Computers & Security 163 (2026) 104816

Contents lists available at ScienceDirect

b4 Computers
& 5

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Full Length Article

GLRA: Graph-based leakage risk assessment via minimal transmission cost
path analysis

Xing Hu ¥ " Yang Zhang
Zhenyu Zhao?, Keqin Li‘¥ ¢

&* Sheng Liu?, Xiaowen Chen?, Yaohua Wang ‘®?, Shaoqing Li?,

2 College of Computer Science and Technology, National University of Defense Technology, China
b School of Physics and Electronic Science, Changsha University of Science and Technology, China
¢ State University of New York, USA

ARTICLE INFO ABSTRACT

Keywords:
Hardware security
Information leakage

As integrated circuits are increasingly deployed in security-critical applications, assessing the risk of information
leakage introduced during the design phase has become a key challenge. Logic-level structures may inadver-
tently enable sensitive data to propagate to externally observable points, posing serious security risks. Although
anomaly-based techniques such as taint tracking and machine learning have been developed to detect or miti-
gate leakage threats, the absence of a unified and quantitative metric for evaluating leakage risk remains a major
limitation. Without such a metric, existing methods can neither effectively identify real threats nor compare the
effectiveness of protection strategies in a principled manner, leading to limited reliability and comparability in
hardware security analysis.

To overcome these challenges, we propose GLRA, a graph-based methodology for leakage risk assessment
via minimal transmission cost path analysis. Departing from the traditional “path existence” criterion used in
anomaly label-based taint tracking, GLRA quantifies leakage risk by evaluating the difficulty of information
propagation. A central premise of GLRA is that the transmission cost-defined as the effort required to propagate
signals from sensitive sources to observable outputs-is inversely correlated with leakage likelihood: lower costs
imply higher risks. Accordingly, we define controllability-based transmission cost metrics for basic logical units
such as AND, OR, NOT, and DFF, which quantify the propagation effort imposed by each logic unit. By modeling
the circuit as an edge-weighted graph where edges are annotated with the aforementioned transmission cost
values, GLRA identifies the minimal path from sensitive sources to potential leakage points. In addition, to accu-
rately quantify the risk of leakage, GLRA establishes a formulaic correlation between the transmission cost and
the design’s overall risk of information leakage. Experiments on cryptographic cores, debug infrastructure, and
non-cryptographic logic demonstrate that GLRA accurately quantifies maximum-risk leakage paths, achieving
a 18.75% improvement in detection precision over traditional anomaly-based approaches. GLRA correctly de-
termines the presence or absence of leakage risks across all 16 evaluated benchmarks. Furthermore, it supports
comparative analysis of leakage mitigation strategies across diverse hardware designs, providing quantitative
insights into the effectiveness of protection mechanisms.

Transmission cost
Risk assessment
Path analysis

1. Introduction Among various hardware security threats, information leakage has

become a particularly critical concern. Unlike functional attacks that

In the field of Integrated Circuits (ICs), hardware design has tra-
ditionally focused on functionality, performance, and cost. However,
hardware security has often been overlooked. As ICs are now widely
used in critical sectors such as autonomous vehicles, implantable med-
ical devices, and military communication networks, security risks have
become a paramount concern and a non-negligible factor in the design
of modern ICs.

* Corresponding author.

disrupt system operations, leakage-based threats aim to exfiltrate sen-
sitive data while preserving the circuit’s correct outputs under stan-
dard operating or test conditions, thus evading conventional detection
mechanisms. Leakage risk refers to the likelihood that confidential in-
formation within a hardware design is propagated to unintended out-
puts or observation points, potentially leading to undesired exposure of
sensitive data. This type of leakage can occur through various covert

E-mail addresses: huxing@nudt.edu.cn (X. Hu), zhangyang@nudt.edu.cn (Y. Zhang), liusheng83@nudt.edu.cn (S. Liu), xiaowenc@kth.se (X. Chen),
nudtyh@foxmail.com (Y. Wang), sqli@163.com (S. Li), zyzhao@nudt.edu.cn (Z. Zhao), lik@newpaltz.edu (K. Li).

https://doi.org/10.1016/j.cose.2025.104816

Received 12 June 2025; Received in revised form 5 August 2025; Accepted 26 December 2025

Available online 29 December 2025

0167-4048/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://orcid.org/0009-0001-8282-8009

1.080×10^{22}

$H(X|Y)$

X

Y

$H(X|Y)$

$\mathcal {P} = (v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k)$

$(v_i \rightarrow v_{i+1})$

$TC(v_i \rightarrow v_{i+1})$

v_i

v_{i+1}

$\mathcal {P}$

\begin {equation*}TC(\mathcal {P}) = \sum _{i=1}^{k-1} TC(v_i \rightarrow v_{i+1})\end {equation*}

TC

$H(X|Y)$

$\mathcal {P}_1, \mathcal {P}_2$

$TC(\mathcal {P}_1) < TC(\mathcal {P}_2)$

\begin {equation*}H(X|Y_1) < H(X|Y_2), \quad \text {thus } LR(Y_1) > LR(Y_2),\end {equation*}

Y_1

Y_2

S_1, S_2, \ldots , S_n

S_i

$P_{i1}, P_{i2}, \ldots , P_{im}$

S_i

\begin {equation*}TC_{\min }(S_i) = \min _j TC(P_{ij}).\end {equation*}

S_i

\begin {equation*}LR(S_i) \propto \frac {1}{TC_{\min }(S_i)}.\end {equation*}

TC

\begin {equation*}\begin {aligned} LR_{\text {total}} &= \max (LR(S_1), \ldots , LR(S_n)) \\ &\propto \frac {1}{\min \left (TC_{\min }(S_1), \ldots , TC_{\min }(S_n)\right)}. \end {aligned}\end {equation*}

A

A

TC

TC

TC

$TC_{\text {NOT}} = 0$

$TC_{\text {AND}} = \sum _{i=1}^{n-1} CC1(\text {other}_\text {input}_i)$

n

$n-1$

$TC_{\text {OR}} = \sum _{i=1}^{n-1} CC0(\text {other}_\text {input}_i)$

$TC_{\text {XOR}}$

$min(CC0(other_input), CC1(other_$

$input))$

$TC_{\text {DFF}} = CC0(\text {clk}) + CC1(\text {clk})$

D

Q

rst

$TC_{\text {DFF}} = CC0(\text {clk}) + CC1(\text {clk}) + CC0(\text {rst})$

$CC0$

$CC1$

TCs

A

B

$\infty $

A

A

u

v

u

A

v

u

v

u

v

v

B

A

B

TC

$TC_{\text {threshold}}$

$TC_{\text {threshold}}$

$\alpha $

$\alpha $

\begin {equation*}TC_{\text {threshold}} = TC_{\text {Baseline}(\alpha)}\end {equation*}

$TC_{\text {Baseline}(\alpha)}$

$\alpha $

$\alpha = 3$

$\alpha = 2$

$\alpha = 1$

$\alpha = 3$

$TC_{\min }$

$TC_{\min }$

LR

\begin {equation*}\text {LR}(TC_{min}) = \left \{\begin {array}{@{}ll} 1 - \frac {TC_{min}}{TC_{\text {threshold}}} & \text {if } TC_{min} \leq TC_{\text {threshold}} \\ 0 & \text {if } TC_{min} > TC_{\text {threshold}} \end {array}\right .\end {equation*}

TC_{min}

LR

TC_{min}

$TC_{\text {threshold}}$

$1 - \frac {TC_{min}}{TC _{\text {threshold}}}$

TC_{min}

LR

LR

n

$O(n)$

n

m

$O(m + n \log n)$

s

$O(s(m + n \log n))$

$O(s \times o)$

o

s

n

D

S_i

P_{i1}

P_{i2}

P_{in}

S_i

TC_{i1}

TC_{i2}

TC_{in}

4.96×10^{15}

5.0×10^{15}

6.8×10^{38}

2.08×10^{-12}

1.080×10^{22}

5.0×10^{15}

6.8×10^{11}

LR

LR

LR

LR

LR

LR

LR

$\checkmark $

$\times $

$\circ $

$\alpha $

$\alpha $

$TC_{\text {threshold}} = f(\alpha)$

https://orcid.org/0000-0001-5919-918X
https://orcid.org/0000-0002-9556-5535
https://orcid.org/0000-0001-5224-4048
mailto:huxing@nudt.edu.cn
mailto:zhangyang@nudt.edu.cn
mailto:liusheng83@nudt.edu.cn
mailto:xiaowenc@kth.se
mailto:nudtyh@foxmail.com
mailto:sqli@163.com
mailto:zyzhao@nudt.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.cose.2025.104816
https://doi.org/10.1016/j.cose.2025.104816

X. Huetal

channels, including hardware Trojans (HTs), malicious backdoors, or
even poorly isolated data paths. As ICs are increasingly deployed in
sensitive and high-assurance domains, failure to mitigate information
leakage risks can lead to severe security breaches, jeopardizing not only
individual devices but also the integrity of broader computing infras-
tructures.

To mitigate the risk of information leakage, both detection and
defense methods have been developed. Existing detection techniques-
including information flow tracking (Witharana et al., 2023; Guo et al.,
2019), machine learning (Yasaei et al., 2021; Kande et al., 2023), and
side-channel analysis (Atieh and Shahram, 2017; Chen et al., 2023)-
have primarily adopted anomaly-based strategies, attempting to identify
suspicious behavior by flagging deviations from expected circuit oper-
ation. However, these methods lack a unified, quantitative measure of
leakage severity, making it difficult to interpret whether the observed
anomalies truly indicate security-critical threats. For example, consider
the AES-T1200 (available on Trust-Hub Salmani et al. (2013)), an HT
that causes sensitive data exposure due to abnormal data flow. This Tro-
jan activates when a 128-bit counter, starting at 0 and incrementing by
1 with each cycle, reaches its maximum value. This triggers a flaw in
the encryption process, resulting in the unauthorized leakage of encryp-
tion keys. However, at a 1 GHz CPU frequency, a 128-bit counter would
take approximately 1.080 x 10?? years to reach its maximum value, mak-
ing it highly improbable within the typical operational lifespan of the
hardware. As a result, this type of anomaly poses no real threat and is
essentially risk-free. Therefore, anomaly detection alone is insufficient;
it is equally important to accurately assess the actual risk of information
leakage.

In terms of defense, a variety of security enhancement measures
can be applied to counteract the security vulnerabilities of informa-
tion leakage (Ren et al., 2018; Lee et al., 2022b). Using the Joint Test
Action Group (JTAG) interface as an example, JTAG is a debug inter-
face that provides access to the internal data of integrated circuits, in-
troducing the risk of information leakage. To mitigate this risk, sev-
eral approaches can be employed to strengthen its security. Techniques
such as password protection and encryption enhance JTAG security by
ensuring that only authorized individuals can access the data. How-
ever, the effectiveness of these defenses is often assessed qualitatively
and lacks consistent quantitative evaluation. Their actual protection
strength can vary significantly depending on the attack sophistication
and application environment. Without a unified metric, it remains chal-
lenging to objectively compare different strategies or select appropri-
ate protections for specific security requirements. This variability un-
derscores the need for a quantitative evaluation to systematically as-
sess leakage risks and defense effectiveness across diverse hardware
contexts.

