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AbstrAct
With the rapid evolution of wireless technolo-

gy and the expansion of human activities, the inte-
gration of terrestrial and non-terrestrial networks, 
encompassing 5G/6G and the Internet of Things 
(IoT), is becoming essential for future networking 
paradigms. These integrated networks must sup-
port extensive spatial and content coverage, serv-
ing diverse environments from urban landscapes to 
remote regions such as mountains, deserts, oceans, 
underground areas, and airspace. While 5G/6G 
technologies offer significant improvements, their 
widespread deployment faces challenges, including 
high infrastructure costs and difficulties in covering 
extremely remote or inaccessible areas. To address 
these challenges, we design and propose a novel 
space-air-ground-sea (SAGS) integration architec-
ture that builds upon terrestrial networks and sup-
plements them with non-terrestrial networks, aiming 
to provide ubiquitous, intelligent, collaborative, and 
efficient information support across vast spatial 
domains. Our approach focuses on three critical 
aspects: global situation awareness, leveraging rein-
forcement learning, graph convolutional networks, 
and multi-modal data fusion to enhance situational 
awareness and decision-making; reliable transmis-
sion, ensuring robust data transmission by mitigating 
environmental conflicts and optimizing communi-
cation pathways across space, air, ground, and sea; 
and dynamic time-varying scheduling, formulating 
a multi-objective scheduling optimization model to 
minimize uncovered areas, energy consumption, 
and operational spans, adapting to the time-varying 
nature of services in the SAGS environment. Key 
contributions of this work include a comprehen-
sive SAGS architecture that integrates advanced AI 
techniques to optimize network performance and 
experimental validation, demonstrating that our pro-
posed SAGS outperforms state-of-the-art methods 
by specific percentages in terms of convergence 
efficiency, latency, and throughput, which highlights 
the system’s feasibility and effectiveness.

IntroductIon
With the advancement of wireless technology and 

the expansion of human activity spaces, novel net-
work technologies such as 5G/6G and the Inter-
net of Things (IoT) are gradually becoming the 
primary focus of future terrestrial and non-terres-
trial networking. Compared to the communication 
needs of ordinary individuals, communications for 
both terrestrial and non-terrestrial networks will 
experience significant expansion in terms of spa-
tial and content coverage [1]. A diverse array of 
IoT devices and services will span a broader range 
of areas, including spaces, mountains, deserts, 
oceans, underground locations, and skies, which 
can be divided into either terrestrial networks or 
non-terrestrial networks. Aiming at such principle, 
the bridging between terrestrial and non-terrestrial 
networks becomes vitally important, where the 
final goal is to fulfill their deep integration [2].

Targeting such diverse environments and goals, 
5G/6G and IoT have provided more flexible 
services, greater capacity, and higher efficiency 
for emerging applications such as virtual reality, 
autonomous driving, and smart cities, using spe-
cific technologies such as the Ultra-Reliable and 
Low-Latency Communication (URLLC) and mas-
sive Machine-Type Communication (MTC). In addi-
tion, the Narrowband IoT (NB-IoT), beamforming, 
and uplink/downlink decoupling that are active-
ly promoted by 5G/6G can naturally address the 
emerged challenges of wide-area coverage, high 
energy consumption, and large-scale connectiv-
ity when fulfilling the bridging between terrestri-
al and non-terrestrial networks [3]. While 5G/6G 
technologies promise significant advancements, 
their extensive deployment comes with substan-
tial financial and logistical challenges. The rollout 
requires considerable investment in infrastructure, 
including dense base station deployments and back-
haul network construction. Additional costs include 
the installation, leasing, and maintenance of optical 
fibers, all of which contribute to high capital expendi-
tures. Moreover, terrestrial networks face limitations 
in covering extremely remote areas such as oceans, 
deep underground locations, skies, and deep space. 
These geographical constraints make it difficult to 
bridge terrestrial and non-terrestrial networks, thereby 
hindering the achievement of ubiquitous communica-
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tion across an expanded network space [4].
The focus has increasingly shifted toward inte-

