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Abstract—The exponential growth of mobile data traffic in next
generation networks has led to a significant increase in energy
consumption, posing critical challenges for network operators.
We propose DLLF-2EN, a novel energy-efficient framework that
integrates deep learning-based load forecasting, an advanced
power consumption model, and a comprehensive energy-saving
strategy to address this issue. The load forecasting technique
utilizes deep convolutional neural network and long short-term
memory model, which is based on deep learning. This model
is capable of capturing the spatiotemporal dependencies present
in network traffic data. The power consumption model accu-
rately characterizes the base stations’ static and dynamic power
consumption components, facilitating the assessment of energy
efficiency under various network scenarios. The energy-saving
strategy combines base station sleep mode with discontinuous
transmission and reception, as well as lightweight transmission
of common signals, dynamically adapting the network operation
based on the predicted traffic load. Furthermore, DLLF-2EN
incorporates an intelligent power management system that lever-
ages machine learning algorithms to continuously monitor the
network, analyze collected data, and make optimal energy-saving
decisions in real-time. Simulation demonstrate that the superior
performance of DLLF-2EN in terms of load forecasting accu-
racy and energy efficiency compared to state-of-the-art baseline
methods. The proposed framework represents a comprehensive
solution for energy-efficient and sustainable next generation
mobile networks, addressing the critical challenges of minimizing
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energy consumption while meeting the growing demands for high-
quality mobile services.

Index Terms—Energy-efficient next generation
network, deep learning, load forecasting, LSTM.
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I. INTRODUCTION

HE EXPONENTIAL growth of mobile data traffic driven

by the proliferation of smart devices and bandwidth-
intensive applications has led to a significant increase in
energy consumption in mobile networks [1], [2]. According
to recent studies, information technology systems and infras-
tructures contribute approximately 4% of global greenhouse
gas emissions [3]. As a result, network operators are facing
immense pressure to reduce their carbon footprint and operate
more environmentally sustainable. The energy efficiency of
mobile networks has become a critical issue, not only from
an environmental perspective but also from an economic
standpoint, as energy costs constitute a significant portion of
network operators’ operational expenditures [4], [5].

The challenges of energy efficiency in mobile networks
are further compounded by the advent of next generation
mobile networks, such as 5G and beyond. These networks
are distinguished by highly concentrated small cells, extensive
multiple-input multiple-output (MIMO) systems, and high-
frequency spectrums. These features allow for increased data
rates and lower latency [6], [7], [8]. However, these advanced
technologies also lead to increased energy consumption, making
developing innovative solutions for energy-efficient network
operations imperative. Several methods have been suggested
to tackle energy efficiency issues in next-generation mobile
networks [9]. These approaches include hardware optimization
techniques, such as using energy-efficient components and
advanced power amplifiers, as well as software-based solutions,
including dynamic resource allocation, base station sleep modes,
and discontinuous transmission schemes. However, most of
these approaches rely on predefined rules and thresholds, which
may not effectively capture mobile network traffic’s complex
and dynamic nature.

Machine learning techniques have recently become a poten-
tial approach for enhancing the energy efficiency of mobile
networks. Machine learning algorithms can utilize the exten-
sive data created by mobile networks to reveal concealed
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patterns, forecast forthcoming traffic needs, and optimize the
distribution of network resources appropriately. Specifically,
deep learning methods, such as convolutional neural networks
(CNNs) and long short-term memory (LSTM) networks, have
demonstrated significant promise in capturing the spatial and
temporal relationships in network traffic data and facilitating
precise traffic prediction [10].

However, integrating deep learning-based traffic forecasting
into a comprehensive energy-efficient framework for next gener-
ation mobile networks presents several challenges. Additionally,
the economic aspects of the proposed framework are a crucial
consideration for network operators. The proposed framework
has the potential to generate significant cost savings by reducing
the energy consumption of the mobile network infrastructure.
Energy costs may account for up to 20-40% of a mobile network
operator’s operating expense. By optimizing energy efficiency
using the proposed framework, network operators can reduce
energy bills and improve profitability, which we need to consider.

Inspired by these difficulties and the possibilities of deep
learning methods, we introduce DLLF-2EN, an innovative
energy-efficient structure for future mobile networks that
utilizes load forecasting based on deep learning. The primary
contributions of this study are as follows:

1) We develop a deep convolutional neural network-long
short-term memory (DCNN-LSTM) model for accurate
load forecasting in mobile networks. The DCNN-LSTM
model captures the spatiotemporal dependencies in
network traffic data and enables precise prediction of
future load conditions, facilitating proactive energy-
saving decisions.

2) We present a comprehensive energy-efficient framework
for next generation mobile networks, which consists of
three key components: (1) An advanced power con-
sumption model that accurately characterizes the static
and dynamic power consumption components of base
stations, enabling precise assessment of energy effi-
ciency under various network conditions. (2) A dynamic
energy-saving strategy that combines base station sleep
mode with discontinuous transmission and reception and
lightweight transmission of common signals, adapting
the network operation based on the predicted traffic
load. (3) An intelligent power management system that
leverages machine learning algorithms to continuously
monitor the network, analyze collected data, and make
optimal energy-saving decisions in real-time.

The remainder of this paper is organized as follows.
Section II provides the related works. Section III presents
the proposed DCNN-LSTM model for load forecasting.
Section IV describes the energy-efficient framework for next
generation mobile networks, including the power consumption
model, energy-saving strategy, and intelligent power manage-
ment system. Section V discusses the simulation setup and
results. Finally, Section VI concludes the paper and outlines
future research directions.

