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Abstract—Electrocardiogram (ECG) analysis and diagnosis are
important auxiliary means for preventing and detecting cardiovas-
cular diseases. Traditional approaches often face challenges due
to the sheer volume of data, difficulty in extracting meaningful
features, limitations in model complexity, and the requirement
for real-time analysis in clinical settings. This article presents a
pioneering approach for automatic ECG diagnosis through the ap-
plication of a novel multiscale deep neuro-fuzzy network (MDNFN)
structure. The MDNEFN is designed to address the complexity of
arrhythmia classification by incorporating deep learning and fuzzy
logic processing across multiscale feature extraction. To optimize
the performance of the MDNFN, an innovative model optimization
technique based on the particle swarm optimization algorithm
is introduced, offering an efficient exploration of the parameter
space. Extensive experiments across diverse datasets validate the
superior performance of the proposed model compared with ex-
isting methods. The MDNFN demonstrates heightened accuracy
and robustness, supported by its adaptability to different frequency
and time scales inherent in ECG signals. The study establishes the
model’s efficacy through comprehensive experimentation, provid-
ing compelling evidence for its potential application in real-world
clinical scenarios.

Index Terms—Deep neuro-fuzzy network, electrocardiogram
(ECG) analysis, fuzzy system, medical Big Data, multiscale feature.

1. INTRODUCTION

LECTROCARDIOGRAM (ECG) analysis, a critical com-
ponent in cardiac healthcare, has traditionally relied on
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expert interpretation that is often constrained by human error
and inefficiency [1]. The aging of the population and the de-
velopment of telemedicine equipment have resulted in ECG
medical Big Data, which has put tremendous pressure on limited
medical resources. Automating the interpretation process with
the intelligent approach can reduce the workload on healthcare
professionals and minimize the risk of misdiagnosis, ultimately
leading to improved patient outcomes [2]. This advancement
is particularly crucial given the increasing prevalence of cardiac
diseases globally and the need for timely and accurate diagnosis.

ECG signals are complex, exhibiting a range of features at
different scales that are indicative of various cardiac condi-
tions. The ability to accurately interpret these signals is crucial
for effective diagnosis. ECG signals consist of P waves, QRS
complexes, and T waves, each representing different aspects of
cardiac activity [3]. Variations in these waveforms can indicate
a wide range of cardiac abnormalities, from arrhythmias to
myocardial infarction.

Deep learning, a subset of machine learning, excels in han-
dling large datasets and learning complex patterns [4], [5].
It is particularly suited for analyzing the intricate and varied
nature of ECG signals. Deep learning algorithms, especially
convolutional neural networks (CNNs), are adept at automat-
ically extracting relevant features from raw data, a significant
advantage over traditional methods. These algorithms can learn
to identify subtle patterns in ECG signals that may be indicative
of cardiac conditions, often surpassing the accuracy of manual
interpretation. Deep learning’s ability to handle large datasets
and learn from data makes it ideal for ECG signal analysis.
However, the interpretability of deep learning models remains
a challenge. This is where fuzzy logic comes into play. Fuzzy
logic, with its ability to handle uncertainty and provide inter-
pretable results [6], [7], complements deep learning by offering
a framework to make sense of the complex patterns recognized
by deep neural networks [8]. The deep neuro-fuzzy network
is a hybrid artificial intelligence (AI) model that combines the
advanced feature extraction capabilities of deep learning with
the interpretability and rule-based reasoning of fuzzy logic [9].
This approach allows for a more nuanced analysis of ECG
signals, which addresses the limitations of deep learning models
in terms of interpretability. Fuzzy logic introduces an element of
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human-like reasoning to Al and enables the model to handle the
ambiguity and imprecision inherent in medical Big Data [10].

The motivation behind the incorporation of fuzzy logic into
deep learning for ECG analysis stems from the complementary
nature of these two paradigms and the unique benefits they offer
individually. Deep learning techniques, characterized by their
ability to automatically learn hierarchical representations from
data, have demonstrated remarkable success in various domains,
including image recognition, natural language processing, and
medical diagnostics. However, traditional deep learning models
may encounter challenges in handling uncertainty, imprecision,
and ambiguity inherent in medical data such as ECG signals.
Fuzzy logic, on the other hand, provides a formal framework for
reasoning under uncertainty by allowing for the representation
of vague or imprecise information using linguistic variables and
fuzzy sets. By integrating fuzzy logic with deep learning, we
aim to leverage the interpretability and robustness of fuzzy logic
while harnessing the representation learning capabilities of deep
neural networks. This hybrid approach enables us to develop
models that can effectively handle the inherent uncertainties in
ECG data and enhance the performance of diagnostic tasks.

The integration of Al into this field marks a transformative
shift toward enhanced accuracy and efficiency. This article
introduces an innovative approach to ECG diagnosis using a
multiscale deep neuro-fuzzy network (MDNFN), which syner-
gizes the strengths of deep learning and fuzzy logic to extract
and interpret multiscale features from ECG signals, thereby
facilitating more accurate diagnoses.

The proposed MDNFN model is designed to capture multi-
scale features in ECG signals, which are crucial for identifying
various cardiac abnormalities. By integrating multiscale analysis
with the robust feature extraction capabilities of deep learning
and the interpretability of fuzzy logic, this model aims to provide
acomprehensive and accurate tool for automatic ECG diagnosis.
This model’s ability to analyze ECG signals at multiple scales
allows for the detection of a wide range of cardiac conditions,
potentially even those that are at a nascent stage or are less
pronounced. The integration of deep learning and fuzzy logic not
only enhances the model’s diagnostic capabilities but also im-
proves its usability and acceptability in clinical settings, where
interpretability and reliability are paramount.

