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The proliferation of third-party Intellectual Property cores in Integrated Circuit design has introduced signifi-
cant security risks, particularly the threat of hardware Trojans (HTs). Existing HT detection methods based on 
single-gate granularity analyze individual gate attributes but overlook the multi-gate structure of HTs, leading 
to excessive false positives and heavy manual verification. Comparatively, full-netlist analysis methods, while 
comprehensive, suffer from poor locating precision and scalability issues in large-scale netlists. Subgraph-based 
approaches aim to overcome these limitations but often rely on non-feature-based, non-collaborative techniques 
such as random sampling, to build subgraphs, incurring high computational overhead and low detection accu-
racy.
To address these challenges, we propose SubG4TJ, a collaborative subgraph-based framework that integrates 
intrinsic gate attributes with structural connectivity for accurate and efficient HT detection. SubG4TJ identi-
fies a specific class of gates – termed Less-Toggle Gates (LTGs) – that exhibit asymmetric 0/1 controllability, 
and introduces a concealment-based metric to quantify this property. By combining this intrinsic indicator with 
inter-gate structural features that capture Trojan interconnectivity, SubG4TJ enables targeted subgraph extrac-
tion centered on LTGs, substantially reducing analysis scope. A graph neural network then jointly model nodes’ 
concealment attributes and subgraphs’ topology features, enabling collaborative and end-to-end classification 
of suspicious subgraphs. This joint modeling of controllability asymmetry and structural connectivity allows 
SubG4TJ to effectively balance detection accuracy, false positive suppression, and runtime scalability. Evalua-
tions in various benchmark circuits demonstrate that SubG4TJ improves true positive rate by up to 13.6% and 
achieves a speed-up of 120×, with performance gains increasing in larger designs.

1.  Introduction

The Integrated Circuit (IC) design industry has seen a rise in third-
party suppliers providing standalone Intellectual Property (IP) cores. 
This trend is driven by the increasing complexity of IC designs and spe-
cialized labor divisions, which attract chip design companies that want 
to save costs and accelerate development. However, security concerns 
during IP integration remain critical and cannot be overlooked. Third-
party IP cores, provided by external suppliers, inherently exist signifi-
cant security risks, making them vulnerable to hardware Trojans (HTs). 
Malicious adversaries can stealthily alter logic gates within an IP core, 
posing a serious threat to the security and integrity of IC designs.
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To address these threats, two mainstream strategies have emerged: 
protection and detection. Protection-based methods often require intru-
sive design modifications, such as logic locking or runtime monitoring, 
which may introduce performance overheads and are difficult to enforce 
in third-party scenarios where internal design access is limited. In con-
trast, detection-based approaches provide a more practical solution by 
analyzing the circuit structure or behavior to identify suspicious com-
ponents without altering the original design. As a result, HT detection 
– particularly at the gate level – has become a focal point of hardware 
security research.

To this end, many researchers have proposed gate-level HT detec-
tion techniques. Existing single-gate methods aim to classify each gate 

https://doi.org/10.1016/j.eswa.2025.129355
Received 26 June 2025; Received in revised form 8 August 2025; Accepted 11 August 2025

Expert Systems With Applications 297 (2026) 129355 

Available online 15 August 2025 
0957-4174/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0009-0001-8282-8009

$\times $


$iCTRL$


$CC0 = CC1 = 1$


$CC0/CC1(Trigger)=16.5$


$CC0/CC1(Trigger) = 25.9$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$CC0 = \min \{CC0(a),CC0(b)\}+1$


$CC1 = CC1(a) + CC1(b) + 1$


$C\_0 = \min \{C\_0(a),C\_0(b)\}$


$C\_1 = C\_1 (a) + C\_1 (b)$


$C\_0$


$C\_1$


$a$


$b$


$z = a \cdot b$


$C_0$


$C\_0 = \min \{C\_0(a), C\_0(b)\}$


$C\_1 = C\_1(a) + C\_1(b)$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$C\_0$


$C\_1$


$C\_$


$C\_$


\begin {equation}C\_=\frac {max(C\_0,C\_1)}{min(C\_0,C\_1)} \label {eq1}\end {equation}


$C\_$


$C\_(Trigger)$


$C\_$


$k$


$C\_$


$k=2$


$G_{all},source,k_{in},k_{out}$


$// k_{in} and k_{out}$


$G$


$//$


$G=G^{'}_0=source$


$i=0;i<k_{in};i++$


$G^{'}_{i}== \emptyset $


$G_i$


$G^{'}_{i+1}\gets input(G^{'}_{i})-G$


$//$


$G\gets G \cup input(G^{'}_{i})$


$//$


$G^{'}_{i}$


$G$


$i\gets i+1$


$G^{''}_0=source$


$j=0;j<k_{out};j++$


$G^{''}_i$


$\emptyset $


$G$


$G^{''}_{j+1}\gets output(G^{''}_{j})-G$


$//$


$G\gets G \cup output(G^{''}_{j})$


$//$


$G^{''}_{j}$


$G$


$j\gets j+1$


$G$


$k$


$k$


$SubG = (V, E)$


$V$


$k_{in}$


$E$


$v$


$v \in V$


$v_a$


$v_b$


$v_a$


$v_b$


$k_{in} = 1$


$V$


$k_{in}$


$V$


$k_{in}$


$ICTRL$


$ICTRL$


$LTG subgraph1$


$G_1$


$G_2$


$G_3$


$LTG1$


$G_1$


$G_2$


$G_1$


$G_2$


$i$


$\mathbf {h}_i'$


\begin {equation*}\mathbf {h}_i' = \sigma \left ( \sum _{j \in \mathcal {N}(i)} \frac {1}{\sqrt {d_i d_j}} \mathbf {W} \mathbf {h}_j \right ),\end {equation*}


$\mathcal {N}(i)$


$i$


$d_i$


$d_j$


$i$


$j$


$\mathbf {W}$


$\sigma $


$i$


$\alpha _{ij}$


$i$


$j$


\begin {equation*}\alpha _{ij} = \text {softmax}_j \left ( \text {LeakyReLU} \left ( \mathbf {a}^T [\mathbf {h}_i \| \mathbf {h}_j] \right ) \right ),\end {equation*}


$\mathbf {h}_i$


$\mathbf {h}_j$


$i$


$j$


$\|$


$\mathbf {a}$


\begin {equation*}\mathbf {h}_i' = \sigma \left ( \sum _{j \in \mathcal {N}(i)} \alpha _{ij} \mathbf {W} \mathbf {h}_j \right ).\end {equation*}


$\hat {y}_i$


$y_i$


\begin {equation*}\mathcal {L} = - \frac {1}{N} \sum _{i=1}^N \left [ y_i \log \hat {y}_i + (1 - y_i) \log (1 - \hat {y}_i) \right ],\end {equation*}


$N$


$y_i \in \{0, 1\}$


$y_i = 1$


$i$


$y_i = 0$


$TP$


$TN$


$FP$


$FN$


$TPR$


$FPR$


$TPR/Recall = TP / (TP + FN)$


$FPR = FP / (FP + TN)$


$Precision = TP / (TP + FP)$


$F1 = 2 \times (Precision \times Recall) / (Precision + Recall)$


$k_{in}$


$k_{in}$


$k_{out}$


$k_{in} \geq 1$


$k_{out}$


$k_{in}$


$k_{in}$


$k_{in}$


$k_{in}$


$k_{in}=1$


$k_{in}=6$


$k\_{in}=2$


$k\_{out}=1$


$k_{in} = 2$


$k_{out} = 1$


$368{\times }$


$n$


$n_{LTGs}$


$n$


$O(n)$


$O(nkdi)$


$d$


$k$


$i$


$O(n)$


$O(1)$


$O(n_{LTGs})$


$|V|$


$|E|$


$F$


$F'$


$O (| V | \times F\times F ')+O (| E | \times F')$


$O(n) + O(n) + O(n_{LTGs}) + O (| V | \times F\times F ') + O (| E | \times F')$


$|V|$


$|E|$


$n$


$\times $

https://orcid.org/0000-0001-5919-918X
https://orcid.org/0000-0001-5224-4048
mailto:huxing@nudt.edu.cn
mailto:zhangyang@nudt.edu.cn
mailto:liusheng83@nudt.edu.cn
mailto:xwchen@nudt.edu.cn
mailto:nudtyh@foxmail.com
mailto:zyzhao@nudt.edu.cn
mailto:guoyang@nudt.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.eswa.2025.129355
https://doi.org/10.1016/j.eswa.2025.129355


X. Hu et al.

as either HT or HT-free, focusing on anomalies in individual gates. How-
ever, these methods often generate a high number of false positives and 
require significant manual effort to verify whether flagged gates are gen-
uinely part of an HT. On the other hand, full-netlist methods evaluate the 
entire netlist for the presence of HTs. While these methods offer a holis-
tic assessment, they lack the precision needed to localize HTs within 
the design. Both approaches face scalability challenges when applied 
to large designs, especially AI-based methods that demand significant 
computational and memory resources.

