
5900 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 8, AUGUST 2020

Brain Medical Image Fusion Using L2-Norm-Based
Features and Fuzzy-Weighted Measurements

in 2-D Littlewood–Paley EWT Domain
Xin Jin , Qian Jiang , Xing Chu , Xun Lang , Shaowen Yao , Keqin Li , Fellow, IEEE,

and Wei Zhou , Member, IEEE

Abstract— Computational imaging provides comprehensive
and reliable information about human tissue for medical diag-
nosis and treatment, with medical image fusion as one of
the most important technologies in the field. Empirical mode
decomposition (EMD), a promising model for image processing,
has been used for image fusion in some methods. However,
the varying number of decomposed layers leads to problems
using EMD for image fusion. In this article, we propose a
fusion method for medical images incorporating L2-norm-based
features, a match/salience/fuzzy-weighted measure, and the 2-D
Littlewood–Paley empirical wavelet transform (2-D LPEWT) as
new version of EMD. We first decompose medical images with
LPEWT to obtain the residual component (residue) and detailed
sub-images that are named as intrinsic mode functions (IMFs).
Then we extract the regional features of residue with an L2-
norm-based model to fuse the residue while simultaneously fusing
IMFs using a method combining a fuzzy membership function
with a match/salience measurement. Finally, we reconstruct the
comprehensive image by applying inverse LPEWT to the fused
residue and IMFs. We evaluated our method using a frequently-
used data set of brain images. The results show that our proposed
method is more effective than conventional methods by fusing
more information into the final images. We also show a feasible
scheme for applying EMD to image fusion.

Index Terms— Biomedical imaging, empirical Littlewood–
Paley empirical wavelet transform (LPEWT), empirical mode
decomposition (EMD), fuzzy set theory, image fusion, L2-norm.

I. INTRODUCTION

A. Motivation

MEDICAL imaging technology offers tremendous advan-
tages for clinical medicine by providing accurate infor-
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mation about body tissues and structures [1]. Medical images
of the brain combining data from different sensors show
complementary details reflecting the imaging mechanisms of
the different sensors [2]–[4]. Medical images incorporating
different brain image models provide physicians with reliable
and abundant physiological information, which is meaningful
for clinical diagnosis, radiotherapy planning, and so on [5]–[7].

Magnetic resonance imaging (MRI) and computerized
tomography (CT) are the most popular technologies in medical
diagnosis and treatment, resulting in the fusion of these
technologies becoming a hotbed of research activity [5], [7].
CT images primarily show high-density tissue details, while
MRI images clearly show features of tissue with higher mois-
ture content [2], [5], [6]. Conventional medical image fusion
methods fall roughly into three categories: spatial-domain
methods, transform-domain methods, and hybrid methods.

Classical spatial domain includes neural network [8], [9],
independent component analysis (ICA) [11], principal com-
ponent analysis (PCA) [12], and fuzzy sets [13]. Spatial-
domain methods normally produce a decision or weight map
for fusing the source medical images [14]. The advantages of
these methods are the simplicity and ease of implementation
and their lower computational costs. However, spatial-domain
methods are unable to represent edges and outlines completely
and lose many detailed image features in the fusion process.
Recently, deep learning is also used for image fusion that
can be regarded as spatial-domain-based fusion method [9].
A neural network model is first trained by a large-scale image
data set to represent significant features that can be used for
image fusion. However, it is difficult to collect and build
a large enough medical image data set for fusion model
training. Transform-domain methods are popular in medical
image fusion and include pyramid transform (PT) [15], dis-
crete wavelet transform (DWT) [16], contourlet transform
[17], shearlet transform (ST) [18], tetrolet transform [19], and
sparse representation (SR) [10]. Transform-domain methods
first transform the medical images into a specific domain to
obtain subimages that are then fused by one or more fusion
rules before producing a final image via an inverse transform.
However, most transform-domain methods have limitations as
well. Some, such as the Laplacian pyramid, fail to describe the
outline and contrast of images accurately. Others, including
DWT, contourlet transform, and ST, fail to capture salient
features effectively, causing artifacts and Gibbs effects in the
fused images. SR is an innovative image processing technique
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that relies on a learned over-complete dictionary to represent
image features, and fusion rule is then used for coefficient
selection. However, there are still some limitations for SR,
such as computational complexity and information loss [10].

To overcome the lack of the shift-invariance property
of the conventional transform-domain-based methods, oth-
ers have proposed the nonsubsampled contourlet transform
(NSCT) [20] and nonsubsampled ST (NSST) [21] to restrain
the pseudo-Gibbs phenomena around singularities [22], [23].
However, these nonsubsampled methods have heavy compu-
tational requirements from the large number of subimages
having the same size as the source images [24].

Hybrid methods combine the spatial and transform domains,
which means that the fusion rule of transform-domain image
fusion method is on the basis of the fusion rule of spatial-
domain method generally. Specifically, hybrid methods fuse
the transformed subimages using spatial-domain methods,
such as the combination of NSST and neural networks [23],
Laplacian pyramid decomposition and neural networks [25],
and PCA and shift-invariant wavelet transforms [26].

