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Abstract—Sentiment analysis of social media platforms is crucial
for extracting actionable insights from unstructured textual data.
However, modern sentiment analysis models using deep learning
lack explainability, acting as black box and limiting trust. This
study focuses on improving the explainability of sentiment analysis
models of social media platforms by leveraging explainable artificial
intelligence (XAI). We propose a novel explainable sentiment analy-
sis (XSA) framework incorporating intrinsic and posthoc XAI
methods, i.e., local interpretable model-agnostic explanations
(LIME) and counterfactual explanations. Specifically, to solve the
problem of lack of local fidelity and stability in interpretations
caused by the LIME random perturbation sampling method, a new
model-independent interpretation method is proposed, which uses
the isometric mapping virtual sample generation method based on
manifold learning instead of LIMEs random perturbation sampling
method to generate samples. Additionally, a generative link tree is
presented to create counterfactual explanations that maintain
strong data fidelity, which constructs counterfactual narratives by
leveraging examples from the training data, employing a divide-

and-conquer strategy combined with local greedy. Experiments
conducted on social media datasets from Twitter, YouTube com-
ments, Yelp, and Amazon demonstrate XSAs ability to provide local
aspect-level explanations while maintaining sentiment analysis per-
formance. Analyses reveal improved model explainability and
enhanced user trust, demonstrating XAIs potential in sentiment
analysis of social media platforms. The proposed XSA framework
provides a valuable direction for developing transparent and trust-
worthy sentiment analysis models for social media platforms.

Index Terms—Explainable artificial intelligence (XAI), explain-
ability, local interpretable model-agnostic explanations (LIME),
sentiment analysis (SA).

I. INTRODUCTION

SENTIMENT analysis, or opinion mining, is the computa-
tional study and extraction of subjective information such

as opinions, emotions, attitudes, or sentiments from textual data
[1]. The proliferation of social media platforms such as Twitter,
Facebook, and forums has led to exponential growth in user-
generated textual content containing subjective opinions on
diverse topics [2], [3]. Sentiment analysis of such social media
text has thus emerged as a critical technique to derive actionable
insights into public opinion, attitudes, trends, and behavioral
psychology [4]. Some significant applications of sentiment anal-
ysis focused on social media data include [5], [6], [7].

In recognizing the exponential growth in user-generated con-
tent on various social media platforms, it becomes increasingly
evident that the volume and diversity of this data significantly
amplify the complexity of sentiment analysis tasks. The myriad
of sources, ranging from Twitter to Instagram, not only introdu-
ces a variety of content styles and formats but also necessitates
scalable solutions capable of efficiently processing large data-
sets. Furthermore, the evolving language on these platforms,
characterized by slang, emojis, and informal expressions, poses
unique challenges. This necessitates advanced sentiment analy-
sis models that can adeptly navigate and interpret social media
posts’ nuanced and often ambiguous context.

Social media sentiment analysis represents a significant
advancement in gauging public opinion, harnessing the expansive
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power of the internet to capture a wide array of sentiments that
traditional methods might miss. Unlike surveys or interviews,
which can be limited in reach and often come with significant
delays and costs, sentiment analysis taps into the spontaneous
and candid expressions of millions of users, providing a trea-
sure trove of data that reflects a broad spectrum of public opin-
ion [8], [9], [10], [11]. The instantaneous nature of social
media allows for the observation and analysis of real-time
data, allowing organizations to react promptly to public senti-
ment trends. This immediacy is crucial when a timely under-
standing of public opinion can guide crucial decisions or
strategies. Moreover, social media platforms serve as a natural
environment where users feel free to express their opinions
without the influence of a surveyor or interviewer, potentially
leading to more honest and raw reflections of their sentiments.

For instance, a significant brand’s sentiment analysis algo-
rithm misinterpreted ironic and sarcastic comments on social
media as positive feedback, leading to misguided marketing
strategies. Another example pertains to political sentiment anal-
ysis, where algorithms are needed to discern the contextual
meaning behind specific colloquial phrases used in political dis-
cussions, resulting in an inaccurate assessment of public opin-
ion. These instances exemplify the challenges in deciphering
online communication’s nuanced and often informal nature and
demonstrate the potential repercussions of such misinterpreta-
tions in practical applications.

Analyzing sentiment on social media is a complex task due to
online communication’s unique and unstructured nature [12].
The content on these platforms needs to be more consistent with
informal language, including spelling mistakes, slang, and crea-
tive use of emoticons, which can obscure the intended senti-
ment. Moreover, sentiment is not just expressed through text; it
permeates multimedia content such as images, videos, and
audio, necessitating sophisticated analysis tools capable of inter-
preting various signals and cues across various formats [13],
[14]. This multifaceted nature of social media demands
advanced algorithms and nuanced approaches to effectively cap-
ture and interpret the broad spectrum of human emotions and
opinions expressed online.

To overcome these challenges, cutting-edge techniques using
deep neural networks such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformer
networks have driven significant advances in social media senti-
ment analysis [15]. Models such as bidirectional encoder repre-
sentations from transformers (BERT) and robustly optimized
BERT pretraining approach (RoBERTa) pretrained on promi-
nent social media text have achieved state-of-the-art perfor-
mance across many sentiment analysis benchmarks. However, a
significant limitation of such complex neural models is their
need for more explainability. They behave like black boxes with
opaque predictions to end users due to their inscrutable internal
workings. For example, a healthcare application with a deep
learning model for predicting patient outcomes made accurate
predictions. However, its lack of transparency and explainability
led to mistrust and reluctance among medical professionals to
adopt the technology. Another instance involves a financial
services firm where a nonexplainable deep learning model used

for credit scoring was inadvertently found to reinforce discrimi-
natory biases.

To tackle these issues, explainability has emerged as a critical
requirement to build transparent and trustworthy sentiment anal-
ysis systems. Generating explanations that justify the rationale
behind predictions is crucial for user acceptance and model vali-
dation. This requires explaining how the model generates senti-
ment predictions from social media text inputs. Explainable
artificial intelligence (XAI) offers various techniques to uncover
these explanations by explaining the reasoning behind model
predictions [16].

This article focuses on leveraging diverse XAI methods to
improve explainability in sentiment analysis models, specifi-
cally focused on the domain of social media text. The main con-
tributions of this article can be summarized as follows.

1) Explainable Sentiment Analysis Framework (XSA): We
introduce an XSA framework that integrates intrinsic
and posthoc XAI techniques, which aims to enhance the
explainability of deep learning models for sentiment
analysis, addressing the “black box” nature of current
models and bolstering user trust through transparency.

2) Isometric Mapping Virtual Sample Generation—local inter-
pretable model-agnostic explanations (imVSG-LIME): To
address the local fidelity and stability issues of LIME’s
random perturbation sampling, we propose a novel model-
independent interpretation method. The imVSG uses mani-
fold learning to generate virtual samples, providing a more
reliable and stable basis for model explanations.