grating terrestrial and non-terrestrial networks to 
achieve seamless connectivity across space, air, 
ground, and sea. This integration aims to build a 
comprehensive infrastructure that leverages both 
terrestrial and non-terrestrial components to pro-
vide ubiquitous, intelligent, collaborative, and 
efficient information support for various network 
applications across vast spatial domains [5]. Ter-
restrial networks, primarily consisting of the Inter-
net and mobile communication networks, cover 
ground and sea environments and deliver services 
in densely populated areas. Non-terrestrial networks, 
comprising high-altitude communication platforms, 
Unmanned Aerial Vehicles (UAVs), and satellite sys-
tems, extend coverage to space and air, enabling 
global connectivity and broadband access [6]. The 
Space-Air-Ground-Sea (SAGS) integrated network 
builds on existing terrestrial infrastructure, supple-
mented by non-terrestrial components, to offer com-
prehensive support for diverse applications.

However, achieving deep integration between 
these layers presents significant challenges [7]. 
Environmental variability in space, air, and sea can 
affect communication reliability, making it crucial 
to ensure robust performance under changing con-
ditions [8]. Covering such a vast expanse—from 
space to ground and sea—requires sophisticated 
environmental perception and coordination across 
different layers. Inadequate cooperation can hinder 
decision-making and lead to significant losses [9]. 
Moreover, the services within the SAGS system 
are subject to temporal changes; delays in percep-
tion and reliability assurance can render previous 
decisions obsolete, leading to increased time and 
energy costs [10]. To overcome these challeng-
es, the integration process must break down barri-
ers between space, air, ground, and sea, fostering 
seamless interoperability and ensuring reliable and 
efficient communication across all domains.

Therefore, according to the above consider-
ation, the design of the space-air ground and sea 
integrated network architecture for the new-type 
air-space-ground-sea collaborative scenario not 
only necessitates multi-dimensional and distribut-
ed sensing and detection but also requires real-
time and stable communication transmission. In 
this point, we propose a novel Space-Air-Ground-
Sea (SAGS) integration architecture, in which the 
global perception, reliability guarantee, and dynam-
ic time-varying scheduling services are essentially 
achieved to meet the demands of multi-dimension-
al sensing, collaborative transmission, and intelli-
gent computing, thereby enabling intelligent 
processing, decision-making, and control of per-
ceived information to better support the develop-
ment of novel intelligent services.

The rest of this work is summarized as follows: 
The next section introduces the main motivation 
and contributions. After that, we propose the inte-
gration system and methods. We then present the 
experimental results and finally conclude this work.

MotIvAtIons And contrIbutIons

MotIvAtIons
The integration of space, air, ground, and sea 
poses new demands for global, all-domain, and 
all-time information services. Key issues such 

as inadequate network coverage, rigid network 
structures, and slow service responses are press-
ing matters that require immediate attention [11]. 
On the one hand, such integration can provide 
continuous support for full-time and full-space 
information, enabling coverage in the global areas 
and thereby satisfying the information service 
demands of vital land-based economic belts and 
overseas hotspot regions. On the other hand, sat-
ellite systems, particularly Low-Earth-Orbit (LEO) 
satellite constellations, possess significant poten-
tial challenges in terms of communication cover-
age and broadband access [12]. The scarcity of 
resources such as satellite orbital slots and space 
communication spectrum has intensified the inter-
national competition for these resources.

In addition, the integration of these networks 
presents a well-known challenge: the resulting 
system is a heterogeneous and multi-dimension-
al network characterized by extreme complexi-
ty in its structure. This complexity arises from the 
fusion of multiple networks and the diversity of 
available resources. The distinct dynamic charac-
teristics of space, air, ground, and sea networks 
further complicate overall network mobility com-
pared to terrestrial-only networks, making it difficult 
to accurately describe and model the integrated 
system [13]. Moreover, the integrated system must 
support a wide range of services for space-based, 
air-based, ground-based, and marine information 
operations. The diverse service characteristics and 
stringent Quality of Service (QoS) requirements 
pose significant challenges for network resource 
allocation and service orchestration. Tradition-
al optimization methods struggle to meet these 
demands, often leading to inefficiencies and slow 
response times.

