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Abstract—Sentiment analysis, a challenging task in understand-
ing human emotions expressed through diverse modalities, prompts
the development of innovative solutions. Multimodal data often
contains important complementary information. Effective fusion
and extraction of multimodal data features are key issues in senti-
ment analysis. In this article, we introduce a novel sentiment anal-
ysis model that integrates multimodal multiscale features based
on a fuzzy-deep neural network. First, we combine multimodal
data, namely text, audio, and images, to extract intrinsic feature
representations. Second, our model incorporates the fuzzy-deep
neural network learning module, infused with fuzzy logic principles
to enhance adaptability to the inherent vagueness in sentiment ex-
pressions. Furthermore, we integrate the dual attention mechanism
that dynamically focuses on pivotal aspects within multimodal data,
refining feature extraction for heightened context-awareness. Rig-
orous validation across three datasets, including the Multimodal
Corpus of Sentiment Intensity dataset, the Multimodal Opinion
Sentiment and Emotion Intensity dataset, and the Chinese Single
and Multimodal Sentiment dataset, demonstrates the model’s supe-
rior performance in capturing the intricacies of human emotions.

Index Terms—Fuzzy-deep neural network, multimodal data,
multiscale feature, sentiment analysis.

I. INTRODUCTION

IN RECENT years, the field of sentiment analysis has wit-
nessed significant advancements [1], fueled by the growing

availability of multimodal data and the emergence of sophis-
ticated deep learning techniques [2]. Sentiment analysis, also
known as opinion mining, plays a pivotal role in understanding
and interpreting human emotions expressed in textual, visual,
and auditory content. This article enhances sentiment analysis
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accuracy and comprehensiveness by integrating multimodal data
and multiscale features. We propose an innovative approach
that combines multimodal representation and multiscale feature
extraction using a fuzzy-deep neural network (Fuzzy-DNN)
learning paradigm.

The proliferation of social media platforms, online reviews,
and diverse forms of user-generated content has led to an expo-
nential increase in the volume and variety of multimodal data
expressing sentiments. Traditional sentiment analysis methods
often rely solely on textual information, neglecting the valuable
cues embedded in images, videos, and audio clips. Moreover,
emotions are inherently complex and dynamic, requiring a
nuanced understanding beyond single-scale analyses’ limita-
tions. The motivation for this research stems from the need
to overcome these limitations, explore the untapped potential
of combining multiple modalities, and consider the multiscale
feature of emotional expressions.

Multimodal data encompasses various sources of information,
including text, images, audio, and video [3]. Each modality
contributes unique insights into the user’s sentiments, which
provides a holistic perspective on their emotional state. Text data
is rich in explicit sentiment indicators such as sentiment-laden
words and phrases. The model can capture explicit sentiments
expressed through words by analyzing the linguistic content.
Text directly represents the user’s thoughts and feelings, making
it a fundamental component of sentiment analysis. The proposed
model uses text to capture these explicit sentiments, forming
our sentiment analysis’s basis. Audio data, particularly speech,
contains prosodic features such as pitch, tone, and pace, which
convey emotional nuances that text alone might miss. By in-
corporating audio, our model gains insights into the speaker’s
emotional state, enhancing its ability to interpret sentiments ac-
curately. Image data, especially facial expressions and gestures,
provide visual cues that are powerful indicators of emotions.
Visual features such as smiles, frowns, and eye movements can
significantly enhance sentiment detection. Visual cues are essen-
tial for understanding the emotional context in communication.
Additionally, emotions are often manifested across different
scales, ranging from subtle nuances to intense expressions. By
incorporating multiscale features, the proposed approach aims
to capture the richness of emotional experiences, offering a more
nuanced and accurate sentiment analysis.
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Fuzzy logic, inspired by human reasoning and decision-
making processes, introduces a level of ambiguity into the analy-
sis, allowing for the representation of partial truths and degrees
of membership [4], [5]. In the context of sentiment analysis,
where emotions often exhibit gradations and shades, fuzzy logic
becomes a valuable tool for modeling the uncertainty inherent
in human expressions. Fuzzy logic enables the Fuzzy-DNN
model to handle linguistic terms [6], vague boundaries between
sentiment categories, and the subtle transitions between different
emotional states. Deep neural networks [7], on the other hand,
excel at automatically learning hierarchical representations from
complex data. The depth of these networks enables them to
capture intricate patterns and dependencies within the input
data. In the proposed Fuzzy-DNN framework, the deep neural
network component serves as a feature extractor, hierarchically
learning relevant features from multimodal and multiscale input
data.

The integration of fuzzy logic principles with deep neural
networks in the Fuzzy-DNN model is designed to harness the
complementary strengths of both paradigms [8]. Fuzzy logic
facilitates the modeling of uncertainty and imprecision, which
allows the network to handle the inherent ambiguity in sentiment
expressions. In our model, fuzzy sets are used to transform
input features into degrees of membership, providing a nuanced
representation of sentiment data. This approach allows for partial
memberships, capturing the inherent uncertainty and ambiguity
in emotional expressions. Our adoption of fuzzy sets in the
model is motivated by their ability to handle uncertainty and
ambiguity in sentiment data, reduce complexity in sentiment
representation, and increase prediction accuracy. By providing
a more flexible and nuanced approach to sentiment analysis,
fuzzy sets enhance the model’s overall performance and robust-
ness. Meanwhile, the deep neural network component empow-
ers the model to automatically learn complex representations
and capture hierarchical dependencies, ensuring a robust and
discriminative understanding of the underlying sentiment. One
notable advantage of Fuzzy-DNN learning lies in its adaptive
nature. The model can dynamically adjust its parameters and
decision boundaries based on the contextual nuances of the
input data, making it particularly well-suited for sentiment
analysis tasks where emotions may be context-dependent. In
addition, the fuzzy logic component enhances the interpretabil-
ity of the model, providing insights into the degree of certainty
associated with each sentiment prediction, a crucial aspect in
understanding and trusting the model’s decisions. The fusion
of fuzzy logic principles with deep neural networks presents a
powerful framework for handling uncertainty and imprecision
inherent in sentiment analysis tasks. Fuzzy-DNN models excel
in capturing the vagueness and fuzziness associated with human
emotions, enabling a more flexible and adaptive representation
of sentiment in multimodal data.

In this article, we combine the advantages of Multimodal
and Multiscale features to develop an emotion analysis frame-
work based on Fuzzy-Deep neural Network model research
(MMFDN). Leveraging synergies between multimodal data and
multiscale features, the integration of this fuzzy DNN learning
paradigm aims to enhance the robustness of sentiment analysis

models, thereby enabling them to better handle the complex-
ity inherent in various forms of user-generated content. Our
model integrates data from text, images, and audio to form a
cohesive multimodal representation. The fusion of these modal-
ities forms a unified representation input to the Fuzzy-DNN,
ensuring a comprehensive sentiment analysis that considers
the multifaceted nature of human expression. The multiscale
feature extraction aims to capture nuances at various levels of
granularity and enrich the representation of sentiments. This
involves extracting features that represent both subtle nuances
and prominent characteristics within the data.

We summarize the main contributions of this article as fol-
lows.

