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Abstract—Vehicular edge computing (VEC) systems face chal-
lenges in providing real-time intelligent transportation services
due to limited computing resources at VEC servers, which lead
to excessive delays or denial of services, especially for latency-
critical tasks. This article proposes an augmented intelligence of
things (AIoT) framework to enable priority-aware task offloading
in VEC for vehicle road cooperation systems, maximizing overall
system rewards under latency constraints. The framework incor-
porates an advanced dynamic resource management mechanism
that adapts to real-time data and optimizes resource allocation
using augmented intelligence models. The joint priority-aware
application offloading and resource optimization problem is
formulated as a constrained Markov decision process, and a
deep Q-network (DQN)-based learning algorithm is employed
to optimize the allocation of communication and computational
resources based on application priorities and real-time chan-
nel/queue state information. Simulation results demonstrate that
the proposed algorithm achieves significant improvements in
weighted carrying capacity, high/low-priority task drop rates,
and high/low-priority task queuing delays under varying over-
all task arrival rates, proportions of high/low-priority tasks,
vehicle density, and task size compared to benchmark schemes.
The proposed AIoT-enhanced DQN-based learning algorithm
advances the field of VEC systems for vehicle road coopera-
tion, offering practical advantages, such as increased efficiency,
reduced latency, and improved resource utilization, ultimately
enhancing user experience and enabling real-world applications
in intelligent transportation systems.
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I. INTRODUCTION

VEHICLE road cooperation aims to exploit advanced
communication technologies and next-generation mobile

Internet to realize dynamic information interaction between
vehicles, humans, and infrastructure [1], [2]. Based on the
collection and fusion of spatiotemporal dynamic traffic data,
vehicle road cooperation systems can enable various intelligent
transportation applications, such as autonomous driving, real-
time traffic monitoring, and collaborative vehicle infrastructure
management [3]. The key enablers underlying vehicle road
cooperation include the Internet of Things (IoT) and aug-
mented intelligence.

Combining IoT and augmented intelligence brings
a new paradigm of augmented intelligence of things
(AIoT) [4], [5], [6]. Augmented intelligence models com-
bine human intelligence and machine learning algorithms to
enhance decision-making processes. This article uses augmented
intelligence models to optimize resource allocation and task
offloading decisions in vehicle road cooperation systems. While
AIoT is a paradigm that combines the power of augmented
intelligence models with the vast data collected by IoT devices to
enable intelligent decision-making and optimization in complex
systems [7], [8], [9]. By leveraging machine learning algorithms
and data analytics, AIoT can process and extract valuable
insights from the heterogeneous data generated by IoT sensors,
actuators, and connected devices. This integration allows for
real-time monitoring, predictive maintenance, and adaptive
control of IoT systems, improving efficiency, reliability, and
user experience [8], [10], [11], [12].

As a key application domain of AIoT, vehicle road coopera-
tion can benefit from AIoT in various aspects [13], [14], [15].
Massive sensors from infrastructure and vehicles can collect
real-time traffic data, such as vehicle trajectories, speed, and
queue length. AIoT associates surrounding vehicles and traffic
participants through vehicle-to-everything (V2X) communica-
tions [16]. With user profile and preference data on smart
devices, plus the global traffic analytics empowered by AIoT,
customized travel recommendations and navigation can be
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realized to improve user experience. For autonomous vehi-
cles, AIoT can gather surrounding traffic data from vehicles,
pedestrians, and infrastructure with ultralow latency V2X
connectivity [17], [18]. Safe and efficient autonomous driving
can be achieved by coordinating autonomous vehicles and
optimizing their paths globally.

Vehicular edge computing (VEC) has emerged as a key
technology to enable real-time traffic analytics by providing
cloud capabilities at the edge of wireless networks [19], [20],
[21], [22], [23]. VEC systems face significant challenges in
providing real-time intelligent transportation services due to
the limited computing resources available at VEC servers.
The cooperative vehicle edge computing system must allocate
limited communication and computing resources smartly to
guarantee reliable and low-latency services for mission-critical
applications [24], [25], [26]. However, as application work-
loads from vehicles and channel conditions between vehicles
and edge servers fluctuate continuously, obtaining optimal
resource management policies is challenging. VEC systems
face significant challenges in providing real-time intelligent
transportation services due to the limited computing resources
available at VEC servers.

While several studies have addressed the challenges of
task offloading and resource allocation in VEC systems,
there remain significant research gaps that require further
investigation. The full local computing (FLC) approach relies
solely on local computation at the VEC server, without
considering the potential benefits of offloading tasks to
nearby vehicles. The joint computation offloading and resource
allocation (JCORA) [27] scheme considers both vehicle to
vehicle and vehicle to roadside-unit offloading modes, but
does not explicitly prioritize tasks based on their criticality.
The dependency-aware task offloading and service caching
(DATOSC) [28] approach formulates the problem as a mixed-
integer nonlinear programming problem, which may face
scalability issues in large-scale VEC systems. The belief-based
task offloading algorithm (BTOA) [29] relies on a vehicle’s
belief about resource and channel conditions, but does not
consider the dynamic nature of the vehicular environment.
The location-aware and delay-minimizing task offloading
(MCMTSO) [30] algorithm optimizes offloading for multiple
time slots in multiple cells, but does not explicitly consider
task priorities. Finally, the cross-layer cooperative offloading
(CLCO) [31] algorithm focuses on rate matching between the
application and MAC layers, but does not fully explore the
potential of augmented intelligence models in adapting to the
dynamic nature of vehicular networks. The proposed approach
in this article introduces several key novelties and technical
contributions that distinguish it from existing studies on task
offloading in vehicle road cooperation systems.

The key contributions of applying AIoT for priority-aware
intelligence in cooperative vehicle edge computing include:
1) a novel system architecture is proposed to seamlessly
incorporate AIoT techniques into cooperative vehicle edge
computing for dynamic workload scheduling based on hetero-
geneous data from end devices (e.g., vehicles and sensors),
edge computing servers, and networks; 2) advanced dynamic
resource management mechanism tailored for vehicle road

TABLE I
SYMBOL DESCRIPTION

Symbol Description Symbol Description

Number of vehicles High-priority task 
weight

Time slot duration Low-priority task 
weight

Task computing 
capacity Peak transmit power

High-priority task 
queue length Bandwidth

Low-priority task 
queue length

High-priority task 
transmission delay

High-priority task 
arrival rate

Low-priority task 
transmission delay

Low-priority task 
arrival rate

Task arrival rate 
regression model

High-priority task 
arrival rate

Vehicle computing 
capability prediction 
model

Low-priority task 
arrival rate

Priority weight 
adjustment function

Peak CPU 
frequency

Threshold for Huber 
loss function

Task input data size Discount factor
Task CPU cycles Trade-off parameter

cooperation systems is presented to maximize overall system
rewards under latency constraints, with augmented intelligence
models self-optimized in real time through historical operation
data; and 3) an offloading strategy learning algorithm based
on double deep Q-network (DQN) is proposed to optimize the
allocation of communication and computational resources.