We summarize the contributions of this article as follows.

1) We introduce a novel MDNFN structure specifically de-
signed for the automatic identification and classification
of arrhythmias in ECG signals. In contrast to traditional
approaches, this structure engages in deep learning and
fuzzy logic processing across multiple scales, which cap-
tures and analyzes ECG features at different scales com-
prehensively and accurately. The introduction of this mul-
tiscale architecture enables the model to better adapt to
arrhythmia patterns at various frequencies and time scales,
thereby enhancing classification accuracy and robustness.

2) We design an optimization method based on the particle
swarm optimization (PSO) algorithm [11] to further en-
hance the performance of the proposed MDNFN. Lever-
aging PSO, we effectively explore the parameter space,
which identifies optimal parameter combinations to max-
imize the model’s performance.
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3) Validations through extensive experiments on the well-
known database demonstrate the significant superiority
of the proposed MDNFN model compared with existing
methods.

The rest of this article is organized as follows. In Section 1II,
we delve into the existing body of knowledge with a thorough
exploration of related work and provide context and insights
into the evolution of techniques for automated ECG diagnosis.
Section III forms the core of our study, which details the method-
ology employed in our approach, including the data prepro-
cessing and feature selection, the architecture of the proposed
MDNEFN, and the optimization. Moving forward, Section IV
outlines the experiments conducted to validate the efficacy of our
model. This encompasses the experimental setup and database
details, an in-depth performance analysis against benchmark
methods, and an ablation study to dissect the impact of individual
components within the MDNEN. Finally, Section V concludes
this article.

II. RELATED WORK

The application of Al in ECG Big Data diagnosis is
not new, and numerous studies have explored various ap-
proaches. We classify existing algorithms into three cate-
gories, namely, classification algorithms based on knowledge
reasoning, traditional machine learning methods, and neural
networks.

The advancement of ECG technology has paralleled the uti-
lization of knowledge reasoning techniques by researchers in
arrhythmia identification, as evidenced by studies [12] and [13].
Knowledge reasoning involves the retrieval or alignment of test
data within a knowledge base, guided by expert control strate-
gies, toinfer new facts. Atabroader scale, employing knowledge
reasoning for the automatic categorization of arrhythmias entails
an amalgamation of individual patient data (such as gender and
medical history) with medical knowledge to construct a special-
ized knowledge base and corresponding reasoning mechanisms.
Initial research in this domain primarily focused on employing
production rules, and elementary or fuzzy logic to represent
ECG signal knowledge and develop relevant knowledge bases.
Exarchos et al. [14] introduced an automatic detection technique
for ischemic cardiac pulses utilizing association rule mining.
Further, Exarchos et al. [15] integrated data mining with fuzzy
models extracting dependable rules from representative training
sets and formulating a fuzzy decision tree model in conjunction
with the C4.5 algorithm, achieving a 96% accuracy rate across
four heartbeat categories in the MIT-BIH database. Teijeiro
et al. [16], in 2018, developed a classifier model predicated on
expert knowledge rules, which demonstrated a 98.7% accuracy
in heartbeat recognition within the MIT-BIH database, albeit
necessitating manual extraction of ECG features. However, the
primary limitation of this approach is its excessive reliance
on the medical professional knowledge base. Adjustments to
the knowledge base require extensive retraining of the model,
rendering the process resource-intensive. The subtlety of certain
disease characteristics further complicates knowledge organiza-
tion, challenging model training and timely modification of the
medical knowledge base. Consequently, these models exhibit a
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relatively simplistic inference structure and lack robust general-
ization capabilities.

Once features are extracted from the ECG data, algorithms
such as machine learning can be used to build models on
the data for ECG analysis and classification. Statistics-based
machine learning developed rapidly in the early 1990s, result-
ing in a large number of studies and applications of statisti-
cal machine learning methods on arrhythmias. Statistics-based
machine learning methods are then widely used to solve the
problem of arrhythmia classification. Asl et al. [17] achieved
a significant milestone by classifying six types of arrhythmias
with an accuracy exceeding 98.3%, utilizing a combination
of two algorithms: Support vector machine (SVM) and linear
discriminant analysis (LDA). This was accomplished by ex-
tracting 17 original input features. In a similar vein, Leutheuser
et al. [18] attained a 93.30% accuracy rate in classifying two
arrhythmia types. Their methodology involved the application
of the Naive Bayes algorithm to extract high-order statistics
from segmented ECG data, followed by implementation based
on template characteristics. Pan et al. [19] proposed a novel ap-
proach for arrhythmia classification, combining discrete wavelet
and random forest techniques. While these methods show a high
success rate in heartbeat recognition and reduce reliance on ex-
pert knowledge, they are not without limitations. These include
insufficient generalization capabilities, a heavy dependence on
manually-crafted features, and the inherent complexities and
limitations of such designs. In addition, these approaches of-
ten exhibit poor adaptability when dealing with long ECG
signals.

