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Abstract—The intersecting cortical model (ICM), initially
designed for image processing, is a special case of the biologically
inspired pulse-coupled neural-network (PCNN) models. Although
the ICM has been widely used, few studies concern the internal
activities and firing conditions of the neuron, which may lead
to an invalid model in the application. Furthermore, the lack of
theoretical analysis has led to inappropriate parameter settings
and consequent limitations on ICM applications. To address this
deficiency, we first study the continuous firing condition of ICM
neurons to determine the restrictions that exist between network
parameters and the input signal. Second, we investigate the neu-
ron pulse period to understand the neural firing mechanism.
Third, we derive the relationship between the continuous fir-
ing condition and the neural pulse period, and the relationship
can prove the validity of the continuous firing condition and the
neural pulse period as well. A solid understanding of the neu-
ral firing mechanism is helpful in setting appropriate parameters
and in providing a theoretical basis for widespread applications to
use the ICM model effectively. Extensive experiments of numer-
ical tests with a common image reveal the rationality of our
theoretical results.

Index Terms—Feature extraction, neural networks, image
processing, intersecting cortical model (ICM), neurodynamic
analysis, pulse-coupled neural network (PCNN).
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I. INTRODUCTION

A. Motivation

NEURAL networks are widely used in many fields and
have achieved excellent results [1]–[7]. The classical

pulse-coupled neural network (PCNN), which is a single-layer,
locally connected artificial neural network, was first proposed
by Eckhorn [1], [8], [9]. As a multiparameter model, the
PCNN is described by five coupled equations, and inappro-
priate parameter values negatively affect its performance in
many applications [10]. Specifically, the PCNN requires at
least seven parameters to be set and adjusted manually [11].
This time-consuming process is PCNN’s greatest weakness
and the source of consistency problems in its applications [12].

The PCNN simulates the information processing mech-
anisms of some small animals [13], such as feline visual
cortex neurons, to simplify the network’s computations [14].
However, the computations of the PCNN remain complex and
expensive [8]. Therefore, Kinser and Ekblad introduced the
PCNN-derived intersecting cortical model (ICM) for image
processing in order to simplify the classical versions of the
PCNN [15], [16]. Compared with the PCNN, the ICM has a
simpler mathematical core and fewer parameters, making the
ICM more suitable for image processing in many cases [17].
Although the ICM preserves the basic structure and function
of the PCNN model [17], it has a few advantages compared to
the PCNN: 1) it has only three parameters, which simplifies
setup [18] and 2) it is faster due to its simpler computational
model [19]. As a result, the ICM has been widely used since
its introduction.

The theoretical foundations of the ICM are given in [15]
and [16]. In an ICM network, each neuron represents an indi-
vidual pixel in the source image. Like the PCNN, the most
important features of the ICM are its neural potential accu-
mulation, dynamic threshold, and local communication [20].

Similar to the PCNN, a group of similar neurons in an ICM
network can output synchronous pulses under the effect of
mutual-coupled pulses [21], [22], in which the synchronous
pulses of neurons are treated as 0 or 1 [23]. After several
iterations, the output of the ICM is a series of binary images
representing the features of the input image (signal) [12]. In
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particular, the model parameters, input image pixel value, and
surrounding neuron states determine the output of an ICM
neuron [24]. Of these three, the parameters are the only con-
trols fully definable by the user. The input image pixel value
is independent. The influence of the surrounding neuron states
is determined by the synaptic window, which is set in the tra-
ditional manner. Thus, the parameter of the ICM is the only
settable property, and this property has a significant effect on
the performance.

As shown by the application of the PCNN for image
segmentation [25] and image fusion [26], the neurodynamic
analysis of an ICM can benefit performancewise from careful
parameter tuning, especially since the parameters related to
the invalid condition and pulse period of the ICM neurons
are two important issues. By analyzing the invalid condi-
tion of a neuron, the relationship between the parameters and
the input signal are useful for improving ICM performance.
Furthermore, the pulse period is useful for understanding the
firing mechanism of ICM neurons and adjusting the parameters
of each neuron. However, the complexity of the continu-
ous firing condition and neural pulse period analysis means
that comparatively little research into their definitions has
been done. Consequently, ICM networks have had limited
application in many fields.

B. Our Contributions

The ICM is one of the most widely used neural networks
for image processing. However, current work emphasizes ICM
applications rather than neurodynamic analyses, especially
relating to the invalid condition and firing pulse period in ICM
neurons. For this reason, we investigate the invalid condition
and pulse period of ICM neurons based on an analysis of a
neuron’s internal state, which reveals the firing mechanism of
an ICM network to provide a transferable theory. As far as we
know, our research is the first neurodynamic analysis of the
ICM. Our contributions are as follows.

First, we deduce the conditions for the continuous firing of
an ICM neuron, known as an invalid condition, according to
the neuron’s internal activity. This allows us to assess the rela-
tionship between the parameters and the input signal, which
indicates whether an ICM network can work well in a specific
application. This result can be used for setting parameters,
which can make the ICM model easier to use.

Second, we evaluate the pulse period of an ICM neu-
ron based on its firing condition to understand the firing
mechanism of a neuron. This understanding guides parame-
ter selection and optimization. Furthermore, the pulse period
of an ICM neuron is ultimately useful in reducing the com-
plexity of parameter selection in view of the invalid condition.
This method verifies a theory to create a PCNN network that
functions well.

Finally, we deduce the relationship between the invalid
condition and firing period of each neuron to confirm the ratio-
nality of each one, which demonstrates the validity of our
conclusions. We also provide experimental results that vali-
date our mathematical derivations and conclusions. This idea
provides an available way to study other PCNN models.