Intelligent methods, such as artificial intelligence 
(AI) based ones, are considered highly potential 
solutions for complex and dynamic problems that 
are difficult to model, for example, in the space, air, 
ground, and sea integration scenario. By extracting 
and analyzing vast amounts of data, AI can estab-
lish optimal mapping models for network environ-
ments and network control, enabling efficient and 
intelligent network design, control, management, 
and optimization. Using reinforcement learning as 
an example can help us learn the optimal action 
strategies through feedback from the agent’s inter-
actions with the environment. It can also handle 
learning decisions in unknown network environ-
ments, making it well-suited to the complex and 
high cost of network data collection in such an 
integration system. However, reinforcement learn-
ing is not enough to address optimal network con-
trol, resource allocation, service orchestration, and 
other similar challenges that are closely related to 
the dynamically changing characteristics faced by 
space, air, ground, and sea environments [14].

Moreover, the influence of the space and 
marine environment leads to the sudden mobility 
of nodes in the sky or ocean, posing significant 
challenges to network communication services and 
business data transmission [15]. In this regard, the 
unreliability of network communication services 
and data transmission can result in the unobserv-
ability of system states and loss of partial control 
command information, which not only severely 
impacts system performance but also significantly 
degrades user experience. These challenges are 

By extracting and ana-
lyzing vast amounts 

of data, AI can estab-
lish optimal mapping 

models for network 
environments and net-
work control, enabling 
efficient and intelligent 

network design, control, 
management, and opti-

mization. 
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illustrated in Fig. 1.

contrIbutIons
To address the above challenges faced by the 
integration of space, air, ground, and sea, this 
work proposes a novel integration architecture 
(i.e., SAGS), in which the space, air, ground, and 
sea can be connected smoothly in which the 
unique abilities and contributions of global situ-
ation awareness, heterogeneous reliable trans-
mission, and time-varying service scheduling are 
enabled as indicated in Fig. 1, as follows:
• Firstly, we design a comprehensive SAGS inte-

gration architecture to optimize the communi-
cation among devices from space, air, ground, 
and sea, in which the abilities of global situation 
awareness, communication reliability guaran-
tee, and time-varying service scheduling are 
achieved all around the domain.

• Secondly, global situation awareness is imple-
mented in SAGS, where it employs feder-
ated reinforcement learning techniques, in 
conjunction with graph convolution networks 
and multi-modal data fusion methods, to ful-
fill the perception requirements for network 
environments, traffic, and time-varying services 
in the wide-area coverage network scenarios, 
which then can be used to make the decision 
toward the reliability guarantee and schedul-
ing, while satisfying various application require-
ments.

• Thirdly, to guarantee data transmission reliabil-
ity across space, air, ground, and sea zones 
with wide-area coverage, we propose a reliable 
transmission mechanism tailored to the mobile 
characteristics of the space-air-ground-sea net-

work. Leveraging artificial intelligence tech-
niques, it computes reliable transmission paths 
for various types of services within the integrat-
ed space-air-ground-sea network. During this, 
the objective is to maximize communication 
reliability and resource utilization while avoid-
ing external environmental conflicts at the same 
time.

• Lastly, due to the uncertain impacts of wire-
less sensors in space, air, or even sea, the 
corresponding services become time-varying. 
Targeting this, we formulate a multi-objective 
scheduling optimization model with the objec-
tives of minimizing the uncovered area, ener-
gy consumption, and energy span. Due to the 
time-varying nature of the SAGS environment 
and accounting for the uncertainty in sensor 
node positions within the SAGS network, we 
build the connection between uncertain param-
eters and the internal multi-objective optimi-
zation model so that the decision-makers may 
only need to concern the main sub-objective 
spaces.

spAce-AIr-Ground-seA InteGrAtIon 
ArchItecture brIdGInG terrestrIAl And  

non-terrestrIAl networks

spAce-AIr-Ground-seA InteGrAtIon ArchItecture
The proposed SAGS architecture necessitates a 
deep fusion of space-based, air-based, ground-
based, and sea-based networks, with mobile 
information serving as a crucial component for 
achieving comprehensive network integration. 

