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Abstract 

In recent years, deep learning has been extensively studied as a new way to train 
multi-layer neural networks. Deep learning is a set of algorithms in machine learning 
that attempt to model high-level abstractions in data by using model architectures that 
are composed of multiple non-linear transformations. Great achievements have been 
made in speech recognition, computer vision, and natural language processing. 
Considering that data volume increases rapidly, deep learning values high in 
predictive analytics of big data. However, we need tens of millions of parameters and 
billions of samples to train a high quality and practical deep learning model. As the 
number of parameters and training data are still growing rapidly in the Big Data era, 
the speed to train a practical model is limited by sequential algorithms and intensive 
data computation. Therefore, deep learning has been accelerated in parallel with 
GPUs and clusters in recent years. This chapter introduces several mainstream deep 
learning approaches developed over the past decade and optimization methods for 
deep learning in parallel. 

1 Introduction 

Big data has become more and more important as many institutes and companies 
need to collect useful information from massive amounts of input data. Traditional 
machine learning algorithms were designed to make machines cognize and understand 
the real world to learn a new knowledge and experience in limited dataset by some 
special customized methods. But they are difficult to learn and analysis on Big Data 
which has huge amounts, complicated structure and wide range of varieties. We hope 
computers could think and learn by themselves and deep learning is a very promising 
method to solve analytics problem in Big Data. A significant feature of deep learning, 
also the core of Big Data analytics, is to learn high level representations and 
complicated structure automatically from massive amounts of raw input data to obtain 
meaningful information. At the same time, big data can provide large amount of 
training dataset for deep learning networks to learn more complicated features and to 
improve the state-of-the-art performance. Training on large scale deep learning 



networks with billions of parameter or even more can dramatically improve the 
testing accuracy of the model. However, training large deep model is computationally 
expensive and time consuming and requiring huge number of iterations. Therefore, 
it’s necessary to accelerate large deep learning model in parallel.  

1.1 Application Background 

Deep learning is able to find out complicated structures in high-dimensional data 
which benefits in many areas of society eventually. In visual field, the records of 
image classification have been changed in ImageNet challenge 2012 [4]. Until 
recently, the testing accuracy in ImageNet 2015 has been improved to 95% by using 
deep learning methods. Besides, deep learning has also had a significant impact on 
other visual problems, such as face detection, image segmentation, general object 
detection, and optical character recognition.  

Deep learning can also be used for speech recognition, natural language 
understanding and many other domains such as recommendation systems, web 
content filtering, disease prediction, drug discovery and genomics [3]. With the 
development of new learning algorithms and architectures, deep learning will have 
more successful application in near future. 

1.2 Performance Demands for Deep Learning 

Deep learning networks is good at discovering intricate structures in 
multidimensional training data set and well suitable to tackle large scale learning 
problems, such as image, audio and speech recognition. Training on large dataset and 
using large scale deep models that has more layers and huge number of parameters 
can learn and extract more complex high-level representations, but that means training 
on large model becomes much more time consuming and we need to wait for a very 
long time to get a model well trained. With the rapid development of modern 
computing device and parallel techniques, it’s necessary to train these large scale 
models in parallel methods by using distributed systems with thousands of cores, 
GPUs with thousands of computing threads and other parallel computing devices.   

1.3 Existing Parallel Frameworks of Deep Learning  

Many research institutes and companies have explored to parallelize deep 
learning algorithms. Dean et al. (2012) presented that training large deep learning 
models with billions of parameters using 16000 CPU cores could dramatically 
improve training performance [5]. Krizhevsky et al. (2012) showed that training a 
large deep convolutional network with 60 million parameters and 650,000 neurons on 
a large data set was in great performance based on GPU processors [6]. From then on, 
a lot of frameworks that facilitate researchers to create and experiment on deep 



networks were constantly emerging, including Theano [7], Torch [8], cuda-convnet 
and cuda-convnet2 [6, 10], Decaf [12], Overfeat [13] and Caffe [11]. Most of these 
frameworks are open source and accelerated by NVIDIA GPUs using CUDA 
programming interface. Moreover, some GPU-based libraries were developed to 
enhance many of those frameworks, such as the NVIDIA CUDA Deep Neural 
Network library (cuDNN) [14] and Facebook FFT (fbfft) [15]. There will be more 
efficient parallel frameworks in near future.  