3) Generative Link Tree for Counterfactual Explanations:
We present the generative link tree method to produce
high-fidelity counterfactual explanations. By leveraging a
divide-and-conquer strategy with a local greedy approach,
the generative link tree generates explanations that
closely reflect the training data, offering a more nuanced
understanding of model decisions.

The rest of this article is structured as follows: Section II dis-
cusses the related works of this study, Section III outlines the
XSA framework, Section IV presents the experiments, and
Section V shows the conclusion.

II. RELATED WORKS

A. Sentiment Analysis

Early sentiment analysis models relied heavily on lexicon-
based approaches for analyzing and understanding text senti-
ment. These models utilized sentiment lexicons, one prominent
example being SentiWordNet [17], to determine the sentiment
of individual words or phrases. In lexicon-based approaches,
each word in a given text is assigned a sentiment score based on
its presence in the sentiment lexicon. The sentiment scores of
the identified lexicon words directly contribute to the predic-
tions, which means that the sentiment analysis model can
explicitly link its predictions to the sentiment scores assigned to
the words in the sentiment lexicon. For example, suppose a
lexicon-based sentiment analysis model determines that a text
has a positive sentiment. In that case, it can trace this prediction
back to words with positive sentiment scores in the sentiment
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lexicon. This transparency allows users to understand why a
particular sentiment was assigned to a given text, as they can
see which words contributed to that sentiment. Nazir et al. [18]
highlighted the difficulties associated with pinpointing various
aspects and their corresponding sentiments, establishing con-
nections between aspects, interactions, dependencies, and the
contextual–semantic interplay among diverse data entities to
enhance the precision of sentiment analysis, as well as forecast-
ing the changing nature of sentiment over time. However, such
approaches had limited context-handling capabilities.

Historically, lexicon-based approaches were foundational in
sentiment analysis, primarily relying on a predetermined list of
words with associated sentiment scores, by purely lexicon-based
models in today’s dynamic social media environment, where
slang, idioms, and evolving language use can outpace static
lexicons.

Modern sentiment models overcome this using machine learn-
ing such as support vector machine (SVM) and naive Bayes [5],
[11]. Deep learning models such as CNN, RNN, and transformer
networks further enhance context learning for sentiment analysis
[19], [20], [21], [22]. However, complex non-linear mappings in
these data-driven models reduce explainability. Liang et al. [23]
introduced a graph convolutional network that utilized SenticNet
to exploit affective dependencies within sentences based on spe-
cific aspects. Li et al. [24] presented a party-ignorant framework
named bidirectional emotional recurrent unit, which was fast,
compact, and parameter-efficient, designed for conversational sen-
timent analysis, called BiERU. Basiri et al. [25] proposed an
attention-based bidirectional CNN–RNN deep model for senti-
ment analysis, named ABCDM. Yang et al. [26] introduced a
novel sentiment analysis model that integrated sentiment lexicon,
combining CNN with an attention-based bidirectional gated recur-
rent unit.

B. Explainable AI

Some studies try to enhance interpretability in deep sentiment
models using techniques such as attention, sentence concatena-
tion explanations, and concept-level explanations [16]. How-
ever, most focus only on intrinsic explainability within the
model architecture itself. Posthoc explainability using XAI
remains relatively unexplored for sentiment analysis.

The growing focus on explainable AI has led to the develop-
ment of many XAI methods that allow explaining black-box
model predictions. Techniques such as LIME and SHAP can link
predictions to important input features [27], [28]. Counterfactual
explanations [29] provide contrastive “what-if” explanations by
perturbing inputs. Such posthoc XAI techniques have shown
promise in improving explainability for NLP tasks. However,
their applications in sentiment analysis still need to be improved.

Some recent works have tried to utilize XAI for aspects of
sentiment analysis. Jiarpakdee et al. [30] improved LIME with
hyperparameter optimization (LIME-HPO). However, there are
potential limitations in terms of computational efficiency when
applied to large-scale datasets. Lovera et al. [31] introduced a
novel combined methodology that utilized knowledge graphs
alongside deep learning methods to determine whether brief

texts, such as Twitter messages, carry a positive or negative
sentiment called KGDL-SA. Nevertheless, it depends on the
quality and comprehensiveness of the knowledge graph used.
Jain et al. [32] used an aware dictionary for sentiment reasoning
(VADER), and LIME was used to provide in-depth insight into
the predictions (VADER-LIME). Nevertheless, it has potential
challenges in handling sarcasm and indirect expressions. Li [33]
used SHAP to interpret extreme gradient boosting (XGBoost) as
an example to demonstrate how to extract spatial effects from
machine learning models (SHAP-XGBoost). However, its com-
plexity and the potentially steep learning curve for practitioners
are also the challenges. Huang et al. [34] presented an innova-
tive model called AEC-LSTM, designed for detecting sentiment
in text. This model seeks to enhance the capabilities of the tradi-
tional LSTM network by incorporating aspects of emotional
intelligence and an attention mechanism.

In summary, while recent sentiment analysis models using
deep learning have achieved high predictive performance, they
lack inherent explainability due to their black box nature, which
limits their transparency, adoption, and fairness, especially for
critical applications such as social media platform analysis.
Although some works have tried to incorporate intrinsic explain-
ability in model architectures, posthoc explainability using
diverse XAI techniques still needs to be explored for sentiment
analysis, presenting an open research gap. Initial efforts have
tried applying specific XAI methods such as LIME or SHAP in
a restricted context. However, a dedicated focus on harnessing
the full potential of multifaceted XAI to improve explainability
in sentiment analysis holistically is needed.

III. EXPLAINABLE SENTIMENT ANALYSIS FRAMEWORK

This section elucidates the workings of the XSA framework
comprehensively. We provide detailed formulations and descrip-
tions for each module of the XSA architecture. The XSA frame-
work addresses the crucial tradeoff between model explainability
and performance through a multifaceted approach. At its core, the
framework employs a dual-model strategy, utilizing a high-
performance “black-box”model for primary sentiment predictions
alongside simpler, interpretable models for generating explana-
tions. This allows the framework to maintain high accuracy while
still providing explainable insights. By leveraging posthoc expla-
nation techniques such as LIME and SHAP, XSA can offer
explanations without modifying the underlying high-performance
model, thus preserving its accuracy. The framework dynamically
adjusts the complexity of explanations based on the confidence
level of predictions, providing simpler explanations for high-
confidence cases and more detailed ones for borderline predic-
tions. To optimize the explanation generation process, XSA incor-
porates metrics that evaluate the fidelity of explanations to the
original model and their comprehensibility to users. When fine-
tuning models for specific platforms or domains, the framework
employs regularization techniques that encourage sparsity and
interpretability in the model’s internal representations, striking a
balance between performance and explainability. An ensemble
approach combines predictions from complex and simple models,
weighted by their respective performance and explainability
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scores, helping maintain high accuracy while increasing overall
model interpretability. The framework also implements a continu-
ous evaluation process, monitoring user interactions with explana-
tions to refine the explanation generation process over time.
Finally, XSAs modular architecture allows for easy updating of
individual components, enabling the incorporation of state-of-the-
art models and explanation techniques as they become available.
Through this comprehensive strategy, the XSA framework strives
to provide meaningful explanations while maintaining high accu-
racy in sentiment analysis across various social media platforms.