In the remainder of this article, we first introduce the system
model of the cooperative vehicle edge computing system
in Section II. We then formulate the joint priority-aware
application offloading and resource optimization problem
as a CMDP in Section III. In Section IV, we propose a
deep reinforcement learning algorithm that exploits heteroge-
neous operation data at runtime to obtain adaptive policies
for priority-differentiated application offloading and resource
allocation. Performance evaluation results are presented in
Section V. Finally, Section VI concludes this article.

II. SYSTEM MODEL

Table I includes the main symbols used throughout this
article, along with their descriptions.

As illustrated in Fig. 1, this article considers a cooperative
computing system for vehicle road infrastructure consisting of
roadside edge servers equipped with limited communication
and computing capacities and vehicles acting as dynamic
distributed computing infrastructures. In the highly dynamic
vehicle road cooperation eco-system, fluctuating user mobility
patterns and wireless environments make it challenging for
standalone roadside facilities to deliver reliable real-time
services, calling for exploiting moving resources.

A. Task Arrival Model

In highly dynamic vehicle road cooperation systems,
modeling the random task arrival process is crucial yet
challenging for enabling intelligent resource management. As
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Fig. 1. System model of cooperative computing for vehicle road cooperation.

shown in Fig. 1, we consider the roadside edge server and
vehicles continuously generating tasks with high or low prior-
ities. Instead of adopting fixed Poisson processes, we establish
data-driven arrival models leveraging vehicular environment
data sensed by ubiquitous IoT devices in the AIoT system.

In particular, the roadside units (RSUs) can monitor sur-
rounding traffic conditions (e.g., vehicle density and average
speed). Such data reflects dynamic computational demands
from vehicles, allowing more accurate arrival rate estimation
through machine learning

λZ
S (t) = fθ (TrafficCondition(t)), Z ∈ H, LTrafficCondition(t)

= [VehicleFlow(t), VehicleDensity(t)AvgSpeed(t)

QueueLength(t), TravelTime(t)]
]

(1)

where fθ (·) represents the data-driven arrival rate regression
model parameterized by θ . The parameter θ is opti-
mized periodically using the latest traffic data from IoT
devices and historical task arrival statistics at the server. In
TrafficCondition(t), VehicleFlow(t) is the number of vehicles
passing a point per unit time, VehicleDensity(t) is the number
of vehicles per unit length of the road, AvgSpeed(t) is the
average speed of vehicles, QueueLength(t) is the number of
vehicles waiting at an intersection, and TravelTime(t) is the
estimated time to travel a specific route.

The parameter θ in (1) is estimated using the latest IoT
device traffic data and the server’s historical task arrival
statistics. The real-time traffic data, such as vehicle density
and average speed, is collected by roadside sensors and infras-
tructure, represented by TrafficCondition(t). This data is used
as input to the arrival rate regression model fθ (·), which learns
to predict the current task arrival rates based on the traffic
conditions. The model parameter θ is updated periodically
using a sliding window of the most recent traffic data and
the corresponding historical task arrival rates recorded at the
server. By leveraging both real-time IoT data and historical
statistics, the model can adaptively capture the relationship
between traffic conditions and task arrival rates, enabling more
accurate predictions of λZ

S (t).
Moreover, onboard IoT sensors of vehicles (e.g., advanced

driver-assistance systems sensors and in-vehicle cameras) can
also provide rich data about the surrounding environment as
well as the state of the internal entertainment system. Such

data enables estimating dynamic computational workloads and
tasks generated inside vehicles using augmented intelligence

λZ
V,i(t) = f φ(InCarSensing(t)), Z ∈ H, L, i ∈ 1, . . . , I

InCarSensing(t) = [VehicleStatus(t), DriverBehavior(t)

CabinConditions(t), EntertainmentUsage(t) (2)

where fφ(·) denotes the arrival rate regression model for
vehicles, with parameters φ optimized online using in-vehicle
sensory data and historical task statistics. In InCarSensing(t),
VehicleStatus(t) includes information about the vehicle’s
mechanical status, DriverBehavior(t) captures driver actions
and preferences, CabinConditions(t) monitors the interior
environment, and EntertainmentUsage(t) tracks the use of in-
vehicle entertainment systems.

By integrating IoT sensory data closely related to vehicular
computational demands, the data-driven modeling powered
by AIoT can capture dynamic task arrival patterns more
accurately. Thus, it enhances the awareness of fluctuating
workloads across vehicles and servers, improving resource
management efficiency via augmented intelligence.

B. Dynamic Queue Model

In the AIoT system for vehicle road cooperation, effi-
cient queue management is pivotal in providing differentiated
services for applications based on priorities and enabling
intelligent resource optimization. As shown in Fig. 1, both
the roadside edge server and onboard terminals of vehicles
maintain dynamic queues for buffering unexecuted tasks.

Specifically, the roadside edge server tracks its high-priority
and low-priority task queue lengths using the following AIoT-
enhanced queue models:

LS
H(t + 1) = min

⎧
⎨

⎩

[

LS
H(t)− AS

H(t)−
I∑

i=1

AOH
V,i (t)

]+
+�S

H(t), LS
max

⎫
⎬

⎭

(3)

LS
L(t + 1) = min

⎧
⎨

⎩

[

LS
L(t)− AS

L(t)−
I∑

i=1

AOL
V,i(t)

]+
+�S

L(t), LS
max

⎫
⎬

⎭

(4)

where the numbers of high/low-priority tasks executed (AS
H(t),

AS
L(t)) and offloaded to vehicles (AOH

V,i (t), AOL
V,i(t)) at time t are

optimized dynamically based on the global queue state and
channel condition information using augmented intelligence,
which will be elaborated in the next section. �S

H(t) and �S
L(t)

represent the high-priority and low-priority task arrival rates
at the VEC server at time t, respectively. LS

max denotes the
maximum queue length for both high-priority and low-priority
tasks at the VEC server. AS

H(t) and AS
L(t) represent the number

of high-priority and low-priority tasks executed by the VEC
server at time t, respectively. AOH

V,i (t) and AOL
V,i(t) denote the

number of high-priority and low-priority tasks offloaded from
the VEC server to vehicle i at time t, respectively. LS

H(t) and
LS

L(t) represent the queue lengths for high-priority and low-
priority tasks at the VEC server at time t, respectively.