The remainder of this article is organized as follows. In
Section II, we describe related works, and in Section III, we
introduce the ICM neural network. In Section IV, we analyze
the continuous firing condition of an ICM neuron, including
nonlinking and linking ICM networks. In Section V, we inves-
tigate the firing period of an ICM neuron, and in Section VI,
we derive the relationship between the continuous firing con-
dition and the firing period of an ICM neuron. In Section VII,
we present our experiments and results. The conclusions are
provided in Section VIII.

II. RELATED WORKS

Ekblad and Kinser first proposed the ICM neural network
in 2004 for image change detection, which proved useful
in applications including aircraft, cars, and nuclear explo-
sion tests [15], [16], [27]. The ICM’s advantages have led
to its wide use in image processing for tasks, such as feature
extraction, image segmentation, image denoising, and image
fusion.

The coupled pulse characteristic of the ICM network makes
it efficient for image feature extraction. Xu et al. [28] proposed
an iris feature-extraction method based on the ICM that
was used to extract the features of the enhanced iris image.
Others proposed a facial feature-extraction method using a seg-
mented face as the input of an ICM network to obtain the
binary images of the features of the source face image [29].
The ICM has also been applied to geometry-invariant texture
retrieval in combination a with support vector machine [30].
These works have shown that ICM-extracted pulse features
are more effective than the classic Gabor features in runtime
and retrieval accuracy. Furthermore, ICMs have been used for
image matching [31], plant recognition [32], unstructured lane
detection [33], and human face recognition [34].

ICM networks have also been used for image segmentation.
ICM’s coupled pulse and wave propagation behavior make it
possible to extract regional features of an image that are useful
for image segmentation. Automatic segmentation of the nuclei
in reflectance confocal microscopy images has been proposed;
this applies an ICM and an artificial neural-network classi-
fier to an image model of nuclei with varying contrast [24].
Gao et al. [35] utilized a clustering algorithm to separate the
image pixels; thus, a dynamic linear threshold attenuation can
be used as the linking synaptic matrix of ICM for image seg-
mentation. In the study of Wang et al. [20], a saliency guided
ICM was used for object segmentation based on an adaptive
and simple threshold. Zhen [36] combined the ramp width
reduction with ICM to avoid the geometric distortion problem.
Tan and Ashidi [37] used ICM to segment the sperm head
region in an image with the parameters selected by particle
swarm optimization using feature mutual information as the
objective function. Similarly, Lakshmi and Ravi [18] employed
a cuckoo search optimization algorithm to find the parameters
of ICM, which can improve the performance of the segmenta-
tion algorithm. In image segmentation, the parameter selection
of ICM is a challenging problem, and the optimization algo-
rithms are usually used to find the optimized parameters,
which need a large amount of computing resources.
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From its introduction in 1989, image fusion has received
significant attention. The regional and detailed features are
important to image fusion, and the synchronous pulse and
wave propagation of ICMs represent these features well. The
physiological motivation is shown by Broussard et al. [26].
ICMs were first used for image fusion in combination a
with wavelet transform [38]. Later, they were combined with
a discrete Ripplet transform for multimodal medical image
fusion [39]. Kong [40] proposed a transform-domain-based
image fusion method by combining a modified ICM with
a nonsubsampled shearlet transform. In 2016, an ICM was
combined with a PCNN and NSST for remote-sensing image
fusion [41]. Wang et al. [42] proposed an image-fusion method
based on an ICM combined with the composite image-clarity
criterion and incorporated an adaptive iteration number-setting
method dependent on the size of the source image instead
of using a constant. Yang first proposed an image fusion
method based on NSST and ICM [43]; and then Yang and
Wang made some small changes for ICM to improve image
fusion performance [44]. A modified ICM was also proposed
by Li et al. to fuse the low- and high-frequency coefficients
of source images in the surfacelet domain [45]. Xin et al. [12]
employed ICM to extract the features of medical images in
the NSST domain. In image fusion, the out pulses of ICM
are usually used to present the detail distribution of different
source images, and the ICM is also combined with multiscale
analysis methods.

The synchronous pulse and dynamic threshold of an ICM are
suitable for image denoising. Yuan et al. [46] used an ICM to
identify the noisy pixels that will be removed in each channel
of color images. Similarly, another ICM noise-removal method
for color images was proposed that incorporated an automatic
window-selecting method [47]. Zhang et al. [48] combined an
ICM and an improved extremum-and-median filter for image
denoising. In the research of Nisha and Mohideen [49], four
different variants of PCNN including ICM were, respectively,
combined with four popular filters to remove medical image
noise. In general, ICM is often combined with filter techniques
for image denoising.

In addition to the preceding, ICMs have also been used for
other image processing tasks, such as image enhancement [50],
object recognition [51], high-dynamic-range image process-
ing [52], realistic image rendition [53], target tracking [54],
and edge detection [55].

III. MATHEMATICAL FORMULAS OF ICM

The ICM is a biologically inspired model based on the
PCNN technique that is designed to enhance image features
without sharp edges or straight lines [15]. It can be regarded
as a minimalist version of the PCNN. Fig. 1 is a schematic of
a neuron in an ICM network when it is applied to image and
1-D information processing.