A. Input Preprocessing

The raw textual data must be converted into a suitable numer-
ical representation before machine learning algorithms can ana-
lyze it for sentiment prediction. This conversion is achieved
through two key stages: tokenization and embedding.

In tokenization, the continuous sequence of characters in the
textual data is split into smaller chunks called tokens. Tokens
can be words, phrases, punctuation marks, or any meaningful
linguistic unit. Tokenization transforms the free-flowing text
into a discrete sequence of such tokens.

It is implemented by treating delimiters such as whitespace,
commas, and periods as split points to break the text into tokens.
For example, consider the sample sentence: “The food here is
delicious!” This sentence will be split into the following tokens
by treating whitespace and punctuation as delimiters: [“The,”
“food,” “here,” “is,” “absolutely,” “delicious,” “!”]

Different tokenization schemes can be employed depending
on the language of the text. For English text, punctuation marks
and whitespaces are commonly used as delimiters for splitting
into tokens. Using punctuation/whitespace delimited tokeniza-
tion, the raw input text is converted into tokens. These tokens
are then translated to numerical embedding vectors. More
advanced tokenization techniques can handle aspects such as
contractions and abbreviations based on linguistic rules specific
to the language. Further details are provided comparing different
tokenization schemes:

1) Word Tokenization: Simple tokenization based only on
whitespaces and punctuation.

2) Subword Tokenization: Splits words into subwords using
morphology, maintaining meaning.

3) Character Tokenization: Breaks text into individual
characters as tokens.

4) Linguistic Tokenization: Uses linguistic grammar rules
and dictionaries for context-aware token splitting, espe-
cially for languages such as Chinese.

While punctuation/whitespace tokenizes well for informal
social media text, linguistic rules provide robustness for com-
plex grammar and spellings. Subword encoding gives a mid-
ground, preventing out-of-vocabulary terms. The optimal
scheme is task and language-dependent

x ¼ ðx1, x2, :::, xnÞ: (1)

where n is the total number of tokens extracted from the input
text, and xi denotes an individual token.

Once tokenization splits the text into discrete tokens, each
token xi needs to be converted into a numerical vector represen-
tation vi before it can be processed by machine learning algo-
rithms. This numeric encoding of tokens is referred to as
embedding.

The XSA framework could be extended with several special-
ized techniques to address common special cases in social media
text. A preprocessing step using a dedicated model trained on
labeled sarcastic tweets could be incorporated into the sentiment
analysis pipeline for sarcasm detection. The sarcasm probability
could then be used as an additional feature or to adjust sentiment
scores. Emoji handling could be improved through emoji-to-text
conversion using existing dictionaries or by training special
embedding vectors for emojis to capture their sentiment conno-
tations. These emoji embeddings could then be integrated with
word embeddings in the input representation. To tackle multilin-
gual mixing, the framework could employ language detection
algorithms to identify primary and secondary languages in each
input text, then utilize language-specific pretrained embeddings
or multilingual models for processing mixed-language inputs.
Context-aware processing could be enhanced by implementing
attention mechanisms capable of capturing long-range depen-
dencies, which is crucial for understanding sarcasm and mixed-
language expressions. Data augmentation techniques could also
generate synthetic examples of sarcastic, emoji-rich, and multi-
lingual texts, improving model robustness during training. By
implementing these extensions, the XSA framework would be
better equipped to handle the complexities of social media text,
potentially enhancing both sentiment analysis accuracy and the
quality of generated explanations.

Embedding maps each token xi to a dense vector vi 2 R
d

where d represents the embedding dimension. The numerical
vector vi encodes semantic and syntactic properties of the token
within the text.

The embedding size d encodes semantic complexity, with
higher values capturing finer relationships at the cost of higher
dimensionality. This dimensionality impacts model complex-
ity—larger d leads to more parameters and computations. Typi-
cal values range from 100 to 1000, depending on dataset size
and language complexity. Optimization is necessary to balance
representational power and efficiency.

Various embedding techniques can be utilized such as word2-
vec, global vectors for word representation, and BERT [35].
Each technique encodes information about the token into the
d-dimensional vector differently based on its approach. The
choice of embedding method depends on factors such as size of
labeled training data available and complexity of the sentiment
prediction model.

Applying embedding on each token generates the numeric
sequence

xemb ¼ ðv1, v2, :::, vnÞ (2)

where vi 2 R
d is the embedded vector corresponding to token

xi. This numerically represented sequence xemb serves as the
input to the sentiment prediction model.

The raw text is preprocessed into a vectorized sequence xemb

through tokenization which extracts discrete tokens, followed
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by embedding which encodes the tokens numerically. This
numeric representation xemb can then be effectively processed
by machine learning algorithms for sentiment analysis. The pre-
processing steps transform the raw textual data into a representa-
tion suitable for the prediction model.

B. Sentiment Prediction Model

The sentiment prediction model is the core component of the
XSA framework responsible for analyzing the textual input and
generating the predicted sentiment label, which can be repre-
sented as follows:

fsentiment : xemb ! ŷ (3)

where ŷ is the sentiment label predicted by the model for the
given text.

The model fsentiment can be instantiated using any suitable
supervised machine learning or deep learning architecture. Some
commonly used options include logistic regression, naive Bayes,
SVM, CNN, recurrent networks such as long short-term memory
(LSTM) network, and transformer networks such as BERT [36].

All these models need to be trained in a supervised manner on
a dataset containing text examples labeled with their associated
sentiment. This training dataset can be denoted as follows:

D ¼ ðxi,yiÞNi¼1 (4)

where D represents the entire training dataset comprising N
examples, xi refers to the ith textual input, and yi is the corre-
sponding sentiment label for that text sample.

The model is trained by minimizing a loss function L that
compares the predicted sentiment ŷi with the ground truth senti-
ment label yi for each training example. Cross-entropy loss is
commonly used as the objective function for sentiment classifi-
cation models. The loss is optimized over multiple iterations to
learn the optimal parameters h� of the model

h� ¼ argminh
X
ðxi,yiÞ 2 DL fsentiment xi;hð Þ,yið Þ: (5)

This results in an optimized sentiment prediction model
fsentiment xi;hð Þ that can be applied on new unlabeled text inputs
to predict their most likely sentiment label ŷ.