So accurately measuring the risk of information leakage is crucial for
assessing the risks posed by hardware vulnerabilities, both in detection
and defense methods. Various methods have been developed to mea-
sure and evaluate hardware vulnerability. Existing methods related to
hardware security assessment, such as Security Verification (SV), COTD,
TVF, and SecMiner (Farzana et al., 2019; Salmani, 2017; Kok et al.,
2019; Zhang et al., 2020; Salmani, 2022; Cruz et al.; Hu et al., 2024; Ay-
alasomayajula et al., 2024a) attempt to evaluate vulnerabilities. These
methods either focus on functional correctness through assertion-based
checking, evaluate the controllability and observability of trigger condi-
tions for HTs, or analyze signal propagation patterns at RTL level. How-
ever, none of these approaches are specifically designed to quantify risk
of information leakage at gate level.

Thus, there is an urgent need for a systematic and quantifiable ap-
proach to evaluate gate-level information leakage risks. Our key insight
is that the ease with which sensitive signals propagate from internal
sources to observable outputs reflects the likelihood of unintended leak-
age. In other words, the more effortlessly a sensitive signal can traverse
the circuit to reach an external node, the higher the potential risk of
information disclosure. Based on this insight, we propose a novel quan-

Computers & Security 163 (2026) 104816

SP-IP & 3P-IP & Our research
backdoor backdoor [seope

| [

RTL Gatelevel GDSIU

Specification Code Netlist Layout Die

Fig. 1. IC design flow with potential security threats.

tification framework to assess leakage risks. The key contributions are
as follows:

1 We propose a controllability-based transmission cost model for logic
units such as AND, OR, and DFF to quantify the efforts required to
transmit signals through them. These definitions provide metrics to
assess the difficulty of signal propagation within these units.

2 Based on the transmission costs for logic units, we adopt an edge-
weighted graph to quantify the risks for each leakage path. This
method transforms hardware designs into graph structures, with
edges assigned unit-specific transmission costs to quantify leakage
paths.

3 We establish a formulaic correlation between transmission cost and
information leakage risk at gate level. In contrast to conventional
qualitative methods relying on anomaly detection, our method pro-
vides a quantitative framework for assessing the risk of information
leakage.

4 We validate GLRA on AES, DES, RSA, and debug interfaces. Using
AES as a baseline for risk normalization, GLRA identifies maximum-
risk leakage paths via transmission cost analysis and improves de-
tection accuracy by 18.75% over anomaly-based methods. It also
enables comparative evaluation of protection mechanisms across di-
verse designs.

The structure of the paper is organized as follows: Section 2 reviews
related work, and Section 3 discusses the motivation behind our re-
search. Section 4 outlines the proposed methodology, focusing on the
transmission cost metric and leakage risk assessment, respectively. Sec-
tion 5 and Section 6 present the experimental results and discussion.
Finally, Section 7 concludes the paper and provides suggestions for fu-
ture work.

2. Related works

In this section, we provide a brief review of existing works on de-
tection methods, defense methods, and evaluation methods related to
information leakage risk and hardware vulnerabilities.

2.1. Detection methods for information leakage

2.1.1. Information flow tracking

Information flow tracking (IFT) involves monitoring the flow of data
through a circuit to detect leakages or unauthorized transmissions. This
method aims to identify deviations from expected data paths, which
can indicate the presence of HTs, backdoor or other malicious modifi-
cations. Witharana (Witharana et al., 2023) and Ayalasomayajula (Ay-
alasomayajula et al., 2024b) use RTLIFT-based taint tracking to de-
tect information leakage by tracing tainted data paths. Deutschbein
(Deutschbein et al., 2021) employs IFT logic to generate simulation
traces and analyze information flows. GLIFT (gate-level IFT) (Chen et al.,
2021; Hu et al., 2016; Zhang et al., 2022; Meza et al., 2023; Zhao et al.,
2024; Qin et al., 2019; Sun et al., 2024) is used to detect HTs that cause
information leakage by assigning labels and monitoring their propaga-
tion at gete level. Guo (Guo et al., 2019) extends verilog type systems
with a quantified information flow model to improve the expressiveness
of security rules and evaluate hardware trustworthiness.

X. Huetal

2.1.2. Machine learning methods

Machine learning (ML) techniques have emerged as a promising ap-
proach to enhance leakage HT or backdoor detection. By training mod-
els to distinguish between normal and anomalous behaviors, ML meth-
ods can indicate the potential presence of anomalous behaviors. Yasaei
(Yasaei et al., 2021; Yasaei et al.) uses a graph-based approach, repre-
senting hardware design as data flow graphs generated from RTL (Reg-
ister Transfer Level) and gate-level netlists, and employs graph neu-
ral networks (GNNs) to automatically extract features and identify the
presence of HTs. Yen Yen et al. (2023) introduces an approach for HT
detection by leveraging path-specific features at gate level. During the
training phase, path classifiers are developed using the path features ex-
tracted from the training circuit, with support vector machines and ran-
dom forest algorithms employed for model training. The trained path
classifier is then utilized for detection, categorizing logical paths into
HT paths and HT-free paths. Kande et al. (2023) investigates the use of
large language models to automatically generate security-centric system
verilog assertions from natural language prompts.

2.1.3. Side-channel analysis method

Side-channel analysis is a post-silicon technique widely used for de-
tecting hardware Trojans that leak sensitive data during runtime. It
collects physical measurements such as power consumption, timing de-
lays, or electromagnetic emissions during chip execution and compares
them against a golden reference from a known HT-free design. Atieh
and Shahram (2017) proposes a method that measures path delays to
identify circuit paths most affected by HTs. Fakir et al. (2018) enhances
the power consumption ratio of HT circuits and minimizes variations
in detection thresholds. This is achieved through fine-grained circuit
partitioning and the use of optimized test pattern sets. Zhang et al.
(2018) and He et al. (2018) both present frameworks that use simu-
lated electromagnetic (EM) side-channel signatures from early-stage IC
design data, employing neural networks for HT detection without re-
quiring a golden chip reference. SCAR Srivastava et al. (2024) is a power
side-channel analysis method designed for the silicon front-end, lever-
aging GNNs. SCAR accepts the RTL design as input, converting it into a
control-data flow graph. It utilizes a GNN model to identify vulnerable
modules through node-level classification tasks. Lakshmy et al. (2022)
estimates fine-grained signal-level power side-channel leakage early in
the design cycle by utilizing information flow analysis and the signal
probability correlation factor, though its accuracy is limited by its as-
sumption of acyclic input designs. Chen et al. (2023) proposes a deep
learning framework combining ResNeXt and attention mechanisms to
accurately detect and classify multiple HTs in AES circuits using side-
channel data.

While side-channel methods are effective at runtime detection, they
require physical access to fabricated chips and rely on trace-level differ-
ences, making them unsuitable for pre-silicon design-time analysis.

2.2. Defense methods for information leakage

To combat information leakage attacks in integrated circuits, vari-
ous protection methods have been proposed, including antifuse technol-
ogy, password-based authentication, and signature detection Ren et al.
(2018). More recent approaches, such as the Secure JTAG method Lee
et al. (2022a), employ a dynamic authentication mechanism that gener-
ates unique keys for each test data instance, effectively preventing unau-
thorized access. Another advanced method leverages physically unclon-
able functions (PUFs) (Chittoriya et al., 2022; Lee et al., 2022b) to pro-
tect against scan chain attacks by ensuring that access keys are uniquely
generated and securely managed, thereby enhancing security.

2.3. Evaluation methods for hardware vulnerability

In recent years, several methods have been developed to vulnera-
bility evaluation and security assurance in hardware designs. Farzana

Computers & Security 163 (2026) 104816

Inputs Outputs
D1 Sensitive module -
VS
TCK TAP Controller

Fig. 2. JTAG design with potential leakage paths (backdoors).

Farzana et al. (2019) proposes a property-driven approach (SV) for de-
signing secure system-on-chip (SoC) architectures by developing a com-
prehensive set of reusable, architecture-agnostic security properties and
metrics to guide design and facilitate quantitative security assessment.
The controllability and observability for HT detection (COTD) technique
(Salmani, 2017; Kok et al., 2019; Zhang et al., 2020; Salmani, 2022)
measures the controllability and observability of signals at gate level to
detect HTs that are difficult to trigger or observe. Cruz (Cruz et al.) pro-
poses the HT vulnerability factor (TVF) as a novel metric to evaluate a
hardware design’s susceptibility to HT insertion. Using maximal clique
analysis, TVF offers a detailed perspective on HT risks by examining the
structural intricacies involved in embedding undetectable HTs, eliminat-
ing the need to define specific trigger sizes. Hu et al. (2024) proposes
CA4TJ, a metric specifically designed for detecting always-on HTs. By
quantifying the correlation between sensitive information and leakage
ports in gate-level netlists, it identifies persistent always-on information
leakage threats. SecMiner (Ayalasomayajula et al., 2024a) uses static
analysis and data mining techniques to automatically generate and rank
security assertions, effectively detecting potential information leakages
in RTL hardware designs.

3. Motivation
3.1. Information leakage type attack

As illustrated in Fig. 1, information leakage vulnerabilities can
emerge at multiple stages throughout the integrated circuit (IC) design
and manufacturing lifecycle. This work focuses specifically on the de-
sign phase, where logic-level structures are first instantiated and inte-
grated. At this stage, several types of leakage threats may arise-even in
the absence of explicit malicious behavior.

We categorize design-stage leakage risks into three main sources:

1) Hardware Trojans (HTs): Malicious entities may embed HTs
within third-party intellectual property (3P-IP) cores during design time.
These HTs can be either always-on or trigger-based. Always-on HTs con-
stantly transmit sensitive data (e.g., cryptographic keys) through incon-
spicuous logic structures, while trigger-based HTs activate only under
specific rare conditions and selectively leak critical information. These
are intentional, covert attack vectors and are particularly challenging to
detect.

2) Unintended Backdoors in Trusted Logic: Even logic compo-
nents developed by trusted parties may inadvertently introduce severe
leakage vulnerabilities. A typical example is the unprotected integra-
tion of debug infrastructure (e.g., JTAG) with sensitive logic such as
cryptographic modules. As shown in Fig. 2, such integration may create
unintended data paths that expose secret values (e.g., keys or internal
states) to external interfaces like the Test Data Output (TDO) pin. These
scenarios exemplify non-malicious yet dangerous design flaws-referred
to as “inadvertent backdoors”-which arise when security constraints are
not explicitly enforced during module interconnection.

3) Poor Design Practices in Regular Logic: Even general-purpose
logic without any malicious intent can leak sensitive data if not carefully

X. Huetal

designed. This may result from poor signal isolation, unintentional data
reuse, or unsafe reuse of internal nets across sensitive and non-sensitive
domains. For instance, if critical control or key signals are reused or
routed near externally visible output ports, they may inadvertently prop-
agate to observable points. Such issues typically stem from a lack of
security awareness during logic synthesis and verification stages.