To solve the above problems in single-gate and full-netlist detection 
methods, subgraph-based methods are proposed, which focus on local-
ized sections of the netlist. This approach is particularly advantageous 
for HT detection because HTs typically consist of both trigger and pay-
load logic, which involve multiple gates and span only a small portion of 
the entire netlist. Thus, subgraph classification methods can offer a more 
targeted approach for detecting HTs by focusing on smaller, localized 
sections of the netlist, where HTs are more likely to reside. However, 
existing subgraph-based approaches, such as random or uniform sam-
pling, often suffer from inefficiency and lack specificity. These methods 
typically operate without guidance from HT characteristics, resulting in 
the indiscriminate generation of subgraphs. As a consequence, they tend 
to produce an excessive number of irrelevant candidates – especially in 
large-scale designs – leading to substantial computational overhead.

To highlight HTs from large-scale netlists using subgraph-based 
methods, it is essential to exploit both intrinsic and structural character-
istics of HTs. The intrinsic property refers to the stealthiness of individ-
ual gates, often manifested as ‘less-toggle’ behavior. We propose a con-
cealment metric to capture this attribute across diverse HT structures, 
enabling the identification of suspicious gates and guiding subsequent 
subgraph construction. In parallel, structural characteristics describe 
the connectivity patterns among Trojan-infected gates, which frequently 
form compact or sparsely connected clusters that differ from the topol-
ogy of benign logic. To jointly leverage these two dimensions, we pro-
pose SubG4TJ – a collaborative subgraph classification method based 
on multidimensional attributes for hardware Trojan detection. SubG4TJ 
integrates both concealment-based node-level features and inter-gate 
graph structural relationships to construct multidimensional subgraph 
representations, which are then classified using a Graph Neural Net-
work (GNN). This approach enables accurate and efficient HT detection 
by jointly capturing the behavioral stealth of individual gates and their 
malicious structural organization. By constraining the analysis to LTG-
centered regions and embedding both concealment and structural se-
mantics into the GNN, the framework reduces redundant computation, 
suppresses false positives, and scales effectively with netlist complexity. 
The key contributions are as follows.

(1) We propose a concealment-based metric to identify LTGs by quanti-
fying the asymmetric 0/1 controllability of logic gates. This metric 
demonstrates strong robustness across diverse HT structures and ef-
fectively distinguishes abnormal gates even in circuits with highly 
controllable and balanced normal logic, such as AES.

(2) We develop a targeted LTG-aware subgraph extraction strategy 
that anchors on LTGs to selectively expand structurally correlated 
regions. By using LTGs as focal points, the method suppresses 
irrelevant logic propagation and yields compact, high-relevance
subgraphs that improve both detection accuracy and computational 
efficiency.

(3) We propose a collaborative subgraph classification framework that 
integrates multidimensional attributes – specifically, intrinsic gate 
concealment attribute and inter-gate structural features – into a uni-
fied representation. This joint modeling improves detection robust-
ness, suppresses false positives, and remains compatible with various 
GNN backbones such as Graph Convolutional Networks (GCN) and 
Graph Attention Networks (GAT). Experiments demonstrate a true 
positive rate improvement of up to 13.6%, along with a speedup of 
up to 120×.

The paper is structured as follows: Section 2 reviews related work, 
Section 3 outlines the motivation, Section 4 details our methodology, 
Sections 5 and 6 present experimental validation and results, and Sec-
tion 7 concludes the paper.

2.  Related works

Detection methods for HTs can be broadly categorized into func-
tional verification analysis, circuit analysis, and machine learning meth-
ods.

2.1.  Functional verification analysis

Functional verification analysis focuses on examining the functional 
behavior of the hardware design to identify circuit modules that may 
potentially contain HTs. Unused UCI [Hicks et al. (2010)] assumes the 
presence of Trojan logic in inactive signal pairs during testing but is lim-
ited to simple circuit paths. FANCI [Waksman et al. (2013)] uses con-
trol values to flag suspicious signals, focusing on combinatorial logic, 
and its extension, the FIGHT Metric, addresses sequential elements by 
modifying directed graphs. VeriTrust [Zhang et al. (2013)] aims to de-
tect non-redundant inputs through simulation, emphasizing boundary 
condition checks during verification but struggles with practical appli-
cation in large-scale designs. FASTrust [Yao et al. (2015)] introduces a 
feature-based analysis for IP verification, independent of simulation re-
sults, and uses multiple functions to detect HTs but faces challenges with 
new HT types and false positives. These methods highlight the evolving 
complexity and varied approaches in the field of HT detection.

The above methods utilize functional verification for HT detection. 
However, comprehensive functional descriptions are often challenging 
to obtain in third-party IP cores, which results in a higher false positive 
rate for such methods.

2.2.  Circuit analysis

Circuit analysis focuses on detecting HTs by analyzing circuit charac-
teristics, such as their inherently low controllability and minimal switch-
ing activity, which are deliberately designed to evade detection. Early 
detection strategies, such as Salmani’s COTD method [Salmani (2017)], 
utilize these features and are further developed by researchers like Xie 
[Xie et al. (2017)], Kok [Kok et al. (2019b)], Salmani [Salmani (2022)] 
and Lo [Lo et al. (2022)]. HuangHuang and He (2020) combines static 
and dynamic methods to enhance detection using k-means clustering. Su 
[Su et al. (2021)] links low transition probabilities with poor testability, 
proposing a trigger signal recognition method for Trojan models with 
reasonable testability. Subsequent optimizations of the COTD method 
by Tebyanian [Tebyanian et al. (2021)] and Mehta [Mehta and Popat 
(2022)] introduce strategic Trojan insertions and a switching rate-based 
detection approach. Lu [Lu et al. (2021)] employs unsupervised methods 
like information entropy and density-based clustering with HTDet, while 
Zou [Zou et al. (2018)] focuses on total state transition probabilities, al-
beit limited by the need for finite state machine knowledge. Jha [Jha and 
Jha (2008)] and Popat [Popat and Mehta (2016)] use signal probabil-
ity signatures for detection during manufacturing phases. Further stud-
ies, such as those by Kurihara [Kurihara et al. (2020)] and Chen [Chen 
et al. (2018)], introduce structured features and a multi-level verifica-
tion framework to analyze HTs in third-party digital IP cores. Haider’s 
HaTCh [Haider et al. (2019)] method expands HT definitions and em-
ployed the EM algorithm for detection. Kok [Kok et al. (2019a)] com-
bines various features to train machine learning classifiers, enhancing 
detection capabilities. Lastly, references [Dupuis et al. (2015)], [Dupuis 
et al. (2018)] and [Chen et al. (2025)] use thresholds on switching ac-
tivity probabilities to differentiate HTs from normal gates.

Circuit analysis identifies rare active signals, which may include both 
normal circuit signals and Trojan signals. Some strongly concealed sig-
nals, despite being part of normal functionality, are flagged as potential 
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hardware Trojan signals, leading to a high false positive rate. This re-
sults in increased manual intervention, a problem that becomes even 
more pronounced in large-scale circuits.

2.3.  Machine learning methods

2.3.1.  Machine learning methods for detection in single gate granularity
Machine learning methods at the single gate granularity focus on 

analyzing individual gates within the netlist to identify potential Trojan 
triggers. Hasegawa [Hasegawa et al. (2025)] introduces a novel node-
by-node detection method. Reference [Yamashita et al. (2022)] employs 
a machine learning method to model the 24 extracted features for hard-
ware Trojan detection. Additionally, techniques [Yasaei et al. (2025, 
2022)] to convert register-transfer level (RTL) and gate-level netlists 
into data flow graphs have been proposed to enhance the detection ca-
pabilities.