After it was proposed, the empirical mode decomposi-
tion (EMD) method was also introduced into image fusion
as the same as preceding conventional transform methods,
including medical image fusion [27]–[30]. EMD can decom-
pose source image into a residue to present the approximate
representation and a set of intrinsic mode functions (IMFs) to
describe the details of the image. The performance of EMD-
based medical image fusion is affected by the capacity of
the empirical decomposition model, which exerts a significant
influence on overall image fusion performance [28]. Also,
researchers have proposed many promising EMD models with
excellent possibilities for improving the performance of EMD-
based medical image fusion. Gilles [39] and Gilles et al. [41]
represented a series of empirical wavelet (wavelet-like) decom-
position methods similar to EMD. One of them, empirical
wavelet transform (EWT), was promptly used for automated
glaucoma diagnosis [31], hyperspectral image classification
[32], and fault diagnosis [33]. As a result, we consider EWT
to have enormous potential for medical image fusion. Multiple
source images have unequal numbers of IMFs, which is the
first problem to be solved in order to introduce EWT into
medical image fusion. The second problem is the challenge of
feature extraction and fusion rules.

B. Our contributions

Motivated by the preceding analysis, we propose fusing
multimodal medical images from MRI and CT brain images
into a synthetic result. We do this by first decomposing source
images into a set of subimages (residue and IMFs) and defining
an operation to solve the different numbers of decomposed
subimages from different source images using Littlewood–
Paley EWT (LPEWT). Second, we design L2-norm-based
features to fuse the residue components. Third, we use a
match/salience/fuzzy-weighted measure (MSFM) to fuse the
IMF components. Finally, we reconstruct the fused image
according to the fused subimages. Our work has three main
contributions.

1) We introduce 2-D Littlewood–Paley empirical wavelet
transform (2-D LPEWT) into medical image fusion
because of the competitive performance and clear the-
oretical background and define an operation to solve
the changeable numbers of the IMFs of different source
images. We show a feasible and effective scheme to
apply EMD to image fusion.

2) We design an L2-norm-based feature extraction method
to fuse the residue based on L2-norm theory because the
main features of the residue can be described effectively,
and the method is a new regional feature representation
method to show detailed information in medical images.

3) We introduce a modified match/salience measure using
a fuzzy membership function (MF) to fuse IMFs accord-
ing to the distribution of IMF coefficients. In this
method, we combine the match/salience measure with
fuzzy set theory, which represents the regional and
amplitude features of the IMF coefficient simultane-
ously.

We show that LPEWT can be used for medical image fusion,
even with differing numbers of decomposed layers. We also
use two regional feature-based fusion strategies. Our exper-
imental results reveal that our proposed method is more
effective than conventional methods in extracting and fusing
tissue information into final images.

The remainder of this article is organized as follows.
Section II discusses the principles of 2-D LPEWT. Section III
describes our proposed brain medical image fusion scheme
in detail. Section IV presents our experimental results and
subsequent discussion. Section IV concludes this article.

II. 2-D LPEWT

Huang et al. [34] designed a method called EMD to extract
amplitude modulated-frequency modulated components of a
1-D signal. This method differed from conventional transform
methods such as wavelet transforms [35]. EMD first detects
the upper and lower envelopes to represent the global trend
of the input signal and then subtracts the envelopes from the
signal to obtain the remaining component, and then repeats
these processes until it obtains a set of IMFs components (high
frequency) and a residue component (low frequency) [36],
[39]. Nunes et al. [37] introduced a bidimensional version of
EMD for image analysis, and then Tian et al. [38] proposed an
image fusion method also using an EMD approach. However,
classical EMD’s problem is its lack of theoretical background
for detecting envelopes.

Gilles [39] constructed a new EMD-like model called EWT
that used the wavelet to extract the amplitude modulated-
frequency modulated components of an input image (signal)
by designing a suitable wavelet filter bank. EWT first detects
the Fourier supports to build the corresponding wavelet filters
and then uses the resulting filter bank to filter the input
image to separate the components. Afterward, the method
constructs the LPEWT from its namesake theory [40], [41],
which determines supports in the Fourier domain according
to the analyzed image. Gilles et al. [41] proposed LPEWT,
employing an empirical approach to detect the inner and outer
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radius of each annuli support (centered around the origin) in
the Fourier domain. This enables separation of the image’s
Fourier energy according to the supports and, correspond-
ingly, the image’s information as well. The advantage of this
procedure is that it considers the Fourier plane in a polar
representation. The remainder of the section regularly refers
to the theory and calculation methods of 2-D LPEWT.

2-D LPEWT first calculates the pseudo-polar FFT [42], [43]
denoting it as the operator Fp( f )(θ, |ω|)

Fp( f )(ω1, ω2) =
N−1∑
x1=0

N−1∑
x2=0

f (x1, x2)exp(−i(x1ω1 + x2ω2))

(1)

where f (x) is the 2-D signal in the spatial domain, N is the
size of an input image pixels, x = (x1, x2) is a spatial position
in the 2-D plane, and ω = (ω1, ω2) denotes the coordinates
in the 2-D frequency plane.