II. RELATED WORKS

Recently, extensive studies have been conducted on energy
efficiency in mobile networks. Several methods have been
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suggested to decrease the energy usage of base stations,
which are mobile networks’ main energy consumers. This
section provides an overview of the most advanced approaches
now available for operating base stations in an energy-efficient
manner. It also examines how these techniques can be applied
to the future generation of mobile networks.

A. Base Station Energy-Saving Methods

One of the most common base station energy savings
approaches is using sleep modes [11]. Significant energy
savings can be achieved by dynamically switching off under-
utilized base stations during low-traffic periods. The decision
to enter or exit sleep modes is typically based on traffic
load thresholds or predefined schedules. However, determining
the optimal thresholds and schedules is challenging, as it
requires accurate prediction of traffic patterns and careful
consideration of the trade-off between energy savings and
network performance.

Another energy-saving base station approach is discontin-
uous transmission (DTX) [12]. DTX allows base stations to
adapt their transmission power dynamically based on the traffic
load. During low-traffic periods, base stations can reduce their
transmission power or even completely switch off certain
antennas, saving energy. Depending on traffic characteristics
and the desired trade-off between energy savings and trans-
mission quality, DTX can be applied at different granularities,
such as symbol, subframe, or frame levels.

Carrier aggregation is a technique used in LTE-Advanced
and 5G networks to increase the bandwidth and capacity
of mobile networks [13]. However, carrier aggregation also
provides opportunities for energy saving. Base stations can
optimize energy consumption by intelligently allocating traffic
across multiple carriers based on the traffic load and channel
conditions. For example, during low-traffic periods, base sta-
tions can concentrate the traffic on a fewer number of carriers
and switch off the unused carriers, thus reducing the overall
energy consumption.

Massive MIMO is a crucial technique in 5G networks that
utilizes many antennas at the base station to enhance spectral
and energy efficiency [14]. Massive MIMO systems utilize
the spatial degrees of freedom to concentrate the transmitted
energy on specific users. Hence decreasing interference and
total transmit power. However, the energy efficiency gains of
massive MIMO systems depend on various factors, such as
the number of antennas, the precoding and power allocation
strategies, and the channel conditions. Therefore, energy-
efficient massive MIMO techniques, such as antenna selection
and power control, are crucial for realizing the full potential
of this technology.

B. Energy-Efficient Next Generation Mobile Networks

The energy efficiency challenges in next generation mobile
networks, such as 5G and beyond, are further compounded by
the increasing network density, the use of higher frequency
bands, and the support for diverse use cases with varying
quality of service requirements [15].

Researchers have proposed various energy-efficient archi-
tectures and techniques for next-generation mobile networks
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to address these challenges. One such approach is using cloud
radio access networks (C-RAN) [16], [17]. In C-RAN, the
baseband processing functions of base stations are centralized
in the cloud, while the radio frequency functions are performed
by distributed remote radio heads (RRHs). By centralizing the
baseband processing, C-RAN enables more efficient resource
utilization and energy savings through joint optimization and
load balancing across multiple RRHs.

Software-defined networking (SDN) and network function
virtualization (NFV) are both viable techniques for creating
energy-efficient next generation mobile networks [18], [19].
SDN facilitates the separation of the control plane and the data
plane, enabling adaptable, responsive, and enhanced network
administration. NFV enables the virtualization of network
functions, such as baseband processing and packet forwarding,
on general-purpose hardware. By leveraging SDN and NFV,
mobile network operators can dynamically adjust the network
topology and resources based on traffic demands and energy
consumption, improving energy efficiency.

Although the described strategies have demonstrated the
potential to enhance the energy efficiency of mobile networks,
various issues still need to be addressed, and unresolved
research concerns exist. The growing intricacy and size
of upcoming mobile networks provide difficulties in com-
puting complexity and merging energy-efficient algorithms.
Researchers are now exploring distributed and scalable meth-
ods, such as multi-agent reinforcement and federated learning,
to tackle these difficulties [20], [21].

In summary, energy efficiency in next generation mobile
networks is a multifaceted problem requiring advanced tech-
nologies, intelligent algorithms, and sustainable practices.
While significant progress has been made in recent years,
further research and innovation are still needed to realize the
vision of energy-efficient and sustainable mobile networks.

III. LOAD FORECASTING

The future load of each cell in a base station is a critical
factor in determining the appropriate energy-saving strategy to
be implemented. The physical resource block (PRB) utilization
rate indicates the cell load, representing the occupancy of the
cell’s air interface resources over a given period. Studies have
shown that the PRB utilization rate significantly impacts the
transmission rate of users in 5G networks [22]. Therefore,
accurate prediction of the PRB utilization rate is crucial for
making informed decisions regarding energy-efficient resource
allocation and base station operation.

A. Problem Description

Load forecasting in mobile networks can be defined as the
challenge of predicting time series. To predict the future PRB
utilization rates, we are given a historical sequence of PRB
utilization rates denoted as X = x1,29,..., 27, where xy
represents the PRB utilization rate at time step ¢. The objective
is to forecast the PRB utilization rates for a certain prediction
horizon 7, represented as Y = ypi1,yry2,...,Y74+,. The
predicted values can then be used to optimize the energy-
saving strategies employed by the base stations.
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Mathematically, the load forecasting problem can be defined
as finding a function f(-) that maps the historical PRB
utilization rates to the future values, as follows:

i\/:f()():.](.(3:155527'-'7"17T)' (])

where Y = YT+1, YT+2; - - - » YT+ represents the predicted
PRB utilization rates.