Such queue models allow the server to perceive priority-
differentiated application execution status precisely (e.g.,
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queue length and waiting delay) and enhance task scheduling
efficiency. Moreover, vehicle i also maintains the following
queue models to track dynamic workloads:

LLH
V,i(t + 1) = min

{[
LLH

V,i(t)−MLH,i(t)
]+ +�H,i(t), LVL

max,i

}

(5)

LLL
V,i(t + 1) = min

{[
LLL

V,i(t)−MLL,i(t)
]+ +�L,i(t), LVL

max,i

}

(6)

LOH
V,i (t + 1) = min

{
LOH

V,i (t)+ AOH
V,i (t), LVO

max,i −MOH,i(t)
}

(7)

LOL
V,i(t + 1) = min

{
LOL

V,i(t)+ AOL
V,i(t), LVO

max,i −MOL,i(t)
}

(8)

where MLH,i(t), MLL,i(t), MOH,i(t), and MOL,i(t) denote the
number of locally generated high-priority tasks, locally gen-
erated low-priority tasks, offloaded high-priority tasks, and
offloaded low-priority tasks executed by vehicle i at time t,
respectively. Equations (3) and (5) deal with high-priority
tasks, while (4) and (6) focus on low-priority tasks. The
distinction is crucial as it allows the system to differentiate
between task priorities and allocate resources accordingly.
Equations (7) and (8) further distinguish between offloaded
high-priority and low-priority tasks, respectively, enabling
priority-aware task offloading decisions.

C. Computing Model

Efficiently allocating computational resources for vehicles
and servers is vital to enable intelligent processing of dynamic
workloads in-vehicle road cooperation systems [32]. The
AIoT system provides a global view of real-time resource
utilization and task demand levels across vehicles and edge
servers. Such transparency facilitated by ubiquitous IoT inter-
connectivity empowers augmented intelligence to optimize
dynamic computation resource allocation tailored for vehicular
environments.

In particular, the roadside edge server can allocate its CPU-
cycle frequency dynamically based on current workloads and
application priorities

f S(t) =
(
AS

H(t)+ AS
L(t)

)
C

τ
≤ f S

max (9)

PS(t) = γ
(

f S(t)
)3

(10)

where the numbers of executed high/low-priority tasks AS
H(t)

and AS
L(t)) are determined intelligently using augmented intel-

ligence models by considering dynamic queues and channels.
Thus, computing resource allocation and energy consumption
on the server side can adapt to time-varying task demands and
network conditions.

On the vehicle side, the computational capabilities are
characterized by the maximum number of tasks that can be
processed

Mi(t) = fϑ
(
CapibilityInfoi(t)

)
(11)

Mi(t) ≥ MLH,i(t)+MLL,i(t)+MOH,i(t)+MOL,i(t) (12)

where fϑ(·) represents the data-driven vehicle computing capa-
bility prediction model parameterized by ϑ . The parameters
ϑ are optimized online using capability data (e.g., battery

VEC Server

Offloading Strategy

Local Computing

High-Priority Task

Low-Priority Task

Vehicle

Offloaded High-Priority Task Local High-Priority Task

Offloaded Low-Priority Task Local Low-Priority Task

Fig. 2. Dynamic task queue model for the priority of Internet of Vehicles
applications.

level and CPU status) streamed from in-vehicle IoT sensors
and current workload statistics. The time-varying computing
availability of each vehicle is estimated in real time for
dynamic resource allocation. CapibilityInfoi(t) refers to the
real-time capability data of the onboard computing resources
of each vehicle i at time t. The dynamic task queue model for
the Internet of Vehicles application priority is shown in Fig. 2.

The advanced dynamic resource management mechanism is
a key component of the proposed AIoT framework, which aims
to optimize the overall system rewards while satisfying latency
constraints in VEC systems for vehicle road cooperation. The
mechanism leverages augmented intelligence models to adap-
tively allocate communication and computational resources
based on real-time data collected from the AIoT framework.
Augmented intelligence models are trained using historical
data on task demands, priority levels, resource availability, and
network conditions.

The mechanism employs techniques, such as priority-based
scheduling and dynamic bandwidth allocation, to optimize
resource allocation under latency constraints. Priority-based
scheduling ensures that latency-critical tasks are given higher
priority in terms of resource allocation and execution, while
dynamic bandwidth allocation adjusts the communication
resources assigned to each task based on its priority and
the current network conditions. The augmented intelligence
models play a crucial role in enabling the mechanism to make
informed decisions in real time.

In summary, the advanced dynamic resource management
mechanism optimizes overall system rewards under latency
constraints by leveraging augmented intelligence models to
allocate resources based on real-time data adaptively. The
mechanism’s ability to predict future requirements, optimize
allocation strategies, and adapt to dynamic conditions ensures
efficient utilization of limited resources and prioritized execu-
tion of latency-critical tasks in VEC systems for vehicle road
cooperation.

D. Communication Model

The highly dynamic wireless environment is one of the
key characteristics of vehicle road cooperation systems, which
requires efficient communication resource management adapt-
ing to fluctuating channel conditions. The AIoT system can
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exploit real-time channel data from ubiquitous IoT devices to
empower intelligent vehicle-server communication coordina-
tion leveraging augmented intelligence.

In particular, multiple RSUs can probe wireless channel
states dynamically within the coverage area to provide up-to-
date channel gain information between vehicle i and the edge
server [33]

Hi(t) = hRSU(ChannelProbing(t)), i ∈ 1, . . . , I (13)

where the function hRSU(·) aggregates channel state data from
surrounding RSUs to estimate the gain. Such fine-grained
channel visibility facilitates scheduling wireless resources
according to network dynamics. ChannelProbing(t) refers to
the real-time channel measurement data collected by the RSUs
at time t, which estimates the downlink wireless channel
conditions from the edge server to vehicles within the coverage
area.