Distinct from Side-Channel Attacks: The attack model in this work
differs fundamentally from runtime side-channel and fault injection at-
tacks, which exploit physical effects (e.g., power consumption, timing,
or electromagnetic emissions) during chip execution. In contrast, our
work targets logic-level vulnerabilities embedded in gate-level netlists
at design time. We analyze the static structure of the logic itself to iden-
tify potential information leakage paths-without relying on runtime be-
havior, simulation, or pattern matching.

3.2. Our motivation

In gate-level hardware designs, information transmission refers to
the propagation of signals through interconnected units. For sensitive
information to reach a potentially endpoint, a valid signal path must ex-
ist, connecting its source to the leakage point. However, different types
of logic units impose varying levels of difficulty when transmitting a
signal because they rely on specific input conditions. For example, a
signal passing through an inverter is relatively straightforward, as the
output depends solely on a single input. In contrast, signal propagation
through an AND gate is conditional: the output reflects the target input
only when all other inputs are set to logic 1. If any of the other inputs
are 0, the output is forced to 0 regardless of the target input, thereby
obstructing signal propagation. This conditional dependency increases
the complexity of transmission through the gate.

Due to variations in transmission difficulty across different logic
units, sensitive signals may reach potential leakage points via multi-
ple paths, each associated with a distinct transmission cost. The ease of
signal propagation along these paths directly correlates with the likeli-
hood of information leakage: the lower the transmission cost, the higher
the leakage risk, and vice versa. This correlation is supported by prior
security research (Ayalasomayajula et al., 2024a), which observes that
low-complexity information flows are generally more exploitable by at-
tackers, while high-complexity paths with multiple branches or depen-
dencies tend to increase the attack difficulty. Therefore, accurately as-
sessing a design’s overall leakage risk requires analyzing the transmis-
sion costs of all feasible paths and identifying the one that poses the
greatest risk.

Based on this observation, we propose a transmission cost based met-
ric to quantify the risk of sensitive information leakage. By calculating
the transmission cost of sensitive data across different unit types, we
can accurately assess the difficulty of signal propagation and identify
vulnerable paths within the circuit. Furthermore, by modeling the re-
lationship between transmission cost and leakage risk, we provide an
evaluation of potential threats to information leakage.

4. Proposed method

The transmission cost metric is central to our methodology, enabling
the precise evaluation of sensitive information leakage risk at gate level.
By quantifying the difficulty of signal propagation through different
logic units, it identifies critical paths prone to leakage, offering a de-
tailed method for assessing circuit vulnerabilities. The following sections
delve into the details of the proposed method.

Before introducing our method, it is necessary to distinguish our
methodology from a relevant method called COTD (Salmani, 2017)
(Controllability and Observability for HT Detection). COTD is designed
to detect HTs by identifying signals that are difficult to trigger (with
high controllability value) or observe (with high observability value),
under the assumption that such signals are more likely associated with

Computers & Security 163 (2026) 104816

HTs. However, COTD is not well-suited for evaluating information leak-
age, which follows an opposite principle: sensitive signals that are easier
to propagate and observe at the leakage endpoint pose a higher risk. In
contrast to COTD, our method is specifically tailored to quantify and
address the unique risks of information leakage by focusing on the ease
of signal transmission and the vulnerability of critical paths within a cir-
cuit. This differentiation underscores the need for a dedicated approach
that aligns with the unique nature of information leakage behavior.

4.1. Relationship between transmission cost and leakage risk

The correlation between transmission cost and information leakage
risk in GLRA is grounded in Shannon’s theory of communication chan-
nels. In this context, a signal propagation path from a sensitive source
to an observable output can be analogized to a covert communication
channel:

e Each valid signal path forms a potential leakage channel, enabling
the propagation of sensitive information to external outputs.

e A lower transmission cost reflects fewer control constraints or logic
conditions for signal propagation, which increases the effective ob-
servability of the source signal.

e As observability increases, the effective channel capacity of the path
also increases, reducing the conditional entropy H(X|Y), where
X denotes a sensitive input and Y an observable output. A lower
H(X|Y) implies stronger correlation and greater potential for infor-
mation leakage.

This information-theoretic perspective supports the central premise
of GLRA: paths with lower transmission cost are more vulnerable to in-
formation leakage, and therefore play a dominant role in determining
the overall risk level of a hardware design. This reasoning is intended as
a heuristic justification grounded in information theory, and aligns with
prior studies (Ayalasomayajula et al., 2024a) that highlight the relation-
ship between flow complexity and exploitability. While not constituting
a formal proof of security, this perspective reinforces the theoretical
foundation of GLRA by emphasizing that lower transmission cost paths
are more susceptible to information leakage.

Let P = (v; - v, = - = v;) denote a directed path in the gate-level
netlist, representing a sequence signal propagation. For each directed
path (v; = v;,), we define a local transmission cost TC(v; — v,,) that
reflects how easily a signal can be propagated from signal v; to v,
based on unit type. Then the total transmission cost of path P is:

k-1
TC(P)= Y TC(v; = v;y1)
i=1

This definition reflects the logical effort required to propagate sensi-
tive information through logic units. We propose that lower T'C corre-
sponds to lower conditional entropy H(X|Y), indicating greater leakage
risk.

Postulate 1 (Risk Mapping): Given two paths P;, P, with TC(P)) <
TC(P,), we postulate:

H(X|Y,) < H(X|Y,), thus LR(Y;)> LR(Y,),

where Y, and Y, are the outputs of the respective paths. This postulate
maps transmission cost to leakage risk through the inverse of conditional
entropy.

Theorem 1. If a hardware design has multiple sensitive signals, the over-
all risk of information leakage is primarily determined by the path with the
minimum transmission cost.

Proof. Let a hardware design include sensitive signals .S, S, ..., .S,. For
each signal §;, suppose it has paths P, P,, ..., P,, to various outputs.
Denote the minimum transmission cost for signal .S; as:

TCpin(S)) = min TC(P,).

X. Huetal

a
b

[eN ¢}

(@ (b)

Fig. 3. Signal propagation through logic units.

Based on Postulate 1, the leakage risk of signal S; satisfies:

1

LR(S) & ———.
TCmin(S[)

The global leakage risk of the system is determined by the most vul-
nerable signal path (i.e., the one with the lowest TC):
LRy = max(LR(SY), ..., LR(S,))
1
x " .
min (T Cpn(S)), ..., TCprin(S,))

Hence, the overall system leakage risk is governed by the smallest
transmission cost among all minimum-cost paths from each sensitive
signal. O

Corollary: By analyzing the minimum transmission cost from a sen-
sitive signal A to all observable outputs, we can determine its leakage
risk. If all such paths incur enough high transmission costs, A is deemed
secure. Otherwise, the existence of a low-cost path indicates potential
leakage.

This information-theoretic interpretation offers a principled ratio-
nale for using TC as a risk metric and supports its integration into
hardware-level leakage analysis frameworks.

4.2. Transmission cost definition for logic units based on controllability

With the theoretical relationship between transmission cost and leak-
age risk, we define transmission costs for fundamental gate-level logic
units to assess leakage risk. Fig. 3 provides an abstraction of the infor-
mation flow, such as signal “a” passing through an AND gate to reach
“e” and subsequently another AND gate to reach “h”. Since different
logic units exhibit unique propagation characteristics, we assign distinct
transmission costs to each unit type. The differentiation in transmission
cost across various unit types allows for a precise evaluation of informa-
tion leakage risks, tailored to the specific leakage path in the gate-level
netlist.

GLRA leverages the concepts of controllability and observability
from the testing field to perform transmission cost analysis. Unlike the
traditional design-for-testability domain, where observability and con-
trollability are used to define the attributes of individual signals within
a circuit, transmission cost measures the propagation characteristics of
the path between two signals. To build on this foundation, we introduce
two key definitions that are central to our method. These definitions
provide two primary controllability metrics:

¢ CCO (Controllability of setting a signal to 0): Quantifies the effort
required to control the signal to logic 0.

¢ CC1 (Controllability of setting a signal to 1): Quantifies the effort
required to control the signal to logic 1.

The transmission cost (T'C) for both combinational and sequential
logic units is defined based on the effort required to propagate a signal,
accounting for the control states of other inputs. As illustrated in Fig. 4,
the T'C values are specified for representative logic units, including ba-
sic combinational gates (e.g., NOT, AND, OR) and sequential elements
such as the D flip-flop (DFF). This formulation can be extended to more
complex circuit structures as needed. The following sections will delve
into the detailed calculation methods for these units, explaining how

Computers & Security 163 (2026) 104816

N 2 |
! i a . O\(YC(;) >C. |
| ~ I
= ! }7b o—CCO (@) !
I |

€C0 (CLR)+CC1 (CL@}
Q

D i

o Q- QNE

Fig. 4. Transmission cost of different logic units.

their unique signal propagation characteristics influence the transmis-
sion cost.

e NOT: TCyor = 0. The output of a NOT gate is directly and solely
determined by its single input, requiring no additional control effort.

e AND: TCpyp = Z;’;ll CCl(other_input;), where n represents the
number of inputs. For a signal to propagate from the target input
to the output, all other n— 1 inputs must be set to logic 1. Any 0
input forces the output to 0, thereby blocking propagation. The cost
reflects the effort to control these inputs to 1.

e OR: TCpg = Zf;ll CCO(other_input;). Propagation through an OR
gate requires all non-target inputs to be set to 0; otherwise, the out-
put remains 1, independent of the target input. The cost aggregates
the controllability to O for all other inputs.

e XOR: TCxor = min(CCO(other_input), CCl(other_ input)). In a two-
input XOR gate, the output depends on the target input only if the
other input is fixed to 0 or 1. The transmission cost is the minimum
effort required to control the other input to either logic level.

¢ DFF: TCpp = CCO(clk) + CC1(clk). Data propagates from input D
to output Q only on a rising edge of the clock signal. Thus, the
transmission cost accounts for the effort to control the clock to
both 0 and 1. If a reset signal (rst) is present, it must be held at
0 to allow normal operation, and the cost is extended as: TCppp =
cco(clk) + cC1(clk) + CCO(rst).

Using these metrics, the transmission costs for different types of logic
units are determined. To calculate CCO and CC1 for each unit in TCs,
we employ the SCOAP (Sandia Controllability/Observability Analysis
Program) (Wu et al., 2006) method. The SCOAP method starts by calcu-
lating the controllability values for all signals, beginning at the primary
inputs and moving towards the primary outputs. The controllability of
each unit’s output is computed after the controllability of all its input
signals has been determined. For example, in the case of an AND gate,
to set the output to 0, the method focuses on controlling at least one
input to 0, selecting the minimum controllability effort among all the
inputs. To set the output to 1, all inputs must be controlled to 1, and the
controllability values of each input are summed up. Detailed rules for
other unit types can be found in Wu et al. (2006). Specifically, the pres-
ence of feedback lines between standard cells may cause signals within
loops to propagate repeatedly, leading to the controllability values of
nodes being influenced by the outcomes of previous iterations. To ad-
dress this challenge, SCOAP employs an iterative computation method,
where nodes are continuously evaluated and updated until the controlla-
bility values converge to a stable state. This iterative process ensures the
accuracy and reliability of the calculation results, even in the presence
of feedback lines, effectively capturing the cyclic dependencies inherent
in such circuits.