Research has also taken a hierarchical and adversarial approach to 
detection. Hepp [Hepp et al. (2022)] develops a method for detecting 
HTs in unknown hierarchical design modules using machine learning 
classifiers. Similarly, Hasegawa [Hasegawa et al. (2023)] and Nozawa 
[Nozawa et al. (2021)] have focused on adversarial training and the 
generation of hardware Trojan attack instances to improve detection 
strategies, emphasizing the importance of robust and adaptive detection 
systems to protect hardware from malicious modifications.

Node classification provides fine-grained detection by predicting the 
label of each individual node in the netlist. However, this granularity 
comes with significant challenges. Hardware Trojans often manifest as 
localized anomalies involving multiple gates, making individual nodes 
insufficient to capture meaningful patterns. Moreover, in large-scale 
netlists with millions of nodes, node-level classification becomes com-
putationally prohibitive. The lack of contextual information also makes 
node classification highly susceptible to noise, leading to a higher risk 
of misclassification.

2.3.2.  Machine learning methods for detection in sub-netlist granularity
Sub-netlist granularity detection methods focus on analyzing local-

ized netlist sections, making them well-suited for detecting HTs that 
span multiple gates. Yu [Yu et al. (2022)] introduce a system that ex-
tracts and classifies netlist path information using a data-driven ap-
proach. Techniques like GramsDet [Lu et al. (2019)] and LMDet [Shen 
et al. (2018)] use deep learning models to detect abnormal patterns 
within sub-netlists. These methods conceptualize gate sequences as anal-
ogous to sentences in a language, where gates are “words” and their 
connections form “sentences”. GramsDet learns embeddings for these 
sequences, while LMDet applies language models to detect deviations 
from normal gate sequence behaviors. Muralidhar [Muralidhar et al. 
(2021)] employs supervised contrastive learning using GNNs to detect 
triggered HTs by constructing subgraphs for each signal. Verification 
and testing for hardware Trojan implantation are conducted on specific 
IP cores available in the open-source library [Home (2025)]. However, 
the GATE Net method constructs a subgraph for each signal in the gate-
level netlist, employing it for learning and signal analysis. The number 
of subgraphs equals the number of gate nodes in the netlist, and each 
subgraph’s nodes consist of all nodes from the analyzed node to the in-
put. Consequently, this leads to a higher node count in each subgraph. 
Additionally, Lashen [Lashen et al. (2023)] uses a sampling-based GNN 
framework to detect and localize HTs by sampling subgraphs from the 
entire netlist. Other works, such as [Yen et al. (2023)], employ machine 
learning frameworks to detect and localize HTs by classifying logical 
paths as Trojan or Trojan-free.

Various detection methods based on sub-netlists have been intro-
duced; however, some of these approaches face notable limitations. 
They often generate an excessive number of sub-netlists, particularly 
in large-scale netlists, resulting in increased computational complexity 
and resource consumption. Additionally, the indiscriminate selection of 
sub-netlists may capture irrelevant or redundant regions, diverting focus 

from critical areas associated with hardware Trojans. This lack of tar-
geted filtering not only reduces detection efficiency but also increases 
false positives, limiting the practicality of these methods in real-world 
applications.

2.3.3.  Machine learning methods for detection in full netlist granularity
Full netlist granularity detection methods consider the entire IC de-

sign as a whole, allowing for a holistic analysis of HT presence. Yasaei 
[Yasaei et al. (2021)] utilizes GNN to extract features from Data Flow 
Graphs (DFGs), aiming to automate the recognition of hardware Trojan 
presence by learning the behavior of circuits. While converting a netlist 
into a single graph may result in a complex and sizable structure, it may 
pose challenges in achieving precise localization.

Full graph classification focuses on determining whether the entire 
netlist contains an HT. While this approach is computationally simpler 
than classifying every individual node, it sacrifices the ability to lo-
calize HTs within the design. Without pinpointing suspicious regions, 
full graph classification is less actionable for hardware verification pro-
cesses. Furthermore, analyzing the entire netlist as a single entity in-
troduces scalability issues in complex designs, especially when dealing 
with intricate structures and high gate counts.

3.  Motivation

This work assumes a threat model where hardware Trojans (HTs) are 
inserted into third-party intellectual property (3PIP) cores before inte-
gration. In practice, 3PIPs are commonly delivered as firm IPs in the 
form of gate-level netlists, offering limited visibility into the design in-
ternals. We do not assume access to trusted RTL or golden references. 
Consequently, our approach targets gate-level netlists as the primary ab-
straction for analysis and detection. This model reflects a realistic and 
critical pre-silicon scenario in which untrusted 3PIP vendors intention-
ally embed malicious logic into gate-level deliverables. Accordingly, this 
paper focuses on detecting such threats directly from gate-level netlists.

The Table 1 illustrates the trigger gate, payload gate, and the total 
gate count for various hardware Trojan examples. As shown in Table 1, 
HTs in the netlist consist of only tens to hundreds of gates, representing 
a small proportion of the total number of gates. As the scale of IP core 
netlists expands, modeling all gates becomes increasingly challenging, 
thus making the detection of HTs more difficult.

To highlight HTs within the entire netlist, it is essential to effectively 
utilize the characteristics of HTs. Concealment, an inherent characteris-
tic of HTs known as ‘less-toggle,’ is identified as a logical and effective 
feature for detecting HTs. The introduction of a concealment metric, rep-
resenting the less-toggle attribute, helps in screening suspicious triggers 
from the original graph, thus narrowing the search space. Meanwhile, 
HTs exhibit a special topological structure. Taking the RS232-T1000 as 
an example, the trigger signal 𝑖𝐶𝑇𝑅𝐿 displays a large fan-in structure 
in the input direction and a multi-output structure in the output direc-
tion. The unique structural manifestations of HTs, illustrated in Fig. 1, 
serve as distinctive features that enable the differentiation of HTs from 
suspicious subgraphs.

By focusing on specific regions of interest within the netlist, our ap-
proach captures the structural and contextual information necessary for 

Table 1 
The size of some existing HTs in Trust-Hub [Trust-
Hub.org (2025)] gate-level Netlist [Salmani (2017)].
 Trojan  Trigger size  Payload size  Total size

 (gate no.)  (gate no.)  (gate no.)
 s38147-T100  11  1  5641
 s38147-T200  11  4  5644
 s38147-T300  15  29  5673
 vga_lcd-T100  4  1  69837
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Fig. 1. Structure of an HT example from RS232-T1000.

detecting HTs while maintaining computational efficiency. Unlike node 
classification, subgraph classification benefits from the additional con-
text provided by surrounding nodes and connections, making it more 
robust to noise. At the same time, it avoids the scalability challenges of 
full graph classification by restricting the analysis to smaller, targeted 
regions.

In conclusion, subgraph classification represents a thoughtful com-
promise that addresses the limitations of node and full graph classifi-
cation. By combining the strengths of both methods, it provides an ef-
ficient, accurate, and practical approach to detecting hardware Trojans 
in large-scale netlists.

4.  Methodology

In the paper, we propose a novel method named SubG4TJ for HT 
detection, which is a collaborative detection method based on subgraph 
classification (illustrated in Fig. 2). This approach entails filtering LTGs 
based on concealment metric, mining corresponding LTG-aware sub-
graphs, and utilizing GNN-based network to classify these LTG sub-
graphs. It is specifically tailored for the identification of HTs with trig-
gers.

To achieve both accuracy and scalability in large-scale netlists, 
SubG4TJ integrates intrinsic node-level concealment properties with 
inter-gate structural connectivity. By focusing analysis on concealment-
centric regions and modeling these subgraphs using GNNs, SubG4TJ ef-
fectively suppresses false positives while preserving high detection pre-
cision. This design ensures that subgraphs most likely to contain stealthy 
or coordinated malicious logic are prioritized during learning, which 
supports efficient localization and robust classification performance.

4.1.  LTG filtering based on concealment asymmetry

HTs are designed with rare trigger conditions, which means that con-
trolling a signal to 0 or 1 is imbalanced, with one state being significantly 
more difficult to achieve than the other. This imbalance in the control-
lability of signal states can be leveraged as a key feature to assess the 
difficulty of triggering HTs, helping to identify potentially malicious cir-
cuits.