1) We introduce a novel sentiment analysis model that seam-
lessly integrates multimodal multiscale features from di-
verse modalities, including text, images, and audio, which
creates a holistic representation of human emotion across
different scales. Unlike traditional models, our approach
utilizes fuzzy logic to handle uncertainty and a dual atten-
tion mechanism to dynamically focus on relevant features
within and across modalities.

2) Our work incorporates fuzzy logic principles into the deep
learning paradigm, presenting the fuzzy-deep neural net-
work learning module. This addition enhances our model’s
adaptability to the inherent vagueness and uncertainty
within sentiment expressions. This aspect distinguishes
our approach from conventional deep learning models that
do not explicitly address uncertainty in the same way.

3) We combine the dual attention mechanism module (DAM)
to dynamically focus on crucial aspects within multimodal
data. DAM optimizes attention allocation, refining feature
extraction and fostering enhanced context-awareness in
our model. This mechanism enhances the model’s abil-
ity to extract meaningful information, thereby improving
accuracy and robustness.

4) We comprehensively validate the proposed model on three
distinct datasets, showcasing its superior performance
across a spectrum of multimodal sentiment expressions.

The rest of this article is organized as follows. Section II
provides a literature review, highlighting the existing approaches
to sentiment analysis and the state-of-the-art techniques in mul-
timodal and multiscale feature extraction. Section III details
the proposed methodology, including the multimodal multiscale
feature representation, fuzzy-deep neural network learning, and
the dual attention mechanism. Section IV presents experimental
results and discusses the findings. Finally, Section V concludes
this article.

II. RELATED WORK

Currently, numerous scholars both domestically and inter-
nationally have extensively contributed to the field of single-
modal emotion analysis [9]. Considerable progress has been
made in researching emotion analysis within text, speech, and
image modalities, particularly with the notable integration of
deep learning technology in recent years, significantly enhanc-
ing the precision of emotion recognition. However, in real-life
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scenarios, the expression of emotions is inherently diverse, and
attempting to predict emotions from a singular perspective is
akin to catching only a fleeting glimpse. Consequently, contem-
porary researchers increasingly advocate for emotion recogni-
tion grounded in multimodal data.

Sentiment analysis based on text data has gained widespread
application in fields such as data mining and business recommen-
dation, establishing itself as a prominent research area within
natural language processing (NLP). In comparison to speech
and image data, text information is rich in semantic content,
offering a wealth of emotional features for sentiment analysis
models. Historically, researchers treated emotion analysis as
an unsupervised learning problem. They initially constructed
dictionaries containing emotion words and their correspond-
ing labels, such as WordNet-Affect [10] and BosonNLP [11].
Subsequently, the text to be identified was matched against
these dictionaries to determine its classification category. As the
field progressed, the introduction of various machine learning
algorithms, including support vector machine (SVM) [12] and
Bayesian methods, ushered in the era of supervised learning in
text sentiment analysis.

In recent years, there has been a surge in the development of
deep learning technologies, including CNN [13], LSTM [14],
and Attention mechanisms [15]. The field of NLP has expe-
rienced rapid growth, leading to the continuous evolution of
text sentiment analysis based on deep learning. For instance,
Li et al. [16] utilized the attention mechanism and bidirectional
LSTM model (Bi-LSTM) to focus the feature extraction network
on the internal sequence relationships within the text. This ap-
proach effectively mitigated the issue of redundant text informa-
tion, contributing to improved sentiment analysis. Furthermore,
a prevalent and effective contemporary method involves lever-
aging word vectors to obtain semantic representations within
sentences. This semantic information is then combined to derive
comprehensive text features [17]. Notably, this approach finds
widespread application across various multimodal sentiment
analysis datasets.

At present, there are mainly three types of audio features
widely used in the field of sentiment analysis, which are spec-
trum features, sound quality features, and prosodic features [18].
For example, Wang et al. [19] used a genetic algorithm and SVM
as classifiers to classify prosodic features such as energy and
fundamental frequency in audio. Their experiments proved that
the optimization of parameters of SVMs by genetic algorithm
could effectively improve the effect of sentiment classification.
In addition, Eyben et al. [20] used LSTM and RNN networks
to integrate prosodic features and semantic features in audio
and achieved remarkable results. Since the extraction of audio
features requires a certain understanding of acoustic knowledge,
scholars often use audio feature extraction tools to extract au-
dio features. At present, the mainstream collaborative speech
analysis libraries include COVAREP [21] and openSMILE [22].
These toolkits can automatically extract key emotion-related
features in audio, which greatly improves the efficiency of
researchers. Some multimodal sentiment analysis datasets, such
as UR-FUNNY [23] and MELD [24], use such audio feature
extraction tools.

In the task of sentiment recognition, once speech features are
extracted, an appropriate classification model is required for pre-
diction and categorization. The prevailing classification models
based on deep neural networks have demonstrated outstanding
performance. For instance, Luo et al. [25] utilized CNN to extract
features from the speech signal spectrum diagram. They input
traditional acoustic features like speech spectrum centroid and
MFCC into LSTM for deep feature extraction. Subsequently,
they employed a Bi-LSTM algorithm with an attention mech-
anism for feature fusion and emotion classification, yielding
remarkable results. In a similar vein, García-Ordás et al. [26]
introduced a full-convolutional neural network as a classifier to
predict and classify Maier spectrum features in audio, achieving
commendable prediction outcomes.

Expression recognition based on deep learning has demon-
strated remarkable results, involving a four-step process. First,
the image data undergoes preprocessing operations such as
scaling, cutting, alignment, and normalization. Subsequently, a
face detection model is applied to identify the face in the image.
Next, a feature extraction network extracts expression features,
followed by the utilization of a classifier for sentiment clas-
sification. For instance, the PPDN network proposed by Zhao
et al. [27] selects corresponding peak and nonpeak expression
images from continuous video frames. The input feature extrac-
tion network then processes these images to extract features, us-
ing regularization to minimize the distance between the two sets
of features. The cross-entropy function is ultimately employed
to calculate the loss for the predicted results against the true
value labels. However, it is worth noting that this model, relying
on prefiltered expression images, exhibits reduced robustness in
real-world scenes. To address this limitation, Ding et al. [28]
introduced a novel training algorithm called FaceNet2ExpNet.
This algorithm remodels neurons in the sentiment recognition
model using information obtained from the face recognition
model. By doing so, it adjusts the training of the sentiment
recognition network. This innovative approach associates face
feature extraction more closely with the classification model,
resolving the issue of weak independent correlation between
the two and thereby enhancing recognition effectiveness.

Although sentiment analysis based on single modalities such
as text, speech, and images has made remarkable progress, there
is a contradiction between the diversity of emotional expressions
in real life and the limitations of single-modal data. Therefore,
sentiment analysis based on multimodal data can better meet
the needs of actual scenarios. At present, existing research
on multimodal sentiment analysis mainly focuses on the two
issues of representation learning of single-modal features and
the fusion of multimodal features [29].

In terms of modal representation learning, Wang et al. [30]
proposed the RAVEN network. They first extract single-modal
features containing contextual information from speech and
image data, and then dynamically convert the extracted non-
linguistic contextual features and text features to gain additional
differentiation in single-modal representations. However, the
difference obtained in this way is obtained by comparing text
modalities, which neglects to capture the differences between
nonlinguistic modalities, so the actual effect of this model is not
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Fig. 1. Overall structure of the proposed model.

good. Verma et al. [31] respectively performed representation
learning on common features between modalities and unique
features within modalities of multimodal data. The obtained
feature representations were both consistent and unique, and
the sentiment recognition effect was significantly improved.