During the ICM’s iterative process, (1) is the feedback cou-
pled input that receives three inputs: 1) the previous state of
the feedback coupled input, as Fij(n−1); 2) the external input,
as Sij; and 3) the coupled input generated by surrounding neu-
rons, as Ykl(n − 1). The firing threshold of a neuron changes

Fig. 1. Diagram of an ICM for signal processing [10], [56]. (a) ICM neuron.
(b) ICM in 2-D signal processing. (c) ICM in 1-D signal processing.

dynamically according to its previous state and previous output
generated by the neuron, as shown in (2). The nonlinear pulse
generator generates pulses according to the feedback cou-
pled input and dynamic threshold, as shown in (3). When the
internal activity is larger than the dynamic threshold, the neu-
ron activates and outputs a pulse (called firing or ignition) [46].
In the ICM, the variables of a neuron satisfy

Fij(n) = fFij(n − 1) +
∑

kl

WijklYkl(n − 1) + Sij (1)

Eij(n) = gEij(n − 1) + hYij(n − 1) (2)

Yij(n) =
{

1, Fij(n) > Eij(n)

0, otherwise
(3)

where subscript (i, j) is a neuron’s position with (k, l) rep-
resenting the positions of its surrounding neurons, n is the
current iteration number less than or equal to the maximum
iteration number N, Fij is the feedback coupled input, Eij is
the dynamic threshold, Yij is the output firing status of neu-
ron (i, j) regarded as the nonlinear pulse generator, Sij is the
external input image (signal) and it is constant throughout the
N iteration, Wijkl is the connection function representing com-
munication between the central neuron and its surrounding
neurons, and the values are usually set as positive numbers
manually, f and g denote time decay constants, and they are
both smaller than 1 but larger than 0, as 0 < g < 1 and
0 < f < 1, and h is a positive amplification coefficient. For
the sake of consistency in this article, we take the parameter
values f = 0.85, g = 0.5, and h = 15 as an example.

Each neuron represents a unique pixel of the input image,
and its status is affected by the image pixel value and the status
of surrounding neurons [24]. The capture characteristics of the
neuron lead to the surrounding similar neurons’ capturing its
output, automatically coupling the neurons and transmitting
the ignition information. In each iteration, a binary image is
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obtainable by recording the fire or no-fire status of neurons
in the network, and the image can be regarded as the features
of the input image because the pixel position of source image
corresponds to the position of a firing statistics graph (FSG)
[10]. After the addition of all the binary images, the FSG is
found using the equation

FSG(ij) =
N∑

n=1

Yij(n) (4)

where N denotes the maximum iteration number and Yij is the
output pulse of neuron (i, j).

IV. ANALYSIS OF CONTINUOUS FIRING CONDITION OF

ICM NEURON

In some cases, ICM neurons may continuously fire, that is,
producing an output pulse at each iteration. If all ICM neurons
fire continuously, the entire network is invalid as the outputs
do not represent the features of the input signal. The pulse
transmission and coupling mechanism leading to this situation
has been proven in many applications [59]. In this section, we
analyze the invalid state to determine parameters that avoid it.

A. Analysis of Continuous Firing Condition of Nonlinking
ICM Neuron

In this section, we examine the continuous firing condition
of nonlinking neurons to determine the applicable restrictions
between the parameters and input signal, because each neuron
will operate without the influence of its surrounding neurons.
This makes the mechanism analysis simple and can help us
obtain basic theoretical results. Besides, the operating mech-
anism of uncoupled neurons is also important to the firing
behavior of the ICM. When a nonlinking ICM is applied to
image processing, the input is generally simplified as itself and
the external input signal S, describing the neuron according to

F(n) = fF(n − 1) + S (5)

E(n) = gE(n − 1) + hY(n − 1) (6)

Y(n) =
{

1, F(n) > E(n)

0, otherwise.
(7)

Theorem 1: For a nonlinking ICM, if f > 0, the feedback
input can be represented as

F(n) = S
1 − f n

1 − f
.

Proof: Suppose F represents the feedback input, with initial
state F(0) = 0 and S represents the external input signal.
Consequently, the feedback input increases according to (5),
with F(1), F(2), F(3), · · · , and F(n) described as

F(0) = 0

F(1) = fF(0) + S = S

F(2) = fF(1) + S = fS + S

F(3) = fF(2) + S = f (fS + S) + S = f 2S + fS + S
...

F(n) = S
1 − f n

1 − f
. (8)

Equation (8) shows that the feedback input F of a nonlinking
ICM neuron will increase with increasing iterations.

The proof is completed.
Theorem 2: For a nonlinking ICM, if g > 0 and h > 0, the

dynamic threshold can be represented as

E(n) = h
1 − gn

1 − g
.

Proof: Suppose E represents the dynamic threshold with
initial state E[0] = 0, and Y represents the output with initial
state Y[0] = 0. For a continuously firing neuron, its output
maintains the state Y(n) = 1 because the firing condition
F(n) > E(n) is always satisfied. As a result, the dynamic
threshold keeps increasing according to (6), with E(1), E(2),
E(3), · · · , and E(n) described as

E(0) = 0

E(1) = gE(0) + h = h

E(2) = gE(1) + h = gh + h

E(3) = gE(2) + h = g(gh + h) + h = g2h + gh + h
...

E(n) = h
1 − gn

1 − g
. (9)

Equation (9) shows that the dynamic threshold E of non-
linking ICM neurons will increase as the iterations increase.

The proof is completed.
Since nonlinking ICM neurons continuously fire, the firing

condition F(n) > E(n) is always satisfied. According to (8)
and (9), the continuous firing condition can be described by

F(n) = S
1 − f n

1 − f
> E(n) = h

1 − gn

1 − g
. (10)

Theorem 3: For a continuously firing nonlinking ICM neu-
ron, the continuous firing condition in (10) can be represented
as

S > h
(1 − f )

(1 − g)
, n −→ ∞.

Proof: Equation (10) can be further represented as

S
(1 − f n)

(1 − f )
> h

(1 − gn)

(1 − g)
. (11)

Rewriting the equation leads to the continuous firing con-
dition expressed as

S > h
(1 − gn)(1 − f )

(1 − g)(1 − f n)
. (12)

When n goes to infinity, (12) can be represented as

S > h
(1 − f )

(1 − g)
. (13)

Equation (13) is the continuous firing condition of a non-
linking ICM neuron.

The proof is completed.
To verify the rationality of the analysis in this section, we

employ a set of common parameters and signals as examples.
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Fig. 2. Neuron activity status for different inputs: (a) In=0.1; (b) In=1;
(c) In=2; (d) In=4.49; (e) In=4.5; and (f) In=4.51.