C. Intrinsic Explainability Models

The XSA framework employs simple yet intrinsically inter-
pretable machine learning models to provide basic explanations
for the predictions made by the sentiment model. These glass-
box models include:

1) Linear Models: Linear classifiers such as logistic regres-
sion can be used to explain the predicted sentiment through
importance weights assigned to input tokens based on the
learned model parameters. Specifically, the weight matrix W
learnt by logistic regression indicates the influence of each input
token toward predicting a particular sentiment class.

For an input xemb 2 R
n�d, the prediction is made as follows:

ŷ ¼ softmaxðWxembþ bÞ (6)

where W 2 R
C�d is the weight matrix with C being the number

of sentiment classes, and b 2 R
C is the bias vector.

By examining the magnitudes of the weights in W, users can
gain insights into how the model works and identify tokens that
are more influential in determining the positive or negative sen-
timent. For instance, a positive weight could signify the token
contributes to a positive sentiment, while a negative weight sug-
gests the token contributes more to a negative sentiment
prediction.

Thus, linear models provide basic explainability by revealing
input tokens deemed important by the model through the learned
weight parameters. However, they tend to have lower predictive
accuracy for sentiment analysis than nonlinear models.

2) Decision Trees: Decision trees work by recursively split-
ting the textual input space based on learned decision rules at
internal nodes which finally lead to sentiment classification out-
comes at the leaf nodes. Starting from the root node, the input
text is assessed against the split rules at each internal node to
traverse down a path until a leaf node is reached indicating the
predicted sentiment class.

For instance, a sample decision tree for sentiment analysis
could have rules such as

If word_count< 15 goto Node 1 else Node 2
…

Node 1: Positive sentiment
Node 2: Negative sentiment
By tracing the path of triggered rules from root to leaf, intrin-

sic explanations for the predicted sentiment label can be
obtained based on the input textual attributes present in the split
rules along the path. However, as decision trees get larger in
depth, interpreting them can become more difficult for users.

3) Rule-Based Models: Rule-based models explicitly model
conditional rules to map input text to sentiment predictions. The
rules have the following structure.

If {condition(s) on input tokens} Then {sentiment prediction}
Some sample rules are
If {POS (terrible)¼¼ ADJ} Then {Negative Sentiment}
If {DEP (food, terrible) ¼¼ amod} Then {Negative

Sentiment}
If {POS (amazing) ¼¼ ADJ} and {DEP (ambiance, amaz-

ing)¼¼ amod} Then {Positive Sentiment}
Here POS andDEP refer to parts-of-speech and dependency rela-

tions between tokens. The conditions check for insightful textual
attributes while the prediction consequent assigns a sentiment label.

These simpler models contribute significantly to the XSA
framework’s sentiment analysis capabilities. They provide inher-
ently interpretable predictions, making the decision-making pro-
cess more transparent to users. By serving as baselines, they help
quantify performance gains of more advanced techniques. Linear
models and decision trees can highlight influential input features,
providing initial insights into model reasoning. Rule-based models
have the advantage of encoding domain knowledge, improving
robustness for certain linguistic nuances that statistical models
might miss. By combining predictions from these simpler models
with more complex ones, XSA generates multi-faceted explana-
tions that may capture different aspects of expressed sentiment.
This approach allows the framework to leverage the strengths of
both simple and complex models, enhancing overall explainability
without sacrificing performance.
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D. Posthoc Explainability Modules: Proposed imVSG-
LIME Model

The posthoc modules in XSA leverage advanced techniques
to provide explanations by treating the sentiment model as a
black box. The isometric mapping (Isomap) imVSG represents
a virtual sample generation technique that is grounded in feature
representation principles, which leverages the manifold learning
technique of isometric mapping to reduce the dimensionality of
the dataset [37]. Subsequently, interpolation techniques along
with the utilization of the extreme learning machine [38] are
employed to create virtual samples. The innovative method has
the capability to produce locally robust and densely virtual sam-
ples. Building upon this concept, imVSG is integrated into the
LIME framework as a replacement for the random perturbation
sampling method for sample generation. Additionally, hierarchi-
cal clustering is applied to amalgamate and select representative
samples for training the explanatory model.

The Isomap virtual sample generation technique in imVSG-
LIME is implemented through a series of steps designed to pre-
serve the intrinsic geometry of the data. Initially, Isomap is
applied to reduce the dimensionality of the input data while
maintaining its underlying structure. This process involves con-
structing a k-nearest neighbor graph in the reduced dimensional
space, representing the data’s local geometry. The shortest path
distances on this graph are then computed, approximating the
geodesic distances on the manifold. Classical multidimensional
scaling is applied to this geodesic distance matrix, resulting in a
low-dimensional embedding that preserves these distances. New
virtual samples are generated within this embedded space by
interpolating between existing data points, ensuring they lie on
or close to the learned manifold. Finally, these generated samples
are mapped back to the original feature space using techniques
such as the Nystrom or neural network-based approaches. This
comprehensive process ensures that the generated virtual sam-
ples maintain the intrinsic structure of the original data, leading
to more reliable local explanations in the LIME framework.

The primary objective of LIME involves training a straight-
forward and interpretable model within the vicinity of the target
instance for the purpose of explaining a specific prediction [39].
The explanation is derived by analyzing the coefficients within
the explanatory model. To facilitate the training of the explana-
tory model, it is necessary to generate a batch of simulated data
within the proximity of the instance being explained. LIME
employs a random perturbation sampling technique to generate
simulated data, but this method has certain drawbacks. First, the
samples generated using random perturbation tend to be widely
dispersed, and some may deviate from the original data distribu-
tion. This deviation has a significant negative impact on the
local fidelity of the explanatory model. Reduced local fidelity
implies that the explanation method lacks reliability. Then, due
to the inherent randomness of this approach, repeated experi-
ments conducted under identical conditions for the same
instance being explained will yield different sets of samples.
This variability introduces instability into LIMEs explanations.
An unstable interpretation results in explanations that need more
plausibility.

For a given black-boxmodel f and an instance x to be explained,
imVSG-LIME produces explanations through the following steps:

1) Neighbor Selection: The imVSG generation model
requires a certain number of base samples as input, while the
samples generated by the model should be as dense as possible.
Therefore, m samples that are closest to the instances to be
explained are selected from the training set by calculating the
Euclidean distance, as follows:

Neighbors ¼ argmin
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðxi − xtrainiÞ2

s
(7)

where xi is the featur of the instance x, xtraini is the features of
the training instances, and m is the number of nearest neighbors
to select.

2) Sample Generation: Set the number of samples to be gen-
erated, and then generate the specified number of samples by
using the nearest-neighbor data selected as input to the imVSG
model. This stage uses the imVSG model to generate virtual
samples based on the neighbors identified in the previous step.
A new sample z is generated by interpolating between neighbors
xn using weight a

z¼
Xm
n¼1

anxn: (8)

The weights a reflect the manifold’s intrinsic geometric prop-
erties and ensure that the virtual samples lie on or near the mani-
fold learned by Isomap.