For each angle, the corresponding average spectrum is
computed as

F̃(|ω|) = 1

Nθ

Nθ−1∑
i=0

Fp( f )(θi , |ω|) (2)

where Nθ is the number of discrete angles.
Gilles et al. [41] introduced a modified Fourier boundaries

detection method based on their previous work in [39]. First,
the method detects all local maxima Mi of H (a signal in
Fourier domain) and deduces the corresponding position ωi .
It then keeps the set of all ωi corresponding to the n − 1
largest maxima and re-indexes them as ωn , where 1 ≤ n ≤
N − 1. Finally, it deduces the set of Fourier boundaries � =
ωn

n=0,...,n using ω0 = 0;ωN = π;ωn = 0.5(ωn + ωn−1).
Of note, these values are in the interval [0, π] and ω0 = 0
and ωN = π by convention. Thus, we can get

ω0 =0; ωN = π; ωn = 0.5(ωn +ωn−1) for 1 ≤ n ≤ N − 1.

However, this method only considers local information (i.e.,
spectrum magnitude) and disregards the spectrum global trend.
To overcome this problem, a simple way was proposed to
preserve the position of the lowest minima in the segment
defined by consecutive maxima. A set of all local minima
located between ωn−1 and ωn was denoted as �n , then

ω0 = 0, ωN = π, ωn = argmin(�n) for 1 ≤ n ≤ N − 1.

Even so, many local maxima still belong to a common mode
and may induce many unexpected boundaries. To avoid this
problem, the logarithm of is calculated to remove the global
trend, which is denoted T (ω) in the analyzed spectrum prior
to detection. In this article, we use the “plaw” option [41].
We approximate H to a power law of the form T (ω)−s and
estimate the exponent S using a least-mean square criterion.
In its discrete version, this is equivalent to

s = argmin||H (ω)− ω−s ||2 = −
∑

n lnωn ln H (ωn)∑
n ln (ωn)

2 .

Finally, the automatic algorithm [44] detects the modes that
represent a histogram of the energy distributed by frequency.
From this, we are able to detect the Fourier boundaries.

2-D LPEWT performs the modified Fourier boundaries
detection on F̂(|ω|) to obtain the set of spectral radius, denoted
by {ωn}n=0,1...,N (with ω0 = 0 and ωN = π), that is used
to build the set of 2-D empirical Littlewood–Paley wavelets
BεLρ = {φ1(x), {ψn(x)}N−1

n=1 }

F2(φ1)(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if |ω| ≤ (1 − γ )ω1

cos

[
π

2
β

(
1

2γω1 (|ω| − (1 − γ )ω1)

)]
if (1 − γ )ω1 ≤ |ω| ≤ (1 + γ )ω1

0, otherwise.

If n �= N − 1, then

F2(ψn)(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if (1 + γ )ωn ≤ |ω| ≤ (1 − γ )ωn+1

cos

[
π

2
β

(
1

2γωn+1 (|ω| − (1 − γ )ωn+1)

)]
if (1−γ )ωn+1 ≤ |ω| ≤ (1 + γ )ωn+1

sin

[
π

2
β

(
1

2γωn
(|ω| − (1 − γ )ωn)

)]
if (1 − γ )ωn ≤ |ω| ≤ (1 + γ )ωn

0, otherwise.

If n = N − 1, then

F2(ψN−1)(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if (1 + γ )ωN−1 ≤ |ω|
sin

[
π

2
β

(
1

2γωN−1 (|ω| − (1 − γ )ωN−1)

)]
if (1 − γ )ωN−1 ≤ |ω| ≤ (1 + γ )ωN−1

0, otherwise.

In the equations of F2 = (φ1)(ω), F2 = (ψn)(ω), and
F2 = (ψN−1)(ω), β is an arbitrary Ck |[0, 1]| function, ful-
filling the properties β(x) = 0 if x ≤ 0, β(x) = 1 if
x ≥ 1, and β(x)+ β(1 − x) = 1, ∀x ∈ [0, 1]; γ ensures that
two consecutive transition areas do not overlap. Furthermore,
there is an additional necessary condition on γ as given
in [34]. Then the 2-D empirical Littlewood–Paley transform
of an input image f is given by

W εLρ
f (n, X) = F∗

2 (F2( f )(ω)F2(ψn)(ω))

with the detail and approximation coefficients (conventionally
denoted as WηLρ(0, x)) given by

W εLρ
f (0, X) = F∗

2 (F2( f )(ω)F2(φ1)(ω))

where F2 and F∗
2 are the usual 2-D Fourier transform and its

inverse.
At last, the empirical Littlewood–Paley wavelets BεLρ and

the 2-D LPEWT coefficients W εLρ(n, x) are output.
We obtain the inverse transform is obtained by the adjoint

formulation

f (x) = F∗
2

(
F2

(
W εLρ

f

)
(0, ω)F2(φ1)(ω)

+
N−1∑
n=1

F2
(
W εLρ

f

)
(n, ω)F2(ψn)(ω))

)
.