In the system model, a multiple-access transmission scheme
lets different vehicles simultaneously offload their tasks to
the edge server. One suitable scheme is orthogonal frequency
division multiple access, which allocates distinct subcarriers to
individual vehicles, allowing them to transmit their offloaded
tasks without causing co-channel interference. However, if
co-channel interference is present due to factors, such as
limited orthogonal resources or imperfect resource allocation,
the proposed approach can mitigate its impact through sev-
eral techniques. These include power control mechanisms to
adjust the transmission power of each vehicle based on the
interference level, adaptive resource allocation algorithms that
dynamically assign subcarriers to minimize interference and
advanced receiver designs that can effectively suppress or
cancel interference.

The transmission rate for offloading tasks from the edge
server to vehicle i is thus given by

Ri
(
PV,i(t), Hi(t)

) = Bi log2

(
1+ PV,i(t)Hi(t)

σ 2

)
. (14)

PV,i(t) =

(
2
(

AOH
V,i (t)+AOL

V,i(t)
)

Z

Bτ
i

− 1

)

σ 2

Hi(t)
. (15)

Based on the channel and queue information, augmented
intelligence models can determine optimal task offloading
amounts AOH

V,i (t) and AOL
V,i(t), and transmission power allocation

PV,i(t) dynamically, orchestrating vehicle-server communica-
tion efficiently.

AIoT can facilitate dynamic, intelligent wireless com-
munication resource management tailored for vehicle road
cooperation systems via data and augmented intelligence by
enabling real-time channel monitoring leveraging ubiquitous
connections of IoT devices.

III. PROBLEM MODELING

Based on the system model, this section formulates the
joint optimization of priority-aware application offloading and
resource allocation as a CMDP problem using the framework
of AIoT. The joint priority-aware application offloading and
resource optimization problem is formulated as a CMDP to

efficiently manage task offloading in VEC systems while
considering application priorities and resource constraints. The
CMDP captures the dynamic nature of the system by modeling
the states, actions, rewards, and transitions, optimizing long-
term system performance.

A. State and Action Spaces

The edge server can obtain real-time queue status across
vehicles via cellular V2X communications empowered by
AIoT

LZO
V,i(t) = hV2X

(
QueueReportingV,i(t)

)
, Z ∈ LH, LL, OH, OL,

i ∈ 1, . . . , I (16)

where the function hV2X(·) aggregates queue length
information piggybacked in periodic basic safety messages
from vehicles. LH is the queue length of locally buffered
high-priority tasks, LL is the length of locally buffered low-
priority tasks, OH is the length of offloaded high-priority
tasks, and OL is the length of offloaded low-priority tasks. The
information is periodically transmitted from vehicles to the
edge server through basic safety messages or network status
reporting packets. QueueReportingV,i(t) refers to the real-time
queue status information of vehicle i reported at time t via
V2X communications, containing queue lengths of different
types of tasks buffered at the onboard unit of vehicle i.

The wireless channel gains between the edge server and
vehicles can also be probed by surrounding IoT devices and
transmitted using AIoT interconnectivity:

With global visibility into dynamic queues and channels
enabled by AIoT, the edge server can obtain the current system
state S(t)

S(t) = LS
H(t), LS

L(t), LLH
V,i(t), LLL

V,i(t), LOH
V,i (t), LOL

V,i(t)
I

i=1. (17)

Based on the observed state, the edge server determines
in real time the amounts of high/low-priority tasks to be
executed locally or offloaded to each vehicle using augmented
intelligence

AZ
U(t) = fθ

(
S(t);φZ

U(t)
)
, Z ∈ H, L, U ∈ S, V (18)

where fθ (·) represents the data-driven task scheduling policy
function parameterized by θ , which are optimized periodically
using historical operation data. φZ

U(t) denotes dynamically
changing environment parameters (e.g., channel conditions and
vehicle mobility patterns) that can influence task scheduling
decisions.

The action space is thus given by

A(t) = AS
H(t), AS

L(t), AOH
V,i (t), AOL

V,i(t)
I

i=1∈ A. (19)

The AIoT system can exploit cross-platform heterogeneity
to dynamically orchestrate communication, computing, and
storage resources tailored for vehicle road cooperation systems
by enabling dynamic, transparent state monitoring and lever-
aging augmented intelligence for intelligent decision-making.
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B. Optimization Objective

Based on the AIoT-enabled dynamic state monitoring and
data-driven decision-making, the joint optimization of priority-
differentiated application offloading and resource orchestration
can be formulated as follows:

max
π

N(π) = lim
T→∞

1

T

T∑

t=1

Eπ [ωHNH(S(t), A(t))

+ωLNL(S(t), A(t))]

s.t. DH(π) = lim
T→∞

1

T

T∑

t=1

Eπ [DH(S(t), A(t))] ≤ D
max
H

DL(π) = lim
T→∞

1

T

T∑

t=1

Eπ [DL(S(t), A(t))] ≤ D
max
L

P(π) = lim
T→∞

1

T

T∑

t=1

Eπ [P(S(t), A(t))] ≤ P
max

. (20)

where N(π) represents the long-term system weighted service
capability. The weights ωH and ωL denote differentiated
priorities for high/low-priority applications, which can be
dynamically adjusted over time using AIoT

ωZ(t) = fη(TrafficInfoZ(t)), Z ∈ H, L. (21)

The function fη(·) leverages augmented intelligence models
to estimate real-time computational demands for high/low-
priority vehicular applications based on current traffic data,
and keeps tuning the weights over time. TrafficInfoZ(t) refers
to the real-time traffic data related to vehicle applications with
priority type Z, where Z ∈ {H, L} indicates high-priority or
low-priority, respectively. Tasks crucial for vehicle safety, such
as collision avoidance and emergency braking, are prioritized.
These tasks require immediate attention and rapid response
times to ensure the safety of passengers and other road users.
Other tasks, such as traffic signal optimization and route
planning, are assigned lower priorities based on their impact
on overall traffic efficiency and user experience. The selection
of priority tasks is guided by predefined rules and policies
that consider factors, such as task type, urgency, and potential
consequences. Therefore, by analyzing dynamic traffic data
relevant to the different application types through function
fη(·), the weight parameters ωZ(t) can be adjusted accordingly
over time to balance the service level of priorities.