Example 1: For parameter values f = 0.85, g = 0.5, and
h = 15, the continuous firing condition can be calculated
according to (13)

S > h
(1 − f )

(1 − g)
= 4.5.

Fig. 2 shows the active states of an ICM neuron for different
input signals. The blue line shows Y , with the peaks repre-
senting the output pulse. The symbol In represents a variable
element of the input signal. After many iterations, we obtain
two results.

1) When In = 0.1, In = 1, In = 2, and In = 4.49,
the nonlinking ICM neuron functions properly and fires
periodically.

2) When In = 4.51, after several changing periodic igni-
tions, the nonlinking ICM neuron does not function
properly and fires continuously.

Per the mathematical derivation (13) in this section, when
the input signal is below the continuous firing condition (e.g.,
S > 4.5), the nonlinking neuron can function properly, as
shown in Fig. 2(a)–(d). However, the performance may be
very poor when the input signal approaches the continuous
firing condition as shown in Fig. 2(e). If the continuous firing
condition is not satisfied, the nonlinking ICM neuron cannot
function properly, as shown in Fig. 2(f). The experiments prove
the validity of the continuous firing condition as discussed in
this section.

In this section, the external input signal must be less than
the calculated S value from (13), which is the continuous

firing condition that ensures that the neuron maintains its
normal working status. Fig. 2(a)–(d) shows that the neuron
outputs a cycle pulse when the external input signal is less
than S. Fig. 2(f) shows that when the external input signal is
larger than S, the neuron will remains in the continuous firing
condition after several normal cycle pulses.

B. Analysis of Continuous Firing Condition of Linking
ICM Neuron

We now analyze the continuous firing condition of a linking
ICM neuron to estimate the restrictions between the parame-
ters and input signal. We assume that a linking ICM neuron
satisfies (1)–(3).

Theorem 4: For a linking ICM neuron, if f > 0, the
dynamic threshold can be represented as

F(n) = S
1 − f n

1 − f
+

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f
.

Proof: Let
∑
kl

WijklY(n − 1) be represented by X(i), and the

initial state of the linking ICM neuron is also F[0] = 0,
Y(0) = 0, and X(0) = 0. Thus, the feedback input keeps
increasing according to

F(n) = fF(n − 1) + S + X(i). (14)

Then, we can describe F(1), F(2), F(3), · · · , and F(n), as
follows:

F(0) = 0

F(1) = S + X(0) = S

F(2) = fF(1) + S + X(1)

F(3) = fF(2) + S + X(2) = f 2S + fS + fX(1) + S + X(2)

...

F(n) = S
1 − f n

1 − f
+

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f
. (15)

Equation (15) shows that the dynamic threshold F of a
linking ICM neuron increases with the number of iterations.

The proof is completed.
The initial state of a linking neuron also has E[0] = 0

and Y[0] = 0. Since the neuron fires continuously, the out-
put is always Y(n) = 1, with the dynamic threshold E(n) as
described by (9). The firing condition F(n) > E(n) described
by (16) must be always satisfied as well, taking into account
the contribution of surrounding neurons as X(i) ∈ [0, sum(W)]

F(n) = S
1 − f n

1 − f
+

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f
> E(n) = h

1 − gn

1 − g
. (16)

Theorem 5: If f > 0, g > 0, and h > 0, a linking ICM
neuron fires continuously in accordance with the following
representation:

S >

(
h

1 − gn

1 − g
−

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f

)
1 − f

1 − f n
.

Authorized licensed use limited to: Yunnan University. Downloaded on July 08,2022 at 00:45:34 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: HOW TO ANALYZE THE NEURODYNAMIC CHARACTERISTICS OF PCNN? 6359

Proof: Equation (16) can be rewritten as

S
1 − f n

1 − f
+

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f
> h

1 − gn

1 − g
. (17)

From this, we obtain the linking ICM neuron’s continuous
firing condition as

S
1 − f n

1 − f
> h

1 − gn

1 − g
−

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f

S >

(
h

1 − gn

1 − g
−

n−1∑

i=0

X(i)
1 − f n−i−1

1 − f

)
1 − f

1 − f n
. (18)

Equation (18) is the continuous firing condition of a linking
ICM neuron.

The proof is completed.
Since this section considers an ICM neuron in an invalid

status, we assume that the central neuron and its surrounding
neurons are all firing continuously, such that Yijkl(n − 1) ≡ 1,
and we can obtain X(i) = sum(W), in which sum(W) means
the summation of its elements. All surrounding neurons remain
continuously firing, influencing the central neuron to fire con-
tinuously. As a result, the continuously firing condition of a
linking ICM neuron is described in

S >

(
h

1 − gn

1 − g
− sum(W)

1 − f n−1

1 − f

)
1 − f

1 − f n

> h
1 − gn

1 − g

1 − f

1 − f n
− sum(W)

S > h
1 − gn

1 − g

1 − f

1 − f n
− sum(W). (19)

When n tends to infinity, we obtain (20)

S > h
1 − f

1 − g
− sum(W). (20)

To verify the correctness of the mathematical derivation in
this section, we input different 1-D input signals to linking
ICM neurons while surrounding neurons simultaneously input
different signals in an experiment.

Example 2: We set the following parameters in our linked
ICM neuron: W = [1/4, 1/3, 0, 1/3, 1/4], f = 0.85, g = 0.5,
and h = 15. Since the firing state of the surrounding neurons
is very difficult to deduce by mathematical analysis, (19) and
(20) can be used to obtain a rough analysis of the continuous
firing of a linking ICM neuron.