Other works provide detailed information concerning the
processes and theoretical basis of 2-D LPEWT [39]–[44].
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Fig. 1. First example of 2-D LPEWT. (a) CT_A. (b) MRI_B. (c) R_ A.
(d) IMF_ A 1. (e) IMF_ A 2. (f) R_ B. (g) IMF_ B 1. (h) IMF_ B 2. (i) Pseudo-
color image of CT_A. (j) Pseudo-color image of IMF_ A 1. (k) Pseudo-color
image of IMF_ A 2. (l) Pseudo-color image of R_ B. (m) Pseudo-color image
of IMF_B 1. (n) Pseudo-color image of IMF_ B 2.

Figs. 1 and 2 show the examples of CT and MRI brain
images processed with 2-D LPEWT. In Fig. 1, the numbers
of subimages (residue and IMFs) from the two source images
are equal as is common with conventional transform methods.
However, the number of IMF subimages in Fig. 2 is different,
showing that the fusion processes should be specially designed
when compared with the fusion rulers of other conventional
transform methods. The subimages and their pseudocolor
images in the 2-D LPEWT domain show that the main
features of the brain images are readily visible, demonstrating
the possibility of fusing them into a comprehensive image
effectively.

III. PROPOSED SCHEME

In this article, we propose a brain medical image fusion
method incorporating 2-D LPEWT, L2-norm-based features,
and fuzzy set theory. The fusion scheme consists of four
steps: 2-D LPEWT decomposition, residual fusion, IMFs
fusion, and 2-D LPEWT reconstruction. We make three
broad contributions. First, we introduce a new version of
EWT, named 2-D LPEWT, for medical image decomposition.
Second, we demonstrate fusion of residuals using L2-norm-
based features. Third, we synthesize IMFs using a measure

Fig. 2. Second example of 2-D LPEWT. (a) CT_C. (b) MRI_D. (c) R_C.
(d) IMF_C 1. (e) IMF_C 2. (f) IMF_C 3. (g) R_D. (h) IMF_ D1.
(i) IMF_ D 2. (j) Pseudo-color image of R_C. (k) Pseudo-color image of
IMF_C 1. (l) Pseudo-color image of IMF_C 2. (m) Pseudo-color image
of IMF_C 3. (n) Pseudo-color image of R_D. (o) Pseudo-color image of
IMF_D1. (p) Pseudo-color image of IMF_D 2.

incorporating MSFM. The following five Sections detail each
of these aspects.

A. L2-Norm-Based Features

The norm, associated with the concept of length, often
measures the length or size of each vector in a vector space (or
matrix). The vector space for such a norm is called a normed
vector space [45]–[47]. Specifically, the norm is the sum of
the positive lengths (sizes) of all vectors in a vector space or
matrix, which means that the larger the matrix (the vector),
the larger the norm.

In image fusion, the detailed features of a brain image,
which are the critical factors determining the quality of the
fused image, are represented by the pixel amplitude (coeffi-
cient) and the regional information from the adjacent pixels
(coefficients). The specific region or area within an image
can be regarded as a vector space (matrix), and the value
of pixel or coefficient can be regarded as a vector of the
vector space. Thus, we find the features of medical image
can be addressed by norm theory that provides the physical
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fundamental the feature extraction of brain image, which is
useful for representing detailed features of brain images.

For an n-dimensional space x = (x1, x2, . . . , xn), we obtain
the ρ-norm denoted as Lρ-norm with

‖x‖ρ = ρ

√√√√ n∑
i=1

|xi |ρ

where P ≥ 1 is an integer. For example, there is the L1-norm
(ρ = 1) and the L2-norm (ρ = 2).

L2-norm is popular norm, and it is often used in many
engineering and science disciplines [45], [48], [49]. The L2-
norm is defined as

‖x‖2 = 2

√√√√ n∑
i=1

|xi |2.

We can further rewrite it as

‖x‖2 = 2

√√√√ n∑
i=1

xi
2.

For image, we can get the L2-norm-based features as

LN(i, j) = 2

√√√√ M∑
i=1

N∑
j=1

im(i, j)2

where LN denotes the L2-norm-based features of an image,
M and N are the size of an image, and im(i, j) is a pixel
value at row i and column j in the image.

The L2-norm is often used as a standard quantity for
measuring the vector difference of a vector space.

Inspired by the L2-norm and regional features of an image,
the L2-norm-based feature represents the detailed information
in brain images. We first calculate the L2-norm for rows
of an image and then the columns. The equations are as
follows:

LNR(i, j) =
√√√√ p∑

i=1

p∑
j=2

im(i, j)2 + im(i, j − 1)2

and

LNC(i, j) =
√√√√ p∑

i=2

p∑
j=1

im(i, j)2 + im(i − 1, j)2

where p is the window size, and im(i, j) is a pixel value
at row i and column j in the image; LNR and LNC denote
the rows and columns L2-norm-based features of an image,
respectively.

We then calculate the L2-norm-based features as

LN(i, j) = 1

p2 (LNR(i, j)+ LNC(i, j))

where p is the window size, and im(i, j) is a pixel value at
row i and column j in the image.