Let NH(S(t), A(t)), NL(S(t), A(t)) denote the amounts of
executed high- and low-priority tasks

NH(S(t), A(t)) = AS
H(t)+

I∑

i=1

min LLH
V,i(t), MLH,i(t)

+
I∑

i=1

min LOH
V,i (t)+ AOH

V,i (t), MOH,i(t). (22)

NL(S(t), A(t)) = AS
L(t)+

I∑

i=1

min LLL
V,i(t), MLL,i(t)

+
I∑

i=1

min LOL
V,i(t)+ AOL

V,i(t), MOL,i(t). (23)

The constraints represent QoS guarantees for high/low-
priority applications in terms of transmission delays and power
consumption

DH(S(t), A(t)) =
LS

H(t)+max
i

LLH
V,i(t)

λS
H +

∑
i = 1IλH,i

. (24)

DL(S(t), A(t)) =
LS

L(t)+max
i

LLL
V,i(t)

λS
L +

∑
i = 1IλL,i

. (25)

P(S(t), A(t)) =
I∑

i=1

(
2
(

AOH
V,i (t)+AOL

V,i(t)
)

Z

Bτ
i

− 1

)

σ 2

Hi(t)
. (26)

By leveraging dynamic queues/channels monitoring and
cross-platform data sharing empowered by AIoT to optimize
priority-differentiated application offloading and resource
orchestration online using augmented intelligence, the quality
of service for mission-critical applications can be guaranteed
based on their priorities.

IV. ALGORITHM DESIGN AND IMPLEMENTATION

To obtain optimal policies for the AIoT-enhanced joint
optimization problem formulated in the last section, we
propose a deep reinforcement learning algorithm leverag-
ing heterogeneous data across vehicles, edge servers, and
networks.

A. Lagrangian Method

The constrained MDP formulation allows the mathematical
articulating of an ideal dynamic resource orchestration scheme
across communication, computing, and content caching uni-
fying systems for vehicle road coordination applications by
distinguishing prioritized tiers based on criticality levels.
However, deriving optimal policy is analytically intractable
due to state space explosion resulting from numerous
intertwined workflows, including generation, offloading, com-
munication, execution, energy, and content libraries [34].
Fortuitously, the AIoT architecture’s meshed sensing topology
generates fine-grained snapshots capturing multidimensional
runtime factors. The proposed double DQN methodology
achieves model-free optimal coordinated control for edge
computing in vehicle road systems at the system level. By
leveraging the AIoT architecture’s meshed sensing topol-
ogy, the algorithm generates fine-grained snapshots capturing
multidimensional runtime factors, enabling the algorithm to
make informed offloading decisions and adaptively allocate
resources in real time, effectively addressing the challenges
of the dynamic and heterogeneous vehicle road system eco-
system. The neural networks used in the proposed algorithms
consist of an input layer, two hidden layers, and an output
layer. The input layer contains state information, such as
queue lengths, channel conditions, and task characteristics.
The hidden layers use the ReLU activation function and have
64 and 32 neurons, respectively. The output layer has a linear
activation function and outputs the Q-values for each possible
offloading decision.
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The adaptive learning-based task offloading algorithm is
designed to dynamically learn the optimal offloading policy
in the presence of uncertainty and variability in the vehicular
network environment. The multiarmed bandit theory inspires
the algorithm, which is a framework for decision-making
under uncertainty. In task offloading, each possible offloading
decision (e.g., offloading to a specific vehicle or executing
locally) is considered an arm of the bandit. The algorithm
learns each arm’s expected rewards (e.g., reduced latency and
improved throughput) through repeated interactions with the
environment.

Specifically, the ubiquitous connections empowered by IoT
allow dynamic sharing queue backlogs and channel conditions
across the server and vehicles

QZ(t) = hV2X(QueueReporting(t)), Z ∈ H, L (27)

Hi(t) = hRSU(ChannelProbing(t)), i ∈ 1, . . . , I (28)

where QZ(t) represents the queue length of tasks with priority
Z at time t, where Z ∈ H, L.

Based on the globally visible state, the lagrangian
function is

C(ω, S(t), A(t))

= −ωHNH(S(t), A(t))− ωLNL(S(t), A(t))+ ω1DH(QH(t))

−D
max
H ω2DL(QL(t))− D

max
L

+ω3

⎛

⎜
⎜⎜⎜
⎝

I∑

i=1

(
2
(

AOH
V,i (t)+AOL

V,i(t)
)

Z

Bτ
i

− 1

)

σ 2

Hi(t)
− P

max

⎞

⎟
⎟⎟⎟
⎠

. (29)

The primal problem becomes

G(π, ω) = max
ω≥0

min
π

∑

S(t)

dπ (S(t))π(S(t), A(t))C(ω, S(t), A(t))

(30)

where dπ (S(t)) is the state distribution under policy π . The
global information facilitated by AIoT transforms the partial
derivative of a Lagrangian function to the Bellman equation.
It enables adopting reinforcement learning to find an optimal
policy without requiring system dynamics. Next, we introduce
a DQN algorithm that exploits heterogeneous operation data
across vehicles, edge servers, and networks empowered by
AIoT to obtain optimal policy online.

B. DQN-Based Offloading Policy Learning

As the AIoT architecture provides transparent and real-
time state information availability encompassing dynamic
workloads, communication dynamics, and resource config-
urations, the partial derivative of the Lagrangian function
equals the Bellman equation. The connection motivates the
adoption of modern reinforcement learning techniques for
online optimization without requiring an a priori knowledge
of system dynamics. We propose an innovative independent
double DQN algorithm that interacts with the target vehicle-
edge-cloud cooperative computing environment powered by
AIoT. By using two separate Q-networks (online and target),

Double DQN provides more stable and accurate Q-value
estimates, leading to improved learning performance. Double
DQN is also more sample-efficient and computationally
lighter than actor-critic methods, making it more suitable for
resource-constrained VEC environments. Experience replay in
Double DQN further enhances its data efficiency and stability,
enabling faster convergence and better adaptability to dynamic
network conditions.

The proposed DQN-based offloading algorithm introduces
several technical novelties, including a state space repre-
sentation, that incorporates task priority information and
vehicle mobility patterns, a reward function that balances task
completion time and energy consumption while prioritizing
critical tasks, and a training process that employs experi-
ence replay and target network stabilization techniques to
improve convergence and adaptability to dynamic vehicular
environments. First, it integrates the concept of priority-aware
task offloading, allowing the system to dynamically adapt
its offloading decisions based on the criticality and time
sensitivity of tasks. Second, the DQN algorithm is enhanced
with a multiobjective reward function that considers both
the priority of tasks and the overall system performance.
Furthermore, the proposed approach incorporates a novel state
representation that encapsulates the dynamic nature of the
vehicular environment, including task characteristics, resource
availability, and network conditions. The rich state representa-
tion allows the DQN agent to make informed decisions based
on a comprehensive understanding of the current system state.