In a linking ICM neuron, the continuous firing condition
can be calculated as

S > h
1 − f

1 − g
− sum(W) = 4.5 − 7

6
≈ 3.3333. (21)

Figs. 3 and 4 show the results when different surrounding
input signals are input into a linking ICM neuron. When the
input signal is set as Ins = [3, 8, In, 7, 9], the activity states
of the neuron are as shown in Fig. 3. When the input signal
is set as Ins = [0.3, 0.8, In, 0.7, 0.9], the activity sates of a
linking ICM neuron are as shown in Fig. 4. The former signal
values are larger than the normalized signal to ensure that
the surround neurons keep firing. The latter signal values are

Fig. 3. Neuron activity states of different inputs with surrounding input
signals Ins=[3, 8, In, 7, 9]: (a) In=3.2; (b) In=3.3; (c) In=3.5; (d) In=4;
(e) In=4.5; and (f) In=5.

smaller than the normalized signal to decrease the impact on
the central linking neuron.

Furthermore, when the input signal is below the continuous
firing condition of the linking neuron according to (21), such
as In = 3.3 in Figs. 3 and 4, the linking neuron functions
properly. If the input signal is above the condition, the link-
ing neuron does not function properly. Furthermore, as the
input signal increases, the neuron continues to fire without
interruption.

Specifically, when the input signal is below the continu-
ous firing condition of a linking neuron, as with S > 3.3333,
the surrounding neurons are more likely to remain continu-
ously firing. The linking neuron functions properly as shown in
Fig. 3(a) and (b). When the input signal is greater than the con-
tinuous firing condition, the linking neuron will remain in the
continuous firing state and no longer function properly after
several changing periodic ignitions as shown in Fig. 3(c)–(f).

In Fig. 4, when the input signal is below the continuous
firing condition of a linking neuron, as when S > 3.3333, the
surrounding neurons are more likely to maintain noncontin-
uous firing. The linking neuron functions properly as shown
in Fig. 4(a). When the input signal is larger than the continu-
ous firing condition of a nonlinking neuron and smaller than
the continuous firing condition of a linking neuron, such as
4.5 > S > 3.3333, the linking neuron continues functioning
properly, as shown in Fig. 4(c). However, when the input sig-
nal approaches or exceeds the continuous firing condition, the
neuron no longer functions properly, as shown in Fig. 4(d)–(f).
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Fig. 4. Neuron activity states of different inputs with surrounding input
signal Ins=[0.3 0.8 In 0.7 0.9]: (a) In=3.2; (b) In=3.6; (c) In=4; (d) In=4.3;
(e) In=4.5; and (f) In=5.

The experimental results in Figs. 3 and 4 show that the
external input signal must be below the continuous firing con-
dition of a linking neuron when all surrounding neurons are
firing continuously.

V. EVALUATION OF FIRING MECHANISM OF ICM NEURON

An ICM neuron with higher input signal always fires sooner
than the one with lower intensity. In this section, we exam-
ine the pulse cycle of an ICM neuron to understand the firing
mechanism and guide parameter setting to avoid the continu-
ous firing condition. Nie first introduced the definition of the
firing period of an ICM neuron [57], [58].

Definition 1: The firing period of an ICM neuron is defined
as the iteration interval between two adjacent pulses.

A. Evaluation of Firing Period of Nonlinking ICM Neuron

In this section, we first analyze the firing period of a non-
linking ICM neuron. In a nonlinking neuron, the input signal
is normalized into the range of “0–1” with initial states as
F[0] = 0, Y[0] = 0, and E[0] = 1.2. It can be inferred that
the neuron will not fire during the first iteration, so the cor-
responding output is Y[1] = 0 because the firing condition
(F[1] = S < E[1]) is not satisfied.

Theorem 6: For a nonlinking ICM neuron, if f > 0, g > 0,
and h > 0, the firing period can be described as

T(nm) = nm − nm−1 =
⌈

logg
S

Sg + h(1 − f )
+ 1

⌉
, m > 1

where n represents the nth iteration, and m represents the mth
ignition.

Proof: If the neuron does not output the first pulse, (10)
increases while (22) decreases at the same time

E(n) = gE(n − 1) = gnE(0). (22)

When the firing condition F(n) > E(n) is satisfied, the
neuron will output its first pulse, with the firing condition
described as

F(n) = fF(n − 1) + S = S
1 − f n

1 − f
> E(n) = gnE(0), n > 1. (23)

Then, (24) can be obtained according to (23)

S
1 − f n

1 − f
> gnE(0)

1 − f n

gn
>

(1 − f )E(0)

S
. (24)

From (24), the time of the first pulse of a nonlinking ICM
neuron can be obtained.

According to the definition in [57] and [58], the iteration
interval between two adjacent pulses is regarded as the firing
period of a neuron. We, therefore, assume that a nonlinking
neuron outputs the mth pulse at the nmth iteration and the
(m + 1)th pulse at the nm+1th iteration. A nonlinking neu-
ron’s output pulse at the nmth iteration means that the dynamic
threshold of the next iteration is described by (25) according to
(6). If the neuron outputs the next pulse at the nm+1th iteration,
(25) satisfies (26) according to (22)

E(nm + 1) = gE(nm) + Y(nm)h (25)

E(nm+1) = g(nm+1−nm−1)(gE(nm) + Y(nm)h). (26)

The feedback input of the nmth and nm+1th iterations is then
described by (27) and (28)

F(nm) = S
1 − f nm

1 − f
(27)

F(nm+1) = S
1 − f nm+1

1 − f
. (28)

When the nonlinking neuron outputs a pulse at the nm+1th
iteration, the feedback input should be approximately equal
to the dynamic threshold. Furthermore, F(nm+1) > E(nm+1)

according to (3), which leads to the assumption that the
feedback input is approximately larger than the dynamic
threshold because their values are very close at this time,
as E(nm+1) ≈ F(nm+1). According to (26), the situation is
described by (29) and (30)