Deep learning models, particularly CNNs, have been widely
used for feature extraction in ECG signals. Yang et al. [20] in-
troduced an innovative approach to online heartbeat recognition
with the development of a new fuzzy neural network model.
This model leverages the Hermite function for feature extraction,
exemplifying a novel application in the field. Giler et al. further
contributed to this domain by proposing a feedforward neural
network (FFNN) as a classifier, coupled with wavelet transform
(WT) for feature extraction. The training of this model was con-
ducted using the Lavenberg-labeling algorithm. Expanding upon
these methodologies, Ceylan and Ozbay [21] also employed
FFNN as a classifier, but integrated it with principal component
analysis (PCA) and WT for feature extraction, and the fuzzy
C-means clustering (FCM) method for feature reduction. Their
results highlighted that the combined application of PCA, FCM,
and FFNN exhibited the most efficacious outcome among ten
different arrhythmias. In another significant advancement, Rah-
hal et al. [22] introduced a modification to deep neural network
structures by adding a reconstruction layer atop the hidden layer.
This novel heartbeat classification algorithm demonstrated ro-
bustness in comparative experiments, with notable accuracy and
high computational efficiency, significantly enhancing heartbeat
recognition. Zhang et al. [23] achieved commendable recog-
nition rates in the heartbeat recognition task on the MIT-BIH
database. Their approach involved the integration of recurrent
neural network (RNN) with density clustering technology, pre-
senting a core innovation in this research area. These diverse
methodologies underscore the evolving landscape of heartbeat
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recognition techniques, highlighting the intersection of neural
networks, machine learning, and feature extraction methodolo-
gies in advancing cardiac health diagnostics.

These models have shown significant success in identifying
cardiac anomalies, such as arrhythmias, myocardial infarction,
and heart failure. However, the black-box nature of these models
often limits their clinical applicability due to the lack of inter-
pretability. Neuro-fuzzy systems have been employed in ECG
analysis to address this issue. These systems use fuzzy rules and
membership functions to provide a more interpretable analysis,
making them more acceptable in clinical settings. However,
traditional fuzzy systems may lack the ability to handle the
complexity and variability inherent in ECG signals.

The concept of integrating deep learning with fuzzy logic
in ECG analysis is emerging as a promising solution. This
hybrid deep neuro-fuzzy approach aims to combine the high-
level feature extraction capabilities of deep learning with the
interpretability and rule-based reasoning of fuzzy logic. Pre-
vious studies have demonstrated the potential of such hybrid
systems in improving the accuracy and interpretability of ECG
analysis. Our work builds upon these foundations, introducing a
multiscale perspective to this hybrid approach. By focusing on
multiscale feature extraction, our MDNFN model aims to cap-
ture a more comprehensive range of cardiac signals, potentially
leading to more accurate and reliable diagnoses.

III. METHOD

In this section, we describe the main structure and process-
ing steps of the proposed MDNFN method. First, we perform
preprocessing and feature extraction on the ECG Big Data to
prepare for input to the subsequent model. Second, the overall
structure and data flow of the multiscale deep fuzzy neural
network are described in detail. Finally, we introduced the opti-
mization method of MDNFN, which uses the improved particle
swarm algorithm to optimize the learning of the model. The
overall process and model framework are shown in Fig. 1.

A. Data Preprocessing and Feature Selection

The ECG signal is inherently susceptible to interference, both
from internal and external sources, such as baseline drift [24].
Such disturbances can lead to varying degrees of distortion in
the ECG signal, potentially resulting in diagnostic inaccuracies,
including misinterpretations by clinicians or misidentifications
of arrhythmias by assistive devices. The complexity of ECG
noise, which spans both low- and high-frequency ranges and
often overlaps with signal spectra, further complicates signal
interpretation. To address these challenges, it is imperative
to strike an optimal balance between minimizing information
loss and maximizing the effectiveness of noise reduction. This
balance is crucial as both noise and informative components
coexist within the ECG signal spectrum. In this context, the
selection of an appropriate threshold for denoising technology
becomes a critical factor. Efficiently denoised ECG signals not
only enhance classification results but also substantiate the effi-
cacy of the denoising method itself. Consequently, to preserve
the integrity of valuable information in the ECG signal, it is
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Fig. 1. Overall structure of the proposed MDNFN.

essential to implement noise reduction processes on the original
signal. Such processes aim to mitigate the impact of noise while
safeguarding the key diagnostic features intrinsic to the ECG
signal, thereby facilitating more accurate and reliable cardiac
arrhythmia detection and diagnosis.

In our approach, we employ WT as a preprocessing technique
for ECG signals. WT is widely recognized for its efficacy in
denoising, particularly in engineering applications. The fun-
damental concept involves manipulating wavelet coefficients
based on their characteristics and the mechanisms by which
they correspond to noise across various scales. This reduces
noise interference in the coefficients, enabling the reconstruction
of the signal using the processed coefficients. Our initial step
involves analyzing the frequency characteristics of the signal
noise. Subsequently, we select an appropriate wavelet function
and determine the optimal number of decomposition layers. This
selection is based on the frequency passband characteristics of
the wavelet function at each scale, which guides the wavelet de-
composition of the signal. Following decomposition, we address
the wavelet coefficients associated with noise and proceed to
their reconstruction. There are typically two prevalent methods
for processing these noise-correlated wavelet coefficients. The
first involves the outright removal of coefficients associated with
noise, a straightforward but potentially signal-compromising
method. The second method entails applying threshold closing
and modulus maximum techniques to the noise-associated co-
efficients. This second approach, while simple in its algorithm,
effectively retains useful signal components while eliminating
noise. The threshold closing method, in particular, processes

the noise-corresponding wavelet coefficients using appropriate
threshold values. This technique strikes a balance between noise
reduction and preservation of vital signal components, making
it an effective strategy for enhancing the clarity and utility of
ECG signals in clinical diagnostics and research. The selection
of threshold is the focus and difficulty of this method. We use
the following threshold:

Thd = § M7 5:m71d (D

c

where 4 is the noise intensity, mid is the absolute value of the

normalized wavelet coefficient median, and c is a constant.
Then, we use the soft threshold processing method to set the

points whose absolute value is less than the threshold value to

zero, and correct the points whose absolute value is greater than

the threshold value, as follows:

_ [sign(z)(| | =Thd), if |z |> Thd
Y=o, otherwise.