Feature layer fusion usually reorganizes features extracted
from different modalities into a new feature representation
through splicing and weighting operations. Most of the early
feature layer fusion spliced features extracted from different
modalities in the same dimension, then reduced the feature
dimension, and finally input it into a classifier for sentiment
analysis. For example, Pérez-Rosas et al. [32] extracted features
from speech, text, and image data separately, then spliced the
features, and finally used SVMs for sentiment classification.
With the development of deep learning, single-modality feature
extraction has changed from traditional manual feature extrac-
tion to automatic extraction using deep neural network training.
The method of feature fusion has also evolved from simple
splicing to deep fusion using various networks. For example,
Zadeh et al. [33] designed a memory fusion network that can not
only fuse feature representations between different modalities,
but also model in the time dimension to obtain feature represen-
tations of contextual information. Tsai et al. [34] introduced a
transformer-based network for multimodal feature extraction.
It uses attention to better learn and combine features across
modalities, improving the representation of target information.

Generally speaking, these methods have the following short-
comings. First, most current methods lack integration across
modalities. In the context of sentiment analysis, a frequent issue
is the insufficient integration of data from different modalities,
leading to analyses that do not fully leverage the richness of mul-
timodal information. Second, these methods cannot effectively

extract multiscale features, particularly relevant to fields dealing
with human language and emotion. That is, they cannot struggle
to effectively handle the uncertainty and ambiguity inherent in
natural language data.

III. METHOD

The complexity inherent in the analysis of sentiments ex-
pressed through multimodal data necessitates the development
of advanced methodologies capable of capturing the nuances
across various modalities and scales. In this section, we present
a detailed account of the methodology employed in this study,
focusing on the integration of fuzzy-DNN learning to explore
and harness the potential of multimodal multiscale features for
sentiment analysis, including the multimodal multiscale feature
representation, fuzzy-deep neural network learning, and dual at-
tention mechanism. The proposed model consists of several key
components: convolutional layers for initial feature extraction,
LSTM model for multiscale feature extraction, a dual attention
mechanism for refining feature representation, and the fuzzy
logic layer to handle uncertainty. The detailed architecture is
shown in Fig. 1. Each convolutional layer is followed by a ReLU
activation function. The overall structure of the proposed model
is depicted in Fig. 1.

A. Multimodal Multiscale Feature Representation

The essence of our approach lies in its ability to seamlessly
integrate information from different modalities–text, image,
audio–into a cohesive representation that captures the multi-
faceted nature of human expression. Textual data undergoes to-
kenization and embedding, while images are processed through
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the convolutional neural networks for feature extraction. Simul-
taneously, audio data is transformed with the LSTM model. The
fusion of these modalities forms a unified multimodal represen-
tation that serves as input to the Fuzzy-DNN model. Recognizing
the multiscale nature of emotional expressions, our methodology
incorporates multiscale feature extraction techniques. Features
are extracted at varying levels of granularity, capturing both
subtle nuances and prominent characteristics within the input
data. This multiscale feature set is designed to enrich the repre-
sentation of sentiments, providing the Fuzzy-DNN model with
a comprehensive view of the emotional content present in the
multimodal data.

For text data, the feature extraction layer uses the Bi-LSTM
and the attention mechanism to perform deep semantic extrac-
tion of feature vectors. We use vectors to fuse character vectors
and word vectors, respectively, to obtain fused features. The text
will not change with changes in specific downstream tasks, and
has distinct serialization characteristics. The Bi-LSTM model
has a series network structure and is very suitable for processing
serialized data. Therefore, in this article, we choose the Bi-
LSTM model to process character features and word features.
The Bi-LSTM model realizes context by splicing feature vectors
with forward and reverse LSTM models. Effective utilization of
semantic features. The calculation process of the LSTM model
is as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

it = f(Wi × [ht−1, xt] + bi),
ft = f(Wf × [ht−1, xt] + bf),
ot = f(Wo × [ht−1, xt] + bo),
ct = ft � ct−1 + it � tanh(Wc × [ht−1, xt] + bc),
ht = ot � tanh(ct)

(1)

where xt is the input vector at time t; it, ft, and ot represent
the input gate, forget gate, and output gate at the current time,
respectively; Wi, Wf , and Wo represent the weight matrices
of the input gate, forget gate, and output gate, respectively;
bi, bf , bo represents the bias vector of the input gate, forget
gate, and output gate, respectively; ct represents the memory
unit at the current moment; t–1 represents the moment before
the current moment; Wc and bc represent the weight matrix
and bias vector of the current information, respectively; f(·)
and tanh(·) are activation functions; ht is the output vector at
the current moment; � is the Hadamard product; × represents
matrix multiplication. So we can get the calculation process of
the Bi-LSTM model as follows:⎧⎪⎨

⎪⎩
−→
h t = LSTM(

−→
h t−1, xt),←−

h t = LSTM(
←−
h t+1, xt),

ot = [
−→
h t,
←−
h t]

(2)

where
−→
h t and

←−
h t represent the feature vectors obtained by the

forward and reverse LSTM models, respectively; ot is the feature
vector obtained by the Bi-LSTM model at the current time t; t+1
represents the previous time of the current time.

We set the initial state of the Bi-LSTM model to 0. Then, the
character vector set Ec and the word vector set Ew are input
into the Bi-LSTM model, respectively, to obtain the character
feature vector set oc = {oc,1, oc,2, . . . , oc,n}, the word feature

vector set ow = {ow,1, ow,2, . . . , ow,n}, and the state Sc and Sw

stored by the Bi-LSTM model. The calculation is as follows:{
oc,i = BiLSTM(ec,i), 1 ≤ i ≤ n,
ow,j = BiLSTM(ew,j), 1 ≤ j ≤ m

(3)

where ec,i and ew,j represent the vector in Ec and Ew, respec-
tively.

The audio modality, a rich source of emotional cues, is pro-
cessed using a unidirectional Long LSTM (S-LSTM) model to
capture temporal dependencies and patterns inherent in speech.
LSTMs, a variant of recurrent neural networks, are well-suited
for sequential data processing due to their ability to selectively
retain information over extended time intervals. The unidi-
rectional architecture allows the LSTM to process the input
sequence in a forward temporal direction, capturing the tem-
poral dynamics of the audio signal. This approach leverages
the ability of unidirectional LSTMs to effectively model the
temporal dynamics of speech, providing a compact and informa-
tive representation of the audio modality. The extracted features
contribute to the holistic multimodal representation, enabling
the Fuzzy-Deep Neural Network model to discern and analyze
sentiment across diverse modalities and scales.

Specifically, referring to the practice of Zadeh et al. [35], we
use the S-LSTM network to model speech features in the time
dimension and obtain their context representation. Its form is
shown in the following formula:

Fa = S-LSTM(Ea; θa) ∈ Rda (4)

whereEa means the audio feature, θa represents its hidden layer
parameters, da represents the audio data dimension, and Fa is
the hidden layer output sequence of the voice modality, which
represents the context feature representation of a single modality.