1.4 Chapter Organization 

The rest of this chapter is organized as followed. In Section 2, we introduce the 
concept of deep learning, two fundamental and widely- used deep learning models. In 
Section 3, we present three popular frameworks of parallel deep learning, which are 
based on GPU and distributed systems respectively. In the last section of this chapter, 
we discuss challenges and future research directions.  

2 Concepts and Categories of Deep Learning 

In this section, we introduce the concepts of deep learning, including neural 
networks. And then we introduce several foundational and popular deep learning 
models.  

2.1  Deep Learning 

2.1.1 Artificial Neural Networks 

The basic theory of deep learning is from artificial neural network which was a 
quite popular method of machine learning in 80’s and 90’s. The idea behind artificial 
neural network was to develop a novel way to explain data, such as image, speech and 
text, by simulating biological neural networks of human brain [6]. It is composed of 
massive amounts of interconnected computational elements called neurons with 
numeric weights that can be tuned to be adaptive to inputs. ANN was configured to 
estimate functions depend on large number of inputs and can be used to specific 
application, like pattern recognition and data classification.  

A simple neural network is shown in Figure 1. There are four input units and one 
output. Each input unit (1ݔ	, ,	2ݔ  ܹ݅ and bias +1) is multiplied by a weight value ,3ݔ
and then summed (Equation 2.1). The summed value will be taken as input of the 
activation function: ݂ሺݖሻ.  

ሻܠሺ࢈,࢝ܐ  ൌ ሻܠࢀ܅ሺ	ࢌ ൌ ∑ሺ	ࢌ ࢞ࢃ

ୀ   ሻ  (2.1)࢈

 



 

Figure 1: A simple neuron network 
We can choose sigmoid function to act as activation function (Equation 2.2): 

ሻܢሺ	ࢌ  ൌ 	


ା	ࢋషࢠ
 (2.2) 

The single neuron was explained exactly to the mapping relationship between 
input and output by logistic regression [7].  

A neural network consists of many simple neurons (Figure 2). 

  

Figure 2: Neuron network with three layers 
As shown in figure 2, the neural network is composed of three layers, four inputs 

and one output. The leftmost layer is input layer that consists of three inputs 
,	1ݔ) ,	2ݔ  and one bias unit. The rightmost layer is called output layer with one (		3ݔ
output units. In the middle of the network, Layer L2 is called hidden layer.  

You can extend the neural network by adding input and hidden layer to train a 
large problem. However, ANN mainly has several problems [8]: 

 It requires a huge number of training data to train the network for a          



decent model. 
 Neural network is prone to overfitting. 
 The parameter of neural network is difficult to tune. 
 Neural network have limited ability to identify complicated relationships. 
 The configuration of neural network is empirical and many 

methodologies have not been figured out.  
 Neural network is time consuming.   

Due to these problems, ANN was not applied extensively. Deep learning has the 
same network structure with ANN’s, but deep learning has totally different training 
methods.  

2.1.2 Concept of Deep Learning 

 Deep learning algorithms is based on artificial neural networks, but deep learning  
methods can automatically extract complex data representation and identify more 
complicated relationships between input and output.  

In conventional machine learning, engineer and researcher were required to design 
a feature extractor and then extract feature vectors manually from raw input data 
before classifying an object (Figure 3). Compared with deep learning model, the key 
limitation of machine learning is that it can’t efficiently generate complicated and 
non-linear patterns from raw input data. 

 
Figure 3: Classification process in traditional machine learning 

From 2006, a new research area of machine-learning called deep structured 
learning or deep learning was introduced to the world. In comparison with the 
conventional machine learning, engineer and researcher do not need to extract feature 
manually from the raw input data and these features can be generated automatically 
by using deep learning, which is the key advantage of deep learning. We can refer to 
the following definition of deep learning: “Deep learning is a new area of machine 
learning research, which has been introduced with the objective of moving machine 
learning closer to one of its original goals: artificial intelligence. Deep learning is 
about learning multiple levels of representation and abstraction that help to make 
sense of data such as images, sound, and text” [1]. 