4.1.1.  Limitation of controllability metric
In order to highlight the imbalance between 0/1 controllability and 

reduce false positives, Su et al. (2021) introduces the use of (CC0/CC1, 
CC1/CC0) ratios for circuit analysis. Here, CC0 represents the difficulty 
of setting a signal to 0, while CC1 indicates the difficulty of setting a 
signal to 1. Initially, the 0/1 controllability of all primary inputs is set 
to 𝐶𝐶0 = 𝐶𝐶1 = 1.

Controllability, as a metric, estimates the ease or difficulty of driving 
a signal to 0 or 1 through primary inputs, providing an indication of the 
testability of circuits. However, for trigger-based HT detection, this met-
ric alone is insufficient. Variations in HT structures lead to inconsistent 
controllability values, making it unreliable for consistent detection.

For the same HT, such as RS232-T1000, the controllability values 
can vary significantly depending on the structural implementation. For 
example, in one structure (shown in Fig. 3(a)), the controllability value 
is 𝐶𝐶0∕𝐶𝐶1(𝑇 𝑟𝑖𝑔𝑔𝑒𝑟) = 16.5, while in another structure (Fig. 3(b)), it 
reaches 𝐶𝐶0∕𝐶𝐶1(𝑇 𝑟𝑖𝑔𝑔𝑒𝑟) = 25.9. These variations highlight the lim-
itations of using controllability metrics for HT detection, as they are 
inconsistent across different HTs and fail to provide reliable measure-
ments.

4.1.2.  Concealment metric
Given the limitation of controllability measurement, we propose a 

concealment metric to reduce the impact of structural diversity of HTs 
on detection. The concealment metric incorporates two key components, 
𝐶_0 and 𝐶_1. 𝐶_0 assesses the difficulty of setting the output of a gate to 
0 (0-concealment) and 𝐶_1 evaluates the difficulty of setting the output 
of a gate to 1 (1-concealment).

𝐶_0 and 𝐶_1 are computed according to the rules outlined in 
Table 2. Taking AND as an example, while the traditional control-
lability calculations are 𝐶𝐶0 = min{𝐶𝐶0(𝑎), 𝐶𝐶0(𝑏)} + 1 and 𝐶𝐶1 =
𝐶𝐶1(𝑎) + 𝐶𝐶1(𝑏) + 1, the concealment calculations are simpler: 𝐶_0 =
min{𝐶_0(𝑎), 𝐶_0(𝑏)} and 𝐶_1 = 𝐶_1(𝑎) + 𝐶_1(𝑏). It is unnecessary to add 
1 (meaning the number of logic gates traversed) to 𝐶_0 or 𝐶_1 for each 
gate. These metrics are influenced mainly by the types and inputs of the 
gates, rather than by the number of gates traversed.

Mathematically, these formulations are derived from Boolean gate 
logic. For an AND gate with inputs 𝑎 and 𝑏, its output 𝑧 = 𝑎 ⋅ 𝑏 evalu-
ates to 0 if any input is 0, and only evaluates to 1 if all inputs are 1. 
Therefore, the concealment score 𝐶0 for output logic 0 is governed by 
the easiest input to be set to 0, captured as 𝐶_0 = min{𝐶_0(𝑎), 𝐶_0(𝑏)}. 
In contrast, to force the output to 1, all inputs must be 1, which leads 
to the aggregated difficulty 𝐶_1 = 𝐶_1(𝑎) + 𝐶_1(𝑏). This logic generalizes 
to other gate types (e.g., OR, NAND) according to their functional truth 
tables.

In Table 2, the input controllability values are initialized based on 
the approach in Wang et al. (2006), where both logic-0 and logic-1 con-
trollabilities for primary inputs are assigned a default value of 1. This as-
sumption ensures consistency in concealment metric computation across 
different gate types and reflects a uniform input effort for setting logic 
values during propagation.

Table 2 
Calculation formula of concealment metric.
 Cell Type  0-Concealment(𝐶_0)  1-Concealment(𝐶_1)
 Input  1  1
𝐴𝑁𝐷 (a,b) 𝑀𝑖𝑛(𝐶_0(𝑎),𝐶_0(𝑏)) 𝐶_1(𝑎) + 𝐶_1(𝑏)

𝑂𝑅(𝑎, 𝑏) 𝐶_0(𝑎) + 𝐶_0(𝑏) 𝑀𝑖𝑛(𝐶_1(𝑎), 𝐶_1(𝑏))

𝑁𝑂𝑇 (𝑎) 𝐶_1(𝑎) 𝐶_0(𝑎)

𝑋𝑂𝑅 𝑀𝑖𝑛(𝐶_0(𝑎) + 𝐶_0(𝑏), 𝑀𝑖𝑛(𝐶_0(𝑎) + 𝐶_1(𝑏),
(𝑎, 𝑏) 𝐶_1(𝑎) + 𝐶_1(𝑏)) 𝐶_1(𝑎) + 𝐶_0(𝑏))

𝐷𝐹𝐹 𝐶_0(𝐷) + 𝐶_0(𝑐𝑙𝑘) 𝐶_1(𝐷) + 𝐶_0(𝑐𝑙𝑘)
(𝐷, 𝑐𝑙𝑘) +𝐶_1(𝑐𝑙𝑘) +𝐶_1(𝑐𝑙𝑘)
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Fig. 2. Overall process of SubG4TJ.

Fig. 3. Controllability and concealment values of HTs with the same function 
but different gate-level structures.

Using the metric in Table 2, we can compute the 𝐶_0 and 𝐶_1 val-
ues, which represent the concealment of signals being consistently 0 or 
1, respectively. While traditional testability theories assume hardware 
Trojans exhibit high 𝐶_0 or 𝐶_1 values, the AES encryption algorithm’s 
characteristics challenge this assumption. Due to its multi-round encryp-
tion operations, achieving control states where signals are consistently 
0 or 1 is inherently difficult. Consequently, many AES signals exhibit 
high 𝐶_0 and 𝐶_1 values, leading to their misidentification as hardware 
Trojans. Since hardware Trojans are typically designed to remain inac-
tive, gates with imbalanced 𝐶_0 and 𝐶_1 values (e.g., high 𝐶_0 and low 
𝐶_1, or vice versa) are more likely to be part of a trigger. To emphasize 
the imbalanced 𝐶_0 and 𝐶_1, we use 𝐶_ to represent the concealment 
metric. For combinational gate and sequential gate, 𝐶_ is defined as:

𝐶_ = 𝑚𝑎𝑥(𝐶_0, 𝐶_1)
𝑚𝑖𝑛(𝐶_0, 𝐶_1)

(1)

The higher 𝐶_ values indicate stronger concealment. As demon-
strated in Fig. 3, the structure of HTs does not affect the 𝐶_(𝑇 𝑟𝑖𝑔𝑔𝑒𝑟)
values, indicating that the concealment metric is robust against varia-
tions in HT structures. This metric is effective for identifying potential 
triggers in HTs.

After calculating the 𝐶_ values for all gates, these values are input 
as a one-dimensional dataset into the k-means clustering algorithm, 
where 𝑘 is set to 2. We choose k-means over other discriminatory 
methods because it is an unsupervised, parameter-light algorithm that 
does not require labeled data or prior distribution assumptions, mak-
ing it suitable for diverse hardware designs where ground truth labels 
are unavailable. Compared with supervised classifiers or more complex
clustering methods, k-means provides a simple yet effective decision 
boundary for one-dimensional data with low computational overhead. 
We further choose k-means instead of a fixed threshold because the 
distribution of 𝐶_ values varies significantly across different designs. 
A manually defined threshold would require circuit-specific tuning and 
may not generalize well to unseen datasets, whereas k-means automat-
ically adapts to the actual data distribution, ensuring robustness and 

eliminating manual parameter selection. This choice of 𝑘 = 2 aligns 
with our detection objective – to distinguish between gates exhibiting 
suspicious concealment behavior and those with normal controllability 
profiles. Specifically, the two resulting clusters correspond to: (i) gen-
uine gates characterized by low concealment values, and (ii) suspicious 
HT gates that exhibit high concealment values. Such binary separation 
simplifies downstream subgraph mining and enhances interpretability, 
while remaining consistent with the assumption that HTs typically ex-
hibit a distinct behavioral footprint. Gates identified with high conceal-
ment values are considered suspicious LTGs and are subject to further 
analysis.