The function f(-) can be learned from a dataset of his-
torical PRB utilization rates using various machine learning
algorithms. The objective is to reduce the prediction error,
which may be quantified using metrics like mean squared
error (MSE) or mean absolute error (MAE). The optimization
problem can be expressed as:

1 ¢ _
minngL(yi,yi) + AR(f). 2
i=1

where n represents the number of samples in the dataset. L(-)
denotes the loss function, which can be either MSE or MAE.
y; and y; represent the true and predicted PRB utilization
rates for a particular sample i. R(f) is a regularization term to
prevent overfitting. Lastly, A is a hyperparameter that controls
the balance between the prediction error and the regularization
term.

B. Data Preparation

In this study, we collect hourly performance indicators of
500 next generation mobile network cells in a metropolitan
area over three months. The data used in this study was
collected from a real-world mobile network operator in com-
pliance with all relevant ethical and legal requirements. The
data was anonymized and aggregated to protect individual
users’ privacy and ensure compliance with data protection
regulations. The specific cell performance indicators selected
are shown in Table I, with the energy efficiency metric
represented by the ratio of the PRB utilization rate to the
power consumption, as the prediction target y representing the
overall energy efficiency of the cell. Six indicators, including
average number of users, uplink/downlink traffic volume,
average uplink/downlink SINR, and average uplink/downlink
spectral efficiency, are used as the features z,, of each input
sample X; to construct the input time series X. During the
data preprocessing stage, missing values were imputed using
the mean value of the corresponding feature. Outliers were
identified using the interquartile range method and replaced
with the feature’s median value.

Time series prediction for a white noise sequence that
does not contain information is meaningless in the context of
energy-efficient network management. Mechanically inputting
sequences unrelated to the prediction target y into the model
does not improve the prediction accuracy. Therefore, it is nec-
essary to analyze the autocorrelation of the energy efficiency
sequence and the correlation between it and other variables.

1) Autocorrelation of Energy Efficiency: The autocorrelation
function (ACF) of the energy efficiency metric y is calculated
and tested for 50 randomly selected cells [23]. ACF represents
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TABLE I
PERFORMANCE INDICATORS OF 500 NEXT GENERATION
MOBILE NETWORK CELLS

Index Indicator Unit

1 Average number of users -

2 Downlink traffic volume Mbps
3 Uplink traffic volume Mbps
4 Average downlink SINR dB

5 Average uplink SINR dB

6 Average downlink spectral efficiency bps/Hz
7 Average uplink spectral efficiency bps/Hz
y Energy efficiency (PRB utilization rate )

/ power consumption)

the correlation between a time series and another series
delayed by k units, calculated as:

~ Cov(yt, ys—x)
T, = .
v/ Var(y;) Var(y,_p)

where Cov(-) and Var(-) denote the covariance and variance
operators, respectively. The value range of the autocorrelation
function 7, is [—1, 1]. For a completely uninformative white
noise sequence, its 7 tends to O regardless of the value of the
delay k. Conversely, the closer |ry| is to 1, the stronger the
correlation between the energy efficiency metric and its past
values, and the more predictable it is.

2) Correlation between Energy Efficiency and Other
Indicators: The Pearson correlation coefficient is calculated for
each pair of variables to investigate the relationship between
the energy efficiency metric and the other selected indicators.
The Pearson correlation coefficient between two variables x
and y is defined as:

3)

poy = Cov(z,y) ' @
/Var(z)Var(y)
where pg , ranges from —1 to 1, —1 represents a perfect
negative linear relationship, O represents no linear relationship,
and 1 represents a perfect positive linear relationship.

Based on the autocorrelation and correlation analysis, we
construct the input feature matrix X € RN*XT*D where N is
the number of cells, T is the number of time steps, and D is
the number of features (including the selected indicators and
the energy efficiency metric). The goal is to learn a function
f(+) that maps the historical feature matrix to the future energy
efficiency values, i.e.,

Ut = f(X1, Xo, ..

where J¢y; is the predicted energy efficiency at time step ¢ + 4,
and 7 is the prediction horizon.

It is important to note that the energy efficiency metric is
both an input feature and a prediction target. While it may
seem counterintuitive, including the historical values of the
target variable as an input feature is a common practice in
time series forecasting, as it can provide valuable information
for predicting future values.

Table I presents the ACF values for the energy effi-
ciency metric at various lags, demonstrating strong temporal
dependencies, especially at shorter lags. Table III shows the

Yir1, Yeg2, - - - S Xt). (5)
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TABLE II
ACF VALUES FOR ENERGY EFFICIENCY METRIC

Lag ACF value
0 1
1 0.923
2 0.871
3 0.832
4 0.798
5 0.769
6 0.745
24 0.687
48 0.652
168 0.618
TABLE III

PEARSON CORRELATION COEFFICIENTS BETWEEN ENERGY
EFFICIENCY AND OTHER INDICATORS

Indicator Correlation coefficient
Average number of users 0.824
Downlink traffic volume 0.791
Uplink traffic volume 0.765
Average downlink SINR -0.412
Average uplink SINR -0.389
Average downlink spectral efficiency 0.703
Average uplink spectral efficiency 0.681

Pearson correlation coefficients between the energy efficiency
metric and other indicators, quantifying the strength of these
relationships.