FIGURE 1. Motivation and contribution illustration.
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This study focuses on intelligent data transmission 
and scheduling optimization based on proactive 
perception of space, air, ground, and sea infor-
mation.

By enabling cooperative environment percep-
tion for comprehensive coverage across global 
zones, the integrated SAGS collaborative architec-
ture is established, as shown in Fig. 2. This figure 
illustrates how global situation awareness helps 
capture the conditions of the SAGS environment, 
traffic patterns, and time-varying services. Using 
perceptive information from the global domain, 
reliability-focused transmission within the SAGS 
framework is achieved through an enhanced 
Graph Convolutional Network (GCN). Subse-
quently, multi-objective optimization-based adap-
tive scheduling is implemented to address the 
time-varying characteristics specific to environ-
ments such as space, air, and sea.

GlobAl sItuAtIon AwAreness
To respond to the requirement for global situation 
awareness in the SAGS wide-area coverage net-
work, we divide it into the aspects of SAGS traffic 
awareness, security awareness, and time-varying 
service awareness.

Graph Convolution Network Based SAGS 
Traffic Awareness: Given the unique charac-
teristics of the integrated SAGS network, which 
inherently involves both terrestrial and non-terres-
trial traffic data, a comprehensive spatio-temporal 
fusion framework is proposed for accurate net-
work traffic sensing and prediction. In particular, 
it encompasses three core modules: temporal 
feature extraction, topological feature extraction 
leveraging GCN, and bidirectional gated recur-
rent unit (Bi-GRU) for transfer learning. Feature 
extraction utilizes historical data as input and adap-
tively integrates information to capture temporal 
characteristics of diverse SAGS traffic patterns. 
To address the need for considering interactions 
among various network communication devices 
positioned across different spatial locations, GCN 
is applied to capture the topological features of 
the extensive network, treating each device as a 

node and their communication links as edges, so 
as to transform SAGS network into a large-scale 
graph. Within this graph, GCN employs spectral 
graph analysis through Laplacian matrices to under-
stand inter-node influence relationships. Enriched 
with spatial features by GCN, the traffic feature 
sequences then undergo transfer learning through 
the Bi-GRU, which comprises forward and back-
ward-gated recurrent units to consider the impact 
of future traffic variations and enhance long-term 
dependency learning. Finally, an adaptive fusion 
layer with an attention mechanism dynamically 
adjusts the weights of the outputs from these three 
components, generating SAGS traffic prediction 
outcomes. It is aware that the model will contin-
uously refine its parameters through backpropa-
gation based on the loss between predicted and 
actual values, ensuring accurate and adaptable pre-
diction.

D-S Policy and GAN-Based Security Situation 
Awareness: Given the heterogeneity of the inte-
grated SAGS network, achieving comprehensive 
security situation awareness depends on synthesiz-
ing information from diverse security devices within 
this environment. Traditional methods relying on 
mathematical logic models and knowledge-driven 
reasoning struggle to handle the massive volume of 
network traffic and complex attack scenarios prev-
alent in such an intricate architecture. To address 
these challenges, we propose integrating Demp-
ster-Shafer (D-S) evidence theory with Genera-
tive Adversarial Networks (GANs), leveraging the 
strengths of both methodologies. D-S evidence the-
ory aligns well with the inherent attributes of SAGS 
nodes and their surrounding environments, provid-
ing a robust framework for managing uncertainty, 
while GANs offer adaptive adjustment capabilities 
that enhance the precision of network attack iden-
tification through dynamic reasoning models. This 
combined approach commences by collecting net-
work traffic data, where the initial 80 percent of 
results from multi-modal data fusion using D-S rules 
form the foundational dataset. After preprocessing, 
this data is fed into a U-Net model for training, fol-
lowed by inputting the residual multi-modal fusion 