4.2.  LTG-Aware subgraph mining

Algorithm 1 Algorithm of k-hop.
Require: Graph 𝐺𝑎𝑙𝑙 , 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑘𝑖𝑛, 𝑘𝑜𝑢𝑡 ∕∕𝑘𝑖𝑛𝑎𝑛𝑑𝑘𝑜𝑢𝑡 means the hop-number 

from source
Ensure: Subgraph 𝐺 ∕∕ subgraph generated from source 
1: 𝐺 = 𝐺′

0 = 𝑠𝑜𝑢𝑟𝑐𝑒
2:  for (𝑖 = 0; 𝑖 < 𝑘𝑖𝑛; 𝑖 + +) 
3:   if (𝐺′

𝑖 == ∅) 
4:   return 𝐺𝑖
5:   else 
6:  𝐺′

𝑖+1 ← 𝑖𝑛𝑝𝑢𝑡(𝐺′
𝑖 ) − 𝐺 ∕∕ Remove visited items 

7:  𝐺 ← 𝐺 ∪ 𝑖𝑛𝑝𝑢𝑡(𝐺′
𝑖 ) ∕∕ Add the inputs of all nodes in 𝐺

′
𝑖 to 𝐺

8:  𝑖 ← 𝑖 + 1
9:  end for 
10: 𝐺′′

0 = 𝑠𝑜𝑢𝑟𝑐𝑒
11:  for (𝑗 = 0; 𝑗 < 𝑘𝑜𝑢𝑡; 𝑗 + +) 
12:   if (𝐺′′

𝑖 ==∅) 
13:   return 𝐺
14:   else 
15:  𝐺′′

𝑗+1 ← 𝑜𝑢𝑡𝑝𝑢𝑡(𝐺′′
𝑗 ) − 𝐺; ∕∕ Remove visited items 

16:  𝐺 ← 𝐺 ∪ 𝑜𝑢𝑡𝑝𝑢𝑡(𝐺′′
𝑗 ); ∕∕ Add the outputs of all nodes in 𝐺

′′
𝑗  to 

𝐺
17:  𝑗 ← 𝑗 + 1
18:   end for 
19: return 𝐺

To identify potential HTs, we employ the concealment metric to se-
lect LTGs from the gate netlist and create subgraphs comprising LTGs 
along with their neighboring gates and connections. We rank the LTGs in 
descending order based on their concealment values and iteratively con-
struct subgraphs through the 𝑘-hop algorithm (shown in Algorithm 1), 
which is based on Breadth-First Search (BFS). We choose BFS because it 
efficiently expands a local neighborhood around each LTG, preserving 
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Fig. 4. Subgraphs generated from 𝐼𝐶𝑇𝑅𝐿 in RS232-T1000.

the contextual connectivity while avoiding excessive growth, making it 
well-suited for capturing potential HT structures in large netlists.

Each LTG previously used to generate a subgraph is excluded from 
subsequent subgraph generation to avoid redundancy. The process of 
𝑘-hop algorithm is detailed as follows: given a subgraph 𝑆𝑢𝑏𝐺 = (𝑉 ,𝐸), 
where 𝑉  represents the set of nodes reachable to LTG within 𝑘𝑖𝑛, 𝐸 repre-
sents the set of edges between 𝑣 (𝑣 ∈ 𝑉 ). The existence of edge between 
𝑣𝑎 and 𝑣𝑏 means 𝑣𝑎 is the input of 𝑣𝑏. The connection is determined from 
the gate-level netlist. Starting with 𝑘𝑖𝑛 = 1, the algorithm adds all input 
nodes of the LTG to the set 𝑉  and marks the LTG as visited. Then the 
algorithm increments 𝑘𝑖𝑛 by 1, adds input nodes of each unvisited node 
to set 𝑉  and marks these unvisited nodes as visited. This process contin-
ues until the predefined value of 𝑘𝑖𝑛 is reached, or no unvisited nodes 
remain in the set. Fig. 4 illustrates the subgraphs generated from the 
LTG (𝐼𝐶𝑇𝑅𝐿) in RS232-T1000.

Using the method outlined above, we construct multiple suspicious 
LTG subgraphs, which are then input into a GNN-based network for 
training and detecting.

4.3.  Subgraph classification with LTG-informed graph neural networks

In this section, we propose LTG-GNN, termed the LTG-Informed Sub-
graph Classification Using Graph Neural Networks, specifically designed 
for subgraph classification in HT detection. The network leverages the 
unique characteristics of LTG nodes to effectively distinguish between 
subgraphs with and without hardware Trojans. By focusing on LTG 
nodes and their surrounding structure, the model ensures accurate and 
interpretable classification results.

To classify the mined LTG subgraphs, we leverage GCN and GAT, 
two representative methods in the family of GNN. GCN captures local 
topological patterns through neighborhood aggregation, making it suit-
able for learning structural regularities of benign and malicious logic. 
GAT, by contrast, introduces an attention mechanism that adaptively 
assigns weights to different neighbors, enabling the network to focus on 
more critical or influential gates – an essential capability for highlight-
ing Trojan-related behaviors. This dual approach helps demonstrate the 
generalizability and robustness of our LTG-aware subgraph classifica-
tion framework.

4.3.1.  LTG-GNN architecture
The proposed LTG-GNN consists of three main components: an em-

bedding layer, multiple GNN layers, and a linear classification layer, as 
illustrated in Fig. 2.

4.3.1.1.  Embedding layer. The embedding layer is responsible for en-
coding the nodes of the LTG subgraph and initializing their features. A 
constructed LTG subgraph, such as the example shown in Fig. 2 (e.g., 
𝐿𝑇𝐺𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ1 with nodes 𝐺1, 𝐺2, 𝐺3, and 𝐿𝑇𝐺1), includes several 
nodes and edges. Node features incorporate properties such as gate type, 
concealment value, and hop distance from the LTGs. These features are 
concatenated to form n-dimensional feature vectors for each node, a 
dimensionality determined experimentally.

Edges are defined based on the logical connections between nodes, 
where an edge between gate 𝐺1 and 𝐺2 signifies that 𝐺1 serves as an 
input to 𝐺2. This layer not only generates node embeddings but also 
establishes the relationships between nodes within the LTG subgraph.

4.3.1.2.  GNN layers. The GNN layers in the proposed LTG-GNN are 
designed to process subgraph data by capturing both local and global 
structural information. These layers provide flexibility in employing dif-
ferent GNN architectures, such as GCN and GAT, to adapt to varying 
detection requirements.

Graph convolutional networks: GCNs [Kipf and Welling (2016)] 
aggregate node features by computing a weighted sum of neighboring 
node features, normalized by the degree of each node. For a given node 
𝑖, the updated feature vector 𝐡′𝑖 is computed as:

𝐡′𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑗∈ (𝑖)

1
√

𝑑𝑖𝑑𝑗
𝐖𝐡𝑗

⎞

⎟

⎟

⎠

,

where  (𝑖) is the set of neighbors of node 𝑖, 𝑑𝑖 and 𝑑𝑗 are the degrees of 
nodes 𝑖 and 𝑗, 𝐖 is a learnable weight matrix, and 𝜎 is a non-linear acti-
vation function. GCN layers are effective at capturing global graph struc-
tures by stacking multiple layers, but they treat all neighbors equally, 
which may limit their discriminative power for complex tasks.

Graph attention networks: GAT layers [Velikovi et al. (2018)] en-
hance the aggregation process by incorporating a self-attention mech-
anism that assigns different weights to neighbors based on their im-
portance. For a given node 𝑖, the attention score 𝛼𝑖𝑗 between 𝑖 and its 
neighbor 𝑗 is computed as:
𝛼𝑖𝑗 = softmax𝑗

(

LeakyReLU
(

𝐚𝑇 [𝐡𝑖‖𝐡𝑗 ]
))

,

where 𝐡𝑖 and 𝐡𝑗 are the feature vectors of nodes 𝑖 and 𝑗, ‖ denotes con-
catenation, and 𝐚 is a learnable weight vector. Using these scores, node 
features are aggregated as:

𝐡′𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑗∈ (𝑖)
𝛼𝑖𝑗𝐖𝐡𝑗

⎞

⎟

⎟

⎠

.

