by any of
their immediate neighbors in the heterogeneous graph are
excluded from the final alert set. This is based on the obser-
vation that actual HT nodes typically appear in connected
clusters due to shared activation or payload logic.
This filtering strategy complements the GAT’s message-

passing mechanism and is applied post-inference, following
the results reported in Table III. After applying the filter,
most false positives—especially those that are spatially iso-
lated—are effectively removed, while the recall remains
unchanged.
To further verify that these isolated false positives do not

result in circuit-level misclassification, we evaluate multiple
HT-free benchmark circuits. As shown in Table IV, each
design yields only a small number of isolated false positives
(ranging from 3 to 14), which are insufficient to constitute
functional Trojans. This confirms that the framework does
not trigger circuit-level false alarms and maintains high de-
tection reliability under benign conditions.
Table V presents a comparison between the proposed

HGAT4TJ method and other recent techniques for HT de-
tection. Unlike traditional GNN (Graph Neural Network)

Table V Comparison with other techniques.

methods such as [10–14], which are specifically designed
to detect digital-only HTs, HGAT4TJ is capable of detect-
ing both digital and analog HTs. In contrast to IFT (In-
formation Flow Tracing) methods like [20, 21], which can
only detect information leakage-based HTs in mixed-signal
circuits, HGAT4TJ is not restricted to specific HT types.
Moreover, while [18, 19, 22, 23], and [25, 26] all rely on
post-silicon detection, which can result in higher costs and
less efficient Trojan identification during the design phase,
the detection of an HT at this stage often leads to significant
financial losses. If an HT is found, the entire fabrication
process may need to be halted, or the chip may need to be
modified, causing delays in product release and necessitat-
ing costly re-fabrication. In contrast, HGAT4TJ leverages
heterogeneous graph neural networks for pre-silicon detec-
tion, providing amore efficient and cost-effective solution for
early Trojan identification. Additionally, unlike [24], which
requires modifications to the circuit design, HGAT4TJ does
not necessitate any such changes.

4. Conclusion

This paper presents a novel pre-silicon hardware Trojan de-
tection approach for mixed-signal circuits using heteroge-
neous graph neural networks. Unlike traditional methods
that primarily focus on digital circuits, HGAT4TJ explic-
itly accounts for the structural differences between digital
and analog components by defining distinct node types and
modeling their interactions within a heterogeneous graph.
This representation enables HGAT to effectively capture
the complex cross-domain dependencies inherent in mixed-
signal circuits. By leveraging graph learning techniques,
our method provides a non-intrusive, pre-silicon detection
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framework that identifies HTswithout requiring circuit mod-
ifications. Experimental results demonstrate that HGAT4TJ
achieves high detection accuracy, making it a promising so-
lution for securing IC designs against emerging threats.
Future work will scale the approach to larger and more

complex circuits. Wewill also investigate neural-levelmech-
anisms—such as uncertainty-aware attention and structural
priors— to reduce node-level false positives and improve
detection precision.
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