Cooperative computing in-vehicle road cooperation systems
involve the collaboration between vehicles and edge servers
to execute tasks efficiently and optimize resource utilization.
In cooperative computing, tasks are offloaded from vehicles to
edge servers and other vehicles based on task priority, resource
availability, and network conditions. High-priority tasks are
given precedence in offloading decisions to ensure their timely
completion. Resource allocation mechanisms are employed
to distribute computing and communication resources among
vehicles and edge servers, considering the dynamic nature
of the vehicular environment. These mechanisms maximize
resource utilization while ensuring fair distribution among par-
ticipating entities. Data sharing and synchronization are crucial
in enabling collaborative decision-making and optimization.

The rationale behind using a DQN-based learning algorithm
for optimizing resource allocation in the proposed AIoT-
enhanced framework lies in its ability to effectively handle
large state spaces and learn optimal policies through environ-
mental interaction. Through continuous interaction with the
environment and experience replay, DQN can learn and adapt
its resource allocation policies in real time, improving system
performance and efficiency.

The key of DQN is the action-value function Q(s, a; θ)

modeled by deep neural networks with weights θ [35]. It
represents the expected long-term accumulated rewards after
taking a at state s. Q(s, a; θ) is optimized by minimizing the
loss function using the tuples of state transition and immediate
reward (s, a, r, s′) stored in replay memory D

L(θ) = E
(
s, a, r, s′

) ∼ D
[
Lδ(y, Q(s, a; θ))

]
(31)
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Algorithm 1 AIoT-Enhanced DQN-Based Offloading Policy
Learning
Input: Vehicle number I; maximum episode L; threshold ε.
Output: Optimal policy π∗.
01: Initialize replay memory D; action-value function
Q(s, a; θ) with random weights θ ; target network
Q(s, a; θ−) = θ− = θ .
02: For (episode = 1 : L)

03: Server obtain state s = QH, QL, Hi
I using AIoT.

04: For (t = 1 : T)

05: if probability 1− ε then
06: a← arg max

a
Q(s, a; θ).

07: else
08: a← random action.
09: end-if
10: Obtain task arrivals �H(t),�L(t)I

i from vehicles via
AIoT.
11: Take action a, reach s′, store (s, a, r, s′) in D.
12: Sample minibatch from D; Update θ by optimizing
L(θ).
13: Update target network weights θ−.
14: end-for
15: end-for
16: π∗ = arg ! max

π
Q(s, π(s); θ).

where the Huber loss is

Lδ(y, u) =
{ 1

2 (y− u)2, if |y− u| ≤ δ

δ|y− u| − 1
2δ2, otherwise

(32)

where y and u are variables used in the definition of the
Huber loss function Lδ(y, u). The Huber loss function is used
in the DQN-based offloading algorithm because it combines
the advantages of both mean squared error (MSE) and mean
absolute error (MAE) loss functions. For minor errors, Huber
loss behaves like MSE, which is more sensitive to outliers
and helps the model converge faster. It behaves like MAE
for large errors, which is more robust to outliers and prevents
the model from being heavily influenced by extreme values.
This balance between sensitivity and robustness makes Huber
loss particularly suitable for the proposed approach, as it can
handle the dynamic and noisy nature of the vehicular network
environment while ensuring stable and efficient learning of the
offloading policy.

The target value y = r + γ max
a′

(s′, a′; θ−) where θ− is

weights of target network. The detailed steps of the proposed
DQN-based algorithm are described in Algorithm 1.

Algorithm 1 presents the AIoT-enhanced DQN-based
offloading policy learning process. The algorithm starts by ini-
tializing the replay memory, Q-networks, and target networks.
The VEC server observes the current state at each episode and
selects an action based on the epsilon-greedy strategy. The
selected action is executed, and the next state and reward are
observed. The experience tuple is stored in the replay memory
for training. The Q-network is updated using a mini-batch
sampled from the replay memory, and the target network is
periodically synchronized with the Q-network.

The offloading strategy learning algorithm based on DQN
adaptively optimizes task offloading decisions by leveraging
real-time channel/queue state information and application
priorities. The algorithm learns from the collected data by
continuously interacting with the VEC environment and
updating its offloading policies based on the observed rewards.
At each time step, the algorithm inputs the system’s current state,
including channel conditions, queue lengths, and application
priorities. It selects an action (i.e., offloading decision) based
on its current policy. The resulting reward (e.g., reduced latency
and increased throughput) is then used to update the Q-values
and adjust the policy using the DQN’s neural network.

The proposed AIoT-enhanced DQN-based learning algo-
rithm optimizes the allocation of communication and
computational resources in VEC systems for vehicle road
cooperation. The algorithm follows a step-by-step process,
which includes data collection, preprocessing, model training,
and optimization. The AIoT framework enables real-time
data collection from various sources, such as vehicles, VEC
servers, and network infrastructure. Once the DQN-based
learning algorithm is trained, it can optimize the allocation of
communication and computational resources in real time. The
algorithm takes the current state of the VEC system, including
application demands, task priorities, channel conditions, and
resource availability, as input. It generates optimal offloading
decisions and resource allocation strategies.

V. SIMULATION AND RESULTS ANALYSIS

This article proposes AIoT-enhanced DQN-based learning
for priority-aware vehicular task offloading in cooperative edge
systems (AIoT-DQN-PAVET). In this section, we evaluate the
performance of the proposed AIoT-DQN-PAVET algorithm by
comparing it with six benchmark schemes, including FLC,
JCORA [27], DATOSC [28], BTOA [29], MCMTSO [30], and
CLCO [31].