2

After denoising is completed, we use wavelets for feature ex-
traction. Specifically, for the ECG signal s(t), we can use the
following transformation to calculate the wavelet characteristics
of the ECG signal:

W= /m S() ()t 3)

where ®(t) is the wavelet function. Through this transformation,
we can calculate the wavelet characteristics in the ECG signal,
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including the RR interval, PR interval, QT interval, and ST
interval.

B. Structure of MDNFN

As mentioned before, we process the multiscale features of the
ECG signal. We consider the wavelet features in the ECG signal
as fine-grained scale features, namely, RR interval, PR interval,
QT interval, and ST interval. A single heartbeat wave can reflect
a complete activity process of the heart, so we extracted the
features of a single waveform scale. Furthermore, we extracted
multiple ECG heartbeat signals over a longer time interval to
enable the model to more comprehensively experience the peri-
odic variation characteristics of ECG. In summary, the specific
steps of multiscale data processing and feature fusion are as
follows. First, we regard ECG signals of different time lengths as
different scales, because different time lengths contain different
information. That is, wavelets, single heartbeats, and multiple
heartbeats are viewed as different scales. Second, ECG signal
data of different scales are input into the deep network to extract
feature information of different scales. Third, the extracted
multiscale features are combined and calculated to obtain the
final result. For each scale, we use a deep neuro-fuzzy network
to extract corresponding features, and finally perform feature
fusion on the extracted features at different scales, as shown in
Fig. 1.

Specifically, we employ the Takagi—Sugeno—Kang (TSK)
model as the main framework for fuzzy networks [25]. The TSK
model, a prominent methodology in fuzzy logic systems, offers
a nuanced approach to modeling complex, nonlinear systems.
Developed initially by Takagi and Sugeno, and later refined by
Kang, this model stands as a pivotal advancement in the domain
of fuzzy control and modeling. Distinct from traditional fuzzy
models that employ fuzzy sets in both premises and conclusions
of rules, the TSK model utilizes fuzzy sets only in the rule
premises, with the conclusions consisting of linear functions
or constants. The structural framework of a typical TSK rule
might be articulated as follows: “If x is A and y is B, then
z = ax + by + ¢,” where x and y are input variables, A and B
are fuzzy sets, and z is the output defined linearly in terms of the
inputs. This configuration facilitates a piecewise linear approx-
imation of nonlinear systems, a significant departure from con-
ventional fuzzy logic systems. One of the most salient features
of the TSK model is its interpolative capability between linear
functions of different rules. This attribute allows the TSK model
to adeptly handle complex scenarios where a global nonlinear
model is challenging to establish or ineffective. Consequently,
the TSK model finds extensive application in diverse fields such
as control systems, pattern recognition, system identification,
and time-series prediction. The TSK model’s primary advantage
lies in its efficient modeling of nonlinear systems. It is capable
of approximating any real continuous function with a desired
level of accuracy, provided a sufficient number of rules and
appropriate parameter selection are employed. Furthermore, the
parameters within the TSK model, notably the coefficients in its
linear functions, are often optimized through various techniques
such as gradient descent, genetic algorithms (GAs), or other
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advanced optimization methods. This optimization is pivotal in
fitting the model precisely to a specific set of data. The TSK
model represents a sophisticated fusion of fuzzy logic and tra-
ditional mathematical modeling. Its ability to handle nonlinear
complexities with linear computational simplicity makes it an
invaluable tool in the arsenal of modern control systems and data
analysis methodologies. The model’s flexibility, efficiency, and
accuracy in approximation render it indispensable in the realm
of complex system analysis and control.

The structure of the deep fuzzy network in the model mainly
includes the input layer, mapping layer, rule layer, inference
layer, and output layer. The first three layers reflect antecedent
learning. sy, S, ..., Sq indicates a set of d-dimensional inputs,
and the membership degree u' is obtained through the Gaussian
membership function u!(s), u?(s),...,u*(s). w',w?, ..., w?
is the weight of the hidden layer and is also the consequent
parameter that needs to be solved by the TSK fuzzy neural
network. H represents the number of nodes in the hidden layer.
In this article, the algorithm we use is the FCM fuzzy clustering
algorithm introduced in [26]. It uses an iterative method to find
the best fuzzy clustering center and compares the membership
degree of the corresponding sample with the distance between
the sample and each cluster center. The sum of the products is
used as the target parameter .J.

Suppose the ECG training dataset is {S,Y},s; € S,y; € Y.
Then, the target parameters of the data input process are as
follows:

K H
minJZZZUi]‘ | s; —C; I

i=1j=1

K
sty Uy=1,j=1,2,... H )

i=1

where U;; is the membership matrix, its iterative calculation is
as follows:

1
Uij = — -  ©)
Ykt 85 =Cill /1l 85 = Ci [)™

where C' means the fuzzy class center matrix and the calculation
is as follows:

H
Ci =Y (Ui x s /ZU,]JG 1, K]. (6)
j=1

In the update process of U and C, we first randomly give a
U value, then a new matrix can be obtained between U and C
through (5) and (6), and iterate repeatedly until convergence. The
fuzzy inference and defuzzification output in the last two layers
are mainly learned by RBF from the training dataset through the
self-learning method. The least mean square rule is used as the
standard to obtain fuzzy consequent parameters.

The output result can be calculated as follows:

Zw exp( I h—(ssz ” > (7)
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where s; represents the hidden layer node, w' is the weight of
the hidden layer node and is also the parameter of the fuzzy
consequent, and the minimum mean square error Er can be
calculated as follows:

Br= /2 0 - Pl ®)

We can use the minimum gradient algorithm to find the minimum
Er.