When extracting features from images, only extracting a
single feature is not well suited to the image. Zhang et al. [36]
decomposed medical images into multiple scale layers and can
extract different visual features from different scale layers. Be-
cause image analysis needs to consider multiple aspects of infor-
mation, this information is at different scale levels. Lin et al. [37]
proposed Dual Swin Transformer UNet (DS-TransUNet) to
extract coarse-grained feature representations and fine-grained
feature representations of different semantic scales for image
segmentation tasks. Kong et al. [38] used four different scaled
histopathological images to generate four semantic feature maps
of different sizes, so that the model has strong generalization
ability from tissue types to cell types. Due to the particularity of
images, when extracting image features and classifying them,
researchers usually use a multiscale approach to make judg-
ments, which helps determine whether there are obvious feature
abnormal areas.

Inspired by the multiscale feature extraction method in image
classification, in this article, we designed a multiscale feature
extraction module. The structure diagram is shown in Fig. 1.
This module uses a CNN-based multiscale feature extraction
method to extract features on small-scale FI,s, medium-scale
FI,m, and large-scale FI,l, respectively. We exploit the encoder-
decoder structure and extract image features to reduce feature
scale through multiple convolution and pooling layers. In the
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decoder, we perform deconvolution and upsampling operations
while extracting features that require scale. Furthermore, we
keep the dimensions of the three granularity blocks all the
same size during block embedding to reduce the fusion cost
and thereby speed up the computation time. We utilize the skip
connections to help gradients flow through the entire network
and preserve the feature map, especially the detailed information
in fine granularity.

Then, the multiscale features FI,s, FI,m, and FI,l are re-
molded into a series of flat 2-D feature blocks as follows:

FIp,s ∈ R
H
2r×W

2r×Cs ,

FIp,m ∈ R
H
r ×W

r ×Cm ,

FIp,l ∈ RH×W×C
l , (5)

where (H, W) represents the resolution of the original feature,
C represents the number of channels. We enable different di-
mensions to be matched at different scales, which can sig-
nificantly reduce computational complexity when fused with
fuzzy features. We add a learnable embedding to each sequence
of embedded feature blocks. The multiscale feature extraction
module also uses the position embedding strategy when pro-
cessing image data, i.e., position information is embedded into
feature blocks to retain the accurate position of each pixel.

B. Fuzzy-Deep Neural Network Learning

We choose fuzzy set theory to solve the problem of infor-
mation redundancy in multiscale feature extraction, because
fuzzy set theory regards the pixel value of the image as an
element and describes the membership degree of the element
to the fuzzy concept through the membership function in image
processing. The advantage of this method is that it can capture
the uncertainty and fuzziness in the image. By setting different
membership functions and critical values, the general character-
istics of malignant cells can be accurately extracted and more
accurate information can be provided for image classification.

For a given image I , first, we convert I into a grayscale image
and normalize it to the range [0, 1]. When extracting the fuzzy
features of the image, each pixel pointx is regarded as a fuzzy set,
and each image passes through a different membership function.
In this article, we extract three fuzzy features fμ, fδ , and fτ ,
and the obtained fuzzy universal feature set is expressed as
{fμ, fδ, fτ}. The definition of this fuzzy set depends on the
membership function, which describes the degree of member-
ship of each pixel to a certain fuzzy concept. Finally, the fuzzy
general feature fz is obtained through the fuzzy operation.

During the model learning process, the membership function
can help the model better understand the meaning of each
pixel, including its possible category and degree of belonging.
This multiangle and multilevel feature expression method can
provide more information, help the model capture richer and
more complex features, and also improve the model’s robustness
to noise and uncertainty. In order to extract multiple features of
the image, we use multiple membership functions, each mem-
bership function corresponds to a specific feature description
method. We select Gaussian function, Sigmoid function, and

Trapezoidal function as membership functions to fuzzify the
image, respectively, so that fuzzy general features can more
effectively guide the model to learn key features. These features
are used to construct fuzzy sets, and the common features of the
image are extracted through fuzzy set intersection operations.
The Gaussian function is chosen to define the first membership
function because the Gaussian function has good smoothness
and symmetry. It can calculate the gray value of each pixel point
with the membership function to obtain the membership degree
of each pixel point. Its calculation process is as follows:

Fμ(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
(6)

where μ represents the mean of the Gaussian distribution, σ
represents the standard deviation, and x represents the gray value
of the pixel. The Sigmoid membership function is defined as
follows:

Fδ(x) =
1

1 + exp(−α(Bx − β))
(7)

where Bx represents the brightness value of pixel point x, α,
and β represent the parameters of the function, which are used
to adjust the shape and position of the function. Finally, the
Trapezoidal membership function is defined as follows:

Fτ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, x ≤ a or x ≥ d
x−a
b−a , a < x ≤ b

1, b < x ≤ c
d−x
d−c , c < x < d

(8)

where a, b, c, and d represent the rising slope, falling slope,
falling inflection point, and endpoint critical value, respectively.
The left and right ends of the function are controlled by the rising
slope a and the falling slope b, respectively, and the middle part
is 1. When the gray value of a pixel is less than a or greater than
d, the membership degree is 0, i.e., it does not belong to the fuzzy
attribute at all. When the value is between a and b, the degree
of membership gradually increases. When the value reaches b,
the membership degree reaches 1, which means it completely
belongs to the fuzzy attribute. When the value is between b and c,
the membership degree is always 1, i.e., it completely belongs to
the fuzzy attribute. When the value is between c and d, the degree
of membership gradually decreases. When the value reaches d,
the membership degree is 0, i.e., it does not belong to the fuzzy
attribute at all. Through fuzzy set theory, the features extracted
by various membership functions are effectively integrated to
form a more comprehensive and accurate general feature. This
general feature can reflect more information and better guide the
learning of the model. For the Gaussian function, we choose the
mean μ and standard deviation σ to be 0 and 1, respectively. For
Sigmoid function, the parameter values of α and β are 1 and 0,
respectively. For the Trapezoidal function, the parameter values
of parameters a, b, c, and d are 0.1, 0.3, 0.6, and 0.9, respectively.

Let F be the universe of discourse for textual sentiment,
where F = {f ∈ R | −1 ≤ f ≤ 1}. Here, –1 represents the
most negative sentiment, 0 represents a neutral sentiment, and 1
represents the most positive sentiment. In order to obtain fuzzy
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universal features of images, we also introduce a fuzzy weighting
strategy to fuse uncertain data, so as to integrate these three
features and form a more comprehensive feature description.
Specifically, a weight is set for each fuzzy feature, namely wμ,
wδ , and wτ , which reflect the importance of each feature to the
overall description and satisfy wμ + wδ + wτ = 1. In addition,
we introduce an offset bz to adjust the baseline level of fuzzy
feature fusion to improve the flexibility of the model. Through
the above variables and parameters, the fuzzy general features
are obtained as follows:

Ffz = wμfμ + wδfδ + wτfτ + bz. (9)

In fuzzy fusion, the membership degree of a data point deter-
mines its contribution to the average value. This method can
effectively integrate the features extracted by multiple member-
ship functions to obtain a more comprehensive image represen-
tation. In this way, rich fuzzy features can be extracted from the
image and can be used for subsequent model learning.