Once the controllability values for all logic units have been calcu-
lated, the transmission cost between logic units can be determined. The
transmission costs calculated between different logic units will be used
in the subsequent computation of transmission costs along the sensitive
information’s propagation paths.

X. Huetal
a ae
b 1>e
be—"" T h
co 0wk, 7
: L

(@ (b)

Fig. 5. A hardware design and its corresponding graph representation.

4.3. Edge-weighted graph for identifying shortest path

To identify the shortest transmission paths within a circuit, we calcu-
late the transmission cost of signal paths from source to destination. To
achieve this, we build an edge-weighted graph from the gate-level netlist
by transforming hardware designs into graph structures. As shown in
Fig. 5, the logic units within the netlist are represented as nodes, while
the connecting signals are depicted as directed edges. Each edge rep-
resents the internal connection from a unit’s input to its output, with
a transmission cost assigned according to the logic-unit-specific metric
introduced in Section 4.2 . By tracing the paths from the sensitive in-
formation to the leakage port, we can calculate the transmission cost
for each path, taking into account the type of each unit along the path
and the transmission cost metrics. The path with the lowest transmission
cost represents the easiest path for information leakage.

Locating the path with the highest leakage risk is equivalent to iden-
tifying the shortest weighted path from the sensitive information to the
leakage port. To compute the shortest path from signal A to signal B, we
use Dijkstra’s algorithm, which is well suited to find the shortest paths
in weighted graphs (shown in Algorithm 1). The algorithm can be de-
scribed in the following steps: it first initializes the transmission costs
of all signals to infinity (co0), except for the source signal A, which is
set to 0. A priority queue is initialized with A. While the queue is not
empty, the signal « with the minimum transmission cost is extracted.
For each neighboring signal v of u, the transmission cost from A to v
via u is calculated. If this cost is smaller than the current known cost
for v, the cost is updated, u is recorded as the predecessor of v, and v
is added to the queue. This process continues until the destination node
B is reached. The shortest path from A to B is then reconstructed by
tracing back through the predecessors.

To handle reconvergent fanout and feedback structures, GLRA mod-
els the circuit as a directed graph with non-negative transmission costs
on edges. Dijkstra’s algorithm is used to identify minimal-cost paths
from source nodes to observable outputs. In reconvergent structures,
multiple branches are explored, and only the shortest path to each node
is finalized upon its first extraction from the priority queue, ensuring ac-
curate risk identification. The constructed propagation graph may con-
tain cycles, especially due to feedback paths in sequential logic. How-
ever, since all edge weights are non-negative, any traversal through a
loop only increases the cumulative transmission cost. Consequently, the
shortest path to each node is finalized upon its first visit, and longer
cyclic paths are naturally disregarded. This ensures that the presence
of cycles does not affect the correctness or convergence of the Dijkstra-
based analysis.

4.4. Formulaic leakage risk assessment based on minimal transmission cost
path

Building upon the conclusions in Section 4.1, the leakage risk of a
design is determined by the minimal transmission cost among all poten-
tial paths from sensitive sources to observable outputs. Accordingly, the
evaluation of leakage risk focuses on this critical path. By leveraging the
transmission cost definitions and graph-based path analysis introduced
in Section 4.2 and Section 4.3, the cumulative cost along this path can be
systematically quantified, providing a basis for evaluating the design’s
overall risk of information leakage.

Computers & Security 163 (2026) 104816

Algorithm 1 Identifying the Shortest Path Within Gate-Level Netlist.
1: Input: Netlist G, Source signal A, Destination signal B
2: Output: Shortest path from A to B, Minimum transmission cost
3: Initialize dist[u] < oo for all signalsu € G
4: dist[A] <0
5: Initialize priority queue Q
6: Insert (A,0) into Q
7
8
9

: while Q is not empty do
: (u,d) < Q.extract_min
: if u = B then

10: break

> Stop if destination B is reached
11: end if
12: for each neighbor v of u do
13: cost < transmission_cost(u, v)
14: if dist[u] + cost < dist[v] then
15: dist[v] « dist[u] + cost
16: pred[v] < u
17: Insert (v, dist[v]) into Q
18: end if

19: end for

20: end while

21: Initialize path < ¢

22: current < B

23: while current # A do

24: Insert current at the beginning of path
25: current < pred|[current]

26: end while

27: Insert A at the beginning of path

28: return path, dist[B]

However, to enable meaningful cross-design comparisons and facili-
tate risk interpretation, it is essential to standardize the quantified leak-
age risk. Therefore, the minimum 7'C among all paths is normalized to
a scale between 0 and 1, where 0 indicates negligible risk and 1 corre-
sponds to the highest potential vulnerability. This normalization ensures
that the leakage risk metric remains consistent and interpretable across
different hardware designs and protection mechanisms.

The standardization is based on a predefined threshold T'Cyeshold-
Transmission costs greater than this threshold indicate negligible risk
and are assigned a value of 0. Conversely, transmission costs below the
threshold are scaled proportionally between 0 and 1, with lower costs
corresponding to higher risks.

4.4.1. Threshold selection strategy based on baseline guidance

To support meaningful and interpretable leakage risk evaluation, our
framework adopts a baseline-guided strategy for threshold selection.
Specifically, we define the threshold T'Cyresholq @ the minimal transmis-
sion cost of a reference circuit (baseline) that reflects a target security
level. This approach enables the evaluation framework to be grounded
in concrete, security-relevant implementations, rather than relying on
arbitrary or hard-coded constants.

To improve flexibility across heterogeneous IPs and varying security
demands, we introduce a parameter a, which represents the desired se-
curity level. Larger values of « indicate stricter security expectations and
therefore correspond to higher threshold values. The threshold is thus
defined as:

T Cipreshold = T Chaseline(a)

Here, T Cpygeline(q) denotes the minimal transmission cost of a refer-
ence design associated with security level a. For example:

¢ o = 3: Baseline(3) represents a high-security design;
e o = 2: Baseline(2) represents a medium-security design;
e a = 1: Baseline(1) represents a low-security design.

X. Huetal

[Plaintext J (

expension

| .

[AddRoundKey}«% Sub key0 J
[

SubBytes

ShiftRows
—

[AddRoundKey} [Sub key i J

SubBytes

Rolu(;l d ShiftRows

[AddRoundI(ey}<——(Sub key 10 J
\

Fig. 6. Iterative process of key confusion and diffusion in AES.

These baselines serve as illustrative examples; in practice, they can
be instantiated by representative secure designs appropriate for differ-
ent application domains. This parameterized formulation allows GLRA
to support context-aware leakage risk assessment, without enforcing a
one-size-fits-all threshold policy. Designers can select an appropriate
baseline based on the targeted security level of their system-choosing
stricter reference circuits for critical modules, and more relaxed ones for
non-sensitive components-thereby enabling tailored and interpretable
risk evaluations aligned with practical needs.

In our implementation, we adopt « = 3 as the default setting and se-
lect AES-128 encryption as the high-security baseline. AES is a widely
adopted symmetric encryption algorithm that provides robust security
for data. Its security stems from an iterative process of confusion and
diffusion applied over multiple rounds, as illustrated in Fig. 6. Each
round consists of operations such as SubBytes, ShiftRows, MixColumns,
and AddRoundKey, which collectively create complex dependencies be-
tween plaintext, ciphertext, and the encryption key.

We use the transmission cost from the encryption key to the cipher-
text after ten AES rounds as our baseline value for high-security designs.
This cost reflects the structural propagation difficulty imposed by mul-
tiple layers of logic, and serves as a conservative reference for flagging
potentially insecure designs during risk screening.

4.4.2. Standardization
Given T'C,,, the relationship between T'C,;, and LR (leakage risk)
is calculated using the following formula:

1- TCpin
= T Cihreshold
0

By mapping transmission costs to risk values between 0 and 1, de-
signers can better understand and manage the security implications of
their designs. when T'C,;, = 0, meaning that no transmission effort

min
is required, LR reaches 1, indicating the highest possible risk. When
TC,,;, is less than or equal to TCyeshold> the risk value is calculated

TC, . .
as 1 — ——=in—_ As the transmission cost decreases, the risk value ap-
T Cihreshold

proaches 1, indicating higher leakage risk. If TC,,;,, exceeds the thresh-

if TCpy < TCpyreshold

LR(TC, ;
if TC,y > T Cihreshold

min)

Computers & Security 163 (2026) 104816

old, the corresponding leakage risk value LR is set to 0. This does not
imply the complete absence of risk, but rather indicates that the trans-
mission cost is higher than the reference baseline and thus represents
negligible risk in a relative sense. In other words, the LR value of 0
should be interpreted as “lower than the threshold-defined standard”
rather than an absolute absence of leakage.

4.5. Complexity and scalability analysis of GLRA

The proposed GLRA framework operates through three sequential
phases. First, a transmission cost assignment phase traverses all circuit
units, assigning predefined transmission costs based on their types. Let
n denote the number of logic units in the netlist. Since each gate is pro-
cessed exactly once, the time complexity of this phase is O(n).

In the second phase, for each sensitive source node, GLRA computes
the shortest transmission cost paths to all observable outputs. The circuit
is modeled as a directed graph comprising » nodes and m edges. Dijk-
stra’s algorithm is employed to compute shortest paths, with a time com-
plexity of O(m + nlog n) per source node. Considering s sensitive sources,
the overall complexity for this phase becomes O(s(m + nlog n)).

The final phase evaluates the leakage risk by selecting the minimum
transmission cost from each sensitive source to the observable outputs.
This evaluation requires scanning through the computed path costs, re-
sulting in a complexity of O(s X 0), where o denotes the number of output
nodes.

In summary, the overall computational complexity of GLRA is dom-
inated by the shortest path computation. Since the number of sensitive
sources s is typically much smaller than the total number of logic units
n in practical hardware designs, GLRA maintains favorable scalability
and efficiency for pre-silicon hardware security verification.

5. Experiment and analysis

This section presents a comprehensive evaluation of GLRA across
multiple types of information leakage risks introduced during the de-
sign phase. The experiments cover three representative scenarios: (1)
leakage caused by stealthy HTs, which are maliciously inserted by un-
trusted designers or third-party vendors; (2) leakage through standard
debug infrastructures such as JTAG, which are intentionally designed by
trusted parties but can be exploited when left unprotected; and (3) un-
intentional leakage due to security-unaware design practices in regular
logic (e.g., certain non-cryptographic designs), where insecure design
practices may cause sensitive data to unintentionally propagate to ob-
servable outputs.