C. Model Optimization With PSO

The final determination of the center and width of the Gaus-
sian membership function of the fuzzy neural network and the
connection weights between each layer of the neural network
need to be obtained through network training. Therefore, we
need to choose an appropriate intelligent algorithm to determine
the final value of each variable. In this article, we adopt the
PSO algorithm to optimize the network model and combine the
shortcomings of the standard PSO with the genetic mutation
function in the GA to jump out of the local optimum, thereby
establishing a neural network prediction model more quickly
and accurately [27].

PSO iteratively updates a population of candidate solutions
(particles) by adjusting their positions in the search space based
on their individual and collective experiences. To optimize the
deep neuro-fuzzy network, we employ PSO to tune the param-
eters of the model effectively. Specifically, PSO is utilized to
optimize the neural network parameters simultaneously. The
optimization process aims to minimize a predefined objective
function, typically related to the model’s performance on a
validation dataset. During optimization, each particle in the PSO
algorithm represents a potential solution, which consists of a
set of parameters defining the structure and configuration of
the deep neuro-fuzzy network. These parameters include the
number of layers and neurons in each layer, learning rates, and
other relevant hyperparameters. The PSO algorithm iteratively
updates the positions of particles based on their individual and
neighborhood best positions, as well as a global best position
discovered by the entire population. This iterative process con-
tinues until a termination condition is met, such as reaching a
maximum number of iterations or achieving satisfactory con-
vergence. By employing PSO for optimization, our proposed
model benefits from its ability to efficiently explore the search
space and converge to high-quality solutions. In addition, PSO
offers advantages, such as simplicity of implementation, robust-
ness to parameter settings, and scalability to high-dimensional
optimization problems.

Specifically, according to the standard PSO algorithm, we can
first get the calculation for updating the velocity and position of
the particles as follows:

ve(e+ 1) =uv.(e) + e1r [pr — 2 (€)]
+CQT2 [pq — Ly (6)] (9)
xr(e+1) =x.(e) +v.(e+1)
1<r<N,1<d<D

where v, and z, represent the searching speed and position
of the particle, respectively, p, represents the optimal solution
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during the running process of a single particle, p, represents
the optimal solution during the running process of all particles,
e represents the number of iterations, N represents the total
number of particles, D represents the dimension of the search
space, c¢1 and co represent two positive learning factors, r; and
ro represent random numbers between 0 and 1, and w represents
the inertia weight. In order to prevent the particle from falling
into the local optimal point during the position update process,
when the particle iterates to each step, it is necessary to calculate
the fitness function value fit(e) of the particle at that step. The
specific calculation is as follows:

ﬁt(e) :l MOul(e) - Mexp | (10)

where M, (e) represents the network output value when the
fuzzy neural network is trained to the eth step, and My, repre-
sents the expected output value when the fuzzy neural network
is trained to the eth step.

Atthe same time, in order to ensure the vitality of the particles,
N/4 particles with the highest fitness function value fit(k) in the
population were selected to form a variant species group during
the iteration process, and the selective variant operation was
carried out. The specific variation is as follows:

{1?1 = n@vira}nd (11

T; = x; +U;

where the movement direction of the particle takes the value
-1 or 1, rand represents a random number between 0 and 1,
0 is the variation parameter, usually selected as 0 < 6 < 0.2,
1 <1< N/4, ¥; and v;, respectively, represent the speed of
the ith particle after mutation and before mutation in the dth
dimension, &; and z;, respectively, represent the d-dimensional
position of the ith particle after mutation and before mutation.
The mutated N/4 particles and the original 3N/4 particles
that have not changed form a population containing /N parti-
cles again. After continuous iteration, the appropriate network
weight is finally found.

IV. EXPERIMENTS

This section is dedicated to thoroughly evaluating the effec-
tiveness and performance of the proposed method. To ensure
the accuracy and reproducibility of the experimental results,
we begin with a detailed description of the experimental en-
vironment. This encompasses the specific configuration of the
hardware used, software versions, and any other environmental
variables that might influence the outcomes of the experiments.
In addition, the dataset used in the experiments is a key element.
Therefore, a comprehensive description of the dataset, including
its source, scale, feature description, and preprocessing steps, is
provided. Special emphasis is placed on the representativeness
and diversity of the dataset to ensure the wide applicability of
the experimental results. Subsequently, the article delves into
a detailed comparison of the performance with other existing
methods. This includes the criteria for selecting methods for
comparison, performance evaluation metrics (such as accuracy,
recall, F1 score, etc.), and the methodology of the compari-
son. The aim of this section is to demonstrate the advantages
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and potential shortcomings of the proposed method in various
aspects, such as efficiency, accuracy, and robustness. Finally,
ablation experiments on various components are conducted to
ascertain each part’s contribution to the overall performance.
By systematically removing or replacing specific parts of the
model, a better understanding of the role and importance of each
component is achieved. The results of the ablation studies will
provide deeper insights into how the model functions and reveal
potential areas for improvement.

A. Experimental Setup and Database

In our research, the experimental environment is meticulously
configured to ensure high performance and reliability, essential
for the computational demands of our study. The hardware setup
included an Intel Core 19-10900 K processor with 10 cores at
a base frequency of 3.7 GHz. The system is equipped with
32 GB DDR4 RAM at 3200 MHz, ensuring efficient handling
of large datasets and complex algorithms. Graphics processing
is managed by an NVIDIA GeForce RTX 3080 with 10 GB
GDDR6X VRAM. The primary storage is a 1 TB SSD for
additional storage needs. On the software front, our platform
operated on Windows 10 Pro 64-bit, with all the latest updates.
The primary programming language is Python 3.8, supported
by libraries such as NumPy, Pandas, TensorFlow, and PyTorch
for algorithm development and data processing. In addition, for
development and debugging, PyCharm Professional 2021.1 is
the chosen IDE for Python. The machine learning framework
used is PyTorch 1.7. This comprehensive setup provided a robust
and flexible environment, enabling us to efficiently handle the
extensive computational demands of our research, ranging from
machine learning model training to in-depth data analysis and
algorithm development. The important parameters selected in
the proposed MDNFN are shown in Table III.