E(nm+1) = g(nm+1−nm−1)(gE(nm) + h) ≈ F(nm+1)

(29)

nm+1 − nm − 1 = logg
F(nm+1)

gE(nm) + h
. (30)

Because the iteration must be an integer, we obtain
(31)–(33) according to (29) and (30)
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nm+1 − nm − 1 =
⌈

logg
F(nm+1)

gE(nm) + h

⌉
(31)

nm+1 − nm =
⌈

logg
F(nm+1)

gE(nm) + h

⌉
+ 1 (32)

nm−nm−1 =
⌈

logg
F(nm)

gE(nm−1) + h

⌉
+ 1. (33)

Substituting and combining F(nm) ≈ E(nm), F(nm−1) ≈
E(nm−1), and (27) and (28) into (33), we obtain the firing
period of a nonlinking neuron as follows:

T(nm) = nm − nm−1

=
⌈

logg
S(1 − f nm)

S(1 − f nm−1)g + h(1 − f )

⌉
+ 1, m > 1. (34)

According to the characteristics of a nonlinking neuron,
when the neuron outputs the third pulse or its near future
pulses the iteration is quite small; however, the maximum
iteration can be considered as infinite in specific applications.
Because 0 < f < 1 and n is quite large, f n can be regarded
as 0. As the result, the firing period of the nonlinking neuron
can be described as

T(nm) = nm − nm−1 =
⌈

logg
S

Sg + h(1 − f )

⌉
+ 1, m > 1.

(35)

The proof is completed.
Example 3: As an example, we set parameters of a non-

linking neuron as f = 0.85, g = 0.5, h = 15, and E(0) = 1.2
. Using input signals of In = 0.001, In = 0.1, In = 0.5, and
In = 0.9, all the inputs satisfy the continuous firing condi-
tion of a nonlinking neuron according to (24). The first pulse
time can be calculated according to (24), yielding a first pulse
period of T(n1) = n + 1. The future pulse periods can be cal-
culated according to (35). Thus, for various input signals, we
obtain the following results:

In = 0.001, T(n1) = 9, and T(nm) = 13
In = 0.1, T(n1) = 4, and T(nm) = 6
In = 0.5, T(n1) = 2, and T(nm) = 4
In = 0.9, T(n1) = 2, and T(nm) = 3.

Fig. 5 shows the resulting pulse periods from the experi-
ments. The blue line denotes Y , the peaks represent the output
pulse, and the symbol In represents the input signal.

In Fig. 5(a), for In = 0.001, the first pulse period is 9, and
then 13 subsequently.

In Fig. 5(b), for In = 0.1, the first pulse period is 4, and
then 6 subsequently.

In Fig. 5(c), for In = 0.5, the first pulse period is 2, and
then 4 subsequently.

In Fig. 5(d), for In = 0.9, the first pulse period is 2 and the
second pulse period is 4, then 3 subsequently.

The mathematical analysis is consistent with the experi-
mental results, which shows that the theoretical analysis is
reasonable. It also demonstrates that different input signals In
produce different pulse periods.

In greater detail, Fig. 5 shows that the results of the math-
ematical analysis are consistent with the experimental results
when the input signal is small. However, when the input signal
is large, differences arise between the mathematical analysis

Fig. 5. NonLinking ICM neuron internal state and pulse output time with
different inputs: (a) In=0.001; (b) In=0.1; (c) In=0.5; and (d) In=0.9.

and experimental results, although the prediction is largely
correct. The cause is that the iteration of the second pulse is
small, while f n does not fully become 0. In addition, a larger
input signal In causes the feedback input F to increase quickly,
further shortening the pulse cycle. However, Fig. 5 shows that
the difference between the mathematical analysis and exper-
imental results is nearly eliminated by the fourth iteration,
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with the pulse cycle returning to normal and according with
the mathematical analysis. In practical application, the number
of iterations is usually large, so the observed pulse cycle will
be in accordance with our analytical results.

B. Evaluation of Firing Period of Linking ICM Neuron

In a linking ICM network, similar neurons output syn-
chronous pulses under the influence of mutual coupled pulses.
As a result, surrounding neurons exert great influence on the
firing behavior of the linking neuron, and the pulse of the
linking neuron is output sooner, that is, with a smaller pulse
cycle. Because the uncertainty of the input signal will produce
uncertain pulses, we cannot obtain a calculable expression
for the continuous firing condition of a linking ICM neu-
ron. According to (1)–(3), the feedback input is composed
of external incentives and external coupled pulses. The exter-
nal coupled pulses, in particular, cause the feedback input of
a linking neuron to increase faster than that of a nonlinking
neuron.

Example 4: In a linking neuron, it is very difficult to predict
whether a neuron will output a pulse using mathematical cal-
culation and analysis. Thus, we used experiments to verify
the phenomenon of advance firing of linking neurons. We
used parameter values W = [1/4, 1/3, 0, 1/3, 1/4], f = 0.85,
g = 0.5, and h = 15, and set surrounding input signals
to Ins = [0.3, 0.8, In, 0.7, 0.9]. We used input signals of
In = 0.001, In = 0.1, In = 0.5, and In = 0.9.

In Fig. 6, the pulse period of the linking neuron was
obtained from the experiments. The blue line indicates out-
put Y , the peaks represent the output pulse, and the symbol
In denotes the input signal. In Fig. 6(a), the stable pulse
period of a linking neuron occurs sooner than that of a simi-
lar nonlinking neuron. The experimental results show that the
assumption of the synchronous pulse phenomenon is correct
and proves that neurons with higher input signals always fire
prior to those of lower intensity. Importantly, Fig. 6 shows
that the assumptions of this section are consistent with the
experimental results.