3) Sample Selection: The goal of this step is to select a repre-
sentative data point from the virtual sample select representative
data points. Given a minimum sample size threshold, the
method is able to adaptively select for the to-be-interpreted
instance the suitable data points for the instance to be inter-
preted, thus determining the density of its neighborhood. Once a
set of virtual samples Z is generated, representative samples are
selected using hierarchical clustering. This can be represented
by a clustering algorithm H that partitions Z into clusters C and
selects representative samples from each cluster

Cj ¼ HðZÞ, j¼ 1;2, :::,J (9)

where J is the number of clusters formed, and representative
samples are chosen by identifying the centroid or medoid of
each cluster Cj.

4) Weighting Function: The weighting function p assigns
weights to each of the virtual samples based on their proximity
to the instance x, which can be represented as

Wz ¼ pðz, xÞ ¼ eð−c�dðx,zÞ
2Þ (10)

where Wz is the weight for a virtual sample z, dðx, zÞ is the dis-
tance between x and z, and c is a hyperparameter that controls
the width of the neighborhood.

5) Feature Selection: The feature selection step aims to iden-
tify the most relevant features F that contribute to the prediction
of the classifier f . This can be done using a feature selection
technique such as forward selection, backward elimination, or a
regularization method.
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6) Explanation Model Training: The final step involves train-
ing a linear regression model g using the selected virtual sam-
ples Z, their corresponding weights W, and the features F. The
model is trained to approximate the classifier f within the neigh-
borhood defined by Z

gðZÞ ¼ b0þ
XK
k¼1

bkFk (11)

where b0 is the intercept, bk is the coefficient for feature Fk, and
K is the number of selected features.

The pseudo-code of the proposed imVSG-LIME model is
shown in Algorithm 1.

E. Counterfactual Explanations

This section presents a novel approach that seamlessly inte-
grates interpretability and explainability into sentiment analysis
on social media platforms. The method employs a divide-and-
conquer strategy to segment the search for counterfactual
explanations into local feature combinations. It constructs a
local greedy tree, representing interpretability, and selects opti-
mal feature combination paths based on predetermined rules for
explainability [40]. These selected paths are then interlinked to
populate the feature space of the counterfactual explanation.

1) Feature Division and Local Greedy Tree Construction:
The first step involves segmenting the feature space into more
manageable subspaces. This can be mathematically represented
as dividing the feature space F into disjoint local feature sets
F1,F2, :::,Fn. For each local feature set Fi, we construct a local
greedy tree Ti which evaluates the LRS for every possible fea-
ture combination C within Fi

LRSðCÞ ¼
XjCj
j¼1

qðFij,S,PÞ (12)

where q is a scoring function that assesses the importance of a
feature Fij in distinguishing between the prototype sample P and
the query sample S, and jCj is the cardinality of the feature
combination.

2) Optimal Feature Selection Path Identification: An optimal
path is a sequence of features Path¼ ff1, f2, :::, fmg chosen from
the local greedy tree based on a set of rules that maximize the

LRS while considering the computational complexity and mem-
ory constraints. This path dictates the route taken through the
feature space to construct the counterfactual explanation.

3) Counterfactual Explanation Assembly: Using the paths
determined from the local greedy trees, a comprehensive coun-
terfactual explanation is assembled by combining features from
prototype sample P and query sample Q. The final counterfac-
tual explanation CE is constructed iteratively, where CE½i� is
determined by

CE½i� ¼ P½i� if Path ½i� ¼ 0

Q½i� if Path ½i� ¼ 1:

(
(13)

4) Algorithm Complexity Management: As the feature space
grows, the complexity of the greedy tree can increase exponen-
tially. To manage this, a balance between local feature represen-
tation and the computational cost is maintained. This can be
formalized using a complexity function UðTiÞ that assesses the
complexity of a local greedy tree Ti

UðTiÞ ¼ k � jFij þ l � nodesðTiÞ: (14)

where k and l are weighting parameters, jFij is the number of
features in the local set Fi, and nodesðTiÞ is the number of nodes
in the local greedy tree Ti. The objective is to minimize UðTiÞ
while maximizing LRS.

The generative link tree method employs several strategies to
balance feature representation and computational cost when
generating counterfactual explanations. It begins by segmenting
the feature space into smaller subspaces, which reduces the
computational complexity of searching for optimal feature com-
binations and allows for parallel processing. The method
dynamically adjusts the depth of each local greedy tree based on
the feature subspace’s complexity, allowing for deeper trees in
complex subspaces and shallower ones in simpler areas. To fur-
ther optimize computation, pruning strategies are employed to
eliminate less promising branches early in the generation pro-
cess, effectively reducing the search space without significantly
compromising explanation quality. The local feature representa-
tion score is computed incrementally as features are added to the
combination, enabling early stopping when score improvements
fall below a set threshold. The method implements a caching
mechanism for intermediate results and frequently accessed fea-
ture combinations to avoid redundant computations, especially
when generating multiple counterfactuals for related queries.
Finally, a tunable tradeoff parameter is introduced to explicitly
control the balance between feature representation quality and
computational cost. This comprehensive approach allows the
generative link tree method to balance thorough feature repre-
sentation and manageable computational costs, facilitating the
efficient generation of high-quality counterfactual explanations.

During feature combination selection, the inclusion of more
features simultaneously aims to represent global features of the
sample, thus enhancing interpretability. However, the increase
in feature dimension may exponentially escalate the complexity
of the greedy tree, posing challenges like memory overflow and
prolonged explanation generation times. To address this, feature
division is implemented. This process ensures local feature

Algorithm 1: imVSG-LIMEModel.
Input: Training set Xtrain, classifier f , instance to be

explained x, length K, number of samples N, weighting
function p

Output: Explanation model g
01: Initialize Y ¼ �f g,W ¼ �f g, Z ¼ �f g, F ¼ �f g
02: Neighbors¼ SelectNeighbors x,Xtrainð Þ
03: Z ¼ imVSG Neighbors,Nð Þ
04: Z ¼ DataSelection x, f ,Z, tð Þ
05: W ¼W S p zð Þ
06: Y ¼ Y S f zð Þ
07: F ¼ FeatureSelection Z,Kð Þ
08: return g¼ LinearRegression Z,Y ,W,Fð Þ
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representation while considering the cost of generating counter-
factual interpretations. Algorithm 2 details the steps for generat-
ing counterfactual explanations from the feature selection path.

The push �ð Þ operation in Algorithm 2 is used to add elements
to a specific list. This operation provides control over the origin
of the features that ultimately populate the counterfactual inter-
pretation, facilitating the selection of features from both the pro-
totype and query samples, which contributes to both
interpretability and explainability.

F. Visual/Verbal Explanations

Visual explanations present the important tokens and their
importance scores Ii visually using highlighting or plots, allow-
ing users to seamlessly identify key text snippets contributing to
the predicted sentiment [41].