In our experiments, we utilize the MIT-BIH Arrhythmia
Database to train and evaluate our method [38]. The MIT-BIH
Arrhythmia Database is a seminal dataset in the field of car-
diovascular research, widely recognized for its pivotal role in
advancing the understanding of cardiac arrhythmias. Developed
by the Massachusetts Institute of Technology (MIT) and Beth
Israel Hospital, this database has been instrumental in fostering
scientific exploration, algorithm development, and diagnostic
advancements in the realm of cardiac arrhythmias. The MIT-
BIH Arrhythmia Database comprises 48 half-hour excerpts of
two-channel ambulatory ECG recordings, acquired from 47
subjects. These recordings are sampled at 360 Hz, providing
a rich dataset capturing a diverse range of cardiac arrhythmias.
The subjects encompass a variety of clinical conditions, such as
congestive heart failure and arrhythmias. This diversity allows
researchers to investigate arrhythmias in different pathological
contexts. Each record in the database is meticulously annotated
by expert cardiologists, offering precise labeling of the onset
and offset points of various arrhythmias, such as atrial fibrilla-
tion, ventricular tachycardia, and premature contractions. This
annotated ground truth facilitates the development and evalua-
tion of algorithms for arrhythmia detection and classification.
The dataset’s real-world recordings capture the complexity and
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TABLE I
NUMBER OF SAMPLES DIVIDED IN THE RECORDING-BASED METHOD

Types N LBBB RBBB PVC P AP
All 74887 8060 7240 7120 7008 2539
Train data 40420 3944 3773 3862 3560 842
Test data 34467 4116 3467 3258 3448 1697

Among them, the training sample recordings include 101, 102, 106, 108, 109,
112, 114, 115, 116, 118, 119, 122, 124, 201, 202, 203, 205, 207, 208, 209, 215,
217, 220, 223, and 230. The testing sample recordings include 100, 103, 104,
105, 107, 111, 113, 117, 121, 123, 200, 210, 212, 213, 214, 219, 221, 222, 228,
231, 232,233, and 234.

nuances of arrhythmias in an ambulatory setting, providing a
more authentic representation of clinical scenarios compared
with simulated data. The continuous nature of the recordings
allows for the exploration of long-term trends in arrhythmia
occurrences, aiding in the study of intermittent and chronic
arrhythmic conditions. The MIT-BIH Arrhythmia Database has
become a benchmark for evaluating the performance of ar-
rhythmia detection algorithms. Its widespread use ensures the
comparability of results across different studies.

Before conducting experiments, a rigorous preprocessing
pipeline is applied to enhance the quality and usability of the
dataset. The steps involved noise reduction, normalization, and
segmentation based on the R wave positions. Specifically, fol-
lowing noise reduction, we normalize the ECG signal by the
min-max method as follows:

;8= Smin

s; = FSA—— i=1,....d
where Sy, and Sy« represent the minimum and the maximum
value of the ECG signal. This step standardized the ampli-
tude of the ECG waveforms, ensuring that variations in signal
magnitude did not introduce bias during subsequent analysis.
Normalization is a crucial step for promoting consistency and
comparability across different records. We take the R wave as
the center point, move 150 data points to the left and 150 data
points to the right to obtain a data sample with a length of 300.
Similarly, multiscale data samples are also signals intercepted
with the R wave as the center.

Two distinct partitioning methods, recording-based and beat-
based, are employed to ensure a fair and comprehensive eval-
uation in comparison with other methodologies [30]. In the
recording-based partitioning strategy, the dataset is divided into
distinct segments based on entire ECG recordings. This ap-
proach allowed for the evaluation of the model’s performance on
different overall cardiac patterns present in a single recording. At
the same time, we select the top six types of arrhythmias based
on their sample numbers as the experimental dataset, including
normal beat (N), left bundle branch block beat (LBBB), right
BBB (RBBB), premature ventricular contraction beat (PVC),
paced beat (P), and atrial premature beat (AP). Table I depicts
the number of samples per category for this data partitioning
method. At the same time, in order to avoid the impact of data
imbalance, we also adopted the beat-based partitioning method.
We randomly select 80% as training data and the remaining 20%
as test data. Table II depicts the number of samples per category
for this data partitioning method.

12)

Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2025 at 03:12:14 UTC from IEEE Xplore. Restrictions apply.



2034

TABLE II
NUMBER OF SAMPLES DIVIDED IN THE BEAT-BASED METHOD

Types N LBBB RBBB PVC P AP

All 74887 8060 7240 7120 7008 2539

Train data 2000 2000 2000 2000 2000 2000

Test data 500 500 500 500 500 500
TABLE III

SELECTED PARAMETERS IN THE PROPOSED METHOD

Parameters Values
The number of hidden layers 3
Neurons in each hidden layer 100
Learning rate 0.001
Activation functions ReLU

In assessing the performance of the proposed methodology,
four key evaluation metrics were employed to provide a com-
prehensive understanding of its effectiveness. These metrics,
namely, accuracy (ACC), sensitivity (SEN), specificity (SPEC),
and precision (PREC), offer nuanced insights into the model’s
ability to correctly classify and differentiate between various
cardiac conditions.

B. Performance Analysis

In order to gauge the effectiveness of the proposed
method MDNFN, we conduct a rigorous performance com-
parison against several well-established benchmark methods
widely used in the domain of arrhythmia detection, including
the LDA [28], WT-LDA [29], SVM [32], SVM-RBF [33]),
DBN [34], CNN [35], [36], RNN [37], [39], autoencoder
(AE) [30], and deep neuro-fuzzy classifier (DNFC).