C. Dual Attention Mechanism

The attention mechanism in deep learning mainly draws on the
visual attention mechanism that allows humans to quickly filter
out important information from a large amount of information.
For example, we can distinguish the primary and secondary
content in an image and only pay attention to and process a small
number of words to be read when reading an article. This idea
was first proposed in the field of computer vision. By learning the
weight distribution of image positions and features, the features
are weighted, so that deep learning tasks can be prioritized and
work efficiency improved. For example, the literature [39] used
the attention mechanism to learn the position of the image to
be processed. On this basis, authors in [40] proposed a convo-
lutional attention module that combines the spatial domain and
the channel domain. This is a lightweight and efficient attention
mechanism, which sequentially deduces the attention map along
two independent dimensions (channel and spatial) and multiplies
it with the input feature map for adaptive feature optimization, so
that the network can achieve better accuracy and effectiveness.

With this advantage, we design a dual attention mechanism to
enable the model to better extract features and complete subse-
quent tasks. The dual attention mechanism mainly includes the
channel attention mechanism and the spatial attention mecha-
nism, as shown in Fig. 2. The channel-wise attention mechanism
mainly acts on different convolution channels of the input feature
map. The contribution of features to key information on each
channel is different, which is reflected by adding a weight to each
channel. Its principle can be understood from the perspective of
signal system analysis. Assuming that an image generates new
channels after passing through different convolution kernels, the
image features of each channel are equivalent to its compo-
nents on different convolution kernel functions. This is similar
to time-frequency transformation, which adds weights to the
signal component on each channel to represent the correlation
between the channel and the key information. The main work
of the channel attention module can be described as three steps:
1) compression; 2) excitation; and 3) scale. The first step of

Fig. 2. Detailed structure of the dual attention mechanism.

the compression operation is to perform global average pooling
and global maximum pooling operations on the global spatial
features of each channel. Assume that the size of the input feature
map Fmap is H ×W × C. After the compression operation,
two feature maps of 1× 1× C are obtained, which realizes the
function of aggregating spatial information. The next step is to
pass these two feature maps through a two-layer fully connected
neural network to perform element-wise summation operations
and function activations, which can be expressed as follows:

Catt = fsig (Wa1
· γ(Wa0

Favg) +Wa1
· γ(Wa0

Fmax)) (10)

where fsig and γ(·) are the Sigmoid and ReLU activate functions,
respectively, Favg and Fmax are the feature vectors after the aver-
age pooling layer and the maximum pooling layer, respectively,
Wa0

and Wa1
are the weights. The last step is to reweight the

features and multiply the learned attention map with the output
F of the feature fusion module to obtain the features containing
the channel attention representation. The specific formula is as
follows:

Fattc = Catt · F (11)

where F is the concatenation of text, speech, and image features
as follows:

F = concat(Ft, Fa, FI) (12)

where concat(·) represents the concatenation operation.
The spatial-wise attention mechanism focuses on finding po-

sition information in the input features that are highly relevant
to the task target. After the network obtains the attention mask
through learning, it uses weighting to highlight the important
feature spatial locations in the feature map. First, we perform
channel-based global maximum pooling and global average
pooling on the feature map Fattc weighted by channel attention
to obtain F ′avg and F ′max. Then, we concatenate the two to obtain
H ×W × 2 channel features and use a convolution operation
to compress the number of channels to 1. Finally, function
activation is used to obtain the spatial attention weight, which
is multiplied by the input feature Fattc to obtain a feature map
with spatial attention representation. The specific formula is as
follows:

Vatt = fsig
(
covn(concat(F ′avg, F

′
max))

)
(13)

Fattv = Vatt · Fattc (14)
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Algorithm 1: The Algorithm of the Multimodal Sentiment
Analysis.

Require: Multimodal data: Text dt, Audio da, Image dI
Ensure: Sentiment prediction ys
1: for each data sample in {dT , dA, dI} do
2: Et ← FeatureExtractText(dt)
3: Ea ← FeatureExtractAudio(da)
4: EI ← FeatureExtractImage(da)
5: Ft ← BiLSTM(Et)
6: Fa ← S − LSTM(Ea)
7: FI ←MultiscaleConv(EI)
8: end for
9: for each feature f in {Ft, Fa, FI} do

10: Fatt ← Attention(f)
11: Ffz ← Fuzzify(Fattc)
12: end for
13: Ffused ← FuseFeatures(Ffz )
14: ys ← Classify(Ffused)
15: Return ys

where covn(·) means the convolution operation block.
We consider introducing a dual attention mechanism module

based on multiscale feature fusion, so that it can pay more
attention to feature representations with strong feedback capa-
bilities and discriminability. During the learning process, the
network can adaptively adjust the attention weights of features of
different scales according to the importance of the features, sup-
pressing the interference of nonkey features with lower weights,
which is more conducive to the emotional analysis of images.
The detailed algorithmic pseudocode of the method is presented
in Algorithm 1.

IV. EXPERIMENTS

In this section, we present a comprehensive overview of the
experimental methodology employed to evaluate the proposed
multimodal sentiment analysis framework, integrating fuzzy-
deep neural network learning with a focus on multimodal and
multiscale features. The experiments are designed to assess the
model’s efficacy in capturing the intricacies of sentiment ex-
pressed through diverse modalities, emphasizing textual, visual,
and auditory inputs. The following subsections detail the key
components of our experimental setup, including the dataset
description, evaluation metrics, experimental environment, per-
formance analysis, and crucially, the conduct of ablation ex-
periments to unravel the individual contributions of different
components to the overall model performance.

A. Experimental Setup

1) Configuration: The computational infrastructure and
software environment play a pivotal role in ensuring the re-
producibility and scalability of our experiments. This subsec-
tion provides a detailed description of the hardware and soft-
ware configurations used, including the specifications of the
machines, the deep learning frameworks leveraged, and any

additional libraries employed for efficient implementation. Our
comprehensive experiments unfolded in a thoughtfully crafted
environment, strategically blending cutting-edge hardware and
software configurations to propel the research into multimodal
sentiment analysis. At the heart of our computational prowess
are the NVIDIA Tesla V100 GPUs, renowned for their parallel
processing capabilities, with each GPU boasting an impressive
32 GB of memory. The hardware setup included an Intel Core
i9-10900 K processor with 10 cores at a base frequency of
3.7 GHz. The system is equipped with 32 GB DDR4 RAM
at 3200 MHz, ensuring efficient handling of large datasets and
complex algorithms. This high-performance computing cluster
provided the robust foundation necessary for accelerated train-
ing of our intricate deep neural network models, prominently
the Fuzzy-DNN architecture. In conjunction with this potent
hardware infrastructure, PyTorch 1.7 served as our deep learning
framework, chosen for its dynamic computational graph and ex-
tensive toolkit. Complementing PyTorch, CUDA, and CuDNN
is integral to harnessing the parallel computing power of our
NVIDIA GPUs, resulting in a significant reduction in model
training times.

2) Metrics: Quantitative assessment of the proposed multi-
modal sentiment analysis framework involves the application
of key performance metrics, each offering unique insights into
the model’s efficacy. The selected metrics encompass accuracy
(Acc), precision (Prc), recall (Rec), and F1 score, collectively
forming a comprehensive evaluation framework.

Accuracy serves as a fundamental measure of the model’s
overall correctness in predicting sentiments across all classes. It
is defined as the ratio of correctly predicted instances to the total
number of instances in the dataset.

Acc =
TP + TN

TP + TN + FP + FN

where TP denotes True Positives, TN True Negatives, FP
False Positives, and FN False Negatives.