FIGURE 2. Air-space-ground-sea integration architecture.
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data into the trained model to yield binary and 
multi-class classification results essential for calcu-
lating the security situation value. These classifica-
tions are then used to compute attack probabilities 
and their respective impacts, enabling a compre-
hensive assessment and evaluation of the overall 
security situation. By incorporating advanced tech-
niques like D-S theory and GANs, the proposed 
method significantly enhances the security pos-
ture of the SAGS network, effectively handling 
uncertain and incomplete information through 
multi-source evidence combination. The adaptive 
nature of GANs allows continuous learning and 
adjustment to new attack vectors, ensuring that 
security measures remain effective against evolving 
threats. Additionally, the method ensures scalability 
by efficiently processing large volumes of network 
traffic without compromising performance, which 
is crucial for maintaining operational efficiency in 
extensive SAGS networks. Advanced encryption 
and anonymization techniques can be integrated 
to protect sensitive data during transmission and 
storage, ensuring compliance with privacy regu-
lations such as GDPR and CCPA, while differen-
tial privacy mechanisms safeguard individual user 
data while enabling collaborative computations 
across the network. Ultimately, this comprehen-
sive strategy not only enhances the accuracy and 
reliability of security situation awareness but also 
ensures robustness against a wide range of threats, 
facilitating safe and reliable operations in various 
applications.

SAGS Time Varying Service Awareness: The 
graph neural network is leveraged and integrated 
with a spatio-temporal convolution model to per-
ceive time-varying service characteristics in SAGS, 
based on which we propose an unsupervised 
framework to overcome the challenges of assign-
ing fixed labels to vary traffic flows. In particular, it 
leverages contrastive learning to learn similarities 
and differences between graph signals across time 
steps or nodes in SAGS so as to enable the percep-
tion of temporal dynamics. In addition, the dynam-
ic spatio-temporal graph construction discretizes 
the evolving SAGS network topology, with each 
time period represented as a static graph, form-
ing a sequence reflecting the network’s temporal 
dynamics. Within this design, the spatial feature 
extraction employs GCN to learn node feature vec-
tors, capturing structural information influenced by 
neighbors at each time slice. The temporal feature 
extraction, on the other hand, utilizes a temporal 
convolutional network to model nodes’ changing 
trends across time for future predictions based on 
current and historical information. Finally, node 
representation learning on these dynamic graphs, 
optimized through unsupervised contrastive learn-
ing, learns low-dimensional vector mappings that 
preserve node information, enhancing the percep-
tion of time-varying traffic characteristics by cluster-
ing similar nodes and separating dissimilar ones in 
the SAGS space.

spAce-AIr-Ground-seA orIented relIAble trAnsMIssIon 
The reliable data transmission tailored for the 
mobile characteristics of the SAGS environment 
often necessitates considerations from two prima-
ry aspects: the spectrum resources on the non-ter-
restrial side spanning air, space, and sea, as well 
as the network capabilities on the terrestrial wired 

side. These two factors are major constraints in 
reliable data transmission and interaction. To 
promptly identify resource bottlenecks and avert 
unreliable transmission channels in SAGS, we 
propose a link bottleneck detection mechanism 
under the wide-area coverage of SAGS to avoid 
unreliable cases. Specifically, it first models the 
wide-area coverage network, encompassing a 
node set (comprising terminals and transmission 
nodes positioned across air, space, ground, and 
sea) and an edge set (representing communica-
tion links and channels). Subsequently, GCN is 
introduced to identify anomalous data from edges 
or nodes within the graph. In an anomalous net-
work, normal nodes tend to share common fea-
tures with their neighbors, whereas anomalies 
exhibit distinct features from their neighbors. The 
core idea lies in learning node function mappings 
to complete node embedding within the graph, 
aggregating features from a node and its neigh-
bors, and thereby generating new representations 
of the nodes.

Building on this foundation, we introduce an 
active solution for bottleneck detection across 
the integrated SAGS environment. Specifically, 
we incorporate AI-based transmission and deci-
sion-making to customize routing attributes during 
data transmission in SAGS, aiming to achieve reli-
able link scheduling that maximizes path reliability. 
Initially, traffic data transmitted over links is classi-
fied into categories such as management, monitor-
ing, and control, with further subdivisions based on 
content types like video, voice, and control traffic. 
Different traffic categories in various SAGS scenar-
ios have distinct minimum performance require-
ments to ensure reliable interaction. Based on this, 
we introduce an AI-driven policy customization 
model that outputs tailored routing strategies 
according to the interaction demands of intelligent 
nodes, aligned with the actual conditions of the 
integrated SAGS channel model.