Table I'V depicts the comparison results with existing methods
based on heartbeat division (see Table I). From the results
presented in Table IV, we can see that our proposed MDNFN
method achieves the best performance on three metrics, i.e.,
ACC (86.83%), SPEC (96.25%), and PREC (60.24%). Speci-
ficity results indicate the proposed method’s ability to accurately
differentiate negative instances, highlighting its effectiveness in
minimizing false positives. Precision analysis underscores the
accuracy of positive predictions made by the proposed method,
showcasing its reliability in correctly identifying instances of
cardiac arrhythmias.

Table V depicts the comparison results with existing methods
based on heartbeat division (see Table II). We can clearly see
that the performance of the proposed MDNFN exceeds all other
comparison methods in four indicators. For example, compared
with the CNN model, our model exceeds 3.83% in accuracy
(95.14% versus 98.97%), which illustrates the effectiveness of
the model proposed to fully extract and utilize multiscale fea-
tures in this article. The proposed method exhibits competitive
or superior accuracy compared with the benchmark methods,
which signifies its overall effectiveness in correctly classifying
instances across all classes.

Furthermore, in order to present the classification perfor-
mance of the model in more detail, we present the confusion
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Fig.2. Confusion matrix of the classification results based on the beat division.

matrix of MDNFN classification results for six types of arrhyth-
mias, as shown in Fig. 2. We can see that for each type, the
proposed model can correctly identify more than 98% of the
accuracy, which is enough to indicate the superior performance
of the model. In addition, we can also see that for the three
arrhythmia types PVC, P, and AP, their recognition accuracy
has declined, which to a certain extent shows that the model has
an impact on the recognition accuracy of complex waveforms.

C. Ablation Study

In this section, we systematically deconstruct the proposed
MDNFN model to scrutinize the individual contributions of
its key components, namely, the multiscale feature structure
and the improved PSO-based optimization method employed in
this article. This rigorous analysis aims to provide insights into
the impact of each element on the overall performance of the
model. By isolating and evaluating the role of the multiscale
feature structure and the PSO method, we aim to quantify
their respective influences on the model’s ability to accurately
classify ECG signals. This dissection not only affords a nuanced
understanding of the model’s inner workings but also substan-
tiates the pivotal role played by the multiscale architecture and
the PSO optimization in enhancing the overall robustness and
performance of the MDNFN model.

Specifically, we conduct a series of controlled experiments
wherein we use a single-scale feature network model to compare
with the multiscale features, observing the resulting changes
in the model’s effectiveness. Tables VI and VII, respectively,
show the model performance at different scales under two
data partitioning conditions. That is, we only utilize a single
scale feature extraction model for classification detection of
arrhythmia. For example, “Scale 1" indicates the use of wavelet
interval scale features, such as RR interval, PR interval, and QT
interval, and the corresponding deep neuro-fuzzy network for
processing and classification. From the results in the table, we
can see that the performance of the feature extraction model at a
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TABLE IV
COMPARISON RESULTS WITH EXISTING METHODS BASED ON RECORDING DIVISION

References Model Arrhythmia Types ACC (%) SEN (%) SPEC (%) PREC (%)
Chazal et al. [28] LDA 5 85.88 66.0 95.57 45.57
Llamedo and Martinez [29] WT+LDA 4 78.0 83.08 93.02 58.25
Wang et al. [30] AE 5 81.08 54.55 89.42 58.09
Talpur et al. [31] DNFC 5 83.42 62.74 92.86 51.78
Ours MDNFN 6 86.83 68.72 96.25 60.24
The bold values indicate the best results.
TABLE V
COMPARISON RESULTS WITH EXISTING METHODS BASED ON HEARTBEAT DIVISION
References Model Arrhythmia Types  ACC (%) SEN (%) SPEC (%) PREC (%)
Huang et al. [32] SVM 5 93.8 94.73 - 76.1
Chen et al. [33] SVM-RBF 4 97.8 88.83 - 93.76
Meng and Zhang [34] DBN 6 98.49 97.53 99.66 98.44
Acharya et al. [35] CNN 5 95.14 66.56 96.94 65.74
Serkan et al. [36] CNN 5 93.47 96.01 91.64 97.87
Oh et al. [37] RNN 5 97.88 97.26 98.50 98.48
Wang et al. [30] AE 5 96.29 96.29 99.24 96.33
Talpur et al. [31] DNFC 5 96.49 96.84 99.16 96.45
Ours MDNFN 6 98.97 98.97 99.79 98.97

The bold values indicate the best results.

TABLE VI
ABLATION EXPERIMENTS FOR MULTISCALE NETWORK STRUCTURES ON THE
RECORDING-BASED DIVISION

Scale ACC (%) SEN (%) SPEC (%) PREC (%)
Scale 1 79.68 61.76 90.28 55.98
Scale 2 81.03 63.48 92.71 58.64
Scale 3 82.29 59.35 93.45 57.93

ALL 86.83 68.72 96.25 60.24

The bold values indicate the best results.
TABLE VII

ABLATION EXPERIMENTS FOR MULTISCALE NETWORK STRUCTURES ON THE
BEAT-BASED DIVISION

Scale ACC (%) SEN (%) SPEC (%) PREC (%)
Scale 1 94.27 94.22 97.56 95.57
Scale 2 96.82 96.81 97.82 96.25
Scale 3 96.19 96.17 98.06 97.14

ALL 98.97 98.97 99.79 98.97

The bold values indicate the best results.

single scale has declined. For example, compared with Scale 1,
the performance of the multiscale fusion model is improved by
about 7% (79.68% versus 86.83%), which fully demonstrates
the effectiveness of the multiscale feature fusion structure for
arrhythmia classification.