Precision gauges the model’s ability to correctly identify pos-
itive instances among those predicted as positive. It is calculated
as the ratio of True Positives to the sum of True Positives and
False Positives.

Prc =
TP

TP + FP
·

Recall, also known as Sensitivity or True Positive Rate, measures
the model’s capability to capture all positive instances in the
dataset. It is computed as the ratio of True Positives to the sum
of True Positives and False Negatives.

Rec =
TP

TP + FN
·

The F1 score represents the harmonic mean of precision and
recall, providing a balanced measure that considers both false
positives and false negatives. It is particularly useful in scenarios
where there is an imbalance between positive and negative
instances.

F1 =
2 · Prc · Rec
Prc + Rec

·
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TABLE I
DETAILS OF THE SAMPLE SIZE OF THE MOSI DATASET

In these equations, TP refers to True Positives (correctly pre-
dicted positive instances), TN to True Negatives (correctly
predicted negative instances),FP to False Positives (incorrectly
predicted positive instances), andFN to False Negatives (incor-
rectly predicted negative instances). These metrics collectively
offer a nuanced evaluation of the model’s performance, reflect-
ing its ability to accurately discern and classify sentiments across
diverse multimodal inputs.

3) Database: In order to comprehensively verify the perfor-
mance of the model proposed in this article, we used three differ-
ent datasets to verify and analyze the performance of the model
in the laboratory, including the Multimodal Corpus of Senti-
ment Intensity (MOSI) dataset [41], the Multimodal Opinion
Sentiment and Emotion Intensity (MOSEI) dataset [42], and the
Chinese Single and Multimodal Sentiment (SIMS) dataset [43].
MOSI dataset is one of the mainstream datasets for multimodal
sentiment analysis, which promotes the development of mul-
timodal sentiment analysis. The MOSI dataset consists of 93
Youtube movie review videos from 89 speakers, 48 men, and 41
women, aged between 20 and 30. The dataset segments the film
review videos in one-sentence units, and takes the segmented
short videos as the raw data. Then, the short video is processed
by feature extraction tools such as speech, text, and image, and
then the text, speech, and image data samples are obtained. The
sample size of the three modes is 2199. The MOSI dataset uses
manual labeling to score the sentiment of each piece of data
on a scale of –3 to 3. A lower score indicates a more negative
emotion, a higher score indicates a more positive emotion, and 0
indicates neutrality. The data distribution of different categories
in the MOSI dataset is shown in Table I. MOSEI dataset is
a multimodal sentiment analysis dataset, an upgraded version
of MOSI dataset, which has three modes: 1) text; 2) speech;
and 3) image. The dataset consisted of 23 452 manually tagged
video clips from more than 1000 Youtube narrators covering
250 speaking topics over a total of 65 hours. In this dataset, each
sample is labeled with seven categories of emotion. According
to the strength of emotion, the label value is between –3 and 3,
where 0 indicates neutrality. The dataset contains 16 326 training
samples, 1871 verification samples, and 4659 test samples. The
dataset description is shown in Table II. The SIMS dataset ]is a
multimodal sentiment analysis dataset of Chinese corpus, which
contains text, speech, and image modalities. This dataset not
only uniformly annotates datasets of different modalities, but
also annotates each single modality separately. SIMS contains 60
video clips with 474 narrators selected from Chinese movies, TV
series, and reality shows. This dataset segments videos according

TABLE II
DETAILS OF THE SAMPLE SIZE OF THE MOSEI DATASET

TABLE III
DETAILS OF THE SAMPLE SIZE OF THE SIMS DATASET

to sentences and annotates emotions according to five categories.
Annotators score the emotional intensity of video content on a
scale from –1 to 1, with 0 indicating neutral. There are 2281
samples in the SIMS dataset, including 1368 training sets, 456
validation sets, and 457 test sets. The details of each category in
the data sample are shown in Table III.

We preprocess the data before inputting it into the network
model as follows. For text data, preprocessing steps for text
data include tokenization, stemming, and vectorization using
term frequency–inverse document frequency. We segmented the
text into words or phrases to simplify further processing. Then,
the processed text was converted into numerical values using
techniques such as word embeddings to prepare it for input
into the neural network. For audio data, we applied filtering
techniques to remove background noise and enhance the clarity
of the speech signals. Then, key features such as Mel-frequency
cepstral coefficients (MFCCs) were extracted to represent the
speech data efficiently. The features were normalized to have
zero mean and unit variance to facilitate model training. For
image data, all images were resized to a standard dimension
224× 224 to ensure uniformity across the dataset. Pixel values
were normalized to the range [0, 1] to improve model con-
vergence during training. Each dataset is divided into training,
validation, and test sets, with proportions of 70%, 15%, and 15%,
respectively. The training procedure involves using the Adam
optimizer with a learning rate of 0.0001, and the model is trained
for 100 epochs with early stopping based on validation loss.

B. Performance Comparison

In order to verify the performance of the multimodal and
multiscale sentiment analysis method based on fuzzy deep ]neu-
ral network representation learning proposed in this article, we
conducted comparative experiments using the MOSI, MOSEI,
and SIMS datasets, respectively. We have reproduced several
currently mainstream and effective multimodal sentiment analy-
sis models, including Multimodal Factorization Model (MFM),
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TABLE IV
COMPARISON RESULTS WITH CURRENTLY MAINSTREAM MULTIMODAL SENTIMENT ANALYSIS METHODS BASED ON THE MOSI DATASET

Interaction Canonical Correlation Network (ICCN), Modality
Invariant and Specific Representations (MISA), Multimodal
Adaption Gate for BERT (MAG-BERT), Self-supervised Multi-
Task Learning (Self-MM), MultiModal InfoMax (MMIM),
SiEBERT, and KDGN. A brief introduction to these baseline
methods follows. The MFM model connects the inference net-
work and the generation network by establishing intermediate
modal factors and uses the reconstruction loss function and
the discrimination loss function to promote the fusion process.
The ICCN model introduces canonical correlation analysis loss
between different modes to improve the fusion effect of the
model. MISA projects multimodalities into modality-invariant
and modality-specific spaces, respectively, captures modality-
shared and modality-unique features, respectively, and uses
these overall features to fuse and predict results. The MAG-
BERT method designs a multimodal modal alignment threshold
network and embeds it into the BERT model to optimize the
overall fusion effect. The Self-MM model assigns each modal-
ity a task that can automatically generate the corresponding
modal label and adjusts the gradient of backpropagation through
multitask learning. The MMIM model solves the mutual in-
formation between each modality and the multimodal fusion
results and the mutual information between each modality and
uses multitask learning to maximize the mutual information
to improve the fusion effect. SiEBERT serves as an empiri-
cal framework that measures the tradeoffs across various re-
search questions, data traits, and analytical capabilities, facil-
itating the selection of methods based on the specific con-
text of their application. KDGN improves the model perfor-
mance based on the dependency graph incorporating domain
knowledge.