By structuring the experiments to include HT-infected and HT-free
designs, designs with and without protected interfaces (e.g., JTAG with
and without obfuscation), and non-cryptographic designs, we demon-
strate that GLRA not only generalizes across design types but also dis-
tinguishes between secure and insecure usage of the same logic compo-
nents. These capabilities highlight the novelty and practicality of GLRA
as a design-time leakage assessment tool.

5.1. Experimental workflow

Fig. 7 outlines the overall steps of GLRA. For a given design D, the
sensitive signal S; is first identified. The selection of sensitive signals
depends on the context and purpose of the hardware design. Typically,
these signals include encryption keys, intermediate values in crypto-
graphic circuits, or other critical data points that, if leaked, could com-
promise the security of the design. Next, the transmission costs between
different logic units are calculated (see Section 4.2). Then, we construct
the edge-weighted graph and calculate transmission costs for potential
paths (P, Py, ..., P,) from S; (see Section 4.3). The transmission costs
of these paths (T'C;;, TCp, ..., TC,;,) are then utilized to identify the
most vulnerable paths in the hardware design, and ultimately quantify
the overall risk of leakage in the hardware design.

X. Huetal

Computers & Security 163 (2026) 104816

=

DD

——>— P11 TC11

3 T (,urT bT—LDH JIIL
Calculate TC w b)) ;LV >J% }_D 3 ; Construct edge-
between gates % . AU; 3 weighted graph
4>4) SN
>
- f ot "IQﬂLLZTCH
Calculate TC for é — %
i paths ; p o
- PL2TCL2. | S1<_TC3TC3TC33

Fig. 7. Implementation process of GLRA.

s DD= |
T | Identify sensitive W_j/} § =
L> ;>U—'_> ‘% signals % S1 - >IB_ %
DD - >DDDe
In1 —2 | N { In] e—e—e—
A\ H i \
ot Py TCHY | Quantity i A
s é é i
; leakage risk : /!
si | Ls1d
e —ee——2 P12 TCI2 3 T
1016
————— Trend Line /4 =
< o [0 Transmission Cost _Lefiia
g 1012 e 2860412
_8’ 5.4(7310
= 10 e
] 10 »60e+ns
S =
c 108 605 7
2
n
!) 106 - L759+ 6
g e
} 2e+04
g 104
= sae 02
- W
8 10

Number of Rounds

Fig. 8. Transmission cost vs. number of rounds in AES.

5.2. Information leakage risk assessment for HT-free AES with GLRA

The security of AES is primarily ensured through its iterative process
of key confusion and diffusion over multiple rounds. Each round consists
of several operations, including SubBytes, ShiftRows, MixColumns, and
AddRoundKey, which together provide substantial confusion and diffu-
sion. Analyzing the transmission cost from the AES key to the ciphertext
in each round provides valuable insights into the hardware security of
AES.

To perform our analysis, we synthesized the RTL code of the 128-bit
LUT-based implementation of AES in Trust-Hub Salmani et al. (2013) to
gate-level netlists using the logic synthesis tool. We then applied GLRA
to analyze the synthesized designs and the results are summarized in
Fig. 8. The transmission cost of the path is plotted on a logarithmic
scale to effectively capture the exponential growth across rounds. Each
bar represents the path transmission cost for a specific number of AES
rounds, with the actual values labeled above the bars for clarity. The
data indicates a significant increase in transmission cost as the number
of rounds increases, with the cost increasing from 92 after the first round
to 4.96 x 10" after the 10th round.

A trend line, shown in Fig. 8, further emphasizes the exponential
growth of the transmission cost. The trend line is generated using a poly-
nomial fit on the logarithmic scale of the transmission cost data. The in-
crease in transmission cost underscores the enhanced security provided
by subsequent rounds of AES encryption, making it increasingly difficult
for an attacker to steal the key from the output. As the number of encryp-
tion rounds increases, the leakage risk, as quantified by the formulaic
assessment in Section 4.4, correspondingly decreases. This observation
aligns with the conclusion that AES becomes increasingly secure with
additional encryption rounds.

5.3. Leakage risk assessment on cryptographic benchmarks with GLRA

In this section, we evaluate the leakage risks of representative crypto-
graphic hardware designs, including AES-128bit and RSA-32bit bench-
marks from Trust-Hub (Salmani et al., 2013), as well as DES-64bit
benchmarks. For AES, we analyze seven HT-inserted variants-AES-T100,
T200, T300, T400, T700, T800, and T1200-covering both always-on and
trigger-activated Trojans. The RSA benchmarks include RSA-free, RSA-
T100, and RSA-T300. For DES, we manually inject HTs into the DES-free
design to construct DES-T100 and DES-T200, demonstrating the appli-
cability of our method to different cryptographic architectures.

Table 1 summarizes the experimental results for leakage risk detec-
tion, presenting the benchmark circuits, inserted Trojan types, ground
truth labels, unit counts, minimum TC, LR, detection outcomes via
GLRA, and corresponding run times in seconds. As shown in Ta-
ble 1, for AES-T100, AES-T200, AES-T300, DES-T100, and DES-T200-
representing always-on Trojans-GLRA identifies low transmission costs
along key paths, yielding a high leakage risk score of 0.9999, which
aligns with their continuous leakage behavior. For triggered HTs such
as AES-T400, AES-T700, AES-T800, DES-T700, DES-T800, RSA-T100,
and RSA-T300, although the transmission costs are moderately higher,
they remain below the threshold, resulting in similarly high leakage risk
scores. This confirms the method’s ability to capture conditional leak-
age threats. Overall, GLRA successfully identifies high-risk paths in most
designs, with the exception of AES-T1200, and also reports potential
risks in DES-free and RSA-free samples. Notably, anomaly-based taint
tracking methods classify AES-T1200 as exhibiting leakage risk, while
DES-free and RSA-free are deemed risk-free. In contrast, GLRA provides
a differentiated assessment of these cases. These results will be further
investigated through detailed case-by-case analysis to validate the pres-
ence or absence of actual vulnerabilities.

5.3.1. Case study 1: AES-T1200

For AES-T1200, the minimum transmission cost from the encryption
key to the output is measured as 5.0 x 1013, which is approximately equal
to the AES baseline used as the threshold. Based on our normalization
strategy, this results in a leakage risk score of 0 under the AES-derived
threshold, indicating negligible risk from the shortest-path perspective.

To further investigate this case, we refer to the dataset specification,
which explicitly defines a known leakage path triggered by a 128-bit
counter. The counter starts at zero and increments by one each cycle
until it overflows, at which point the Trojan becomes active. The trans-
mission cost associated with this specific triggered path is computed as
6.8 x 1038, significantly higher than the AES-derived threshold.

To assess whether such a triggered path poses practical leakage risk,
we analyze the time required for counters of different bit-widths to reach
their overflow point, assuming a 1GHz system clock. As shown in Ta-
ble 2, a 16-bit counter overflows in 2.08 x 10~!2 years, while a 64-bit
counter takes approximately 584 years. In contrast, a 128-bit counter

X. Huetal

Table 1
Leakage risk detection results on encryption benchmarks.

Computers & Security 163 (2026) 104816

Benchmarks HT Type Ground Truth Unit No. Min TC LR Leakage Detected Run Time (s)
GLRA Existing Methods

AES-free HT free No Leakage 206,537 5.0% 10%3 0 x (TN) x (TN) 53.451
AES-T100 Always-on Leakage Exists 198,753 2 1 v (TP) v/ (TP) 51.686
AES-T200 Always-on Leakage Exists 198,793 3 1 v (TP) v (TP) 50.238
AES-T300 Always-on Leakage Exists 198,909 13 1 v (TP) v (TP) 39.242
AES-T400 Triggered Leakage Exists 199,158 1.5x 108 1 v (TP) v (TP) 37.593
AES-T700 Triggered Leakage Exists 206,773 1.34 x 10? 1 v (TP) v (TP) 34.964
AES-T800 Triggered Leakage Exists 206,839 1.309 x 10% 1 v (TP) v (TP) 34.808
AES-T1200 Triggered No Leakage 207,235 5.0x 10" 0 x (TN) v (FP) 66.319
DES-free HT free Leakage Exists 15,959 6.8 x 10" 0.9999 /(TP) x (FN) 2.504
DES-T100 Always-on Leakage Exists 16,072 2 1 v (TP) v (TP) 2.750
DES-T200 Always-on Leakage Exists 16,112 3 1 v (TP) v (TP) 2.765
DES-T700 Triggered Leakage Exists 16,238 70 1 v (TP) v (TP) 2.854
DES-T800 Triggered Leakage Exists 16,256 670 1 v (TP) v (TP) 2.770
RSA-free HT free Leakage Exists 4953 216 1 v/ (TP) x (FN) 3.560
RSA-T100 Triggered Leakage Exists 5002 114 1 v (TP) v (TP) 3.732
RSA-T300 Triggered Leakage Exists 5284 125 1 v (TP) v (TP) 2.915

Note: “Existing methods” denote RTLIFT, GLIFT, and SecMiner, which are representative taint-tracking-based anomaly de-

tection techniques.

Table 2

Transmission cost and the time required for overflow for counters of different bit-widths.

. Unit Sensitive Leakage Min Trigger Time
Nedlist No. Information port TC LR (year)
AES-T1200-counterl6 206827 key[0] Capacitance[0] 1.3E+5 1 2.08E-12
AES-T1200-counter32 206885 key[0] Capacitance[0] 8.9E+9 1 1.36E-7
AES-T1200-counter48 206954 key[0] Capacitance[0] 5.6E+14 0.8880 8.90E-3
AES-T1200-counter64 207001 key[0] Capacitance[0] 3.6E+19 0 5.84E+2
AES-T1200-counter80 207066 key[0] Capacitance[0] 24E+24 O 3.83E+7
AES-T1200-counter96 207140 key[0] Capacitance[0] 1.5E+29 0 2.51E+12
AES-T1200-counter112 207184 key[0] Capacitance[0] 1.0E+34 0 1.65E+17
AES-T1200-counter128 207235 key[0] Capacitance[0] 6.8E+38 0 1.08E+22

requires 1.080 x 10?? years to reach its maximum value-far exceeding
the operational lifespan of any realistic system.

Therefore, in the case of AES-T1200, although a specific leakage path
is defined by the dataset, its associated transmission cost is significantly
higher than the AES baseline. Further analysis reveals that the path is
only activated upon the overflow of a 128-bit counter, which is practi-
cally infeasible within any realistic system lifetime.

5.3.2. Case study 2: RSA-free

For RSA-free, the minimum transmission cost from the encryption
key to the output is measured as 216, which is significantly lower than
the AES-derived threshold (5.0 x 10'). This yields a normalized leakage
risk of 1, indicating a high probability of key information leakage under
the current evaluation framework. From a shortest-path perspective, the
circuit exhibits insufficient protection against leakage.

To further understand this result, we refer to the design specification
of RSA-free from Trust-Hub (Salmani et al., 2013). Although RSA is a
widely adopted public-key encryption algorithm grounded in the com-
putational hardness of integer factorization, its security relies heavily on
the use of sufficiently large key sizes. The RSA-free benchmark adopts
only a 32-bit modulus, which can be trivially factored using modern
computing resources, rendering the private key easily recoverable from
public parameters. This severely compromises the confidentiality of the
system, even without any malicious hardware modification.