VI. RELATIONSHIP BETWEEN CONTINUOUS FIRING

CONDITION AND FIRING PERIOD OF ICM NEURON

In this section, we deduce the relationship between the
continuous firing condition and the firing period of an ICM
neuron, which proves the validity of the two results. We also
introduce the firing characteristics of nonlinking and linking
neurons.

Theorem 7: For a nonlinking neuron with input signal S,
1 > g > 0 and h > 0. The relationship between the pulse
period T and g can be represented as follows:

gT−1(1 − g) > 1 − gT .

Proof: Using the firing period of a nonlinking neuron from
(35), we obtain the following:

gT−1 >
S

Sg + h(1 − f )

gT−1(Sg + h(1 − f )) = S

Fig. 6. linking ICM neuron internal state and pulse output time for different
inputs: (a) In= 0.001; (b)In=0.1; (c) In= 0.5; and(d)In= 0.9.

gT−1Sg + gT−1h(1 − f ) = S

gT−1h(1 − f ) = S(1 − gT−1g)

gT−1h(1 − f ) = S(1 − gT) (36)

where T represents the firing period of the neuron.
The external input signal S can be described by

S = gT−1h(1 − f )

(1 − gT)
. (37)
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When (13) is satisfied, the neuron is firing continuously, and
the ICM neural network is invalid.

Using (13) and (37), we obtain the following:

S = gT−1h(1 − f )

(1 − gT)
> h

1 − f

1 − g

S = gT−1

(1 − gT)
>

1

1 − g

gT−1(1 − g) > 1 − gT . (38)

The proof is completed.
According to Theorem 7, we find the following inequality,

(42), which represents the relationship between T and g

gT−1 − gT > 1 − gT (39)

gT−1 > 1

T − 1 < 0

T < 1. (40)

When the external input signal In satisfies (13), we obtain
the firing period of the nonlinking neuron as (40), which is
always less than 1. However, the firing cycle of an ICM neuron
can never be less than 1 inasmuch as the cycle should always
be an integer greater than or equal to 1. The ICM neuron is
invalid if the pulse cycle is less than 1; besides, we know that
the ICM neuron is still invalid if T = 1 from Section IV.

Thus, we can infer that when the external input signal S
satisfies

S < h
(1 − f )

1 − g
(41)

the firing period of the nonlinking neuron satisfies

T > 1. (42)

When (45) is satisfied, the neuron has the possibility of
functioning properly. This conclusion is proven by our math-
ematical derivation in this section, which also validates (13).

For a linking neuron, the feedback input consists of the
external input signal S and external coupled pulses. Compared
with a nonlinking neuron, the feedback input tends to increase
faster from the influence of external coupled pulses, which can
be inferred by

F(n) =
(

S +
∑

kl

WijklY(n − 1)

)
1 − f n

1 − f
. (43)

At the same time, the internal state of a linking neuron
remains as E(n) = gE(n−1), which is the same as a nonlinking
neuron. As a result, the pulse of a linking neuron will be output
in advance along with the future pulse. Thus, the pulse cycle
of a linking neuron will be smaller than that of a nonlinking
neuron.

In a linking neuron, it is very difficult to predict whether a
neuron outputs a pulse using a mathematical analysis. Thus,
we only discuss the firing characteristics of linking neurons
based on the conclusions from nonlinking neurons. From those
conclusions, we determine that the external input signal of a
linking neuron must be less than that of a similar nonlinking
neuron to keep the neuron working well.

Fig. 7. Commonly used images: (a) lena and (b) clock.

VII. EXPERIMENTS AND ANALYSIS

To verify the correctness of the mathematical analysis in
this article, we used two common images as experimental sam-
ples, as shown in Fig. 7. After normalizing the image pixel
values into the range “0–1,” we added a constant to the nor-
malized pixel values to move the minimum value close to the
continuous firing condition; in addition, we removed coupling
operations to observe the firing behavior of a single neuron,
which can avoid the influence of the surrounding neurons. In
the experiment, we used a completely black image to repre-
sent the output that is a single-value image, only 0 or 1, which
means that all neurons output pulse or none output pulse. The
completely black image means that the ICM network cannot
extract any features of the source image. The other images
indicate that some neurons output pulses while others do not,
which means that the network can extract features from the
source image.

For Fig. 7(a), we used the parameter values W= [1/8, 1/6,
1/8; 1/6, 0, 1/6; 1/8, 1/6, 1/8], f = 0.85, g = 0.5, and h = 15.

According to (13) and (20), the continuous firing condition
for a nonlinking neuron can be calculated by (13) as 4.5; the
continuous firing condition for a linking neuron can be cal-
culated by (20) as 3.3333. Therefore, 4.5 is regarded as the
continuous condition for keeping the neuron functioning well.
In Fig. 8, the added constant is 3 to move each pixel value
into the range “3–4,” and all the pixel values are less than the
continuous firing condition of 4.5. After the second iteration,
all binary images are incomplete black images showing some
output pulses but not others, which means that ICM neurons
output the periodic pulse in their own cycle.

Fig. 9 represents the FSGs [see (4)] of the ICM network at
the 50th, 70th, 90th, 150th, and 250th iterations. The differ-
ences between the highest and lowest pixel values of the FSGs
are 10, 15, 20, 35, and 60, respectively. The changing differ-
ence shows that the pulse cycle of the neurons differs, and the
binary images show that some neurons output pulses while
others do not, which indicates that the network is functioning
properly.

In Fig. 10, the added constant is 4.6 to shift pixels into
the range of “4.6–5.6,” with all pixel values larger than the
continuous firing condition of 4.5, and this operation is similar
to that of Fig. 8. As shown in Fig. 10, after the 20th iteration,
all neurons fire continuously, and the experimental results are
consistent with the theoretical conclusion.

Fig. 11 represents the FSGs of the network at the 50th,
70th, 90th, 150th, and 250th iterations. For different itera-
tions, the differences between the highest and lowest values
of the FSGs are 3, 3, 3, 3, and 3, respectively. In the previous
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Fig. 8. Binary images in different iterations (the constant is 3).