Fig. 3 depicts two samples of L2-norm-based features
and their pseudocolor images and clearly shows brain image
features including the regional distribution and intensity of

Fig. 3. Two examples of L2-norm-based features. (a) L2-norm-based features
of R_A. (b) Pseudo-color image of L2-norm-based features from R_A.
(c) L2-norm-based features from R_B. (d) Pseudo-color image of L2-norm-
based features from R_B. (e) L2-norm-based features from R_C. (f) Pseudo-
color image of L2-norm-based features from R_C. (g) L2-norm-based features
from R_D. (h) Pseudo-color image of L2-norm-based features from R_D.

features (the hot areas and cool areas in the pseudo-color
image). Thus, our proposed L2-norm-based feature extraction
method provides the necessary information for medical image
fusion.

B. Residue Fusion

In the context of 2-D LPEWT, residue describes an approxi-
mate representation of an image, such as the statistical distrib-
ution of pixel values or the coarse, large-scale structure of the
tissue. This information is very important for medical image
fusion. As shown in Figs. 1 and 2, the large-scale features of
the brain image are represented in the residues, so the residue
fusion method exerts a big influence on the fusion effect.
As shown in Fig. 3, the L2-norm-based features describe the
structure of the brain images with the amplitude, which makes
it easy to determine the residue coefficient of different brain
images.

According to the amplitude of the L2-norm-based features,
we define the fusion rule as

ResidueF (i, j)

=
{

ResidueA (i, j) , LNA (i, j) ≥ LNB (i, j)

ResidueB (i, j) , LNA (i, j) < LNB (i, j)
(3)

where ResidueF is the fused residue, ResidueA and ResidueB

are the residues from brain images A and B , and LNA

and LNB are the L2-norm-based features from brain
images A and B .

Fig. 4 shows that the key features of the residues of two
image pairs are effectively integrated into the fused images
when compared with the original residues, as with the coarse
edges and structural features.

C. IMFs Fusion

The IMFs of 2-D LPEWT, which contain the high-frequency
components, represent the detailed features of the brain image
in small scale, including textures and sharp edges. Among
transform domain-based image fusion methods, maximum
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Fig. 4. Fused residues of the first and second examples. (a) Fused residues
of the first example. (b) Pseudo-color image of the first example. (c) Fused
residues of the second example. (d) Pseudo-color image of the second
example.

selection [29], [50] is one of the most popular for the
fusion of the decomposed subimages because the amplitude
of the subimage coefficient (pixel) can represent the change
of intensity of the detailed feature in high-frequency sub-
images. Maximum selection’s shortcoming is that the fusion
decision only considers a single coefficient and ignores the
regional information important for medical diagnosis. There-
fore, a region-aware method should be used in the medical
image fusion task. It is obvious that both the regional infor-
mation and the amplitude of the IMFs coefficient make needed
contributions to brain image fusion, so we propose a modified
salience/match measure based on the research of Burt and
Kolczynski [51] and use it for the IMFs fusion within 2-D
LPEWT, calling it the MSFM because of its inclusion of
match and salience measures along with a fuzzy-weighted
calculation.

The salience measure, which is widely used in fusing
infrared and visible images, demonstrates the importance of
an IMF coefficient in the 2-D LPEWT domain. Generally,
the important coefficient of IMF is tend to more salience than
the unimportant one. We use Burt’s calculation of the salience
measure [51]

S(i, j) = 2
w∑

m=1

h∑
n=1

P(m, n)S0(i − m, j − n)

where S(i, j) is the salience measure of IMF, and S0(i, j) =
IMF(i, j)IMF(i, j); IMF(i, j) is the IMF coefficient; P is the
local window for extracting the regional features.

The match measure not only represents the amplitude
information of the corresponding coefficient in IMFs but also
describes the regional features of two IMFs. We define MAB

of IMFs of two source images

MAB (i, j)= 2
∑w

m=1
∑h

n=1 P(m, n)M0(i − m, j − n)

SA(i, j)+SB(i, j)+ ε

where M0(i, j) = IMFA(i, j)IMFB(i, j), IMFA(i, j) is the
IMF coefficient from source image A, IMFB(i, j) is the IMF
coefficient from source image B , P is the local window
for extracting the regional features of IMF, SA(i, j) is the
salience measure of IMF A, SB(i, j) is the salience measure
of IMF B , and ε is a small number to avoid the denominator
becoming 0.

Having introduced the match/salience measure, we now
define some symbols relating to the fuzzy set theory-based

Fig. 5. Fused IMF of the first and second examples. (a) Fused IMF_F 1 for
the first example. (b) Pseudo-color image of the fused IMF_F 1 for the first
example. (c) Fused IMF_F 2 for the first example. (d) Pseudo-color image
of the fused IMF_F 2 for the first example. (e) Fused IMF_F 1 for the second
example. (f) Pseudo-color image of the fused IMF_F 1 for the second example.
(g) IMF_F 2 for the second example. (h) Pseudo-color image of the fused
IMF_F 2 for the second example.