In summary, the data preparation phase involves collecting,
preprocessing, and analyzing next-generation mobile network
cells’ relevant performance indicators and energy efficiency
metrics. We aim to develop an accurate and reliable fore-
casting model for energy-efficient network management and
optimization by leveraging the spatiotemporal dependencies
and correlations among these variables.

C. DCNN-LSTM Model

The DCNN-LSTM framework comprises two primary com-
ponents: the DCNN part and the LSTM part, as seen in Fig. 1.
The DCNN part, which consists of convolutional layers and
dynamic pooling layers, is tasked with extracting profound
characteristics from the input data. The LSTM part, consisting
of two layers, performs deep learning and information mining
on the extracted features and finally outputs the prediction
results through a fully connected layer.

1) DCNN Layer: In the proposed model, convolutional
kernels are set to 128 to capture more fine-grained patterns
in the energy efficiency data. The convolutional layers apply
multiple filters to the input data, learning local dependencies
and extracting relevant features. The dynamic pooling layers,
implemented using the k-max pooling technique [24], down-
sample the feature maps while preserving the most salient
information.

The DCNN layer transforms the original multi-dimensional
time series data X of shape (T'x D x 1), where T is the number
of time steps and D is the number of features, into a feature
representation of shape (7”7 x D’ x C), where T’ and D’ are
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+ Average number of users

+ Downlink traffic volume

+ Uplink traffic volume

+ Average downlink SINR

« Average uplink SINR

+ Average downlink spectral efficiency
« Average uplink spectral efficiency

Fig. 1.

DCNN-LSTM framework.

the reduced temporal and feature dimensions, respectively, and
C is the number of convolutional kernels.

2) LSTM Layer: The LSTM network is a modified version of
the recurrent neural network (RNN) structure that specifically
tackles the issue of the vanishing gradient problem, which is
frequently found in conventional RNNs. LSTM cells retain a
concealed state and a cell state at each time step, allowing
them to capture enduring connections in sequential data.

The proposed model utilizes two LSTM layers to acquire
knowledge of the temporal dynamics of the retrieved charac-
teristics. The LSTM layers successively process the feature
representation, changing the hidden and cell states at each
time step based on the current input and the prior states. The
final latent state of the final LSTM layer is subsequently sent
through a fully connected layer to provide the projected energy
efficiency numbers.

Interpretability is an important consideration in developing
and deploying deep learning models, as it enables users to
understand and trust the model’s predictions. In the context
of the DCNN-LSTM load forecasting model, explainable Al
techniques could provide insights into the factors driving the
model’s predictions and identify potential biases or errors.
Techniques such as layer-wise relevance propagation and
gradient-weighted class activation mapping could be used to
visualize the importance of different input features and to
highlight the regions of the input data that contribute most to
the model’s predictions. These insights help network operators
to understand the model’s behavior better and to make more
informed decisions based on the load forecasting results.

IV. ENERGY-EFFICIENT NEXT GENERATION
MOBILE NETWORK

A. Power Consumption Model

The power consumption of a next generation mobile
network base station may be categorized into two primary
components: static and dynamic. Static power consumption
pertains to the energy consumed by the base station equipment
without considering the traffic load or transmission power. On
the other hand, dynamic power consumption fluctuates based
on the traffic load and the necessary transmission power to
cater to the users.
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TABLE IV
BASE STATION POWER CONSUMPTION MODEL

Operational Mode Normalized Power

Consumption
Deep Sleep 1
Light Sleep 2.5
Idle 5
Downlink Active 10
Uplink Active 7.5

The total power consumption of a base station in the
downlink and uplink directions can be expressed as:

Ppr = PDL,static + PDL,dynamic (6)
Pyr, = Pur, static + PUL,dynamic- (7

where Ppr, static and Pyt static represent the static power
consumption in the downlink and uplink, respectively, and
PpL, dynamic and Pyr, dynamic represent the dynamic power
consumption in the downlink and uplink, respectively.

The static power consumption is mainly determined by
the base station hardware components, such as the baseband
processing unit, the radio frequency (RF) module, and the
cooling system. It can be modeled as a constant value Pgiatics
which is independent of the traffic load and transmission
power:

PDL,static = PUL,static = Istatic- (8)

To further analyze the impact of different traffic loads on
the dynamic power consumption of a base station, we define
the following equations:

Pprex )P
PDL,dynamic = apL - (PDL,max - static) ' (7 . (9)
PDLA,max,tx
Pyr rx Bt
PyL,aynamic = UL * (Pur,max — Petatic) - (7 . (10)
PUL,max,rx

where apg, and ayy, are the load-dependent power consump-
tion coefficients, Ppy,max and Pyr max are the maximum
power consumption of the base station in the downlink
and uplink, respectively, Ppr,tx and Pyr.x are the actual
transmission power in the downlink and the actual received
power in the uplink, respectively, Ppr, max,tx and PyL max,rx
are the maximum transmission power and maximum received
power, respectively, and Spg, and Byy, are the load-dependent
exponents.

The load-dependent power consumption coefficients apy,
and ayr, represent the fraction of the maximum dynamic
power consumption that is consumed at full load. They are
typically 0.6 to 0.8, depending on the base station hardware
and configuration [25].

Table IV presents the power consumption model for a
reference base station configuration in different operational
modes: deep sleep, light sleep, idle, downlink active, and
uplink active modes. The power consumption values are
normalized with respect to the power consumption in the deep
sleep mode, which is considered the baseline.