In recent years, compared to deep structured model, research in machine learning 
and signal process has explored shallow structured model that usually contains one or 
two layers of nonlinear feature transformations, such as Gaussian mixture models 
(GMMs), Support vector machines (SVMs), Extreme Learning Machines (ELMs) and 
so on. Many shallow models will be a good choice to solve simple or well-constrained 
problems, but they are inefficient to handle more complicated applications such image 



recognition, speech recognition and natural languages understanding.   
The main stream models in deep learning are mainly divided into two classes: 

supervised learning, unsupervised learning and hybrid learning model. The model of 
unsupervised learning can be used to cluster the input based on their statistic 
properties without being provided with the correct answer during the training. Main 
unsupervised learning models include:  

 Auto-Encoders 
 Stacked Denoising Auto-Encoders 
 Restricted Boltzmann Machines 
 Deep Belief Networks 

In contrast, training data of supervised learning model includes both the input and 
the desired output (correct answer) during the training process. Supervised learning 
models include:  

 Logistic regression 
 Multilayer Perceptron 
 Back Propagation 
 Deep Convolutional Network 

Actually, there is third category deep learning model that hybrids unsupervised 
model and supervised mode. In these hybrid models, unsupervised learning is used as 
pretraining to extract feature for the supervised model and to initialize the parameters 
of supervised model to sensible values.  

2.2 Mainstream Deep Learning Models 

2.2.1 Autoencoders 

Autoencoder was first designed in the 1980s by Hinton to address unsupervised 
problems. It is one of the unsupervised learning algorithms with two or three layers’ 
neural network that applies backpropagation which is trying to learn nonlinear codes 
to reconstruct the input data. It aims at learning an identity equation which makes the 
output approximately equal to input (Equation 2.3). In fact, some interesting 
structures of the input data can be found by making some constraints on the hidden 
layer of the network (like limiting the number of hidden units) [16]. If given a set of 
unlabeled training dataset ሺݔ, ,ଵݔ ,ଶݔ … . ሻ, ݅ݔ is ܰ dimensional. Figure 3 shows 
how autoencoder model works.  

,ࢃ;	࢞ሺࢎ  ሻ࢈ ൌ  (2.3) 	࢞

࢈,࢝ࢋࢠ  ∑ ;	࢞ሺࢎ‖ ,࢝	 ሻ࢈ െ	࢞‖

ୀ 	 (2.4) 

We have 3 layers autoencoder model (Figure 3): input layer, hidden layer and 
output layer. The hidden layer is forced to compress the input data into a high level 
abstract representation, which is called “encode the input data”. And then, applying 
backpropagation to adjust the weights and other parameters according to output from 



decode process to minimize the objective function (2.4).  

 

Figure 3: A simple model of Autoencoder 

2.2.2 Back Propagation 

Back propagation (BP) algorithm is one of the most popular neural network 
algorithms and BP with multi-layer feed-forward neural network is the most widely 
algorithm applied in neural networks. You can see a simple three layers BP network 
model in figure 4.  



 

Figure 4: A simple model of Backpropagation Algorithm 
BP algorithm mainly consists of two computing processes: feed-forward and back 

propagation. When in feed-forward pass, the model computes the activations for input 
layer and each hidden layer, and up to output layer. If the actual output from output 
layer is different with the expected output (label or tutor signal), the back propagation 
begins. The model will apply back propagation equation repeatedly to propagate 
gradients through all the layers, from the output layer all the way to the input layer [3]. 
The weight of each layer will be updated according to these gradients in order to 
reduce cost function (2.2). Given a set of training samples:	

ሼሺ࢞, ,ሻ࢟ ሺ࢞, ,ሻ࢟ …… ሺ࢞,  ሻሽ࢟

For a single training sample: ሺݔ,  ሻ, we can define the cost function as followsݕ
(Equation 2.5):  

,࢝ሺࡶ	  ;࢈ ,࢞ ሻ࢟ ൌ 	



	ฮ࢈,࢝ࢎሺ࢞ሻ െ ฮ࢟


 (2.5) 



 
Figure 5: BP training flowchart 

When the difference between actual output and expected output (we named it 
error in BP) has become small enough or network reaches a pre-set number of stop 
iterations (Epochmax), the algorithm is stopped. You could see the detailed 
mathematical equation and derivation in [17-18]. The whole BP algorithm flow shows 
in Figure 5. 