To enhance this approach, we design a cus-
tomized bottleneck detection and reliable routing 
algorithm leveraging the tailored data transmission 
strategy. The communication path in the SAGS 
environment is determined by adhering to the stra-
tegic attributes within the integrated SAGS reliable 
transmission model. During the path determina-
tion process, path reliability is evaluated using a full 
probability equation to maximize reliability, ensur-
ing optimal data transmission reliability within the 
integrated SAGS network.

tIMe-vAryInG AdAptIve schedulInG for  
spAce-AIr-Ground-seA InteGrAtIon systeM

For the SAGS environment, a three-dimensional 
spatial model is established, where all nodes are 
categorized into three distinct types: intra-clus-
ter nodes, cluster head nodes, and sink nodes, 
which aggregate data from cluster head nodes. 
The sink nodes transmit all collected data to sur-
face base stations. Except for the continuously 
operational sink nodes, the other two types of 
nodes each have three states, which are dead, 
sleeping, active, and clustering. Both the intra-clus-
ter node and head node can have these three 
states, and their roles can also be interchangeably 
transformed.

Initially, a specified number of sensor nodes are 
randomly deployed in the monitoring area using 

By incorporating 
advanced techniques 
like D-S theory and 
GANs, the proposed 
method significantly 
enhances the security 
posture of the SAGS 
network, effectively 
handling uncertain and 
incomplete information 
through multi-source 
evidence combination. 
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methods such as satellites, aircraft, or submarines. 
Following deployment, an election process gen-
erates a set number of cluster head nodes. In the 
complex environments of satellite, aircraft, and 
marine operations, node positions may shift slightly 
after deployment, leading to inter-node distances 
that are represented as intervals with upper and 
lower bounds. Next, the remaining sensor nodes 
calculate the lower bounds of their Euclidean 
distances to all cluster head nodes and join the 
nearest cluster head, becoming intra-cluster nodes. 
These intra-cluster nodes transmit their collected 
data to their respective cluster heads. The cluster 
head nodes then calculate their distances to the 
sink node and categorize themselves into different 
levels based on the lower bounds of these distance 
intervals. Cluster heads at lower levels (farther from 
the sink node) cannot directly transmit data to the 
sink node and must relay their data through high-
er-level cluster heads. Higher-level cluster heads 
can directly transmit both their own collected data 
and data received from other cluster heads to 
the sink node. Finally, the sink node transmits the 
aggregated data to a base station or surface con-
trol center for centralized processing.

Moreover, when tackling the intricate cover-
age challenges posed by wireless sensor networks 
spanning the sky, ground, and ocean, a determin-
istic sensing model is employed for target point 
coverage, while an acoustic-based communication 
model addresses interval energy consumption, pre-
dominantly attributed to data transmission between 
nodes. Given that cluster head nodes’ heightened 
energy consumption may precipitate premature 
node failure, a strategy is enacted to re-select clus-
ter heads post-operational rounds, recalculating 
node and regional energy reserves to balance con-
sumption, forestall coverage holes, and thereby 
bolster network reliability and performance.

To address these issues and environmental 
uncertainties — such as space conditions, wind, 
and ocean tides — which significantly impact SAGS 
networks in both terrestrial and non-terrestrial 
domains, we propose an interval multi-objective 
SAGS integrated network scheduling and optimi-
zation model. This model incorporates key metrics 
such as uncovered rate, energy consumption, and 
energy span for optimization. Furthermore, rec-
ognizing the importance of decision-maker pref-
erences in practical multi-objective optimizations, 
our interval multi-objective model employs an evo-
lutionary algorithm that considers reference points 
and angular preferences from the perspectives of 
satellites, aircraft, and stations. Hence, this innova-
tive approach preprocesses preference information 
and then adaptively adjusts the preference radi-
us to tailor the searching area so as to establish a 
preference-based interval dominance relation and 
foster a targeted search toward solutions within the 
preferred region of the objective space.