The power consumption values in different operational
modes provide insights into the potential energy savings that
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Fig. 2. Collaborative scheduling of communication base stations.

can be achieved by intelligently adapting the base station
modes based on the traffic load and network conditions. For
example, switching the base station to a deep or light sleep
mode during low traffic can significantly reduce overall energy
consumption.

To evaluate the energy efficiency of a next generation mobile
network, we introduce the energy efficiency metric 7, which
is defined as the ratio of the total data throughput to the total
power consumption:

_ Riota _ BEpr, + Rur,

- - . (11)
Piota Ppr + PuL

where Rigta1 is the total data throughput, Pigiap is the total
power consumption, Rpy, and Ry, are the downlink and
uplink data throughputs, respectively, and Ppy, and Pyy, are
the downlink and uplink power consumption values, respec-
tively.

Considering a scenario where the coverage areas of multiple
base stations overlap, as illustrated in Fig. 2. In this example,
mobile devices Ul and U2 are initially connected to base
station G2. However, due to the low number of connected
devices, base station G2 can be temporarily switched off, and
mobile devices Ul and U2 can be handed over to the nearest
base stations, G1 and G3, respectively.

By implementing such collaborative scheduling and switch-
ing strategies, the overall power consumption of the base
station group can be reduced. Although the neighboring base
stations (e.g., G1 and G3) may experience a slight increase in
their main equipment power consumption due to the additional
load, this increase is offset by the reduction in power consump-
tion achieved by switching off the underutilized base stations
(e.g., G2). Moreover, switching off base stations saves the
main equipment power. It eliminates the power consumption of
the temperature control equipment, which often accounts for a
significant portion of the total base station power consumption.

In summary, the power consumption model presented in this
section captures the main components of energy consumption
in a next generation mobile network base station, considering
both static and dynamic power consumption. The model
provides a foundation for evaluating the energy efficiency of
the network and designing energy-saving techniques, such as
base station sleeping modes and load-adaptive transmission
strategies. By leveraging this model and its insights, mobile
network operators can develop effective energy management
policies and optimize the network configuration to minimize
energy consumption while maintaining the required QoS.
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B. Energy-Efficient Strategy

In traditional energy-saving strategies for mobile networks,
switching off base stations is typically based on comparing the
number of users that can be served before and after the base
station is turned off [26]. Based on historical network traffic
patterns, some operators set a fixed time window for base
station sleep mode operation, such as from 11 PM to 6 AM.
These approaches can be categorized as static energy-saving
strategies, which lack flexibility and adaptability to dynamic
network conditions and user demands.

The practical implementation of the proposed energy-saving
strategies involves several considerations, such as the signaling
overhead and the handover management. When base stations
enter sleep mode or adapt their transmission parameters, the
network needs to ensure seamless service continuity for the
connected users.

To address the limitations of static energy-saving strategies
and enable more intelligent and efficient energy management
in next generation mobile networks, we propose a dynamic
energy-efficient strategy that leverages the power of machine
learning and advanced network features. The proposed strategy
consists of two main components: (1) base station sleep
mode with discontinuous transmission and reception and (2)
lightweight transmission of common signals.

The duration and interval of the sleep periods are dynami-
cally adjusted based on the predicted traffic load and historical
traffic patterns. The optimal sleep duration Tgjeep can be
determined by solving the following optimization problem:

%ﬂn FEiotal ( Tsleep) = Esleep ( Tsleep) + FEactive ( Tsleep)

sleep
s.t. Qdelay(Tsleep> < Qmax

Tsleep,min < Tsleep < Tsleep,max' (12)

where Figia is the total energy consumption, Fgeep and
E,ctive are the energy consumption during sleep periods
and active periods, respectively, Qgelay is the average delay
experienced by the users, (max is the maximum tolerable
delay, and Tjeep,min and Tleep,max are the minimum and
maximum allowed sleep durations, respectively.

An intelligent wake-up mechanism is introduced to enhance
the energy efficiency and adaptability of the sleep mode. The
wake-up mechanism allows the base station to promptly exit
sleep mode and resume normal operation when the traffic
demand increases unexpectedly or the network conditions
require immediate attention.

The wake-up mechanism is triggered based on the following
conditions:

o The actual traffic load exceeds the predicted load by a

predefined threshold.

o The quality of service metrics, such as delay or packet

loss, degrade below acceptable levels.

¢ Neighboring base stations request assistance due to high

traffic load or network congestion.

The wake-up mechanism is triggered when the actual
traffic load exceeds the predicted load by more than 20%.
Specifically, a base station transitions from sleep mode to
wake-up mode if the actual traffic load exceeds 1.2 times the
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predicted load for three consecutive time intervals of 5 minutes
each. Conversely, a base station enters sleep mode when the
actual traffic load remains below 0.8 times the predicted load
for a continuous period of 15 minutes.

The lightweight transmission of common signals is closely
coordinated with the base station sleep mode. When a base
station enters sleep mode, it notifies the neighboring base
stations within the same virtual cell ID group to adjust
their common signal transmissions accordingly. This ensures
the UEs can maintain synchronization and perform essential
functions, even when some base stations are in sleep mode.

The energy savings achieved by the lightweight transmission
of common signals can be quantified using the following
equation:

L (1) (i
Esavmgs - Z (Ecommon,baseline B Ecommon,lightweight )
=1
(13)

where Egayings represents the total amount of energy saved, N

represents the number of base stations, F (:((7;I)nm on.baseline T€PT€"

sents the energy consumed by base station i for common signal

transmission in the baseline scheme, and Ec(émmon,lightweight
represents the energy consumed by base station i for common
signal transmission in the lightweight scheme.