2.2.3 Convolutional Neural Network 

The most popular kinds of deep learning models used to train large scale image 
recognition are known as Convolutional Neural Networks. The inspiration of 
convolutional neural networks (CNNs) is from Hubel and Wiesel’s early research of 
the cat’s visual cortex [19]. It is designed to handle multiple array problems, such as 
signal and sequences, images, speech, videos, etc [3]. CNNs have been achieved great 
success in image recognition, speech recognition and natural language understanding. 
Essentially, deep CNNs are typical feed-forward neural networks applied 
backpropagation algorithms to adjust the parameters (weights and biases) of the 
network to reduce the value of the cost function. However, it is very different from 
the traditional BP networks in four new conceptions: local receptive fields, shared 
weights, pooling and many different kinds of layers. A typical structure of CNNs is 
shown in figure 6 (LeNet-5). 
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Figure 6: The simple architecture of CNN (Letnet-5) 
The network consists of convolutional layers, subsampling layers alternately and 

each input unit is multiplied by a weight value, summed, and then passed into a 
non-linearity activation function as input, such as a ReLU, Sigmoid and Tanh. Finally, 
CNNs end up with full connection layers and output layer. The input layer can receive 
hand written digit images and then are convolved in convolutional layer with different 
learnable filter banks. The output of convolution is organized into feature maps and 
the units in each feature map are connected to local patches in the feature maps of the 
previous layer, while all neurons in the same feature map share the same weights 
(filter bank). With local connection to previous feature map (local receptive field), 
elementary features like oriented edges, end-point, corners are extracted and then are 
combined to detect higher level features by the subsequent layers. After each 
convolutional layer, pooling layers are used to reduce resolution of feature map, 
sensitivity of the output shifts and distortions and merge semantically similar features 
into one [20]. There are two methods of pooling: max pooling and average pooling, 
and that means each pooling unit calculates the maximum or average of a local patch 
of units in one feature map. A simple example of average pooling is shown in figure 7. 
The full connection layer is the same as the traditional neural networks and we don’t 
introduce it here. The last layer computes the error for training and calculates the 
probability for testing using classification models such as Softmax.  

 
Figure 7: Example of average pooling 



3 Parallel Optimization for Deep Learning  

It has been found that the classification accuracy will be greatly improved by 
increasing the scale of deep learning models and the number of parameters in deep 
model. But that means we have to spend more time to train these large scale deep 
learning models. The traditional serial algorithms are hard to handle these large deep 
models in a fast speed. Therefore, parallelizing the deep learning model is necessary. 
Many researchers have exploited to parallelize deep learning models with kinds of 
parallel devices. The main development is shown in Table 1: 

 
Solution Contribution 

CPU to Multicore CPUs Train the model in parallel by using different cores. 

Multicore CPUs to GPU 

Train the model in parallel by GPU by using huge numbers of 

threads in GPU device with zero schedule overhead and 

powerful float computing ability.  

GPU to Multi-CPUs 
Train large scale deep neural network by using CPU clusters for 

the sake of the limitation of single GPU memory. 

Multi-CPUs to Multi-GPUs 
The problem of limited memory of single GPU is not existed 

when using Multi-GPUs to train the large scale deep networks. 

Table 1: The development of deep learning model in parallel 
In this section, we will introduce two popular parallel frame work and discus a 

general parallel method of large deep learning model.  

3.1  Convolutional Architecture for Fast Feature 

Embedding 

3.1.1 Introduction 

Convolutional Architecture for Fast Feature Embedding or Caffe was designed to 
provide a clean, quick start and modular deep learning framework to scientists in 
research area and engineers in industry field for state-of-the-art. It was developed and 
maintained by the Berkeley Vision and Learning Center (BVLC) and by community 
contributors.  

Caffe is one of the most popular deep learning frameworks with its five good 
points: expressive architecture, extensible code, fast training speed, open source and 
active community. The users don’t have to rewrite the code of Caffe to set up new 
deep neural networks. Instead, they just need to modify several configuration files to 
start a new network. Computation mode between CPU and GPU can be easily 
switched by changing a single line flag. A single K40 GPU can process more than 
60M training images [22].  