Table IV lists the experimental effects of each baseline method
and the method proposed in this article on the MOSI dataset.
It can be seen from the table that MFN, MISA, ICNN, and
other methods perform poorly, because these methods can only
extract the interaction information between multiple modes, and
lack effective characterization of the internal information of
a single mode. In contrast, Self-MM and MMIM can better
learn the emotional information within and between modes,
so they have better performance. The representation learning
method based on multimodal and multiscale features proposed
in this article can not only effectively represent a single mode,
but also fully integrate features between multiple modes. Its
classification accuracy is 13% (59.74% versus 46.72%), 10%
(59.74% versus 49.83%), and 3% (59.74% versus 56.63%)

Fig. 3. Experimental comparison accuracy results of compared methods based
on three datasets. The numbers 1 to 9 on the horizontal axis represent methods
MFM, ICCN, MISA, MAG-BERT, Self-MM, MMIM, SiEBERT, KDGN, and
MMFDN, respectively.

higher than that of MAG-BERT, Self-MM, and MMIM with
better performance, respectively. Table V lists the experimental
results of each baseline method on the MOSEI dataset. Com-
pared with the MOSI dataset, the MOSEI dataset has more
data and a greater amount of information that can be learned.
Therefore, each indicator on the MOSEI dataset is better than the
MOSI dataset. Our method still performs well compared with the
baseline method, with classification accuracy reaching 61.16%
and F1-score reaching 60.36%, respectively. Since MOSI and
MOSEI are both English corpus datasets, in order to verify
the performance of our method in Chinese corpus datasets, we
utilize the SIMS dataset to compare our method with the model
in the above experiment. The experimental results are shown
in Table VI. The experimental results show that in the SIMS
dataset, the performance gap of different methods is not obvious
in the MOSI and MOSEI datasets, because the emotion category
and distribution of the SIMS dataset are quite different from
other datasets, and the methods are not sensitive to the SIMS
dataset. Compared with other methods, our proposed method
MMFDN still has improved performance and achieved the best
classification accuracy. In order to compare the performance
trends of each method more clearly, we plotted the accuracy
and F1 score indicators of each method on the three datasets, as
shown in Figs. 3 and 4.
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TABLE V
COMPARISON RESULTS WITH CURRENTLY MAINSTREAM MULTIMODAL SENTIMENT ANALYSIS METHODS BASED ON THE MOSEI DATASET

TABLE VI
COMPARISON RESULTS WITH CURRENTLY MAINSTREAM MULTIMODAL SENTIMENT ANALYSIS METHODS BASED ON THE SIMS DATASET

Fig. 4. Experimental comparison F1 score results of compared methods based
on three datasets. The numbers 1 to 9 on the horizontal axis represent methods
MFM, ICCN, MISA, MAG-BERT, Self-MM, MMIM, SiEBERT, KDGN, and
MMFDN, respectively.

In our study, we compared the performance of our proposed
MMFDN model with several state-of-the-art sentiment analy-
sis models across three public datasets. The models used for
comparison include MFM, ICCN, MISA, MAG-BERT, Self-
MM, MMIM, SiEBERT, and KDGN. Our model consistently
outperformed the compared models in terms of accuracy across
all datasets. For instance, as shown in Tables V, the MMFDN
achieved an accuracy of 61.16% on dataset MOSEI, compared
to 60.17% for SiEBERT, 59.64% for KDGN, and 56.74% for
MMIM. This improvement in accuracy can be attributed to the
effective integration of multimodal data and the robustness of
the fuzzy logic layer in handling uncertainty and imprecision in

sentiment expressions. The precision and recall metrics indicate
the model’s ability to correctly identify positive and negative
sentiments, respectively. Our model demonstrated superior re-
call and comparable Precision, particularly in cases with am-
biguous or mixed sentiments. For example, in Table IV, our
method shows a precision of 57.17% and a recall of 60.78%
on dataset MOSI. This performance is enhanced by the dual
attention mechanism, which allows the model to focus on
the most relevant features within and across modalities. The
F1-score, which is the harmonic mean of precision and recall,
further highlights the balanced performance of our model. Our
model achieves the best results on three datasets. This indicates
that our model not only identifies sentiments accurately, but also
maintains a good balance between precision and recall.

To delve deeper into image analysis and assess model per-
formance more comprehensively, we conducted a statistical
analysis. Fig. 3 presents the results of a statistical compari-
son between the proposed model and other models evaluated
on the SIMS dataset. In the figure, A to H represent MFM,
ICCN, MISA, MAG-BERT, Self-MM, MMIM, SiEBERT, and
MMFDN methods, respectively. The white grid marks statis-
tical equivalence between the method of the row and that of
the column. Conversely, a grid shaded gray/black denotes the
row method’s statistical superiority/inferiority to the column
method, respectively. We can see that the performance of the
method MMFDN proposed in this article exceeds that of other
methods in most indicators, which reveals the effectiveness of
the method in sentiment analysis.

C. Importance of Multimodal and Multiscale Features

In this section, to quantify the distinct contributions of
multimodal multiscale features in our proposed sentiment
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Fig. 5. Statistical analysis results based on the SIMS dataset.

Fig. 6. Experimental comparison results of feature extraction in different
modalities based on three datasets.

analysis framework, we conducted a series of meticulous abla-
tion experiments on three datasets, namely MOSI, MOSEI, and
SIMS. The rationale behind these experiments lies in elucidating
the individual impact of these features on the overall model
performance across diverse multimodal inputs. This ablation
study, designed with meticulous consideration, is poised to offer
valuable insights into the nuanced interplay between multimodal
multiscale features, thereby enriching our understanding of the
proposed sentiment analysis framework’s performance across
diverse datasets. Specifically, for each dataset, we systematically
manipulated the model architecture, progressively excluding the
multimodal multiscale features to observe the ensuing impact on
sentiment analysis performance. This yielded four experimental
configurations as depicted in Fig. 6. As can be seen from Fig. 6,
when only a single modality is used, the performance of the
model decreases on the three datasets, while using multimodal
data will lead to the optimal performance of the model, which
illustrates the multimodal multiscale feature learning improves
model performance. At the same time, we also noticed that the
performance of the speech modality is the lowest, while the

Fig. 7. Experimental results of combination in different modalities based on
SIMS. A stands for audio, T stands for text, and I stands for image.

performance of the image modality is the highest, which shows
that the image modality is more effective for sentiment analysis
tasks. In addition, we combined different modalities to show the
results of the model on different metrics, as shown in Fig. 7. From
Fig. 7, we can see the following results: 1) images play the most
important role in sentiment analysis tasks; 2) compared with
audio, the text is easier to recognize and analyze by the feature
extraction model in sentiment analysis. Our results demonstrate
that integrating text, audio, and image data significantly en-
hances sentiment analysis performance compared to using any
single modality. The complementary nature of these modalities
allows the model to capture a more comprehensive and nuanced
understanding of sentiment expressions.

D. Importance of Fuzzy-DNN Learning

In the proposed MMFDN model, we incorporate fuzzy-deep
neural network learning to extract features. Accordingly, in this
section, we designed ablation experiments on the Fuzzy-DNN
module. Specifically, we replaced the fuzzy layer with an ordi-
nary fully connected layer to obtain model comparison results
on three datasets, as shown in Fig. 8. As can be seen in Fig. 8, the
four performance metrics consistently indicated a degradation
in model performance when fully connected layers replaced
the Fuzzy-DNN Learning module. The disparities were evident
across all three datasets, underscoring the critical contribution
of Fuzzy-DNN to the model’s ability to discern and interpret
complex, fuzzy sentiments embedded in multimodal data. The
observed decline in performance can be attributed to the unique
capabilities embedded in the Fuzzy-DNN architecture. Fuzzy
logic principles, seamlessly integrated into the neural network,
introduce a layer of adaptability and interpretability crucial for
handling the inherent ambiguity in sentiment expressions. The
ability of Fuzzy-DNN to capture vagueness and uncertainty in
emotions appears to be indispensable in the nuanced realm of
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Fig. 8. Experimental results with or without Fuzzy-DNN based on three
datasets. “W/O” is the abbreviation of the word “without.”