The GAT layers capture finer-grained relationships by focusing on the 
most relevant neighbors, making them particularly effective for tasks 
like hardware Trojan detection.

By leveraging these GNN layers, the LTG-Informed Network pro-
cesses subgraphs to distinguish between those with and without hard-
ware Trojans, achieving high detection performance across diverse 
datasets.

4.3.1.3.  Linear classification layer. After processing through the GNN 
layers, the features of LTG nodes are extracted and passed to a fully 
connected linear layer. The softmax function is applied to classify the 
subgraph. The classification outcome of the LTG nodes serves as the 
final classification result for the entire LTG subgraph. By focusing on 
LTG nodes, the network captures structural anomalies introduced by 
hardware Trojans, ensuring precise and interpretable classification.
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4.3.2.  Model training process
The training process follows a supervised learning approach using 

a dataset of LTG subgraphs, each labeled as either HT-containing or 
benign. Subgraphs are generated from gate-level netlists, encompass-
ing both benign examples and those embedded with Trojans. Each sub-
graph is constructed by expanding around LTG nodes and assigned a 
label based on its characteristics.

To optimize the model, a binary cross-entropy loss function is em-
ployed. For a given LTG subgraph with a predicted label 𝑦̂𝑖 and ground 
truth label 𝑦𝑖, the loss is defined as:

 = − 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)
]

,

where 𝑁 denotes the total number of subgraphs in the batch.
The model is trained using optimization techniques such as stochas-

tic gradient descent, with carefully tuned learning rates and regulariza-
tion methods to mitigate overfitting and enhance generalization.

4.3.3.  Model detection process
Once trained, LTG-GNN is applied for subgraph classification. For 

each LTG subgraph, the model predicts a label based on the attention-
weighted aggregation of node features.

4.4.  HT detecting and locating

After performing subgraph classification, the results of the LTG-GNN 
are used to analyze the entire design for the presence of HTs. Each LTG 
subgraph is assigned a label 𝑦𝑖 ∈ {0, 1}, where 𝑦𝑖 = 1 indicates that the 
𝑖-th LTG subgraph contains an HT, and 𝑦𝑖 = 0 otherwise.

Subgraphs labeled as 1 provide critical information for identifying 
the potential locations of HTs within the netlist. Based on this classifi-
cation, the design can be categorized as either benign or containing an 
HT. Furthermore, the subgraphs flagged as containing HTs allow us to 
pinpoint approximate regions in the netlist where structural anomalies 
are likely introduced, facilitating targeted verification and mitigation 
efforts.

This approach not only enables efficient detection of HTs at the sub-
graph level but also ensures scalability for analyzing large and complex 
gate-level netlists. By localizing HTs to specific subgraphs, the method 
reduces the search space for detailed inspections and improves the over-
all accuracy and interpretability of the detection process.

5.  Experimental setup and evaluation indices

5.1.  Dataset description

We use two distinct datasets for different purposes in our experi-
ments. The first dataset, Trust-Hub, is a public dataset widely used in 
HT detection research, and it serves as our test set. This dataset is se-
lected because it is commonly used in related works, allowing us to en-
sure consistency and comparability with previous studies. The second 
dataset, generated from open-source IP cores as outlined in Muralidhar 
et al. (2021), is used for training and validation.

By using Trust-Hub as the test dataset, we ensure consistency with 
prior research, providing a fair comparison of SubG4TJ’s performance. 
The generated dataset, in contrast, allows us to train and validate the 
model on a diverse set of hardware designs. To eliminate any poten-
tial overlap between the training and test datasets, we make sure that 
the test set is entirely distinct and contains only data that has not been 
encountered during the training or validation phases. This separation 
ensures an unbiased assessment of the model’s generalization capabil-
ity.

5.1.1.  Generation of datasets
Public HT datasets (Trust-Hub) are limited by types of HTs and 

the number of samples available. This limitation compromises the ade-
quacy of training, validation, and testing. To expand the diversity of HT 
datasets, we automate the insertion of HTs into open-source IP cores. An 
HT comprises a trigger and a payload. The trigger activates after spe-
cific clock cycles or conditions, while the payload disrupts the circuit’s 
functionality upon activation. These HTs are inserted into HT-free cir-
cuits, such as ca_prng and i2cSlave from Muralidhar et al. (2021). The 
RTL code is synthesized into gate-level netlists using synthesis tool. By 
varying synthesis constraints, we create diverse netlists from the same 
RTL code, enriching the training dataset with varied HT examples. Fig. 5 
illustrates various trigger examples when the trigger condition is a full 8-
bit counter. Although only six different examples are shown, our method 
is capable of generating additional examples with varied gate types and 
connection relationships.

5.1.2.  Division of datasets
The IP core dataset is generated by implanting HTs into actual IP 

cores. It comprises 2550 subgraphs: 1300 HT-inserted and 1250 HT-free. 
We allocate this dataset for training. Testing is conducted on circuits 
from the Trust-Hub benchmark, while the model is trained on differ-
ent circuits and HTs from actual IP cores ([Muralidhar et al. (2021)]). 
In this scenario, the circuit under testing has not been exposed to the 

Fig. 5. Examples of condition-based triggers.
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Fig. 6. The original and modified netlist of s38417-T300.

model during training, demonstrating the model’s ability to detect HTs 
in unknown circuits.

5.2.  Parameters, environment and evaluation indices

The dataset encompasses 2550 subgraphs, each labeled as either HT-
inserted (1) or HT-free (0). Our GAT-based network comprises three GAT 
layers and one linear layer, featuring a dropout rate of 0.15 for the GAT 
layer. Throughout training, we configure the batch size at 2000 and 
train the network for 2000 epochs. A batch gradient descent learning 
rate of 5e-5 is used to optimize the network parameters.

Our experiment is conducted in PyTorch framework and runs on a 
server equipped with an i9 processor at 3.0 GHz and 128GB of memory 
capacity. We utilize an NVIDIA GeForce RTX 3090 graphics card for 
both training and HT detecting.

We use true positives (𝑇𝑃 ), true negatives (𝑇𝑁), false positives 
(𝐹𝑃 ), and false negatives (𝐹𝑁) to calculate the evaluation metrics, 
namely 𝑇𝑃𝑅 (True Positive Rate), 𝐹𝑃𝑅 (False Positive Rate) and 
F1. The calculation formulas are as follows: 𝑇𝑃𝑅∕𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕(𝑇𝑃 +
𝐹𝑁), 𝐹𝑃𝑅 = 𝐹𝑃∕(𝐹𝑃 + 𝑇𝑁), 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ), and 𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)∕(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙).

6.  Results and discussions

This section delineates the influence of various factors on the perfor-
mance and analyzes its overall effectiveness.

6.1.  Test sample description

SubG4TJ focuses on detecting concealed HTs, making it applicable 
only to samples with such characteristics. However, as noted in Krieg 
(2023), many Trust-Hub examples do not fully exhibit these traits. For 
instance, s38417-T300 lacks both correctness and stealthiness. To ad-
dress this, modifications are made to the HT in the original netlist to 
enhance concealment. Specifically, NOR4X0 gates are replaced with 
NAND4X0 gates (shown in Fig. 6), which changes the trigger condition 
from requiring 8 signals to simultaneously be 0 to requiring 16 signals 
to simultaneously be 0. This significantly increases the difficulty of trig-
gering the HT, thereby improving its stealthiness. The detection results 
presented in this work are based on these modified examples.

6.2.  Impact of concealment metric on screening LTGs

To evaluate the effects of the concealment metric on screening LTGs, 
we compare the number of original total subgraphs, LTGs, and LTG sub-
graphs (shown in Fig. 7). Due to the significant variation in the scale of 
different netlists, we employ a logarithmic coordinate system to repre-
sent data. For instance, in RS232-T1000, there are 575 nodes. It is im-
portant to note that, due to the decomposition of composite gates into 

simpler gates, the total gate count may slightly differ from the figures 
reported in other studies. For instance, an OA21 gate is decomposed into 
an OR gate and an AND gate, effectively counting as two simpler gates. 
If subgraphs are constructed for each node without any screening, the 
total number of subgraphs would amount to 575. This method could 
significantly increase the number of subgraphs as the node count rises 
to millions.