3.1.2 CUDA Programming 

3.1.2.1  Introduction of General Purpose GPU 

GPU is extensively used as a computational device in research field and also in 
industrial area thanks to its excellent computational power and parallel hardware 
architecture with thousands of ALU cores. We can see the difference in computational 
power between GPUs and CPUs in Figure 8 (a). The divergence of GPU and CPU in 
computational power is due to their different design philosophies (Figure 8 (b)).  

      CPU cores GPU cores  

Figure 8: (a)         Figure 8: (b) 
Figure 8: (a) performance between CPU and GPU; (b) different design 

philosophies between CPU and GPU 
The design of CPU is that more transistors on the chip is used for control and 

cache units while most of the transistors on GPU is used for computational units and 
little for control and cache, which makes GPU handle multiple tasks simultaneously 
more efficiently [20]. 

3.1.2.2 The Architecture of GPU 

GPU hardware mainly consists of memory, streaming multiprocessors (SMs) and 
streaming processors (SPs). Memory mainly consists of global memory, shared 
memory, constant memory, texture memory and register. GPU is an array of SMs and 
SMs consist of SPs and memory (Figure 9). We take NVIDIA Kepler k40 to denote 
GPU hardware. K40 consists of 2880 cores (SPs) whose base clock is 745 MHz [21].  
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Figure 9: A simplified architecture of GPU hardware 
We can see from the figure, each thread running on an SP can read and write 

register and shared memory at a very high speed in parallel. We also call them 
on-chip memory. Registers are private to individual threads and each of them can only 
access their own registers. 32 threads are grouped into a warp which is scheduled by 
warp manager. Threads in a warp are executed in SIMT mode. The computational 
ability can be enhanced by extending more SMs with more SPs and memory 
resources. 

3.1.2.3 CUDA programming framework 

In 2007, Compute Unified Device Architecture (CUDA) was introduced to the 
world. This easy-to-use program framework pushed the development of GPGPU and 
allows the programmer to write codes without having to learn complex shader 
languages. CUDA supports high-level programming languages such as C/C++, 
Fortran and Python.  



 

Figure 10: Thread organization of CUDA 
If you want to run program on GPU, you should define kernel functions that ܰ 

different CUDA threads execute in parallel and design your thread hierarchy. Threads 
are grouped into warps and then into blocks, while blocks can be organized into grids 
(Figure 10). 

Figure 11: The execution mode of CUDA code 
 In CUDA program framework, GPU works as a coprocessor of CPU. The 
execution of CUDA program starts with CPU execution. The program is switched to 
GPU when kernel function is called. CPU is responsible for those serial codes and 
complicated logic control, while GPU mainly works for the computational intensive 
part (Figure 11).  



3.1.3 Architecture of Caffe 

3.1.3.1 Data Storage in Caffe  

All the data in Caffe is stored and communicated in 4-dimensional array named 
blobs, such as images, weights, biases and derivatives in the deep model. For example, 
the batches of images data in 4-dimensinal blobs are stored like this: 
Number×Channel×Height×Width. All these blob data pass through the deep 
network in the forward and backward.   

To next layer as input data 
(bottom)

Output data(top) from previous 
layer as input data(bottom) for this 

layer   
Figure 12: Layer communication in Caffe 

For each layer, the input data is stored in bottom blob and the output is in top 
blob (Figure 13), while the next layer will take the top blob from previous layer as its 
input data (bottom blob). 

3.1.3.1  Layer Topology in Caffe  

Different deep networks consist of different layers. The essence of different 
networks is the different combination of different functional layers. Caffe supports a 
complete set of layers like: convolution, pooling, inner products, nonlinearities and 
losses. All of these layers are different functional and necessary for visual problems 
[23].  

 



  

Figure 13: A simple example of LeNet topology in Caffe 

A simple example of Lenet architecture in Caffe is shown in Figure 13. The 
operations of these layers mainly are forward and backward computation. In the 
forward phase, the computation of the input data starts from data layer at the bottom 
all the way to the output layer at the top. And the backpropagation algorithm is 
applied to compute the gradients in backward phase and update parameters for each 
layer. 