Integrating base station sleep mode with discontinuous
transmission and reception, lightweight transmission of com-
mon signals, and the intelligent wake-up mechanism forms
a comprehensive energy-efficient strategy for next generation
mobile networks. This strategy allows the network to dynam-
ically adapt its operation based on the predicted traffic load
and network conditions, resulting in significant energy savings
while maintaining the desired quality of service.

C. Next Generation Mobile Network Power Management

A comprehensive and intelligent power management frame-
work is essential to effectively manage the power consumption
and energy efficiency of next-generation mobile networks.
This section presents an energy-efficient power management
system architecture that leverages advanced technologies such
as big data analytics, machine learning, and SDN to optimize
the energy consumption of the mobile network infrastructure.

The proposed energy-efficient power management system
is designed to operate in a centralized manner, with a ded-
icated network element called the network power manager
(NPM) responsible for monitoring, analyzing, and controlling
the power consumption of the entire mobile network. The
NPM collects real-time network data, including traffic load,
quality of service metrics, and energy consumption statistics,
from various network entities such as base stations, core
network elements, and user equipment. The scalability of
the DLLF-2EN framework for larger network deployments
is an important consideration. The centralized architecture
of the NPM may need help with computational complexity
and communication overhead as the network size increases.
Future research could explore distributed and hierarchical
architectures for the NPM, where local power management
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decisions are made at the edge nodes, and the central NPM
focuses on global coordination and optimization.

Fig. 3 depicts the functional structure of the NPM, compris-
ing four primary layers: data collection layer, data processing
layer, decision-making layer, and control layer.

The data collection layer gathers heterogeneous network
data from multiple sources, including base stations, core
network elements, and external providers. The collected data
includes traffic load measurements, energy consumption read-
ings, quality of service metrics, and contextual information
such as weather conditions and user mobility patterns.

The computational complexity of the DLLF-2EN
framework is an important consideration for real-time
implementation. The main computational burden lies in
training the DCNN-LSTM model for load forecasting and
optimizing energy-saving strategies. However, the model
training can be performed offline using historical data, and
the trained model can be efficiently deployed for real-time
inference. The optimization of energy-saving strategies can be
performed periodically (e.g., every few minutes) based on the
predicted traffic load, reducing the computational overhead.

Edge computing could be leveraged to offload the energy-
saving computations from the central controller to the base
stations or edge servers, thereby reducing the communication
overhead and the latency of the energy-saving operations. In an
edge computing-based approach, the energy-saving algorithms
and models are deployed on edge devices, such as the base
stations or the edge servers, which are closer to the data
sources and the end users.

Integrating the DLLF-2EN framework with other emerging
technologies, such as network slicing and edge computing,
presents exciting opportunities for further enhancing next-
generation mobile networks’ energy efficiency and flexibility.
Network slicing enables the creation of multiple virtual
networks with different quality of service requirements on top
of a shared physical infrastructure.

Integrating the proposed energy-saving framework with the
existing network management and orchestration platforms,
such as the open network automation platform (ONAP) and
the open radio access network (O-RAN), is crucial for its
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successful deployment and operation in real-world mobile
networks. ONAP is an open-source platform that provides a
comprehensive framework for the design, creation, orchestra-
tion, and lifecycle management of virtual network functions
and services. O-RAN is an industry-driven initiative that aims
to define and standardize the interfaces and functionalities of
the radio access network components, enabling multi-vendor
interoperability and intelligent network control.

V. SIMULATION AND RESULTS ANALYSIS

This section provides the simulation setup, settings, and
results for evaluating the performance of the proposed DLLF-
2EN framework in energy-efficient next generation mobile
networks. The evaluation is based on load forecasting using
deep learning techniques. We evaluate our framework by
comparing it to the most advanced baseline approaches in
terms of load forecasting accuracy and energy efficiency
certification.

A. Load Forecasting Comparison

In order to evaluate the accuracy of the DLLF-2EN
framework in predicting load, we compare it to four other
methods: LSTMRNN-STLF [27], LSTM-TPA [28], DRN-
LSTMRNN [29], CEES-dRNN [30], ARIMA [31], and
Prophet [32]. The LSTMRNN-STLF method is a short-term
load forecasting (STLF) technique that utilizes an LSTM
recurrent neural network. LSTM-TPA is an innovative hybrid
LSTM model designed for short-term load forecasting (STLF)
that integrates temporal pattern attention. DRN-LSTMRNN
is a fusion of a modified deep residual network (DRN) and
an LSTM recurrent neural network (RNN) designed to tackle
the STLF problem. CEES-dRNN is a novel STLF model
that combines a contextually enhanced hybrid and hierarchi-
cal design with exponential smoothing (ES) and an RNN.
Autoregressive integrated moving average (ARIMA) is a
classical statistical method for time series forecasting that
combines autoregression, differencing, and moving average
components. Prophet, developed by Facebook, is a procedure
for forecasting time series data based on an additive model
where non-linear trends are fit with yearly, weekly, and daily
seasonality, plus holiday effects. These methods encompass
several strategies for predicting short-term electricity demand
using deep learning techniques.

The simulations used a hexagonal grid network topology,
with 19 base stations arranged in a two-tier layout. The
inter-site distance between the base stations was 500 meters,
and the total simulation area covered approximately 5 square
kilometers. The number of mobile users varied from 500 to
5000 to evaluate the performance of the proposed framework
under different network densities and traffic loads.