With our method, the number of LTGs is reduced to 2, thereby de-
creasing the number of suspicious gates to 0.348% of the entire netlist. 
On average, across 20 netlists, the reduction ratio is 0.157%, indicat-
ing that our method effectively reduces the number of gates involved 
in the screening process. Additionally, as multiple LTGs can be grouped 
within a single LTG subgraph, the number of LTG subgraphs is naturally 
fewer than the number of LTGs. This analysis highlights the efficiency of 
our method in reducing the number of gates, optimizing the screening 
process, and enhancing its applicability in large-scale designs.

6.3.  Attention weight analysis

Attention mechanisms play a pivotal role in graph neural networks. 
This section delves into the analysis of attention weights derived from 
the model.

To analyze the behavior of attention weights, we examine a sam-
ple subgraph, s35932-T100. Fig. 8(a) illustrates the attention heatmap 
of this subgraph, where each element represents the attention score be-
tween two connected nodes. For enhanced clarity, these heatmap values 
are annotated onto the s35932-T100 circuit in Fig. 8(b).

The attention weights vary significantly across different node pairs, 
reflecting the model’s ability to prioritize critical connections. The adap-
tive self-attention mechanism in the GAT layers dynamically allocates 
importance to critical connections, enabling the network to highlight 
meaningful patterns while filtering out noise. Among the nodes con-
nected to node 9, nodes 1 and 5 exhibit higher attention weights com-
pared to node 12. These high-attention nodes likely have large fan-ins, 
as hardware Trojans often rely on multiple signal controls for activation, 
making such nodes crucial for detection.

We compared the training accuracy trends of the GAT network, 
which incorporates an attention mechanism, with the GCN network, 
which does not utilize attention, as illustrated in Fig. 9. The figure 
demonstrates that while the GAT network converges faster during train-
ing, it achieves comparable accuracy to the GCN network during train-
ing.

6.4.  Impact of 𝑘𝑖𝑛 in k-hop algorithm on performance

In the LTG subgraph, 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 denote hop numbers towards in-
put and output directions from LTG, respectively. Nodes towards in-
put indicate HT trigger logic, while output nodes represent payload 
logic. Since trigger logic involves multiple nodes, 𝑘𝑖𝑛 ≥ 1. Payload logic
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Fig. 7. Comparison between the number of original total gates, number of LTGs and number of LTG subgraphs.

Fig. 8. Visualization of attention weights for subgraph s35932-T100.

Fig. 9. Training accuracy trends of GAT and GCN networks.

typically alters or leaks values, which has no effects on HT detection 
based on trigger. So 𝑘𝑜𝑢𝑡 is set to 1 for simplicity. This study focuses 
solely on the effects of varying 𝑘𝑖𝑛.

The construction of LTG subgraphs depends on selecting an appro-
priate 𝑘𝑖𝑛 value with k-hop algorithm. Different 𝑘𝑖𝑛 values affect the size 
of subgraphs. We randomly selected approximately 2500 subgraphs as 
the training set for 2000 epochs, with 𝑘𝑖𝑛 configured from 1 to 6 to gauge 
trends of model performance.

Model_hop1 to model_hop6 are trained with 1-hop (𝑘𝑖𝑛 = 1) to 6-
hop (𝑘𝑖𝑛 = 6) subgraphs, respectively. The results for these models on 
the Trust-Hub dataset are presented in Table 3.

Table 3 
Performance of hops used in GAT and GCN.

Model
 GAT  GCN
 F1  TPR  FPR  F1  TPR  FPR
 (%)  (%)  (%)  (%)  (%)  (%)

 Model_hop1  94.59  100.00  10.00  0.00  0.00  0.00
 Model_hop2  95.00  95.00  0.36  93.26  93.45  0.71
 Model_hop3  91.65  92.48  0.38  91.65  92.48  0.38
 Model_hop4  91.63  92.46  0.42  91.63  92.46  0.42
 Model_hop5  91.61  92.44  0.45  91.61  92.44  0.45
 Model_hop6  90.66  90.84  0.50  91.60  92.42  0.50

From Table 3, it is evident that in the detection results of the GAT 
network, predictions are biased toward 1 (hardware Trojan), while in 
the GCN network, predictions tend to favor 0 (normal). Consequently, 
model_hop1 exhibits a significantly higher FPR in GAT and a noticeably 
lower TPR in GCN compared to other models. This discrepancy arises 
because subgraphs composed of nodes only 1 hop away from an LTG fail 
to sufficiently capture the structural complexity of an HT. Analyzing the 
hierarchical structure of HTs reveals that subgraphs including nodes at 
least 2 hops away from an LTG are necessary to effectively represent 
distinct HT patterns.

The performance comparison between GAT and GCN models trained 
with different hop subgraphs highlights the importance of balanc-
ing subgraph size and detection effectiveness. Models trained with
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Fig. 10. Training time for GAT models with different hop counts.

2-hop subgraphs consistently achieve comparable performance to those 
trained with 3-hop to 6-hop subgraphs, effectively capturing the critical 
structural features of HTs while maintaining robustness in detection.

As the number of hops increases, subgraph size grows, gradually ap-
proaching the scale of the full graph. This trend introduces more in-
terfering nodes, resulting in a decrease in TPR and an increase in FPR. 
The growing subgraph size also increases computational complexity, un-
dermining the advantages of subgraph-based detection by diluting the 
focus on critical regions. These observations demonstrate the effective-
ness of subgraph detection in capturing key HT features while avoiding 
unnecessary complexity.

Moreover, training time analysis, as shown in Fig. 10, reveals that 
larger subgraphs require significantly more time to train. In contrast, 
2-hop subgraphs strike the optimal balance by providing sufficient in-
formation for accurate detection with considerably lower training time.

In summary, the 2-hop GAT model demonstrates the best balance 
between detection performance, subgraph size, and computational effi-
ciency, validating the effectiveness of subgraph detection in HT detec-
tion tasks.

6.5.  Impact of different features used in GAT on performance

Feature selection is critical in HT detection models. For our experi-
mental analysis, we use various feature configurations to gauge trends 
in GAT model performance. The subgraphs for both the training and 
testing datasets are generated using the k-hop (𝑘_𝑖𝑛 = 2, 𝑘_𝑜𝑢𝑡 = 1) al-
gorithm. Table 4 presents the performance of GAT networks using dif-
ferent feature sets, including F1 score, TPR, and FPR. In general, the 
naming convention fea_Xtype_YC denotes that each node feature vector 
comprises an X-dimensional one-hot encoding of gate type followed by 
Y-dimensional concealment features.

The model using only the “TYPE” feature (fea_26type) achieves the 
best performance, with an F1 score of 95.00%, TPR of 95.00%, and a 
low FPR of 0.36%. The “TYPE” feature represents the gate type of each 
node, and in our method, there are 26 distinct gate types, including 
AND, OR, NOT, and other gates. As a result, the feature vector for each 
node has a dimensionality of 26. This indicates that the “TYPE” feature 
alone is highly effective for distinguishing HTs from benign circuits. 
When concealment value features are added with varying bit-lengths, 
performance degrades. For example, the model fea_26type_128C shows 
an F1 score of 79.34%, which is significantly lower than the fea_26type
model. The degradation occurs because, in our method, subgraphs are 
derived from LTGs where nodes already exhibit high concealment val-
ues. These features do not provide additional discriminative power and 
may even introduce noise that affects classification accuracy.

Thus, while concealment values are useful during LTG filtering, they 
do not serve as effective features within the GAT network, and their 
use can harm detection performance. The “TYPE” feature, by itself, is 

Table 4 
Performance of different features used in GAT.
 Model  F1 (%)  TPR (%)  FPR (%)
 fea_26type_128C  79.34  80.20  5.00
 fea_26type_32C  86.12  87.91  5.00
 fea_26type_2C  90.19  91.35  5.36
 fea_32C  84.46  85.41  5.00
 fea_26type  95.00  95.00  0.36

the most relevant for HT detection, and unnecessary complexity from 
additional features should be avoided.

6.6.  Performance results of SubG4TJ

We utilize a GAT network for subgraph classification, where the fea-
tures of each node are represented using one-hot encoding based on the 
gate type. Subgraphs are generated with a k-hop algorithm where 𝑘𝑖𝑛 = 2
and 𝑘𝑜𝑢𝑡 = 1.