IMF fusion processes. ind1 is a flag indicating whether the
match measure of IMF A and IMF B is high or low, and ind2
is a flag indicating if the salience of IMF A and IMF B is
the highest or lowest. WA and WB are the weightings of IMF
A and IMF B , with WA + WB = 1. Therefore, our fusion
strategy has two situations.

First, if the match measure between IMFs is high (i.e.,
MAB (i, j) > α and ind1(i, j) = 1, for a given value of α,
which we set at 0.75), then the coefficient from the IMFs
with the highest salience is weighted as the final coefficient
(that is, SA(i, j) > SB(i, j), so ind2(i, j) = 1). In this case,
we define the fusion rule

IMFF (i, j) = WA(i, j)IMFA(i, j)+ WB(i, j)IMFB(i, j)

where WA and WB are the weighted values of IMF A and
IMF B with the computation of the weights as explained in
the next paragraph.

Fuzzy set theory has been widely used in image fusion
in recent years, achieving competitive performance in many
fields. The MF of fuzzy set theory quantifies the affiliation
relationship of an element (coefficient) belonging to a given set
(clear area or fuzzy area). The value of the MF is in the interval
[0, 1], with 0 meaning full non-membership and 1 meaning
full membership. Values between 0 and 1 indicate degrees of
affiliation. We use the fuzzy MF to determine the weightings
of IMFA and IMFB . According to the distribution of the values
of MAB , we use a Gaussian MF (GMF) to construct a new
weighted method instead of a linear function and ensure our
restrictions according to the following equations.

1) Wmax > Wmin.

2) Wmin = 0.5 − e
− (MAB −c)2

2σ2 .

3) Wmax = 1 − Wmin = 0.5 + e− (MAB −c)2

2σ2

where the standard deviation σ of MAB is calculated as

σ =
√√√√ 1

w × h

w∑
i=1

h∑
j=1

(MAB − c)2
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Fig. 6. Diagram of the proposed brain medical image fusion method.

and the mean value c of MAB is calculated as

c = 1

w × h

w∑
i=1

h∑
j=1

MAB

where MAB is the match measure, and w and h define
the size of MAB . The larger weight Wmax is assigned to
the IMF with the larger salience. If SA(i, j) > SB(i, j),
WA = Wmax and WA = Wmin, otherwise WA = Wmin
and WB = Wmax.

As a result, we can rewrite the fusion rule as

F1 = ind1

⎛
⎝ ind2WmaxIMFA + ind2WminIMFB

+ · · · (1 − ind2)WminIMFA

+ (1 − ind2)WmaxIMFB

⎞
⎠ . (4)

Second, if the match measure is low (i.e., ind1(i, j) = 0),
then coefficients for both IMFs are fused according to ind1
and ind2. If MAB (i, j) ≤ α, then Wmax = 1 and Wmin = 0.
In this case, we define the fusion rule

F2 = (1 − ind1) (ind2IMFA + (1 − ind2)IMFB) .

Finally, we merge the fusion rules of the two situations
according to the IMFs of the two brain images:

F = F1 + F2

= ind1(ind2WmaxIMFA + ind2WminIMFB

+ · · · (1 − ind2)WminIMFA + (1 − ind2)WmaxIMFB)

+ · · · (1 − ind1) (ind2IMFA + (1 − ind2)IMFB) .

Fig. 5 shows the fused IMFs from the first and second
examples, showing that detailed features of the brain images
are effectively extracted as compared with the subimages
in Figs. 1 and 2.

D. Detected Filters Integration

In 2-D LPEWT, we obtain an appropriate set of detection
filters (DFs) according to the different brain images. Each
DF can be regarded as a decision map because most of
values in the filters are 0 or 1. The DFs are useful for

describing the features during brain image reconstruction, and
the number of DFs is the same as the number of corre-
sponding brain subimages (residue and IMFs) [41]. Thus,
we adopt a simple but effective method of the maximum
selection to integrate the DFs for the fused brain image
reconstruction

DFF (i, j) =
{

DFF (i, j), DFF (i, j) ≥ DFB(i, j)

DFB(i, j), DFF (i, j) < DFB(i, j)

where DMF is the set of integrated filters, DFA is the set of
DFs of brain image A, and DFB is the set of DFs of brain
image B .

E. Fusion Strategies and Steps

The varying number of IMFs of different source images in
EMD is a common problem requiring special treatment. In 2-D
LPEWT, the discrepant IMFs often represent the fine features
of brain images. Specifically, a CT image may have one more
IMFs than an MRI image. Because the fine features of the
extra IMFs of an image are not available in the nonexistent
counterpart image, we preserve these features completely in
the fused image. Thus, we implement a check to see which
image has more IMFs. We assign the “extras” from the image
with more IMFs to the fused IMF at the beginning. Regular
fusion processes then handle the remaining IMF pairs to
obtain the fused IMFs as the substitution of initial IMFs
correspondingly; thus the extra IMFs can be kept, and the
IMF pairs are fused correspondingly.

Fig. 6 depicts the diagram of our proposed brain medical
image fusion method. The detailed steps are represented in
Algorithm 1 Processes (Strategies and Steps).