The load forecasting comparison utilizes two performance
metrics: the root mean square error (RMSE) and the mean
absolute percentage error (MAPE). RMSE is computed as:

n

1 -
RMSE = , | — z; (vi — 90)°-
1=

(14)
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TABLE V
PARAMETERS SETTING

Hyperparameter Value
Input layer: time interval 168
Input layer: features 7
Convolutional layer: filter 64
Convolutional layer: kernel size 3
Drop-out layer: drop-out probability 0.5
LSTM-1 layer: output 128
LSTM-1 layer: return sequence True
LSTM-2 layer: output 64
LSTM-2 layer: return sequence False
Fully connected layer 1: output 32
Fully connected layer 1: activation function ReLU
Fully connected layer 2: output 1
Fully connected layer 2: activation function ReLU
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Fig. 4. RMSE and MAPE for load forecasting comparison.

where 7 is the number of samples, y; is the actual load value,
and Y; is the predicted load value. MAPE is calculated as:

n

MAPE — @Z Yi—Yi
sl Y

. (15)

Table V shows the simulation parameters for the DLLF-
2EN framework.

Fig. 4 presents the RMSE and MAPE values for the
proposed DLLF-2EN framework and the baseline methods.
The results show that DLLF-2EN achieves the lowest RMSE
and MAPE among all the methods, indicating its superior load
forecasting accuracy. Specifically, DLLF-2EN outperforms the
best baseline method, CEES-dRNN, by 18.7% in RMSE and
21.4% in MAPE.

Fig. 5 shows the load forecasting accuracy of DLLF-2EN
and the baseline methods for different prediction horizons,
ranging from 1 hour to 24 hours ahead. The results indicate
that DLLF-2EN consistently outperforms the baseline methods
across all prediction horizons, with the performance gap
increasing for longer horizons.

Fig. 6 presents the load forecasting performance of DLLF-
2EN and the baseline methods under different network
traffic patterns, including stable, fluctuating, and bursty traffic.
The results demonstrate that DLLF-2EN maintains superior
performance across all traffic patterns, showcasing its robust-
ness and adaptability to various network conditions.
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These simulation results highlight the effectiveness of the
proposed DLLF-2EN framework in accurately forecasting the
load of next generation mobile networks. By leveraging deep
learning techniques and incorporating spatiotemporal depen-
dencies, DLLF-2EN achieves superior performance compared
to state-of-the-art baseline methods, making it a promising
solution for energy-efficient network management.

B. Energy-Efficient Effect Verification

To verify the energy-efficient effect of the proposed DLLF-
2EN framework, we compare it with four baseline methods:
MEO [33], 3 x E [34], EECB [35], and DRL-EEPC [36].
We compare the proposed DLLF-2EN framework with four
baseline methods: MEO, 3 x E, EECB, and DRL-EEPC.
MEO focuses on mobility-aware and energy-efficient offload-
ing schemes for mobile edge computing (MEC) in cellular
networks. 3 x E presents an energy-efficiency enhancement
scheme to meet user demands across various user densities
while reducing power consumption. EECB addresses energy-
efficient coordinated beamforming in multi-pair multiple-input
single-output networks considering channel state information
(CDI) and eavesdroppers. DRL-EEPC, the best-performing
baseline, introduces a deep reinforcement learning (DRL)
based algorithm for energy-efficient power control.

Fig. 7 presents the energy consumption reduction achieved
by the proposed DLLF-2EN framework and the baseline
methods. The results show that DLLF-2EN achieves the
highest energy consumption reduction among all the methods,
with an average reduction of 28.5% compared to the tradi-
tional approach without energy-saving measures. DLLF-2EN
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TABLE VI
MEAN AND STANDARD DEVIATION OF PERFORMANCE METRICS
(10 INDEPENDENT RUNS)

Energy

RMSE MAPE Consumption

Method  \jean+ Std)  (Mean+Std)  Reduction
(Mean =+ Std)
DLLF-2EN 0(')0(‘)‘3; 38%+02%  28.5%= 1.1%
DRL-EEPC 0(')035 O AT%E03%  213%+13%
EECB oboggsi 53%+04%  18.2%+ 1.5%
3xE 0(')0336* 57%+04%  16.9%+ 1.6%
MEO 0(')033 6* 6.0%+05%  15.7%= 1.7%

outperforms the best baseline method, DRL-EEPC, by 7.2%
in energy consumption reduction.

Table VI presents the mean and standard deviation of
the RMSE and MAPE for load forecasting, as well as the
energy consumption reduction, for all compared methods.
These statistics are based on ten independent runs of each
method. The results show that DLLF-2EN achieves the best
mean performance and consistently performs across runs, as
indicated by the relatively small standard deviations.

The superior performance of DLLF-2EN compared to the
DRL-EEPC method can be attributed to two main factors.
First, our approach explicitly forecasts the load using a
sophisticated DCNN-LSTM model, providing more accurate
predictions for energy management decisions. In contrast,
DRL-EEPC relies on implicit learning of traffic patterns
through the reinforcement learning process, which may not
capture fine-grained temporal dependencies as effectively.
Second, while DRL-EEPC learns policies through trial and
error, our manually designed rules leverage domain expertise
and can be more interpretable and reliable, especially in
scenarios not encountered during training. However, it is worth
noting that DRL approaches have the potential for continuous
adaptation and may perform better in highly dynamic or
unpredictable environments over longer time scales.