Verbal explanations generate natural language justifications
for predictions using a trained generator model

expverbal ¼ fgeneratorðexpunifiedÞ (15)

where fgenerator is an LSTM network that takes as input the uni-
fied explanation vector expunified and generates sentences
explaining the prediction in natural language.

For example, for the text “The food here is delicious!”, the
verbal explanation could be

“The positive sentiment is due to the descriptive word
“delicious” applauding the food quality.”

Verbal explanations enhance human understandability of the
model’s predictions. The generator can potentially provide cus-
tomized explanations based on user backgrounds using condi-
tional training.

By supporting both visual and verbal explanations, XSA
caters to different user needs and preferences for interpreting
model predictions.

The XSA framework employs a multifaceted approach to trans-
form numerical outputs into human-understandable explanations.

At its core, the model assigns importance scores to input features
based on their contribution to the final sentiment prediction, utiliz-
ing techniques such as LIME and SHAP. These scores are then
visualized through color coding or text highlighting, creating an
intuitive representation of the model’s focus. To further enhance
interpretability, the framework includes a natural language genera-
tion module that converts numerical scores and predictions into
coherent statements, explaining the reasoning behind the sentiment
analysis. The system also generates contrastive explanations, pre-
senting “what-if” scenarios to illustrate how small input changes
could alter the sentiment prediction. Numerical confidence scores
are translated into qualitative statements, giving users a clear sense
of the model’s certainty.

The comprehensive set of explanations enabled by XSA facili-
ties opening the black box of sentiment analysis models. Users
can validate model predictions based on the presented explana-
tions to make informed decisions regarding their appropriateness
for the application context. This builds transparency and trust.

Overall, the XSA framework diagram is shown in Fig. 1.

IV. EXPERIMENT AND RESULTS ANALYSIS

A. imVSG-LIME Model

This section first conducts experiment to analyze the efficacy of
the proposed imVSG-LIME model of XSA framework in
enabling explainability specifically for sentiment analysis focused
on diverse social media data.

1) Dataset
2) For this experiment, we employ a carefully curated data-

set of tweets systematically sampled from the Twitter
platform [2]. The dataset is for aspect-based sentiment
analysis, which delves into the nuanced sentiments
expressed in the text concerning specific aspects or cate-
gories. This dataset comprises approximately 15 000
tweets, each meticulously annotated for sentiment polar-
ities. The tweets in this dataset are categorized based on
their sentiment towards various aspects commonly dis-
cussed in restaurant reviews.

Each tweet in the dataset is carefully labeled with one of three
possible sentiment polarities: positive, negative, or neutral.
These labels provide a detailed and granular understanding of
how users on Twitter perceive and express their opinions regard-
ing different aspects of restaurant experiences.

To ensure robust model evaluation, we divide the dataset into
three distinct subsets: training, validation, and test sets. The total
is 15 000 tweets, 11 000 tweets for the training set, and is used
for training the imVSG-LIME model, providing the model with
diverse examples to learn from and adapt to different nuances in
Twitter sentiment data. The validation set includes 2000 tweets
and is used to fine-tune model hyperparameters and assess their
performance during training. It helps in preventing overfitting
and optimizing model generalization. The test set includes 2000
tweets for evaluating the model’s performance after training,
providing a realistic evaluation of how well the model can gen-
eralize to unseen data and make sentiment predictions based on
aspect-focused analysis.

Algorithm 2: Counterfactual Explanations Filling.
Input: P,Q, feature selection path sequence PathList
Output: Counterfactual explanations CE
01: Path,CE ½ �, ½ �
02: // Splice feature selection path
03: for P in PathList do
04: Path path:push pð Þ
05: end for
06: // Counterfactual explanation filling
07: for i 1 to Length pathð Þ do
08: if path i½ � ¼¼ 0
09: CE:push P i½ �ð Þ
10: else
11: CE:push Q i½ �ð Þ
12: end if
13: end for
14: return CE
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The key mathematical parameters used in the experiments
with values are listed in Table I below:

The parameters c, k, and l were set by tuning them in a grid
search over values {0.1, 0.3, 0.5, 0.7, 0.9} using fivefold cross-
validation. The values resulting in optimal performance on the
validation set were selected.

1) Evaluation Metrics:
a) Aspect sentiment F1 score measures accuracy of pre-

dicted sentiment for each aspect based on the F1
score for positive and negative classes. The accuracy
measures how often the model’s sentiment predic-
tions match the true sentiment labels. F1 score calcu-
lates the harmonic mean of precision and recall for
the positive and negative sentiment classes.

b) Explanation Plausibility: It evaluates how credible
the explanations are for social media sentiment pre-
dictions based on user surveys on a 1–5 scale.

c) Explanation Faithfulness: It quantifies agreement
between explanations and model predictions for
social media sentiment using Pearson correlation
between explanation importance scores and predic-
tion probabilities.

d) User Trust Score: It captures how much users trust
the model’s sentiment predictions on social posts
based on its explanations, from 1 to 5 based on user
surveys.

We use BERT [35], LIME-HPO [30], KGDL-SA [31],
VADER-LIME [32], SHAP-XGBoost [33], AEC-LSTM [34],

BiERU [24], ABCDM [25], and the proposed imVSG-LIME
model of XSA framework for comparison. Table II shows the
aspect sentiment analysis results on the Twitter dataset.

Next, we use a dataset of YouTube comments labeled for sen-
timent analysis, which comprises 240 000 comments labeled
with sentiment polarity (positive, negative). Specifically, out of
the 240 000 comments, 192 000 comments are allocated for
training the models, 24 000 comments are used for validation
during the model development process, and another 24 000
comments are reserved for final testing and performance evalua-
tion. This split enables them to train the models using extensive
data while maintaining separate subsets for model selection and
evaluation. The comments discuss diverse topics, including
sports, entertainment, politics, products, and movies. Table III

Fig. 1. XSA framework.

TABLE I
MATHEMATICAL PARAMETER SETTINGS

Parameter Description Value

c Neighborhood width 0.5
k Weights sample

complexity
0.3

l Weights tree complexity 0.7
K Number of features for

explanation model
10

N Number of virtual samples
generated

1000

m Number of nearest
neighbors for imVSG

100
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shows the document sentiment analysis results on the YouTube
comments dataset.

As can be seen from Tables II and III, the proposed imVSG-
LIME model likely produces higher quality explanations, as
indicated by the higher explanation plausibility scores in the
results, meaning that the model’s reasoning is more understand-
able to users, which is essential for trust and transparency. With
high scores in explanation plausibility and user trust, the pro-
posed imVSG-LIME model fosters greater trust among users.
This is critical for applications where understanding model pre-
dictions affects decision-making processes. While the proposed
imVSG-LIME model’s superior F1 scores across various
aspects of sentiment analysis suggest that it provides explana-
tions while maintaining high prediction accuracy.