perforMAnce evAluAtIon

sIMulAtIon envIronMent
We performed comprehensive experiments 
leveraging the Starlink as well as extended Walk-
er-Delta comprising 24 satellites. In addition, the 
simulation also utilizes the 100 most populous cit-
ies (e.g., Beijing and London) globally as Ground 
Stations (GSs) to evaluate all potential GS-to-GS 

connections. In particular, the air layer between 
space and ground is simulated via 100 UAV 
nodes, which compose the middle layer network 
to seamlessly bridge the gap between satellites 
and GSs. These drones are set to fly routes fol-
lowing the objectives of maximizing coverage and 
minimizing latency, thereby enhancing the overall 
network’s resilience and flexibility. In particular, 
to simulate the heterogeneous pattern in SAGS, 
three kinds of packet modes are introduced in 
experiments, which are Segment Routing (SR), 
Multi-Protocol Label Switching (MPLS), and Geo-
Tagging (GEO) [4]. For comparative purposes, on 
the one hand, the proposed work is compared 
with the other state-of-the-art methods, including 
OSPF [11] and GNN [10], that build communica-
tion across nodes in space, air, ground, and sea. 
On the other hand, these comparative methods 
are all evaluated comprehensively toward the 
metrics of routing convergence iteration, end-to-
end delay, packet delivery rate, and throughput 
so that we can fully show the benefits and lim-
itations of the proposed SAGS architecture and 
methods.

sIMulAtIon results
Convergence Iteration: The convergence itera-
tion is shown in Fig. 3 for three different meth-
ods of the proposed SAGS, OSPF, and GNN 
across three packet modes, that is, MPLS, SR, 
and GEO. In particular, the y-axis represents the 
convergence iteration, indicating the number 
of iterations required for each method to reach 
convergence in each packet scenario. Therefore, 
firstly, for the MPLS scenario, SAGS required 92 
iterations, OSPF required 77 iterations, and GNN 
required 193 iterations. This suggests that OSPF 
is the most efficient method in terms of conver-
gence speed in the MPLS scenario, followed 
by SAGS, with GNN being the least efficient. 
In addition, for the SR scenario, SAGS required 
103 iterations, OSPF required 83 iterations, and 
GNN required 205 iterations. Again, OSPF is the 
most efficient method, followed by SAGS, with 
GNN requiring the most iterations to converge. 
Finally, for GEO, SAGS required 107 iterations, 
OSPF required 91 iterations, and GNN required 
220 iterations. OSPF is the most efficient meth-
od in this scenario as well, followed by SAGS, 
with GNN being the least efficient. Overall, OSPF 
consistently outperforms both SAGS and GNN in 
convergence speed across all three scenarios. This 
advantage stems from OSPF’s distributed and scal-
able strategy, which enables rapid convergence. In 

FIGURE 3. Convergence iteration count.
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contrast, GNN requires the most iterations to con-
verge, suggesting it may not be the most efficient 
method for these scenarios. However, the iteration 
gap between the proposed SAGS approach and 
OSPF is relatively small, placing SAGS within an 
acceptable range of performance.

End-to-End Delay: To compare the perfor-
mance of different methods toward the end-to-end 
delay, we evaluate and show the proposed SAGS 
with different packet modes, while the compared 
methods are evaluated with the most suitable one 
as indicated in Fig. 3. The corresponding results are 
presented in Fig. 4, where we can see that the end-
to-end delay is captured against the simulation time 
(i.e., 60 minutes). 

Apparently, SAGS-MPLS and SAGS-SR exhib-
it the lowest end-to-end delays, with SAGS-MPLS 
consistently outperforming SAGS-SR. This superior 
performance is primarily due to the MPLS proto-
col operating at the link layer, which enables fast-
er processing. In contrast, SAGS-GEO performs 
moderately, ranking between OSPF and GNN in 
terms of end-to-end delay, with OSPF showing the 
third-lowest delay. The higher delays in SAGS-GEO 
can be attributed to its multi-layer routing and for-
warding decisions, which increase processing time 
and complexity. Additionally, calculating global 
geographical coordinates involves handling het-
erogeneous expressions and adding transformation 
overhead. Moreover, in our simulated space-air-
ground-sea integration environment, objects such 
as UAVs and satellites frequently change positions, 
complicating GEO coordinate calculations and nat-
urally increasing end-to-end delays.