A. Simulation Setup

We consider an edge computing network consisting of
1 VEC server co-located with a RSU and I vehicles. The
key simulation parameters are set as per Table II. Moreover,
the learning rate was set to 0.001, which allows for a
gradual and stable update of the Q-network weights. The
discount factor was set to 0.99, giving more importance
to future rewards and promoting long-term optimization.
The exploration-exploitation tradeoff was managed using an
epsilon-greedy strategy, with epsilon decreasing from 1 to
0.1 throughout training. These hyperparameters were chosen
based on empirical tuning and their impact on the convergence
speed and stability of the learning process. The simulation
experiments were conducted on a computer equipped with
an Intel Core i7-14700KF processor (20 cores, 28 threads),
32-GB DDR4-3200-MHz RAM, and an NVIDIA GeForce
RTX 3080 GPU (10-GB VRAM). The experiments were run
on the GPU to accelerate the training and inference processes
of the DQN algorithm.

The performance of the proposed algorithm is evalu-
ated using several key metrics, including weighted carrying
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TABLE II
PARAMETER SETTINGS

Parameter Value
[1,4]
1 ms

2 tasks
8 tasks
8 tasks

[1,8] tasks/
[1,8] tasks/
0.5 tasks/
0.5 tasks/

8 × 108 cycles/s
2 × 103 bits

2 × 105 cycles
100
1

2 W
180 kHz

1 ms
10 ms

capacity, high/low-priority task drop rate, high/low-priority
task queuing delay, and overall system rewards. These met-
rics were chosen to comprehensively assess the algorithm’s
ability to efficiently handle task offloading and resource
allocation in VEC systems while prioritizing latency-critical
tasks. The weighted carrying capacity measures the system’s
overall throughput, considering the different tasks’ priorities.
The high/low-priority task drop rates indicate the algo-
rithm’s effectiveness in completing latency-critical tasks. The
high/low-priority task queuing delays reflect the algorithm’s
ability to minimize latency for critical tasks. System rewards
quantify the algorithm’s performance using a weighted com-
bination of the above metrics. These metrics were measured
through extensive simulations under various scenarios, includ-
ing different task arrival rates, priority distributions, and
network conditions, to demonstrate the algorithm’s robustness
and adaptability.

B. Results and Analysis

1) Varying Overall Task Arrival Rates: In the first set of
simulations, we vary the overall task arrival rates on the VEC
server from 1 to 8 tasks/τ to evaluate the performance as
the total workload imposed on the system increases. The key
results are summarized in Fig. 3.

AIoT-DQN-PAVET attains a prominently lower drop rate
for high- and low-priority tasks under increasing arrival rates
by exploiting priority differentiation and adapting task offload-
ing and resource orchestration using augmented intelligence.

2) Varying Proportions of High/Low-Priority Tasks: In the
second set of simulations, we evaluate a mismatched case
between high- and low-priority task arrival rates, where the
high-priority traffic is lighter than the low-priority one. We
consider two cases: 1) the high-priority traffic arrival rate is
lower than the low-priority traffic arrival rate (1:2 ratio) and

(a)         (b)            (c)

(d)                  (e)

Fig. 3. Performance under varying overall task arrival rates. (a) Weighted
carrying capacity. (b) High-priority task drop rate. (c) Low-priority task drop
rate. (d) Highpriority task queuing delay. (e) Low-priority task queuing delay.

(a)                 (b)                 (c)

(d)                  (e)

Fig. 4. Performance under varying proportions of high/low-priority tasks. (a)
Weighted carrying capacity. (b) High-priority task drop rate. (c) Low-priority
task drop rate. (d) High-priority task queuing delay. (e) Low-priority task
queuing delay.

2) the high-priority traffic arrival rate is higher than the low-
priority traffic arrival rate (2:1 ratio). The rationale behind
having a higher high-priority traffic arrival rate in the second
case is to assess the algorithm’s ability to prioritize critical
tasks and ensure timely completion, even when they constitute
a larger portion of the overall traffic. The results are exhibited
in Fig. 4.

The weighted carrying capacity attained by AIoT-DQN-
PAVET in both 1:2 and 2:1 cases in Fig. 4 notably surpasses
other solutions. This validates its capability to exploit spare
resources to handle more low-priority tasks when the high-
priority traffic load is lighter.

3) Impact of Vehicle Density: In the third set of simula-
tions, we vary the number of vehicles from 1 to 4 to evaluate
the performance under different vehicle densities, and the
results are exhibited in Fig. 5.

The proposed AIoT-DQN-PAVET algorithm realizes supe-
rior weighted carrying capacity over other solutions when
available vehicles are limited, as shown in Fig. 5. This verifies
its ability to exploit potential resources on sparse vehicles
fully enabled by AIoT. It also accomplishes a significantly
lower drop rate for high- and low-priority tasks by judiciously
offloading tasks between the edge server and vehicles based
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(a)                 (b)                  (c)

(d)                  (e)

Fig. 5. Performance under varying vehicle density. (a) Weighted carrying
capacity. (b) Highpriority task drop rate. (c) Low-priority task drop rate. (d)
High-priority task queuing delay. (e) Low-priority task queuing delay.

(a)               (b)                  (c)

(d)                  (e)

Fig. 6. Performance under varying task size. (a) Weighted carrying capacity.
(b) Highpriority task drop rate. (c) Low-priority task drop rate. (d) High-
priority task queuing delay. (e) Low-priority task queuing delay.

on application priorities. However, AIoT-DQN-PAVET main-
tains its superior performance by efficiently leveraging the
additional resources through intelligent offloading decisions.
JCORA and DATOSC perform slightly better than the other
benchmarks as they consider the heterogeneity of vehicles
and tasks in their offloading decisions. BTOA and MCMTSO,
while showing improvements over FLC, do not fully exploit
the potential of cooperative computing, resulting in suboptimal
performance. Despite considering cross-layer optimization,
CLCO needs to adapt effectively to the dynamic nature of the
vehicular environment.

4) Impact of Task Size: We further evaluate the impact of
the input data size of each task by increasing Z from 2 to 4
and 8 kB while keeping other settings unchanged, where Z
represents the task input data size, measured in bits. The results
in Fig. 6 and the key trends plotted manifest that the gain
of AIoT-DQN-PAVET in weighted carrying capability over
other solutions becomes larger as tasks become more resource-
demanding with higher Z in Fig. 6.