3.1.4 Parallel Implementation of Convolution in Caffe 

In all of the deep convolutional neural networks, convolution operations are 
computationally expensive and cost most of the runtime. Therefore, an important way 
to improve performance of the whole network is to reduce the runtime of convolution.  

There are three approaches to implement convolution operations. The first 
common way is to compute the convolution directly. This will be efficient when batch 
sizes are large enough and poorly as long as batch size is below 64. The second 
approach is to employ the Fast Fourier Transform to compute the convolution, which 
can lower the complexity of the convolutions [24]. The third way is to unroll the 
convolution into a big matrix. After unrolling the convolution, the computation of 
each convolution turns to a matrix-matrix production problem. The NVIDIA CUDA 



Basic Linear Algebra Subroutines or cuBLAS is a deeply optimized GPU-accelerated 
version of the complete standard BLAS library [25], which is very efficient used for 
matrix-matrix production after unrolling convolution. 

The third convolution approach is used in Caffe. The basic idea to unroll 
convolution is to unfold and duplicate the input feature map data and reorganize the 
parameter of the filter bank. The corresponding operation in Caffe is to use function 
im2col_gpu to unroll convolution into matrix in parallel. And then cuBLAS is used to 
compute matrix-matrix production and the output result is stored in top blobs of this 
convolutional layer. The detailed computing flow of convolution in Caffe is shown in 
Figure 14.  

    
Figure 14: Computing flow of convolution layer in Caffe 

Fixed steps are used in Caffe to train the model and the training will not be 
stopped until the program reaches the max iteration. In each iteration, the program 
only processes a batch of images. Before computing convolution, the program has to 
prepare some variables for the im2col_gpu function. The input data of convolution 
layer is stored in bottom blob and output in top blob. Before training, the weight and 
biases need to be initialized randomly. The variable col_data is used to store big 
matrix data from unrolling convolution. During computing convolution, Caffe 
program only computes one image at a time. The image is transformed into a big 
matrix in parallel by using im2col_gpu function and then the transformed matrix is 
stored in col_data. After that, the program uses caffe_gpu_gemm to call cuBLAS to 
implement col_data-weight production. The convolutional result is stored in top blob. 
The convolution program will move to next layer if all images of a batch are 
processed, if not, the program will continue to process next image of a batch.  



3.2  DistBelief 

3.2.1 Introduction of DistBelief 

 It was reported by NewYork Times in 2012 that Google DistBelief could identify 
the key features of a cat from millions of You Tube videos. The key technique behind 
DistBelief is deep learning. Moreover, DistBelief is a very complicated and large 
distributed system composed by 1000 machines, including a total of 16,000 cores and 
1 billion parameters. This parallel deep learning framework supports model 
parallelism both within a machine by multithreading and across machines by message 
passing. Meanwhile, it supports data parallelism to train different replicas of a model. 
The main algorithms in DistBelief have Downpour SGD and L-BFGS. It has been 
applied in image classification and speech recognition field.  
 A significant advance has been brought by using GPU to train deep learning 
networks. The bottleneck to train large deep networks with billions of training 
example and parameters is the limitation of a single GPU memory. DistBelief was 
designed to address this problem and it provides an alternative method to train large 
deep network by using large-scale clusters to train large model in distributed way 
[29]. 

3.2.2 Downpour SGD 

 There are many researches scaling up machine learning algorithms in parallel and 
distribution before DistBlief [26-28]. Stochastic gradient descent (SGD) is extensively 
applied in deep learning algorithms to reduce output error. The designer of DisBilef 
provides us a new method suitable for distributed systems, named Downpour SGD. 
The key advantages of Downpour SGD are asynchronous stochastic gradient, 
adaptive learning rates and numerous model replicas. Compared to traditional SGD, 
the convergence rate of Downpour SGD has been improved significantly.  