Furthermore, unlike symmetric encryption schemes such as AES that
employ multiple rounds of non-linear confusion and diffusion, RSA op-
erations are based on modular exponentiation, which lacks iterative ob-
fuscation of the internal state. Consequently, the information flow from
the key to the output in RSA is relatively direct, resulting in inherently
low transmission cost paths. This structural simplicity contributes to the
high leakage risk reported by the evaluation.

Therefore, although RSA-free does not embed an HT, its low trans-
mission cost from the key to the output reflects a structural vulnerability
stemming from both an insufficient key size and a lack of iterative ob-
fuscation.

5.3.3. Case study 3: DES-free

For DES-free (64-bit), the minimum transmission cost from the en-
cryption key to the output is 6.8 x 10!!, significantly lower than the AES
baseline, resulting in a normalized leakage risk of 0.9999. This suggests
that sensitive information can propagate to observable outputs with rel-
atively low effort.

DES-free, though employing confusion and diffusion like AES, uses a
shorter 56-bit key and fewer rounds, reducing its structural complexity.
Consequently, DES-free exhibits a lower transmission cost and higher
leakage risk under our evaluation framework, indicating weaker pro-
tection against key propagation.

Thus, DES-free shows moderate structural protection but falls short
of AES-level security. The relatively low transmission cost reveals po-
tential leakage paths, highlighting the framework’s ability to reflect al-
gorithmic differences in security strength.

5.3.4. Summary

We classify the detection results into four categories: true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN).
Specifically, TP and TN denote correct assessments of the presence or
absence of leakage risk, while FP corresponds to incorrectly flagged leak-
age risk in secure designs, and FN indicates missed detections of actual
leakage vulnerabilities. To evaluate detection performance, we adopt
the accuracy metric defined as: Acc = (TN + TP) / (TN + TP + FN +
FP).

As shown in Table 1, GLRA achieves perfect detection across
all 16 evaluated benchmarks, resulting in an accuracy of 100%. In

X. Huetal

contrast, traditional taint-tracking-based anomaly detection methods-
such as RTLIFT, GLIFT, and SecMiner (see Table V for a detailed com-
parison)-misclassify AES-T1200 (FP), RSA-free (FN), and DES-free (FN),
yielding an overall accuracy of 13 out of 16 (81.25%). These results in-
dicate that GLRA improves detection accuracy by 18.75% over existing
approaches, particularly in challenging cases where structural anoma-
lies or subtle vulnerabilities are present.

Notably, GLRA flags potential leakage risks in HT-free designs such
as RSA-free and DES-free, which are typically marked as safe by
anomaly-based methods. This does not represent a misclassification but
rather reveals the presence of structurally low-cost signal propagation
paths. These paths may constitute latent vulnerabilities even in the ab-
sence of explicit Trojans. Such observations highlight GLRA’s strength
in proactively identifying risks and its utility in pre-silicon hardware
security auditing and robustness evaluation.

5.4. Leakage risk assessment of unprotected and protected interfaces with
GLRA

Unprotected interfaces like JTAG present substantial information
leakage risks, particularly when integrated with modules handling sen-
sitive information. Using GLRA, we calculate the transmission cost of
the shortest leakage path from the sensitive information to TDO and the
value is 1500, and the corresponding leakage risk is 1. The calculation
result reveals that, without additional safeguards, the JTAG interface
can inadvertently enable pathways for sensitive information leakage.
It is necessary for designers to implement extra protective measures to
prevent sensitive information leakage.

In response to the leakage risks associated with debug interfaces-
using JTAG as a representative example-several protection techniques,
such as eFuse, password authentication, encryption, and PUF-based
methods, have been introduced. Although originally designed to en-
hance system security, we evaluate these techniques from the perspec-
tive of transmission cost analysis.

¢ eFuse-based Protection: eFuse-based protection irreversibly dis-

ables the JTAG interface, resulting in prohibitively high transmission

costs and an evaluated LR of 0. While this eliminates leakage paths,
it also prevents post-deployment debugging and maintenance.

Password-based Protection: Password mechanisms aim to restrict

access but leave the underlying JTAG structure largely intact. As a

result, the transmission cost remains low, and the LR approaches

1. This indicates a high risk of information leakage, especially in

cases where short passwords are used, since the associated increase

in transmission cost is minimal, resulting in insufficient disruption
of potential leakage paths.

« Encryption-based Protection: Applying encryption to JTAG com-
munication substantially increases the transmission cost. When
strong and consistently enforced encryption schemes (e.g., AES-
based) are employed, the resulting leakage risk (LR) approaches 0.
However, if encryption is applied only to part of the communication
protocol, uses low-entropy keys, or lacks proper key management
and enforcement mechanisms, residual leakage paths may persist.

e PUF-based Protection: Physically Unclonable Function (PUF)-
based mechanisms enable dynamic key generation and enhance au-
thentication, serving as a foundation for integrating encryption in
debug access control. While the PUF itself does not directly raise the
transmission cost of leakage paths, when combined with encryption
schemes, it contributes to securing critical paths by enabling per-
device key variability. In such cases, the overall leakage risk (LR)
can be significantly reduced. However, the effectiveness of this pro-
tection relies on the robustness of the associated cryptographic im-
plementation, and PUF designs may still face practical limitations
such as instability under environmental variation or device aging.

As shown in Table 3, different JTAG protection techniques impose
varying impacts on the transmission cost of sensitive signals, thereby in-

10

Computers & Security 163 (2026) 104816

Table 3
Evaluation of JTAG protection techniques.
Technique LR Impact
Physically blocks leakage paths;
Fi
eruse 0 disables debugging
Password 1 Retalr{s low-cost p'aths; .
weak if password is short or static
Encryption 0 Blocks leakage with strong encryption

requires secure key management

Enables dynamic keying;

PUF + Crypto - 0 leakage depends on encryption placement

fluencing the evaluated leakage risk (L R). Techniques such as eFuse, en-
cryption, and PUF-assisted key management significantly increase trans-
mission cost, resulting in an LR of 0. In contrast, password-based pro-
tection retains low-cost leakage paths and yields a high LR of 1, partic-
ularly when weak or short passwords are used. These evaluations high-
light GLRA’s effectiveness in quantifying the impact of different protec-
tion mechanisms and revealing latent risks through transmission-cost
path analysis.

5.5. Leakage risk assessment on non-cryptographic designs with GLRA

Although the evaluation in this work primarily focuses on crypto-
graphic benchmarks (e.g., AES, RSA, DES) due to their well-defined
leakage surfaces, GLRA is not limited to such domains. Since GLRA
performs structural analysis directly on gate-level netlists using trans-
mission costs, it is applicable to any logic design where the unintended
propagation of sensitive signals poses a security concern.

To demonstrate this generalizability, we evaluate GLRA on several
non-cryptographic designs, including two artificial intelligence acceler-
ators and an embedded controller. As shown in Table 4, GLRA identifies
potential leakage paths where sensitive data (e.g., model weights, pro-
gram code) may reach external interfaces (e.g., output buffers or serial
ports). For example, in gc_nn_controller, weight data from on-chip
SRAM can propagate to unprotected output interfaces, indicating the
need for encryption or masking. In gc_nn_conv_core, coefficient input
ports can be observed directly through output channels, potentially al-
lowing adversaries to reverse-engineer model behavior. For the MC8051,
program data from ROM is observed reaching serial transmit ports, pos-
ing risks of instruction-level leakage.

These results confirm that GLRA effectively detects logic-level in-
formation leakage even in non-cryptographic systems. It supports the
evaluation of emerging SoC control logic and machine learning acceler-
ators, where unintended data exposure through design-time flaws may
exist. This broad applicability demonstrates GLRA’s potential as a uni-
fied framework for design-stage leakage risk assessment across diverse
hardware systems.

5.6. Runtime analysis

To evaluate the practical efficiency of GLRA, we conducted runtime
measurements across various benchmark circuits. These results, summa-
rized in Table 1, confirm that GLRA achieves scalable performance in
both small and large designs.

Specifically, for common cryptographic benchmarks such as AES,
DES, and RSA, the full analysis completes within seconds to under
a minute. To further assess scalability, we include large-scale non-
cryptographic designs exceeding 1 million gates. For example, GLRA
completes analysis on the gc_nn_controller, a 2.17M-gate Al accelera-
tor, in 322.71 seconds and on gc_nn_conv_core (0.3M gates) in 59.88
seconds (as shown in Table 4). These results confirm that GLRA main-
tains efficient runtime even in industrial-scale SoC scenarios, making
it suitable for pre-silicon security evaluations in real-world hardware
development workflows.

X. Huetal Computers & Security 163 (2026) 104816
Table 4
Leakage risk aasessment on non-cryptographic designs..
Design Function Gate Count From To Min TC LR Time (s)
gc_nn_conv_core Al Acceleratorl 302,631 coef fifo_in_data[0] out_data[0] 622 1 59.88
gc_nn_controller Al Accelerator2 2,174,903 sram_rdata_coreker[0] coef_fifo_in_data[0] 160 1 322.71
MC8051 Embedded Controller 9152 rom_data_i[0] all_txd_o[0] 8303 1 3.40
Table 5
Comparison with existing evaluation approaches.
Work Targeted Method Leakage Leakag.e' . Limitations
Level Detection Quantification
RTLIFT, GLIFT (Witharana . . Misclassifies AES-T1200 (FP),
et al. (2023)-Guo et al. RTL, Gate Security label tracking v x RSA-free/DES-free (FN)
(2019))
Mi indirect/subtle leak ths; fail
SV Farzana et al. (2019) RTL / Gate Property checking ° X isses indirect/subtle leakage paths; fails
on subtle
leakage benchmarks (e.g., AES-T1200,
RSA-free)
COTD Salmani (2017), Kok Gate Trigger/observe difficulty analysis ° o High false positives on AES-like designs
et al. (2019), Zhang et al.
(2020), Salmani (2022)
TVF Cruz et al. Gate Maximal clique analysis ° o Limited accuracy for always-on leakage
risks
SecMiner Ayalasomayajula RTL Static & statistical analysis v v .Assumes longer Paths imply lower risk;
et al. (2024a) ignores propagation
difficulty; misclassifies AES-T1200 (FP),
RSA-free/DES-free (FN)
GLRA (Ours) Gate Path transmission cost analysis v v Sensitive to user-defined baseline

selection

v': Supported; x: Not supported; o: Partially supported.

6. Discussion
6.1. Comparison with existing approaches

We summarize existing techniques and highlight their respective lim-
itations shown in Table 5).

RTLIFT and GLIFT (Witharana et al. (2023)-Guo et al. (2019)) per-
form security label tracking at RTL and gate level. While effective in
detecting information flow violations, they require shadow logic inser-
tion and dynamic simulation with specific input patterns, which in-
creases design complexity and risks incomplete coverage. Moreover,
they rely on binary label propagation and cannot distinguish whether
a detected path is practically exploitable. For instance, in AES-T1200,
propagation exists but is infeasible due to extremely high complex-
ity. In contrast, designs like RSA-free (32-bit) may be deemed secure
due to correct logic but still harbor low-cost leakage paths that remain
undetected.