Packet Delivery Rate: The packet delivery 
rate in such space, air, ground, and sea integra-
tion environments is tested and shown in Fig. 5, 
where the results are obtained against the bit rate 
ranging from 10Mb/s to 80Mb/s. Obviously, at 
lower bit rates (e.g., 10 Mb/s to 20 Mb/s), all 
methods exhibit high packet delivery rates, with 
SAGS-MPLS and SAGS-SR performing slightly bet-
ter than the others. As the bit rate increases (i.e., 
after 20 Mb/s), the packet delivery rate for all 
methods decreases, but the rate of decrease var-
ies. In specific, SAGS-MPLS and SAGS-SR main-
tain relatively high packet delivery rates even at 
higher bit rates, with SAGS-SR consistently outper-
forming SAGS-MPLS. Meanwhile, SAGS-GEO and 
GNN show a more significant decline in packet 
delivery rate as the bit rate increases, with SAGS-
GEO performing slightly better than GNN. OSPF 
exhibits the lowest packet delivery rate across all 

bit rates, indicating that it may not be as efficient 
as the other methods in terms of packet delivery. 
The differences in packet delivery rates are largely 
due to the distinct routing and forwarding mecha-
nisms of each method. SAGS-MPLS and SAGS-SR, 
designed for efficient handling of high bit rates, 
consistently maintain higher packet delivery rates 
even as bit rates increase. In contrast, OSPF always 
selects the shortest path for packet routing across 
space, air, ground, and sea nodes, regardless of 
link congestion. This approach leads to lower pack-
et delivery rates, especially at higher bit rates, as 
it does not account for network congestion effec-
tively. While GNN leverages an intelligent neural 
network for routing decisions, offering potentially 
efficient paths, it incurs higher convergence times. 
This trade-off results in a packet delivery rate that, 
although competitive, does not match the perfor-
mance of SAGS-MPLS and SAGS-SR.

Throughput: The throughput is also calculated 
against the bit rates from 10 Mb/s to 80 Mb/s, as 
shown in Fig. 6. First of all, at the lower bit rates (10 
Mb/s to 20 Mb/s), all methods exhibit relatively 
low throughput, with SAGS-MPLS and SAGS-SR 
performing slightly better than the others. As the 
bit rate increases, the throughput for all methods 
increases, but the rate of increase varies. That is 
because the smaller the bit rate, the smaller the 
number of packets, which naturally leads to smaller 
throughput.

Then, SAGS-MPLS and SAGS-SR demonstrate 
a significant increase in throughput as the bit rate 
rises, with SAGS-SR consistently outperforming 
SAGS-MPLS. This trend aligns with the observations 
in Fig. 5. While SAGS-GEO and GNN also show 
increased throughput, their growth rate is slow-
er compared to SAGS-MPLS and SAGS-SR. OSPF 
exhibits the lowest throughput across all bit rates, 
indicating its lower efficiency in data transmission. 
This is consistent with OSPF’s lower packet delivery 
rate, as previously explained.

conclusIon
The advent of 5G/6G and IoT technologies marks 
a significant shift in networking paradigms, neces-
sitating the seamless integration of terrestrial and 
non-terrestrial networks to support extensive spa-
tial and content coverage. To address the inher-
ent challenges of high infrastructure costs and 
coverage limitations in remote or inaccessible 
areas, this work introduces a novel SAGS integra-
tion architecture that aims to provide ubiquitous, 
intelligent, collaborative, and efficient information 
support across a broad spectrum of environments 
by leveraging technologies such as reinforce-
ment learning, graph convolution networks, and 
multi-modal data fusion to enhance situational 
awareness and decision-making. Furthermore, a 
multi-objective scheduling optimization model is 
formulated to minimize uncovered areas, ener-
gy consumption, and operational spans, thereby 
ensuring reliable data transmission and effective 
resource utilization. Future work includes explor-
ing the distributed control center placement in 
space, air, ground, and sea, as well as their seam-
less interactions.
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