IV. EXPERIMENTS AND ANALYSIS

We performed experiments with our method to
validate our approach by using medical images from
the Whole Brain Atlas at Harvard Medical School
(http://www.med.harvard.edu/aanlib/home.html), and the basic
elements in these images are regarded as pixels that represent
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Algorithm 1 Processes (Strategies and Steps)
Step 0: Input source images A and B.

Step 1: Decompose the source image A and B with 2D
LPEWT to obtain residue A (R_A) and
residue B (R_B), IMF_A and IMF_B, detection filters
A (DF_A) and detection filters B (DF_B).

Step 2: Extract the L2-norm-based features to fuse the
residue of source images A and B:

R_F = Residue_fusion (R_A, R_B)

Step 3: Address the situation where the images have different
numbers of IMFs:
[mA] = number(IMF_A)
[mB] = number(IMF_B)
If (mA>mB)

IMF_F(1:mA) = IMF_A(1: mA)
DF_F(1:mA) = DF_A(1: mA)
m = mB

else
IMF_F(1: mB) = IMF_B(1: mB)
DF_F(1: mB) = DF_B(1: mB)
m = mA

end

Step 4: Fuse the IMFs using the MFSM:
For i = 1 to m

IMF_F(i) = IMF_fusion (IMF_A(i), IMF_B(i))
End

Step 5: Integrate the DFs using the maximum-selection
method:
For i = 1 to m

DF_F(i) = maximum_selection(DF_A (i), DF_B(i))
End

Step 7: Reconstruct the comprehensive image with the fused
residue, IMFs, and the detection filters and inverse
2D LPEWT.

one 1-mm brain tissue. Moreover, the size of the image is 256
× 256 pixel (the gray-scale value from 1 to 256). Our method
are compared with several common image fusion methods
including gradient pyramid (GP) [52], DWT [52], [53], filter-
subtract-decimate pyramid (fsdP) [52], guided image filter
and image statistics (GFS) [54], convolutional SR (CSR) [55],
adaptive SR (ASR) [56], guided filtering fusion (GFF) [57],
multiresolution singular value decomposition (MSVD) [58],
dual-tree complex DWT (DTDWT) [59], stationary wavelet
transform (SWT) [60], [61], curvelet transform (CVT) [62],
dual-tree complex wavelet transform-SR (DTCWT-SR) [63],
CVT-SR [63], LRSDL [64], PCLLE [65], MSGIF [66], and
DCHWT [67].

Besides, we used common objective evaluation metrics
for different methods in our experiment: edge information
preservation value (Qabf ) [68], total loss of information (Labf )
[68], mutual information (QMI) [69], Piellas metric (QW )
[70], the phase congruency-based fusion metric (QPC) [71],
nonlinear correlation information entropy (QNCIE) [72], quan-
titative evaluation-based on Tsallis entropy (Qte) [73]. Qabf

Fig. 7. Experiments for S1. (a) CT. (b) MRI. (c) GP [52]. (d) DWT [52],
[53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60] [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

represents how much the edge feature is fused from the source
images into the final image, the best value is 1, and the worst
value is 0. Labf is the total amount of information loss in
image fusion processes; the best value is 0, and the worst
value is 1. QMI measures the amount of information that
is fused into the final image from the source images. QW

can take the salience information into account to represent
the quality of the final image. QPC compares the local cross
correlation of corresponding feature maps between the source
image and the final image. QNCIE is a nonlinear correlation
metrics to represent the difference between the source image
and final image. Qte is a Tsallis entropy-based metric and
can be regarded as a form of non-extensive entropy. For QMI,
QW , QPC, QNCIE, and Qte, the greater values are, the better
the fused image is. All the adopted metrics are calculated
according to both the source image and fused image. These
methods can present the shared edge or information among
source images and fused image. Thus, the information or
features transformed from the source image to the fused image
can be quantified.
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TABLE I

AVERAGE INDEXES OF FUSED IMAGES GENERATED BY DIFFERENT METHODS (THE PARENTHESES REPRESENTS THE NUMBERS
OF THE BEST METRIC IN THE EXPERIMENTS)

Fig. 8. Experiments for S2. (a) CT. (b) MRI. (c) GP [52]. (d) DWT [52],
[53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60], [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

Fig. 7 shows the fused brain image from the first pair of
source images. The brightness of the fused image generated
by the proposed method is better than those of other methods.

Fig. 9. Experiments for S3. (a) CT. (b) MRI. (c) GP [52]. (d) DWT [52],
[53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60], [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

The sharp edges of the skull were preserved, and the textures
of the brain cell were fused into the final image. We judge the
fused image generated by our proposed method to be better
than those of the control methods.
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Fig. 10. Experiments for S4. (a) CT. (b) MRI. (c) GP [52]. (d) DWT
[52], [53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60], [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

In Fig. 8, the bright edges of skull and brain were shown
clearly in the fused image from our proposed method, and
the textures and edges of the ectocinerea and alba were kept
as well.

In Fig. 9, the contrast of the fused image from our proposed
method is most similar to the source images than that of other
methods. In addition, the human tissue information from the
CT and MRI images is represented in the proposed method.