TABLE VII
COMPARISON RESULTS OF MODEL PERFORMANCE WITH AND WITHOUT

DAM MODULE

sentiment analysis across multimodal datasets. Fully connected
layers, while effective in certain tasks, may lack the nuanced
adaptability and fuzziness required to decipher the intricacies of
human sentiment. The rigid structure of fully connected layers
may struggle to capture the subtle transitions and gradations
in emotional expressions, leading to a diminished performance
compared to the inherently flexible Fuzzy-DNN. The findings
underscore the significance of Fuzzy-DNN Learning in our
multimodal sentiment analysis framework. The incorporation
of fuzzy logic improves the model’s ability to handle the inher-
ent uncertainty and ambiguity in sentiment data. Fuzzy logic
provides a more flexible approach to dealing with imprecise
inputs, which is particularly useful in sentiment analysis where
emotions are often not clear-cut.

E. Importance of Dual Attention Mechanism

In this section, our ablation experiments focused on dissecting
the influence of the Dual Attention Mechanism (DAM) within
our sentiment analysis framework across three distinct datasets.
The ablation experiments involved two configurations: One
incorporating the DAM and another without, serving as the base-
line. These configurations were evaluated on datasets MOSI,
MOSEI, and SIMS to ensure a comprehensive assessment of
DAM’s impact across diverse multimodal sentiments.

The results of ablation experiments on DAM are shown in
Table VII. We can see that the performance metrics consistently
indicated an enhancement in model performance when DAM

TABLE VIII
EXAMPLES OF COMPARISON RESULTS WITH AND WITHOUT DAM MODULE

is integrated. The improvements were observed across all three
datasets, substantiating the effectiveness of the dual attention
mechanism in elevating the sentiment analysis capabilities of
our model. The observed performance boost with the inclusion
of the dual attention mechanism can be attributed to its inherent
ability to dynamically highlight and weigh different modalities
and regions within the input data. DAM introduces a mechanism
for the model to selectively focus on crucial features, effectively
improving the model’s sensitivity to salient information present
in multimodal expressions of sentiment. The attention mecha-
nism is particularly potent in scenarios where certain modalities
or regions contribute more significantly to the overall senti-
ment. DAM facilitates an adaptive and context-aware attention
allocation, allowing the model to prioritize relevant informa-
tion, thus enhancing its understanding of complex sentiment
expressions. The positive outcomes of the ablation experiments
underscore the importance of incorporating the dual attention
mechanism in multimodal sentiment analysis. The implications
are substantial, especially in scenarios where certain modalities,
such as text, image, or audio, play varying roles in expressing
sentiments. DAM equips the model with the capability to discern
the varying importance of these modalities dynamically, thereby
improving overall sentiment analysis accuracy. To further verify
the reliability and accuracy of the model’s estimation of the
attention mechanism, we selected three test samples from the
MOSI dataset, and the output results are shown in Table VIII. It
can be seen that after adding the attention mechanism, the model
is more accurate and reliable for sentiment analysis. The DAM,
which includes both intramodal and intermodal attention, plays a
crucial role in enhancing feature representation and improving
overall model performance. By focusing on the most relevant
features within and across modalities, the model can make more
accurate sentiment predictions.

F. Hyperparameter Tuning

We performed a sensitivity analysis to assess how two key
parameters, the activation functions and learning rate, affect
our model. Table IX compares the model’s performance across
various activation functions, including ReLU, sigmoid, and tanh,
to determine their influence on training dynamics and overall
classification outcomes. Our findings suggest that activation
functions significantly differ in their effects on convergence rates
and performance outcomes. Remarkably, the ReLU activation
function stood out, providing the best balance between conver-
gence efficiency and classification precision, surpassing both
sigmoid and tanh functions. The effects of different learning
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TABLE IX
COMPARISON RESULTS WITH DIFFERENT ACTIVATION FUNCTIONS UNDER

THREE DATASETS

TABLE X
COMPARISON RESULTS WITH DIFFERENT LEARNING RATES UNDER THREE

DATASETS

rates on the model’s performance are detailed in Table X. We
found that the learning rate significantly impacts the model’s
training convergence and ultimate performance. Specifically,
lower learning rates led to a more gradual convergence, resulting
in steadier training progress and improved generalization capa-
bilities. On the other hand, higher learning rates achieved quicker
convergence but increased the risk of training loss fluctuations
and overshooting. By analyzing the sensitivity to the learning
rate, we pinpointed an optimal range that ensures a good balance
between training speed and accuracy in classification.

V. CONCLUSION

In this article, we explore a new multimodal multiscale feature
learning model for sentiment analysis based on fuzzy-deep
neural network. First, we introduce the specific structure of
the proposed model, including the feature representation, the
structure of the MMFDN, and the dual attention mechanism.
Second, we verify and compare the performance through nu-
merous experiments based on three public datasets. The superior
performance of our model on three datasets can be attributed to
the effective integration of multimodal data. The fuzzy logic
layer plays a crucial role in handling the inherent uncertainty
in sentiment expressions, leading to more accurate predictions.
Compared to state-of-the-art methods, our model demonstrates
significant improvements in accuracy and F1-score. This can
be largely credited to the dual attention mechanism, which
enhances the model’s ability to focus on relevant features across
different modalities. Ablation studies reveal that the removal of
the fuzzy logic layer results in a noticeable drop in performance,
highlighting its importance in managing ambiguous sentiment
data. Similarly, excluding the dual attention mechanism leads to
less effective feature integration, underscoring its critical role in
our approach. In summary, this research endeavors to advance
the field of sentiment analysis by embracing the challenges

posed by multimodal data and multiscale emotional expres-
sions, offering a novel perspective through the integration of
Fuzzy-DNN learning. Through this exploration, we aspire to
contribute to the development of more robust sentiment analysis
models with broad applications in understanding human emo-
tions across various digital platforms. By establishing a novel
sentiment analysis model, our contributions offer an innovative
solution for classifying emotions across modalities, promising
far-reaching implications for research and applications in this
dynamic field. In future work, we aim to advance our research
and enhance the capabilities of our sentiment analysis model
in several key areas. First, we plan to explore the application
of type-2 fuzzy sets to address higher levels of uncertainty and
fuzziness. Second, we intend to delve deeper into sophisticated
multimodal data fusion techniques. In addition, we are looking
to apply our research to real-time sentiment analysis scenarios,
such as social media monitoring and customer service automa-
tion. This will necessitate optimizing the model for performance
and responsiveness to efficiently process streaming data in a
real-time setting.
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[5] Ö. Aslan, A. Altan, and R. Hacioğlu, “Level control of blast furnace gas
cleaning tank system with fuzzy based gain regulation for model reference
adaptive controller,” Processes, vol. 10, no. 12, 2022, Art. no. 2503.
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