Tests on 20 benchmark circuits from Trust-Hub (e.g., RS232, S15850, 
b19, VGA, AES, etc., as shown in Table 5) show that SubG4TJ achieves 
an average TPR of 95.00%, an FPR of 0.36%, and an F1 score of 
95.00%. Notably, our evaluation includes the AES test case, which has 
not been addressed by other methods, further highlighting the ability 
of SubG4TJ in handling complex and large-scale netlists. While a few 
benchmarks exhibit TPR values around 50%, each contains only a sin-
gle hardware Trojan instance. In these cases, SubG4TJ successfully lo-
calizes at least one subgraph encompassing key portions of the Trojan 
logic. Lower TPR values arise when certain subgraphs include periph-
eral Trojan nodes but lack critical trigger or payload components. Such 
subgraphs may not be flagged as malicious, reflecting SubG4TJ’s conser-
vative design that prioritizes detection of core HT structures to reduce 
false positives and focus analysis on high-confidence regions.

Table 5 also provides a comprehensive comparison with state-of-the-
art methods. Specifically, Yasaei et al. (2021) formulates HT detection 
as a graph classification task by converting the entire netlist into a Data 
Flow Graph and applying GNNs. While comprehensive, this global rep-
resentation limits fine-grained localization. In contrast, Hasegawa et al. 
(2025), Hasegawa et al. (2023), and Nozawa et al. (2021) adopt node-
level detection, where each gate is treated as a node and classified 
based on extracted features. These methods excel at local anomaly detec-
tion but may miss structural patterns of distributed Trojans.  Yamashita 
et al. (2022) uses handcrafted statistical features with traditional classi-
fiers, while Yasaei et al. (2025) introduces a golden-reference-free GNN 
method based on Data Flow Graphs.

Compared to Yasaei et al. (2021), on the RS232 test set, SubG4TJ 
achieves significant improvements, increasing the TPR by 13.6%, re-
ducing the FPR by 5%, and boosting the F1 score by 9.5%. SubG4TJ im-
proves TPR by 3.54% compared to the GAT-based method in Hasegawa 
et al. (2025), achieving more effective identification of Trojan instances. 
Although it introduces a modest 0.29% increase in FPR, this trade-off 
remains within acceptable bounds. In security-critical scenarios, espe-
cially in HT detection, maximizing TPR is often prioritized to avoid un-
detected threats, as false negatives may lead to severe consequences. Ad-
ditionally, SubG4TJ demonstrates better performance compared to the 
methods proposed in Hasegawa et al. (2023), Yamashita et al. (2022) 
and Yasaei et al. (2025). Taken together, the results demonstrate TPR 
gains ranging from 0.9% to 13.6% across diverse benchmark circuits.

Table 5 compares the detection time of SubG4TJ with the full-graph 
approach proposed in Hasegawa et al. (2025), which is known for effec-
tive node classification. Both methods are evaluated after pre-processing 
the same netlists into graph data. For smaller test cases, such as RS232, 
detection times are comparable between the two approaches. However, 
as netlist size grows (e.g., AES), the detection time for Hasegawa et al. 
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Table 5 
Experimental results on Trust-Hub.

 Subgraph classification  Graph classification  Node classification  detect time (s)
 Trust-Hub SubG4TJ 

(ours)
Yasaei et al. 
(2021)

Hasegawa 
et al. (2025)

Hasegawa 
et al. (2023)

Yamashita 
et al. (2022)

Yasaei et al. 
(2025)

subG fullG

 benchmark  TPR  FPR  F1  TPR  FPR  F1  TPR  FPR  TPR  FPR  TPR  FPR  TPR  FPR  F1  SubG4TJ(ours) Hasegawa et al. (2025)
 (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)

 Ave_RS232  100.00  0.00  100.00  86.4  5.00  90.50  95.60  0.15  99.1  5.25  98.38  1.10  97.1  10.00  93.30  0.001143  0.010143
 Ave_AES  83.33  0.00  88.89  –  –  –  –  –  –  –  –  –  -  –  -  0.035333  4.074667
 Average_all  95.00  0.36  95.00  –  –  –  91.46  0.07  83.5  5.4  –  –  –  –  –  0.00865  1.0482

(2025) increases sharply, whereas SubG4TJ shows only a slight increase. 
In summary, we achieve an average reduction in detection time of 120x.

To further evaluate scalability, we tested SubG4TJ on a large-scale 
accelerator IP comprising 2.5 million gates. All experiments are con-
ducted on the same hardware platform (specified in Section 5), us-
ing identical node features, model architecture, and training parame-
ters. The only variable changed between experiments was the graph 
processing method – SubG4TJ applies localized subgraph extraction 
while the baseline method performs detection on the entire circuit 
graph without partitioning. Under these controlled conditions, SubG4TJ 
completed detection in 0.53 s, whereas the full-graph baseline required 
195.41 seconds. This 368× speedup highlights the scalability advantage 
of subgraph-based processing, especially for large-scale netlists.

This demonstrates SubG4TJ’s superior performance in balancing 
high TPR, low FPR, and time efficiency compared to other methods. 
These results are attributed to the use of the concealment metric and 
subgraph classification, which effectively identify HTs with subtle char-
acteristics. The LTG subgraph retains essential HT structures, minimiz-
ing noise from unrelated gates. An enhanced GAT-based network further 
optimizes subgraph feature learning and reduces the influence of unre-
lated gates, achieving low FPR.

6.7.  Complexity analysis

SubG4TJ comprises four sequential steps: Step-1 involves calculating 
concealment values, Step-2 entails executing k-means clustering, Step-
3 involves mining LTG subgraphs using BFS, and Step-4 encompasses 
executing the GAT-based model. Let 𝑛 represent the total number of 
gates in the netlist, and 𝑛𝐿𝑇𝐺𝑠 represent the number of LTGs, which 
is smaller than 𝑛. The time complexity of Step-1 is 𝑂(𝑛), and Step-2 
has the time complexity of 𝑂(𝑛𝑘𝑑𝑖) where 𝑑 is the number of data di-
mensions which is set to 1, 𝑘 is the number of clusters which is set 
to 2, and 𝑖 is the number of iterations needed until convergence. For 
data with clustering structure, the number of iterations before conver-
gence is usually small, and the results only slightly improve after the 
first dozen of iterations. Therefore, Step-2 has the time complexity of 
𝑂(𝑛) [Salmani (2017)]. Step-3 using BFS for a limited depth (k-hop) has 
a constant time complexity of 𝑂(1) per LTG, resulting in a time complex-
ity of 𝑂(𝑛𝐿𝑇𝐺𝑠). In the GNN model of Step-4, |𝑉 | represents the number 
of nodes in the subgraph, |𝐸| represents the number of edges in the 
subgraph, 𝐹  represents the original feature dimension, and 𝐹 ′ repre-
sents the output feature dimension. The computational complexity of 
Step-4 is 𝑂(|𝑉 | × 𝐹 × 𝐹 ′) + 𝑂(|𝐸| × 𝐹 ′). In total, the time complexity of 
our method is 𝑂(𝑛) + 𝑂(𝑛) + 𝑂(𝑛𝐿𝑇𝐺𝑠) + 𝑂(|𝑉 | × 𝐹 × 𝐹 ′) + 𝑂(|𝐸| × 𝐹 ′). 
Considering |𝑉 | and |𝐸| of the subgraph is much smaller than 𝑛, our 
method offers significant computational savings compared to full-graph 
approaches.

7.  Conclusion

In this paper, we propose SubG4TJ, a collaborative subgraph classi-
fication method based on multidimensional attributes for efficient and 

accurate HT detection in large-scale netlists. Using the intrinsic conceal-
ment characteristics of HTs, our method identifies LTGs, significantly 
reducing the overall search space. To effectively capture local structural 
attributes indicative of the presence of HT, we introduce an LTG-aware 
subgraph mining approach. For subgraph classification, we employ a 
GNN-based classifier (including GCN and GAT). Extensive experimental 
evaluations demonstrate that SubG4TJ consistently achieves superior 
detection performance, reflected by TPR improvements ranging from 
0.9% to 13.6% and achieves up to 120× speedup, outperforming state-
of-the-art methods in both accuracy and runtime efficiency. These re-
sults underscore SubG4TJ’s practical effectiveness and its potential as a 
robust solution for addressing hardware security concerns in complex, 
large-scale integrated circuits.
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