Fig. 9. FSGs at 50th, 70th, 90th, 150th, and 250th iterations with input
signal In=3: (a) 50 iterations (25 maximum ignitions, 35 minimum ignitions);
(b) 70 (35, 50); (c) 90 (45, 65); (d) 150 (75, 110); and (e) 250 (125, 185).

20 iterations, some neurons output periodic pulses; however,
the invariable difference shows that all neurons fire continu-
ously at some iteration, indicating that the ICM network is
invalid. The experiments show that our mathematical results
are correct.

For Fig. 7(b), we use parameter values f = 0.9, g = 0.8,
h = 5, and W = [1/10, 1/6, 1/10; 1/6, 0, 1/6; 1/10, 1/6,
1/10], and the continuous firing condition can be calculated
according to (13) and (20):

1) for a nonlinking neuron

S > h
(1 − f )

(1 − g)
= 5

(1 − 0.9)

(1 − 0.8)
= 5

0.1

0.2
= 2.5

2) for a linking ICM neuron

S > h
(1 − f )

(1 − g)
− sum(W) = 5

(1 − 0.9)

(1 − 0.8)
− 16

15
≈ 1.4333.

Fig. 10. Binary images in different iterations (the constant is 4.6).

Fig. 11. FSGs at 50th, 70th, 90th, 150th, and 250th iterations with input sig-
nal In=4.6. (a) 50 iterations (44 maximum ignitions, 47 minimum ignitions).
(b) 70 (64, 67). (c) 90 (84, 87). (d) 150 (144, 147). (e) 250 (244, 247).

In Fig. 12, the added constant is 0.5 to move each pixel
value into the range “1–1.5,” and all the pixel values are
less than the continuous firing condition of 2.5. After the
first iteration, all binary images are incompletely black images
showing some output pulses but not others, which means that
ICM neurons output the periodic pulse in their own cycle.

Fig. 13 represents the FSGs of the ICM network at the
50th, 70th, 90th, 150th, and 250th iterations. The differences
between the highest and lowest pixel values of the FSGs are
14, 21, 27, 46, and 79, respectively. The changing difference
shows that the pulse cycle of the neurons differ.

In Fig. 14, the added constant is 2.6 to shift pixels into the
range “2.6–3.6,” with all pixel values larger than the contin-
uous firing condition of 2.5. As shown in Fig. 14, after the
14th iteration all neurons fire continuously.

Fig. 15 represents the FSGs of the network at the 50th, 70th,
90th, 150th, and 250th iterations. For different iterations, the
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Fig. 12. Binary images in different iterations (the constant is 0.5).

Fig. 13. FSGs at 50th, 70th, 90th, 150th, and 250th iterations. (a) 50 iterations
(12 maximum ignitions, 26 ignitions). (b) 70 (17, 38). (c) 90 (22, 49). (d)
150 (37, 83). (e) 250 (62, 141).

differences between the highest and lowest values of the FSGs
are 4, 4, 4, 4, and 4, respectively. In the previous 15 iterations,
some neurons output periodic pulses; however, the invariable
difference shows that all neurons fire continuously at some
iteration, indicating that the ICM network is invalid.

The experimental results in Figs. 12–15 are consistent with
those in Figs. 8–11. From the experiments, we find that
Figs. 9 and 13 present more detailed features than Figs. 11
and 15, which means that the neurons that satisfy the theo-
retical result will achieve better performance than the neurons
that do not. Thus, our theoretical results are supported.

To further test the rationality of our work, we surveyed the
previously published papers and organized the parameters into
Table I, in which the condition of continuous firing of the non-
linking and linking ICM neurons were calculated according to
our theory, using (13) and (20). In [16], [28], and [29], the
largest values of the normalized signals are “1,” which are all
less than the theoretical values of our work. The largest input
pixel values in [33], [38], and [50] should be equal to (or less
than) 256, which means the input signal is obviously less than

Fig. 14. Binary images in different iterations (the constant is 2.6).

Fig. 15. FSGs at 50th, 70th, 90th, 150th, and 250th iterations. (a) 50 iterations
(45 maximum ignitions, 49 minimum ignitions). (b) 70 (65, 69). (c) 90 (85,
89). (d) 150 (145, 149). (e) 250 (245, 249).

TABLE I
PARAMETERS OF ICM AND CONTINUOUS FIRING OF ICM NEURON

(“–” REPRESENT UNKNOWN)

the theoretical values of our work. Besides, we can infer that
the input signals in [30], [34], and [39] should be normalized
according to [16]; although [41], [46], [47], [52] did not report
if they had normalized operations, we can infer that our the-
oretical conditions were supported in some ways because our
theoretical values were constants that should be greater than
the largest input values. As a result, our theoretical results are
supported by these previous works.
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VIII. CONCLUSION

In this article, we focused on theoretical research concern-
ing the firing mechanism of ICM neurons in order to provide
better application foundations. We deduced the continuous fir-
ing condition of ICM neurons to determine the restrictions
between the neuron parameters and the input signal, which is
useful for formulating basic rules for ICM parameter selec-
tion. We then narrowed the scope of the ICM parameters
according to our theoretical results. We also examined the
neuron pulse cycle to understand the neural firing mechanism
according to its firing condition. The continuous firing con-
dition and the pulse cycle of neurons are useful to prove the
reasonable values for each other. The mathematical analysis
helps in understanding the neural firing mechanism and guides
parameter selection to create a network that functions well. In
addition, this research provides an available way to study other
versions of the PCNN because of the similar characteristics
between the ICM and PCNN. The experimental results con-
firm the validity of our mathematical results and conclusions.
In the future, we plan to focus on parameter optimization in
view of the firing mechanism and the specific application of
our theory.
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