B. Generative Link Tree

To verify the data fidelity of counterfactual explanations gen-
erated by the generative link tree method, we propose data fidel-
ity metric. Counterfactual explanations should have high fidelity
with respect to the original data, and should comply with valid-
ity and pan-adaptability in experiments. Validity means that the
categories of counterfactual explanations should be of the
desired categories, and the experiments should rely on the vali-
dation model, i.e., the model on which the generated counterfac-
tual explanations are based, and its categorization results of the
counterfactual explanations should be of the desired categories.
A classification model that is different from the validation model
used to generate the counterfactual explanations is called a
“third-party model,” and its classification of counterfactual

explanations should have a high classification accuracy,
F1-score, and other metrics. Since we need to rely on the valida-
tion model for validation in the generation process, and screen
out the counterfactual explanations classified by the validation
model into the desired categories, the counterfactual explana-
tions can usually satisfy the validity under the condition of
ensuring the validation model remains unchanged. For the pan-
adaptability, this article proposes the evaluation metric of data
fidelity, which is defined as follows:

DF ¼
Pn

i¼1wi � piPn
i¼1wi

(16)

where wi is the corresponding weight of the third-party model,
expressed as its accuracy in classifying the original data, mea-
sured as F1-score. pi denotes the degree to which the third-party
model recognizes the truthfulness of the counterfactual explana-
tions of the data, expressed as the degree to which the
third-party model accurately classifies the counterfactual
explanations, measured as F1-score.

Intuitively, DF evaluates how accurately the third-party mod-
els can classify the generated counterfactual explanations. The
weight wi controls the relative importance assigned to each
third-party model based on its competence in classifying real
samples. A higher DF implies counterfactual explanations
closely reflect true data distribution since even external third-
party models not involved in their generation can categorize
them accurately. This demonstrates the broader credibility of the
counterfactual explanations.

TABLE II
ASPECT SENTIMENT ANALYSIS RESULTS ON TWITTER DATASET

Model
Service

F1
Food
F1

Staff
F1

Price
F1

Ambience
F1

Waiting
F1

Explanation
Plausibility

Explanation
Faithfulness

User Trust
Score

BERT 0.784 0.835 0.736 0.712 0.767 0.773 - - 3.126
LIME-HPO 0.768 0.819 0.713 0.693 0.748 0.757 3.178 0.671 3.315
KGDL-SA 0.786 0.824 0.765 0.704 0.759 0.749 3.554 0.628 3.847
VADER-LIME 0.753 0.803 0.719 0.728 0.766 0.715 3.668 0.683 3.908
SHAP-XGBoost 0.775 0.821 0.722 0.741 0.752 0.76 3.526 0.722 3.744
AEC-LSTM 0.809 0.857 0.767 0.799 0.803 0.779 4.012 0.825 3.815
BiERU 0.812 0.884 0.778 0.846 0.811 0.789 4.216 0.799 3.946
ABCDM 0.836 0.903 0.826 0.839 0.824 0.866 4.268 0.857 4.257
imVSG-LIME (XSA) 0.853 0.922 0.918 0.857 0.879 0.891 4.334 0.916 4.841

TABLE III
DOCUMENT SENTIMENT ANALYSIS RESULTS ON YOUTUBE COMMENTS

Model Accuracy F1
Explanation
Plausibility

Explanation
Faithfulness

User Trust
Score

BERT 0.825 0.832 - - 3.276
LIME-HPO 0.836 0.863 3.457 0.785 3.648
KGDL-SA 0.877 0.862 3.205 0.716 3.479
VADER-LIME 0.879 0.864 3.403 0.791 3.603
SHAP-XGBoost 0.903 0.882 3.598 0.805 3.267
AEC-LSTM 0.916 0.898 4.012 0.864 4.295
BiERU 0.921 0.897 4.215 0.917 4.365
ABCDM 0.905 0.924 4.087 0.924 4.624
imVSG-LIME (XSA) 0.928 0.937 4.561 0.932 4.789
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This section uses Twitter, YouTube comments, Yelp, and
Amazon comments datasets to generate counterfactual explana-
tions by randomly selecting query samples, repeating the same
experiments in ten groups to take the mean, target coding the cat-
egorical features in the samples, and generating counterfactual
explanations by using the generative link tree and baseline meth-
ods, respectively. Using the data fidelity proposed in this article
as the evaluation metric, several sets of experiments are con-
ducted from the perspectives of generating multiple counterfac-
tual explanations for single query samples and generating
multiple counterfactual explanations for multiple query samples,
respectively. In these experiments, the features in the YouTube
comments dataset are divided into two groups of four, and the
features in the Twitter dataset are divided into four groups of
five. Additionally, to explore the effect of different granularity of
segmentation on the data fidelity, we also conduct experiments
with different segmentation on Twitter dataset which has a larger
number of features.

The XSA framework employs a versatile approach to handle
the diverse characteristics of different social media platforms.
For each platform, custom preprocessing steps are implemented
to address unique features, such as handling hashtags and men-
tions on Twitter, processing video metadata on YouTube, or
dealing with structured review data on Yelp and Amazon. The
framework dynamically adjusts its vocabulary and embedding
space to account for platform-specific jargon and expressions
through transfer learning techniques. Length normalization tech-
niques are incorporated into the feature extraction process to
address varying text lengths across platforms. For platforms
with rich multimodal content such as YouTube, additional mod-
ules are integrated to process and combine information from
images and videos alongside text. The framework also considers
temporal aspects, accounting for the timing and sequence of
comments or the evolution of conversations over time.
Platform-specific user interaction patterns, such as likes, shares,
and retweets, are incorporated as additional features to provide
context for sentiment analysis.

This article chooses the random forest model as the verifica-
tion model for counterfactual explanations to verify whether the
generated counterfactual explanations are the target category.
Additionally, commonly used machine learning models, such as
decision trees (DT), naive Bayes (NB), and others, are selected
as third-party models to evaluate the data authenticity of coun-
terfactual explanations. The weight of the third-party model is
determined using tenfold cross-validation.

Suppose the classification result of the third-party model on
the counterfactual explanation is regarded as its recognition of
the authenticity of the counterfactual explanation data. In that
case, the weight can be understood as the authority of the corre-
sponding “judge.” After tenfold cross-validation, this study
determines the weights of five third-party models, and the
results are shown in Table IV.

In this article, the Dice framework [42] is chosen as the baseline
approach, and comparative experiments are conducted from the
perspective of generating multiple counterfactual explanations for
a single query sample and multiple counterfactual explanations for
multiple query samples. The Dice framework is a methodology

used in XAI to generate counterfactual explanations. In this article,
five to ten counterfactual explanations are generated for a single
query sample, and a third-party model is utilized to verify the
authenticity of their data. The experimental results are shown in
Fig. 2(a)–2(e), which give the F1-scores of the counterfactual
explanations categorized by the different models.