Fig. 10 shows the fused brain image for the fifth pair of
source images. The fused images in Fig. 10(i) and (p) are better
than those of other methods, especially with regard to contrast,
brightness, and edge details. However, some important features
were lost such as that relating to the moisture content of
the MRI image. The fused image generated by our proposed
method is better than that of the comparative methods.

In Fig. 11, the contrast and brightness of the fused image
generated by our proposed method are better than those of
other methods. Furthermore, our method introduced no unwel-
come information. Fig. 11(f) shows some obvious artifacts in
the areas of the ectocinerea and alba. The detailed feature and
structural information of the brain medical images are well-
preserved.

Fig. 11. Experiments for S5. (a) CT. (b) MRI. (c) GP [52]. (d) DWT
[52], [53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60], [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

In Fig. 12, the main features of brain CT and MRI images
are well integrated into the fused image generated by our
proposed method, including the sharp edges of the skull and
the textures of the brain, showing that our proposed method
successfully extracted and fused the most valuable information
to merge together into the final image.

Fig. 13 shows that the information of high-density tissue
in CT image and the features of higher moisture content
tissue in MRI image are fused into the final image effectively.
Specifically, the detailed edge and texture of the skull and brain
cell were represented in the fused image; besides, the structural
information of the eyes, ectocinerea, and alba were kept very
well. Overall, the fused image generated by our proposed
method is better than those of the control methods.

The brain medical images and the fused images generated
by different methods are shown in Figs. 7–13. In general,
the fused images from our proposed method are better than
those of the other methods with regard to textures, details,
and brightness. The experimental results show LPEWT fused
more abundant details from the brain images than the other
methods, and it extracted and fused the features of the brain
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TABLE II

COMPUTATION TIME OF DIFFERENT IMAGE FUSION METHODS (CPU I5-4590@3.3 GHZ, RAM 16 GB, MATLAB 2016A; “– –” REPRESENTS NULL)

Fig. 12. Experiments for S6. (a) CT. (b) MRI. (c) GP [52]. (d) DWT
[52], [53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60], [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

images well. Overall, our proposed scheme is an effective and
competitive medical image fusion method.

The averaged evaluation metrics for different image fusion
methods are given in Table I and Fig. 14. Our scheme shows
the highest Qabf (as 0.6556), QMI (as 3.9071), Qte (as 0.8664),
and QNCIE (as 0.8111) values, demonstrating that the proposed
method is effective to maintain key features of source images.
Qabf and QMI are the most important evaluation metrics in
image fusion, and the values of the two metrics are apparently
higher than those of other conventional methods, which shows
that the proposed method can reserve more information of the
medical images than other competitors. The value of Labf of
our proposed scheme is the lowest (as 0.2487), which means
the fused images have minimal information loss. Although
the QW and QPC values of our proposed scheme are not
the best, they are close to the highest values (as 0.8439,
0.5766, respectively). In summary, the experiments reveal

Fig. 13. Experiments for S7. (a) CT. (b) MRI. (c) GP [52]. (d) DWT
[52], [53]. (e) fsdP [52]. (f) GFS [54]. (g) CSR [55]. (h) ASR [56]. (i) GFF
[57]. (j) MSVD [58]. (k) DTDWT [59]. (l) SWT [60], [61]. (m) CVT [62].
(n) DTCWT-SR [63]. (o) CVT-SR [63]. (p) LRSDL [64]. (q) PCLLE [65].
(r) MSGIF [66]. (s) DCHWT [67]. (t) Proposed.

Fig. 14. Histogram of averaged indexes.

that fused images generated by our proposed scheme are
competitive compared with those of control methods, and the
proposed medical image fusion method is effective.

We repeat ten times to calculate the average time as the
computation time that is used to evaluate the computation
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efficiency, and S6 is used as the example. The computation
time of different image fusion methods is presented in Table II.
The running time of conventional transform domain-based
fusion methods, such as GP, DWT, and fsdP, are less than
other complicated methods. Meanwhile, the computation of
CSR and ASR is obviously complicated when compared with
other fusion methods, but the running time of our proposed
method is moderate. Nevertheless, our proposed method can
achieve competitive results in visual effect and objective index.

V. CONCLUSION

In this study, we have proposed a new brain medical image
fusion method using 2-D LPEWT, L2-norm-based features,
and an MSFM method. 2-D LPEWT decomposes the medical
image into a set of subimages, with the L2-norm-based
features used to fuse the residue component, the MSFM
method assists with fusing the IMFs, and inverse 2-D LPEWT
reconstructs the fused image by considering the integrated
filters. We have also designed a simple solution to the problem
of differing numbers of IMFs between source images and
made use of several image feature extraction methods for
fusing the residue component and IMFs.

This article shows that 2-D LPEWT can be employed to
handle the problem of image fusion. The experiments reveal
that our proposed method effectively extracted and fused the
features of the test brain medical images, and it was superior
on several metrics and competitive on all when compared to
other conventional methods. Our future work can be divided
into two aspects. First, we plan to improve the performance of
EWT-based image fusion method. Second, more fusion rules
are supposed to explore according to the analysis of extracted
image features.
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