Fig. 8 shows the triggering duration ratios of different
energy-saving strategies employed by the DLLF-2EN frame-
work and the baseline methods. The results indicate that
DLLF-2EN achieves a better balance among the energy-saving
strategies, with higher triggering duration ratios for symbol
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TABLE VII
CHANGES IN KEY 5G NETWORK INDICATORS BEFORE AND AFTER
DEPLOYING THE ENERGY-EFFICIENT SOLUTION

Indicator Before After
Deployment  Deployment
Wireless Connection Rate 99.65% 99.61%
Drop Rate 0.18% 0.19%
Handover Success Rate 99.58% 99.56%
CQI Excellent Ratio 97.32% 97.26%

shutdown, channel shutdown, and deep sleep compared to the
baseline methods.

Table VII presents the changes in key 5G network indi-
cators one week before and after deploying the DLLF-2EN
framework. The results show that DLLF-2EN maintains stable
network performance, with only minor fluctuations in the
wireless connection rate, drop rate, handover success rate, and
CQI excellent ratio.

Fig. 9 shows the energy consumption reduction achieved by
DLLF-2EN and the baseline methods for different network
densities, ranging from sparse to ultra-dense deployments.
The results indicate that DLLF-2EN consistently outperforms
the baseline methods across all network densities, with the
performance gap increasing for denser deployments.

Fig. 10 presents the energy consumption reduction achieved
by DLLF-2EN and the baseline methods under different
traffic loads, including low, medium, and high. The results
demonstrate that DLLF-2EN maintains superior performance
across all traffic loads, showcasing its ability to adapt to
varying network conditions and optimize energy efficiency
accordingly.

The increasing energy savings with higher network density
can be attributed to the greater opportunities for load balancing
and selective base station deactivation in denser deployments.
In contrast, the decreasing energy savings under higher traffic
loads is due to the reduced flexibility in shutting down or
entering low-power modes for base stations when they need
to serve more users.

To assess the robustness of the DLLF-2EN framework, we
conducted a sensitivity analysis of two key parameters: the
prediction horizon and the energy-saving strategy thresholds.
The prediction horizon varied from 1 hour to 24 hours, and
the energy-saving strategy thresholds were adjusted by +10%
and +20% from their default values. Table VIII presents the
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TABLE VIII
IMPACT OF PREDICTION HORIZON ON ENERGY
CONSUMPTION REDUCTION

Prediction Energy Consumption
Horizon (hours) Reduction (%)
1 26.8
6 27.5
12 28.5
18 27.9
24 27.2

impact of the prediction horizon on the energy consumption
reduction achieved by the DLLF-2EN framework. The results
show that the framework maintains stable performance across
the range of prediction horizons, with a maximum variation of
3% in energy consumption reduction. The best performance is
achieved with a prediction horizon of 12 hours, which balances
the trade-off between the accuracy of the load forecasting
model and the timeliness of the energy-saving decisions.

Table IX presents the impact of the energy-saving strategy
thresholds on the energy consumption reduction achieved by
the DLLF-2EN framework. The thresholds considered in this
analysis include the load threshold for triggering the base
station sleep mode and the capacity threshold for activating
the lightweight transmission of common signals. The results
show that the framework is resilient to moderate changes in the
energy-saving strategy thresholds, with a maximum variation
of 5% in energy consumption reduction when the thresholds
are adjusted by +20%. This demonstrates the robustness of the
proposed framework to the choice of energy-saving strategy
thresholds.
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TABLE IX
IMPACT OF ENERGY-SAVING STRATEGY THRESHOLDS ON ENERGY
CONSUMPTION REDUCTION

Threshold Energy Consumption
Adjustment Reduction (%)
-20% 26.1
-10% 273
Default 28.5
10% 29.2
20% 29.8

The sensitivity analysis results highlight the robustness and
adaptability of the DLLF-2EN framework to variations in the
prediction horizon and the energy-saving strategy thresholds.
The stable performance of the framework across a range
of parameter values demonstrates its potential for real-world
deployment and its ability to deliver consistent energy savings
under different network conditions and configurations.

While the primary focus of the DLLF-2EN framework is
on improving energy efficiency, it is crucial to ensure that the
user experience and quality of service are not compromised.
The proposed framework incorporates several mechanisms to
maintain acceptable levels of service quality, such as the
dynamic adjustment of energy-saving strategies based on the
predicted traffic load and the intelligent wake-up mechanism
to respond promptly to unexpected traffic demands.

The simulation results show that the proposed DLLF-
2EN framework is useful in accurately forecasting loads and
verifying its energy-efficient impact. DLLF-2EN surpasses
current benchmark techniques regarding RMSE, MAPE,
energy efficiency, and versatility in handling different network
circumstances and traffic loads. These findings validate the
feasibility and practicality of DLLF-2EN as a promising
solution for energy-efficient next generation mobile networks.

VI. CONCLUSION

In this paper, we proposed DLLF-2EN, a novel energy-
efficient framework for next generation mobile networks that
integrated deep learning-based load forecasting, an advanced
power consumption model, and a comprehensive energy-
saving strategy. The simulation results demonstrated that
DLLF-2EN outperformed state-of-the-art baseline methods,
significantly improving load forecasting accuracy and reducing
energy consumption. Potential areas for future study involve
integrating DLLF-2EN with other new technologies, such as
network slicing and edge computing, to augment the energy
efficiency and adaptability of the next mobile networks.
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