Security verification (SV) Farzana et al. (2019) uses assertion-based
checks to detect potential vulnerabilities early in the design process.
While effective for identifying functional anomalies, SV is not tailored
for security-specific violations and often misses indirect or subtle leak-
age paths Ayalasomayajula et al. (2024a). Moreover, it lacks quanti-
tative evaluation capabilities and cannot assess the severity of leakage
risks. For example, SV fails to detect information leakage in benchmarks
such as AES-T1200 and RSA-free, where the leakage paths are subtle and
not directly tied to functional violations. These limitations hinder its ap-
plicability in scenarios that require precise and comprehensive leakage
risk assessment.

COTD and related techniques (Salmani, 2017; Kok et al., 2019;
Zhang et al., 2020; Salmani, 2022) evaluate trigger difficulty by analyz-
ing the controllability of rare events. These are effective for detecting
stealthy or performance-degrading HTs. However, they are less effective
for “always-on” leakage paths that do not require triggers. Moreover, in
cryptographic designs like AES with high structural complexity, even

11

benign paths may appear hard to control, leading to high false-positive
rates.

TVF Cruz et al. provides structural insights by analyzing the test vec-
tor footprint and graph structures like maximal cliques to evaluate Tro-
jan susceptibility. While informative for insertion risk, it is not tailored
for detecting or quantifying information leakage, especially in always-
on scenarios.

SecMiner Ayalasomayajula et al. (2024a) combines static RTL anal-
ysis with data mining to detect and rank information leakage paths.
The core metric used by SecMiner assumes that the severity of informa-
tion leakage decreases with the number of variables traversed along the
path—i.e., the more intermediate variables a path includes, the lower its
leakage risk. This assumption oversimplifies the propagation complexity
by treating all variables equally, without distinguishing their functional
roles or propagation difficulty. In contrast, our proposed GLRA approach
defines a controllability-based transmission cost model that captures the
logical constraints imposed by each gate-level component. This enables
GLRA to provide a more accurate and physically meaningful assessment
of leakage difficulty. Consequently, SecMiner may misclassify critical
structural vulnerabilities that do not manifest through simulation be-
havior. As observed in our experiments, it fails to detect the AES-T1200
leakage path (FP) and overlooks subtle vulnerabilities in RSA-free and
DES-free designs (FN), thereby limiting its applicability for gate-level
risk quantification and security validation.

Our proposed method, GLRA, enables accurate detection and quanti-
tative evaluation of information leakage at gate level. Through minimal
transmission cost path analysis, GLRA systematically assesses the diffi-
culty of signal propagation from sensitive sources to outputs, providing
a precise framework for gate-level security validation.

6.2. Limitation and discussion on threshold adaptation

While GLRA offers a quantitative framework for gate-level leak-
age risk assessment and demonstrates superior accuracy compared to

X. Huetal

anomaly-based approaches, it is important to clarify the scope of its ap-
plicability.

We propose a parameterized threshold adaptation strategy, where
the threshold is modeled as a function of a user-specified security level
a. For example, different security levels (e.g., high, medium, low) can
be mapped to corresponding a values, which are then used to calcu-
late threshold values through T Cy,eshola = f(@). This offers a tunable
mechanism to tailor the evaluation to different risk tolerance levels or
application domains.

However, there currently exists no universally accepted hardware se-
curity grading standard or benchmark IP core that can serve as a canon-
ical baseline for leakage risk. As a result, it is challenging to select a
reference design that is formally recognized as “secure enough” across
heterogeneous SoC environments. The use of AES-128 in our framework
stems from its well-established design and widespread recognition as a
strong cryptographic primitive. Nonetheless, we emphasize that it is a
practical surrogate rather than an absolute standard.

In future work, this thresholding mechanism can be further refined
through statistical profiling of per-design transmission cost distributions
or learned models derived from security-labeled circuit datasets. These
enhancements would enable GLRA to provide adaptive, context-aware
leakage assessments while preserving structural interpretability.

Importantly, GLRA is not intended to define an absolute or uni-
versally accepted notion of security level. Rather, it provides a struc-
tural and quantitative approach to evaluate the relative difficulty of
sensitive signal propagation. What constitutes an “acceptable” leak-
age risk is inherently application-dependent. For instance, in het-
erogeneous SoC environments, non-cryptographic modules may tol-
erate greater levels of signal propagation without violating system-
level security requirements. By offering tunable analysis capabilities,
GLRA aims to support practical design-time security assessments un-
der varying requirements, rather than enforcing a one-size-fits-all
policy.

7. Conclusion and future work

In this study, we propose GLRA, a novel graph-based framework for
quantifying gate-level information leakage risk. By modeling hardware
circuits as edge-weighted graphs based on the transmission costs de-
fined for various logic units, GLRA captures the propagation difficulty
of signals from sensitive sources to observable outputs. Beyond the tradi-
tional “path existence” criterion used in anomaly label-based taint track-
ing, GLRA introduces a quantitative metric to identify the minimal-cost
propagation path. Moreover, leveraging the formulaic relationship be-
tween transmission cost and leakage risk, GLRA enables quantifiable risk
assessment across the entire design. Experimental results on AES, DES,
and RSA benchmarks demonstrate that GLRA accurately identifies crit-
ical leakage paths. Specifically, for the challenging cases of AES-T1200,
RSA-free, and DES-free, the computed minimal transmission costs are
significantly higher or lower than the secure baseline threshold, allow-
ing GLRA to correctly classify these cases, which are often misclassified
by anomaly-driven approaches. Additionally, GLRA supports risk assess-
ment of various debug interfaces protection mechanisms by quantifying
the impact of different countermeasures on information leakage levels,
demonstrating its potential for evaluating the effectiveness of security
strategies. Importantly, we extend the evaluation to non-cryptographic
scenarios, including SoC control logic and machine learning accelera-
tors. These experiments demonstrate that GLRA generalizes well beyond
cryptographic applications and effectively captures leakage risks aris-
ing from poorly isolated data channels. Overall, the results confirm that
GLRA offers improved accuracy, interpretability, and applicability in
gate-level hardware security analysis. Future work will focus on inte-
grating GLRA into standard IC design flows to enhance pre-silicon secu-
rity evaluation, as well as developing adaptive risk thresholding mecha-
nisms to support context-aware and design-specific risk assessment that
better aligns with the needs of hardware designers.

12

Computers & Security 163 (2026) 104816
CRediT authorship contribution statement

Xing Hu: Writing — original draft, Validation, Software, Methodol-
ogy, Formal analysis, Data curation, Conceptualization; Yang Zhang:
Writing — review & editing, Methodology, Formal analysis; Sheng Liu:
Writing — review & editing; Xiaowen Chen: Writing — review & edit-
ing; Yaohua Wang: Writing — review & editing; Shaoqing Li: Writing
- review & editing, Methodology; Zhenyu Zhao: Writing — review &
editing; Keqin Li: Writing — review & editing.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Atieh, A., Shahram, E.B., 2017. A side-channel analysis for hardware trojan detection
based on path delay measurement. J. Circ. Syst. Comput. 27 (9), 1850138.

Ayalasomayajula, A., Farzana, N., PalD., Farahmandi, F., 2024a. Prioritizing information
flow violations: generation of ranked security assertions for hardware designs. In: 2024
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp.
128-138. https://doi.org/10.1109/HOST55342.2024.10545352

Ayalasomayajula, A., Farzana, N., Pal, D., Farahmandi, F., 2024b. Prioritizing information
flow violations: generation of ranked security assertions for hardware designs. In: 2024
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp.
128-138. https://doi.org/10.1109/HOST55342.2024.10545352

Chen, C.L., Wang, S.X., Tan, J., Zhu, J.C., Hu, W., 2021. Hardware information flow se-
curity verification and vulnerability detection using yosys. Appl. Res. Comput. 38 (6),
1865-1869.

Chen, S., Wang, T., Huang, Z., Hou, X., 2023. Detection method of golden chip-free hard-
ware trojan based on the combination of resnext structure and attention mechanism.
Comput. Secur. 134, 103428. https://doi.org/10.1016/j.cose.2023.103428

Chittoriya, S., Shivdeep, K.K., Jha, D.M., Das, D.M., Sharma, R., 2022. A low-overhead puf
based hardware security technique to prevent scan chain attacks for industry-standard
dft architecture. In: 2022 IEEE 65Th International Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 1-4. https://doi.org/10.1109/MWSCAS54063.2022.9859268

Cruz, J., Slpsk, P., Gaikwad, P., Bhunia, S., . Tvf: a metric for quantifying vulnerability
against hardware trojan attacks. IEEE Trans. Very Large Scale Integr. VLSI Syst. 31, 7
969-979.

Deutschbein, C., Meza, A., Restuccia, F., Kastner, R., Sturton, C., 2021. Isadora: automated
information flow property generation for hardware designs. In: Proceedings of the 5Th
Workshop on Attacks and Solutions in Hardware Security, pp. 5-15.

Fakir, S., Michihiro, S., Michiko, T., . Variation-aware hardwareTrojan detection through
power side-channel. 2018 of of IEEE In-ternational Test ConferencePiscataway, NJ.
IEEE Press 1-10.

Farzana, N., Rahman, F., Tehranipoor, M., Farahmandi, F., 2019. Soc security verification
using property checking. In: IEEE International Test Conference (ITC), pp. 1-10. https:
//doi.org/10.1109/1TC44170.2019.9000170

Guo, X., Dutta, R.G., He, J., Tehranipoor, M.M., Jin, Y., 2019. Qif-verilog: quantitative
information-flow based hardware description languages for pre-silicon security assess-
ment. In: 2019 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 91-100. https://doi.org/10.1109/HST.2019.8740840

He, J., Liu, Y., Yuan, Y., et al., 2018. Golden Chip Free Trojan Detection Leverag-
ing Electromagnetic Side Channel Fingerprinting. Vol. 16. IEICE Electronics Express.
https://doi.org/10.1587 /elex.16.20181065

Hu, W., Mao, B., Oberg, J., Kastner, R., 2016. Detecting hardware trojans with gate-level
information-flow tracking. Comput. (Long Beach Calif) 49 (8), 44-52.

Hu, X., Zhang, Y., Li, Z., Li, S., 2024. Ca4tj: correlational analysis for always-on
information-leakage hardware trojan detecting. In: 2024 IEEE International Test Con-
ference in Asia (ITC-Asia), pp. 1-6. https://doi.org/10.1109/1TC-Asia62534.2024.
10661328

Kande, R., Pearce, H.A., Tan, B., Dolan-Gavitt, B., Thakur, S., Karri, R., J, R.T., 2023.
LLM-assisted generation of hardware assertions. Technical Report abs/2306.14027. A.
University, U. of New South Wales, U. of Calgary, and N. Y. University.