In Fig. 2, Y denotes the YouTube comments dataset, and the
number denotes the number of counterfactual interpretations
generated, e.g., “Y5” denotes that a query sample in the You-
Tube comments dataset generates five counterfactual explana-
tions. Dice-r, Dice-g, and Dice-k denote the three machine
learning based methods provided in the Dice framework.
According to (18), the data fidelity of counterfactual explana-
tions generated by different methods is obtained, as listed in
Table V, and the bolds indicate the highest data fidelity under
the corresponding tasks.

As observed in Fig. 2, the proposed GLT method in the XSA
framework achieves significantly higher F1 scores across multi-
ple third-party models. The consistent superiority in F1 scores
across third-party models exhibits the ability of the GLT method
to produce counterfactual explanations that closely reflect the
actual data distribution, enabling even models not involved in
the counterfactual generation process to accurately classify the
explanations, demonstrating pan-adaptability. In contrast, the
lower F1 scores achieved by DICE method variants indicate that
the counterfactuals deviate more from the actual data, leading to
poorer sentiment identification by external third-party models.
Overall, the results validate the capability of the proposed
approach within the XSA framework to generate counterfactual
explanations that reliably capture authentic sentiments, bolster-
ing trust in the system. The high pan-adaptability opens up
broader reliable utilization of the counterfactuals beyond the
original verification model.

In addition, this study conducts experiments from the per-
spective of generating counterfactual explanations for multiple
query samples. Five query samples were randomly selected ten
times, ten counterfactual explanations were generated for each
sample, and the data authenticity of these counterfactual explan-
ations was verified. The F1-score of the third-party model classi-
fying counterfactual explanations is shown in Fig. 3(a) and 3(b).
By analyzing the F1 scores, we can gain insights into the effec-
tiveness of the counterfactual explanations and the reliability of
the employed third-party classification model. This evaluation
helps assess the overall quality of the counterfactual generation
process and the extent to which the generated explanations align

TABLE IV
VALIDATION WEIGHTS OF THE THIRD-PARTY MODEL

Model
YouTube
Comments
Dataset

Twitter
Dataset

Yelp
Dataset

Amazon
Comments
Dataset

KNN 0.74 0.67 0.71 0.74
MLP 0.76 0.68 0.73 0.75
SVM 0.75 0.70 0.74 0.73
DT 0.7 0.65 0.69 0.68
NB 0.74 0.71 0.74 0.72
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with the underlying decision-making mechanisms of the
machine learning model being explained.

The high data fidelity of the proposed generative link tree
method within the XSA framework suggests that this model is
capable of accurately capturing and reflecting the true sentiment
as expressed in the data. High data fidelity in the results of the
generative link tree method can lead to increased trust from
users and stakeholders. When users can see that the model’s pre-
dictions closely match the real-world data, they are more likely
to trust and rely on the system’s outputs. A model that accu-
rately reflects data realities makes its inner workings more inter-
pretable. When the model’s predictions are highly faithful to the
data, it is easier to understand why the model makes certain
decisions, thereby improving explainability. Decision-makers
can use the insights derived from a high data fidelity model with
confidence, knowing that the sentiments analyzed reflect actual
opinions and feelings expressed in the source material. For
applications that interact directly with users, such as customer
feedback analysis, high data fidelity ensures that the sentiment
analysis aligns with users’ intended meanings, leading to a bet-
ter overall user experience. High data fidelity means that any
discrepancies between the model’s predictions and actual senti-
ments are likely due to the model itself rather than the data. This
clarity can help developers focus their efforts on refining the
model for even better performance. In XAI, an accurate model
such as generative link tree reduces the risk of misrepresenting

Fig. 2. Classification results of third-party models. (a) KNN. (b) MLP. (c) SVM. (d) DT. (e) NB.

TABLE V
DATA FIDELITY OF MULTIPLE COUNTERFACTUAL EXPLANATIONS

Methods Y5 T5 Y6 T6 Y7 T7 Y8 T8 Y9 T9 Y10 T10

Dice-r 0.471 0.620 0.343 0.631 0.384 0.621 0.363 0.546 0.552 0.623 0.476 0.523
Dice-g 0.712 0.911 0.565 0.916 0.766 0.955 0.784 0.729 0.726 0.905 0.765 0.884
Dice-k 0.653 0.922 0.723 0.952 0.692 0.964 0.717 0.970 0.776 0.954 0.678 0.953
Generative
link tree
(XSA)

0.984 0.985 0.985 0.986 0.932 0.986 0.986 0.986 0.896 0.992 0.891 0.991

(a)

(b)

Fig. 3. Classification results. (a) YouTube comments dataset. (b) Twitter
dataset.
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sentiments, which can be crucial for ethical AI practices, ensur-
ing that all voices are heard and accurately represented. In sum-
mary, the high data fidelity of the generative link tree method
within the XSA framework contributes significantly to the effec-
tiveness and reliability of sentiment analysis applications, mak-
ing them more useful for both end-users and model developers
in the pursuit of clear, fair, and actionable sentiment insights.

The results of data fidelity after weighted are listed in Table VI.

V. CONCLUSION

This article focuses on improving explainability in sentiment
analysis models for social media platforms using XAI. We pro-
pose the XSA framework incorporating intrinsic and posthoc
XAI methods to generate explanations for model predictions.
Specifically, to address the lack of local fidelity and instability
in interpretations caused by LIMEs random perturbation sam-
pling, we introduce a new model-agnostic interpretation
approach, utilizing imVSG based on manifold learning instead
of LIME’s random sampling to generate more reliable synthetic
samples for local explanation. Additionally, we present a gener-
ative link tree method to create high-fidelity counterfactual
explanations by leveraging training data examples and a divide-
and-conquer greedy strategy. Experiments on benchmark social
media datasets demonstrate XSAs ability to provide local token
and aspect-level explanations while maintaining competitive
sentiment analysis performance. Analyses reveal enhanced
model interpretability and improved user trust in the system.
Overall, the results highlight the potential of XAI techniques to
open the black box of modern deep learning sentiment models
for social media and improve their adoption by building trust.
The proposed XSA framework is valuable for developing accu-
rate, transparent, and trustworthy sentiment analysis systems.

However, some limitations of this study present opportunities
for future work. First, we focus only on benchmark social media
datasets from limited platforms. Further evaluation of diverse
social media sources can help generalize XSAs benefits. Sec-
ond, we consider only English language sentiment analysis.
Expanding to other languages such as Chinese and Hindi, is an
important future direction. Finally, studying the effects of
diverse explanation styles and visualizations on user trust and
mental models can further optimize XSAs interface for human
consumption. To conclude, explainability is essential for trust-
worthy sentiment analysis on social media. As this work demon-
strated, leveraging XAI techniques can help open the black box
of modern deep learning models to build transparent and fair

sentiment analysis systems. The proposed XSA framework
offers a valuable step in this direction. Further research can
focus on generalizing XSA across languages and diverse social
media platforms, optimizing explanations for human mental
models, and combining insights from multiple XAI methods.
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