Moreover, we explored different model optimization algo-
rithms to compare the performance of the optimized PSO al-
gorithm used in this article. As mentioned in Section III-C,
we adopt the PSO algorithm to optimize the network model
and combine the shortcomings of the standard PSO with the
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Fig. 3. Impact of different optimization algorithms on model performance
based on the beat division.

genetic mutation function in the GA to jump out of the local op-
timum, thereby establishing a neural network prediction model
more quickly and accurately. We mark the model optimization
algorithm used in this article as PSO-pro. In order to verify
the effectiveness of this optimization method, we additionally
compared and analyzed the state-of-the-art methods and four
basic optimization methods, including the improved-AOA [40],
GOZDE [41], the ordinary PSO algorithm, GA [42], ant colony
optimization (ACO) algorithm [43], and simulated annealing
(SA) algorithm [44]. Figs. 3 and 4, respectively, depict the impact
of different optimization algorithms on model performance in
two cases of data partitioning.
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Fig. 4. Impact of different optimization algorithms on model performance
based on the recording division.

The results indicate that the proposed improved PSO algo-
rithm consistently outperforms the other optimization methods
in terms of convergence speed and model performance across
various data partitioning scenarios. The enhanced PSO algo-
rithm demonstrates its effectiveness in efficiently navigating
the parameter space, leading to faster convergence toward op-
timal solutions. This superior performance can be attributed to
the adaptive mechanisms incorporated into the improved PSO,
allowing for a more dynamic adjustment of particle trajecto-
ries during the optimization process. Compared with the latest
methods improved-AOA and GOZDE, our optimization method
achieves slightly better performance. Comparatively, while the
GA, ACO, and SA algorithms exhibit competitive performances,
they demonstrate a relatively slower convergence rate and, in
some cases, a tendency to converge to suboptimal solutions.
Genetic algorithm, although robust in handling complex opti-
mization problems, can suffer from premature convergence and
struggles with fine-tuning parameters. ACO, while effective in
certain scenarios, may face challenges in handling continuous
optimization tasks due to its discrete nature. SA, although versa-
tile, can be computationally expensive and may require careful
tuning of temperature schedules to achieve optimal results.
These findings underscore the efficacy of the proposed improved
PSO algorithm in the context of model optimization for the
proposed multiscale deep neuro-fuzzy model, emphasizing its
potential as a preferred optimization technique for enhancing
the performance of complex computational models in various
applications.

In addition, we conducted a sensitivity analysis to evaluate
the impact of two critical parameters, namely, the learning
rate and activation functions, on the performance of MDNFN.
Table VIII shows the model performance comparison under
different learning rates. We observed that varying the learning
rate over a range of values influenced both the convergence
behavior during training and the final classification performance
of the MDNFN. Specifically, lower learning rates resulted in
slower convergence but tended to yield more stable training
dynamics and better generalization performance. Conversely,
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TABLE VIII
MODEL PERFORMANCE COMPARISON UNDER DIFFERENT LEARNING RATES

Learning rate  ACC (%) SEN (%) SPEC (%) PREC (%)
0.1 83.16 83.79 86.14 84.68
0.01 95.62 95.87 96.82 96.71
0.001 98.97 98.97 99.79 98.97
0.0001 96.57 96.74 97.43 96.62
The bold values indicate the best results.
TABLE IX
MODEL PERFORMANCE COMPARISON UNDER DIFFERENT ACTIVATION
FUNCTIONS
Activation function ACC (%) SEN (%) SPEC (%) PREC (%)
sigmoid 93.36 93.58 94.84 93.28
tanh 95.16 95.34 96.42 96.18
Leaky ReLU 97.36 97.41 98.45 97.13
ReLU 98.97 98.97 99.79 98.97

The bold values indicate the best results.

higher learning rates led to faster convergence but were prone
to overshooting and oscillations in the training loss. Through
careful examination of the learning rate sensitivity, we iden-
tified an optimal range that balanced convergence speed with
classification accuracy, thus providing valuable guidance for
parameter selection in the MDNFN architecture. Table IX shows
the model performance comparison under different activation
functions. We experimented with various activation functions,
including ReLLU, sigmoid, tanh, and Leaky ReL.U, and evaluated
their effects on the network’s training dynamics and classifica-
tion performance. Our results indicated that different activation
functions exhibited distinct behaviors in terms of convergence
speed and final performance metrics. Notably, ReLU and Leaky
ReLU activation functions demonstrated superior performance
in terms of both convergence speed and classification accuracy,
outperforming sigmoid and tanh activations. These findings
suggest that the choice of learning rate and activation function
play acritical role in shaping the MDNFN'’s capability to capture
complex patterns in ECG signals.

V. CONCLUSION

In this article, we explore MDNEFN to diagnose arrhythmias
in ECG signals. We combine the deep neuro-fuzzy network and
improved PSO algorithm to propose a novel multiscale feature
extraction model, MDNFN. First, we introduce the specific
internal details of the model, including the data preprocess-
ing and feature selection, the structure of the multiscale deep
neuro-fuzzy model, and the optimization method with PSO.
Second, we verify and compare the effectiveness of this method
through rigorous and numerous experiments. The development
of the MDNFN model represents a significant step forward in
the field of cardiac diagnostics. By harnessing the power of Al,
specifically deep learning and fuzzy logic, this model offers a
novel and effective solution for the automatic analysis of ECG
signals. Its ability to provide accurate and efficient results has
the potential to greatly benefit both healthcare professionals and
patients, contributing to the advancement of cardiac care.
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