The proposed algorithm demonstrates robust performance
and maintains its advantages over benchmark schemes under
varying conditions. When task arrival rates increase, the algo-
rithm efficiently manages the higher workload by adaptively

TABLE III
COMPARISON OF AVERAGE LATENCY FOR DIFFERENT ALGORITHMS

Algorithm Average Latency (ms)
AIoT-DQN-PAVET 85.6
FLC 150.3
JCORA [27] 120.8
DATOSC [28] 110.5
BTOA [29] 105.2
MCMTSO [30] 98.7
CLCO [31] 92.4

allocating resources and prioritizing latency-critical tasks,
ensuring minimal drop rates and queuing delays. As the
proportion of high/low-priority tasks changes, the algorithm
adjusts its offloading decisions to ensure that high-priority
tasks receive the necessary resources while maintaining good
performance for low-priority tasks. With increasing vehicle
density, the algorithm effectively leverages the additional
resources to improve overall system performance. Finally, as
task sizes vary, the algorithm adapts its offloading strategies
to optimize resource utilization and minimize latency.

5) Overhead and Latency Analysis: To clarify the over-
head required for the proposed AIoT-DQN-PAVET approach
and its impact on latency, we consider the additional com-
munication and computation costs introduced by the AIoT
framework and the DQN-based offloading algorithm. The main
overhead sources include data collection and transmission,
state information exchange, and computation overhead. The
simulation results in Table III reflect the impact of overhead
on latency for the proposed AIoT-DQN-PAVET algorithm and
the benchmark schemes.

Table III shows that the proposed AIoT-DQN-PAVET algo-
rithm achieves the lowest average latency among all the
compared schemes, even when considering the overhead. This
can be attributed to the efficient offloading decisions made
by the DQN-based algorithm, which considers the real-time
system state and adapts to the dynamic network conditions.
DATOSC, BTOA, MCMTSO, and CLCO perform better than
FLC and JCORA but still have higher latencies than AIoT-
DQN-PAVET. This is because these schemes do not fully
leverage the capabilities of AIoT and DQN for real-time data-
driven decision-making and optimization.

Further, we conducted additional simulations and analysis
to provide a more detailed breakdown of the overhead and
its impact on latency. The main sources of overhead in the
proposed AIoT-DQN-PAVET algorithm include the following.

1) Channel Estimation: The AIoT framework requires peri-
odic channel probing and information exchange between
vehicles and edge servers to maintain up-to-date channel
state information, introducing additional communication
overhead.

2) Data Collection and Transmission: The AIoT frame-
work relies on the collection and transmission of
real-time data from various sources, such as vehicles,
edge servers, and network infrastructure.

Authorized licensed use limited to: Montana State University Library. Downloaded on November 10,2024 at 04:44:10 UTC from IEEE Xplore.  Restrictions apply. 



36012 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 22, 15 NOVEMBER 2024

TABLE IV
AVERAGE LATENCY UNDER DIFFERENT SCENARIOS

Scenario Average Latency (ms)
Ideal (no overhead) 78.2
With channel estimation 81.4
With data collection 83.1
With state exchange 84.5
With computation overhead 85.6
Full AIoT-DQN-PAVET 87.3

3) State Information Exchange: To enable informed
decision-making by the DQN-based offloading algo-
rithm, the current system state information needs to be
exchanged between vehicles and edge servers regularly,
including queue lengths, channel conditions, and task
characteristics, contributing to the overhead.

4) Computation Overhead: The DQN-based offloading
algorithm introduces computational overhead due to the
training and inference of the neural networks.

To separate the latency caused by the overhead from the
protocol-related latency, we have conducted simulations to
measure the average latency under different scenarios. The
results are presented in Table IV.

Table IV shows that each source of overhead contributes to
an increase in the average latency compared to the ideal sce-
nario without any overhead. Channel estimation adds around
3.2 ms; data collection contributes 4.9 ms; state information
exchange adds 6.3 ms, and computation overhead accounts
for 7.4 ms. The full AIoT-DQN-PAVET approach, which
includes all the overhead sources, has an average latency of
87.3 ms, which is still lower than the benchmark schemes. It
is important to note that while the overhead does introduce
additional latency, the AIoT-DQN-PAVET approach’s benefits
in improved offloading decisions, resource utilization, and
overall system performance outweigh the overhead-related
latency. The proposed approach is designed to adapt to the
dynamic nature of the vehicular environment and make real-
time decisions based on the current system state, which helps
mitigate the impact of overhead on the overall performance.

In conclusion, the overhead analysis quantifies the vari-
ous overhead sources in the AIoT-DQN-PAVET approach.
It separates the latency caused by the overhead from the
protocol-related latency. Despite the additional overhead, the
proposed approach still achieves lower latency compared to
the benchmark schemes, demonstrating its effectiveness in
handling the dynamic nature of VEC systems.

VI. CONCLUSION

The AIoT-enhanced DQN-based learning algorithm for
priority-aware task offloading proposed in this article repre-
sented a significant advancement in VEC systems for vehicle
road cooperation. By leveraging the power of augmented
intelligence and deep reinforcement learning, the algorithm
efficiently managed resources and prioritizes latency-critical
tasks in dynamic vehicular environments. The theoretical con-
tributions of this research, including the CMDP formulation
and the development of the DQN-based algorithm, provide a

solid foundation for future work in intelligent transportation
systems and edge computing. The proposed algorithm has the
potential to improve the performance and user experience of
VEC systems significantly.

The main contributions of this article, including the novel
AIoT-enhanced framework, the CMDP problem formulation,
the DQN-based learning algorithm, and the extensive simula-
tion experiments, demonstrate the effectiveness and potential
of the proposed approach. The practical advantages of the
algorithm, such as reduced latency, increased throughput, and
improved resource utilization, directly benefit vehicle road
cooperation applications and enhance user satisfaction.

However, the limitations of this study should be acknowl-
edged, such as the reliance on simulation experiments, the
need for further investigation into scalability, and the assump-
tions made regarding the availability and accuracy of real-time
system state information. Future work should address these
limitations through real-world experiments, exploration of
scalability issues, and the development of robust methods for
handling imperfect or incomplete system state information.
Moreover, several limitations and challenges are encountered
while implementing and simulating the proposed AIoT-
enhanced DQN-based learning algorithm. One challenge is the
computational complexity of training the DQN model, which
increased with the size of the state and action spaces. This
is addressed using techniques, such as experience replay and
target network stabilization. Another area for improvement is
the assumption of perfect knowledge of the system state, which
may only sometimes be feasible in real-world scenarios.

Future research directions based on the findings and limita-
tions of this study include extending the proposed framework
to handle more complex scenarios, incorporating additional
performance metrics into the optimization objective, and
exploring the integration of other AI techniques to enhance the
learning efficiency and adaptability of the proposed algorithm.
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