Kok, C.H., Ooi, C.Y., Moghbel, M., et al., 2019. Classification of trojan nets based on scoap
values using supervised learning. https://doi.org/10.1109/ISCAS.2019.8702462

Lakshmy, A.V., Rebeiro, C., Bhunia, S., 2022. Fortify: analytical pre-silicon side-
channel characterization of digital designs. In: 2022 27Th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 660-665. https://doi.org/10.1109/
ASP-DAC52403.2022.9712551

Lee, K., Lu, Z., Yeh, S., 2022a. A secure jtag wrapper for soc testing and debugging. IEEE
Access 10, 37603-37612. https://doi.org/10.1109/ACCESS.2022.3164712

http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0001
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0001
https://doi.org/10.1109/HOST55342.2024.10545352
https://doi.org/10.1109/HOST55342.2024.10545352
https://doi.org/10.1109/HOST55342.2024.10545352
https://doi.org/10.1109/HOST55342.2024.10545352
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0004
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0004
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0004
https://doi.org/10.1016/j.cose.2023.103428
https://doi.org/10.1016/j.cose.2023.103428
https://doi.org/10.1109/MWSCAS54063.2022.9859268
https://doi.org/10.1109/MWSCAS54063.2022.9859268
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0007
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0007
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0007
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0008
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0008
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0008
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0009
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0009
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0009
https://doi.org/10.1109/ITC44170.2019.9000170
https://doi.org/10.1109/ITC44170.2019.9000170
https://doi.org/10.1109/ITC44170.2019.9000170
https://doi.org/10.1109/ITC44170.2019.9000170
https://doi.org/10.1109/HST.2019.8740840
https://doi.org/10.1109/HST.2019.8740840
https://doi.org/10.1587/elex.16.20181065
https://doi.org/10.1587/elex.16.20181065
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0013
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0013
https://doi.org/10.1109/ITC-Asia62534.2024.10661328
https://doi.org/10.1109/ITC-Asia62534.2024.10661328
https://doi.org/10.1109/ITC-Asia62534.2024.10661328
https://doi.org/10.1109/ITC-Asia62534.2024.10661328
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0015
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0015
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0015
https://doi.org/10.1109/ISCAS.2019.8702462
https://doi.org/10.1109/ISCAS.2019.8702462
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/ACCESS.2022.3164712
https://doi.org/10.1109/ACCESS.2022.3164712

X. Huetal

Lee, K.J., Liu, C.A., Wu, C.C., 2022b. A dynamic-key based secure scan architecture for
manufacturing and in-field ic testing. IEEE Trans. Emerg. Top Comput. 10, 373-385.
https://doi.org/10.1109/TETC.2020.3021820

Meza, A., Restuccia, F., Oberg, J., Rizzo, D., Kastner, R., 2023. Security verification of
the opentitan hardware root of trust. IEEE Secur. Priv. 21, 27-36. https://doi.org/10.
1109/MSEC.2023.3251954

Qin, M., Hu, W., Wang, X., Mu, D., Mao, B., 2019. Theorem proof based gate level infor-
mation flow tracking for hardware security verification. Comput. Secur. 85, 225-239.
https://doi.org/10.1016/j.cose.2019.05.005

Ren, X., Torres, F.P., Blanton, R.D., . Ic protection against jtag-based attacks. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2018, 1-1. https://doi.org/10.1109/TCAD.
2018.2802866

Salmani, H., . The improved cotd technique for hardware trojan detection in gate-level
netlist. GLSVLSI "22: Proceed. Great Lakes Sympos. VLSI 2022, 449-454.

Salmani, H., 2017. Cotd: reference-free hardware trojan detection and recovery based on
controllability and observability in gate-level netlist. IEEE Trans. Inf. Forensics Secur.
12 (2), 338-350. https://doi.org/10.1109/TIFS.2016.2613842

Salmani, H., Tehranipoor, M., Karri, R., 2013. On design vulnerability analysis and trust
benchmarks development. In: IEEE 31St International Conference on Computer Design
(ICCD), pp. 471-474. https://doi.org/10.1109/1CCD.2013.6657085

Srivastava, A., Das, S., Choudhury, N., Psiakis, R., Silva, P.H., Pal, D., Basu, K., 2024. Scar:
power side-channel analysis at rtl level. IEEI Trans. Very Large Scale Integr. (VLSI)
Systems 32 (6), 1110-1123.

Sun, H., Yang, Z., Chen, X., Xu, H., Yuan, Z., 2024. Hardware information flow tracking
based on lightweight path awareness. Comput. Secur. 147, 104072. https://doi.org/
10.1016/j.cose.2024.104072

Witharana, H., Jayasena, A., Whigham, A., Mishra, P., 2023. Automated generation of
security assertions for rtl models. J. Emerg. Technol. Comput. Syst 19 (1). https://doi.
org/10.1145/3565801

13

Computers & Security 163 (2026) 104816

Wu, C., Wang, L., Wen, X., 2006. VLSI Test Principles and Architectures: Design for Testa-
bility (Series in Systems on Silicon). Morgan Kaufmann, San Mateo, CA, USA.

Yasaei, R., Chen, L., Yu, S.Y., Faruque, M. A.A., . Hardware trojan detection using graph
neural networks. https://doi.org/10.1109/TCAD.2022.3178355

Yasaei, R., Yu, S.Y., Faruque, M. A.A., 2021. Gnn4tj: graph neural networks for hard-
ware trojan detection at register transfer level. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1504-1509. https://doi.org/10.23919/
DATES51398.2021.9474174

Yen, C.H., Tsai, J.C., Wu, K.C., 2023. Using path features for hardware trojan detection
based on machine learning techniques. In: 2023 24Th International Symposium on
Quality Electronic Design (ISQED), pp. 1-8. https://doi.org/10.1109/ISQED57927.
2023.10129300

Zhang, N., Lv, Z., Zhang, Y., et al., 2020. Novel design of hardware trojan: a generic
approach for defeating testability based detection. In: 2020 IEEE 19Th International
Conference on Trust, Security and Privacy in Computing and Communications (Trust-
Com). IEEE. https://doi.org/10.1109/TrustCom50675.2020.00034

Zhang, S., Wang, S., Wang, J., Zhou, S., Yao, Z., 2022. Quantitative analysis of infor-
mation leakage hardware trojans in ip cores. In: 2022 9Th International Confer-
ence on Dependable Systems and Their Applications (DSA). Wulumugqi, pp. 431-436.
https://doi.org/10.1109/DSA56465.2022.00063

Zhang, Y., Quan, H., Li, X,, et al., 2018. Golden-free processor hardware trojan detection
using bit power consistency analysis. J. Electr. Test.: Theory and Appl. 34 (3), 305-312.

Zhao, Y., Qu, G., Zhang, Q., Li, Y., Li, Z., He, J., 2024. Static gate-level information
flow for hardware information security with bounded model checking. In: 2024 IEEE
42Nd VLSI Test Symposium (VTS), pp. 1-7. https://doi.org/10.1109/VTS60656.2024.
10538813

https://doi.org/10.1109/TETC.2020.3021820
https://doi.org/10.1109/TETC.2020.3021820
https://doi.org/10.1109/MSEC.2023.3251954
https://doi.org/10.1109/MSEC.2023.3251954
https://doi.org/10.1109/MSEC.2023.3251954
https://doi.org/10.1109/MSEC.2023.3251954
https://doi.org/10.1016/j.cose.2019.05.005
https://doi.org/10.1016/j.cose.2019.05.005
https://doi.org/10.1109/TCAD.2018.2802866
https://doi.org/10.1109/TCAD.2018.2802866
https://doi.org/10.1109/TCAD.2018.2802866
https://doi.org/10.1109/TCAD.2018.2802866
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0023
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0023
https://doi.org/10.1109/TIFS.2016.2613842
https://doi.org/10.1109/TIFS.2016.2613842
https://doi.org/10.1109/ICCD.2013.6657085
https://doi.org/10.1109/ICCD.2013.6657085
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0026
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0026
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0026
https://doi.org/10.1016/j.cose.2024.104072
https://doi.org/10.1016/j.cose.2024.104072
https://doi.org/10.1016/j.cose.2024.104072
https://doi.org/10.1016/j.cose.2024.104072
https://doi.org/10.1145/3565801
https://doi.org/10.1145/3565801
https://doi.org/10.1145/3565801
https://doi.org/10.1145/3565801
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0029
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0029
https://doi.org/10.1109/TCAD.2022.3178355
https://doi.org/10.1109/TCAD.2022.3178355
https://doi.org/10.23919/DATE51398.2021.9474174
https://doi.org/10.23919/DATE51398.2021.9474174
https://doi.org/10.23919/DATE51398.2021.9474174
https://doi.org/10.23919/DATE51398.2021.9474174
https://doi.org/10.1109/ISQED57927.2023.10129300
https://doi.org/10.1109/ISQED57927.2023.10129300
https://doi.org/10.1109/ISQED57927.2023.10129300
https://doi.org/10.1109/ISQED57927.2023.10129300
https://doi.org/10.1109/TrustCom50675.2020.00034
https://doi.org/10.1109/TrustCom50675.2020.00034
https://doi.org/10.1109/DSA56465.2022.00063
https://doi.org/10.1109/DSA56465.2022.00063
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0035
http://refhub.elsevier.com/S0167-4048(25)00505-X/sbref0035
https://doi.org/10.1109/VTS60656.2024.10538813
https://doi.org/10.1109/VTS60656.2024.10538813
https://doi.org/10.1109/VTS60656.2024.10538813
https://doi.org/10.1109/VTS60656.2024.10538813

	GLRA: Graph-based leakage risk assessment via minimal transmission cost path analysis
	1 Introduction
	2 Related works
	2.1 Detection methods for information leakage
	2.1.1 Information flow tracking
	2.1.2 Machine learning methods
	2.1.3 Side-channel analysis method

	2.2 Defense methods for information leakage
	2.3 Evaluation methods for hardware vulnerability

	3 Motivation
	3.1 Information leakage type attack
	3.2 Our motivation

	4 Proposed method
	4.1 Relationship between transmission cost and leakage risk
	4.2 Transmission cost definition for logic units based on controllability
	4.3 Edge-weighted graph for identifying shortest path
	4.4 Formulaic leakage risk assessment based on minimal transmission cost path
	4.4.1 Threshold selection strategy based on baseline guidance
	4.4.2 Standardization

	4.5 Complexity and scalability analysis of GLRA

	5 Experiment and analysis
	5.1 Experimental workflow
	5.2 Information leakage risk assessment for HT-free AES with GLRA
	5.3 Leakage risk assessment on cryptographic benchmarks with GLRA
	5.3.1 Case study 1: AES-T1200
	5.3.2 Case study 2: RSA-free
	5.3.3 Case study 3: DES-free
	5.3.4 Summary

	5.4 Leakage risk assessment of unprotected and protected interfaces with GLRA
	5.5 Leakage risk assessment on non-cryptographic designs with GLRA
	5.6 Runtime analysis

	6 Discussion
	6.1 Comparison with existing approaches
	6.2 Limitation and discussion on threshold adaptation

	7 Conclusion and future work