 

Figure 15: The basic idea of Downpour SGD 
 The basic idea of Downpour SGD is following: The training samples are divided 
into different small parts and each model replica computes gradients for each small 
part. Before each model replica starts to train a small part, the model replica sends a 
request to parameter server to ask for the latest parameter (Figure 15). When the 
model replica receives the latest parameter from parameter server, model replica 
begins to compute parameter gradients for its own small part data and sends the 
gradients result back to parameter server. The parameter server will be updated with 
the latest gradients. In this way, the parameter can hold the latest state of parameters 
for the model. The parameter server consists of different machines and the total 
workload is averaged by each machine in parameter server. Therefore, all the model 
replicas can be executed independently and the different machines in the same 
parameter also run independently [29].  

3.2.4 Sandblaster L-BFGS  

 Training deep networks on batch can get good performance in small deep 
networks [30] but batch training is well suitable for large deep networks. The 
Sandblaster batch optimization framework (L-BFGS) was introduced to address this 
problem.  



 

Figure 16: The basic idea of Sandblaster L-BGGS 
 In Sandblaster L-BGGS algorithm, each model replica runs on the whole training 
sample. The key idea of the algorithm resides in coordinator (Figure 16), which sends 
a set of commands to store and manipulate model parameters distributively [29].  

3.3  Deep Learning Based-on Multi-GPUs 

 The data processed in deep learning networks can be divided into parameters and 
input/output data. Parameters like weights and biases in convolutional neural 
networks are number of filter banks, filter size, filter stride, etc. Input data in CNNs 
includes input images and speeches, while output data in CNNs stores the 
computational result of each layer, such as convolutional layer and pooling layer. 
Take deep convolutional neural network as an example, CNNs is always large scale 
and trains on big datasets. The key to train such a large scale deep network with 
multi-GPUs is how divide tasks between different GPUs. We have three ways to 
parallelize the training process: data parallelism, model parallelism and data-model 
parallelism. 

3.3.1 Data Parallelism 

 Data parallelism is most widely used in multi-GPUs for the sake of 
easy-to-program.  



 

Figure 17: The illustration of data parallelism mode 
Data parallelism means that each GPU uses the same model to trains on different 

data subset. In data parallel, there is no synchronize between GPUs in forward 
computing, because each GPU has a fully copy of the model, including the deep net 
structure and parameters. But the parameter gradients computed from different GPUs 
must be synchronized in back propagation (Figure 17).  

3.3.2 Model Parallelism 

 Model parallelism means that each computational node is responsible for parts of 
the large deep neural network model by training the same data samples.  



 
Figure 18: The illustration of model parallelism mode 

The model is divided into several pieces and each computing node such as GPU 
is responsible for one piece of them (Figure 18). The communication happens 
between computational nodes when the input of a neural is from the output of the 
other computational node. The performance of model parallelism is often worse than 
data parallelism, because the communication expense from model parallelism is much 
more than data parallelism’s. 

3.3.3 Data-Model Parallelism 

There are some problems of data parallelism and model parallelism. We have to 
reduce learning rate to keep a smooth training process if there are too many 
computational nodes in data parallel mode. Meanwhile, the performance of the 
network will be dramatically decreased in model parallelism for the sake of 
communication expense if we have too many nodes.  



 

Figure 19: The illustration of data-model parallelism mode 
Model parallelism could get a good performance with large number of neuron 

activities, and data parallel is efficient with large number of weights. In CNNs, the 
convolutional layer takes up more than 90% computation and 5% of parameters, 
while the full connected layer consists of 95% parameters and 5-10% computation. 
Therefore, we can parallelize the CNNs in data-model mode by using data parallelism 
for convolutional layer and model parallelism for fully connected layer (Figure 19).  

3.3.4 Example System of Multi-GPUs 

Facebook designed a parallel framework by using 4 NVIDIA TITAN GPUs with 
6GB of RAM on a single server in data parallel and model parallel. ImageNet 2012 
dataset can be trained in 5 days [31].  

COTS HPC system was designed by Google to train large scale deep networks 
with over 1 billion parameters. COTS HPC consists of GPU servers with Infiniband 
interconnections and the communication between different GPUs is controlled by 



MPI. COTS achieved that the large deep net with more than 1 billion parameters was 
completed training in 3 days [32]. The same experiment was done by DistBelief, but 
COTS provides us a much cheaper way.  

4 Discussions 

4.1  Grand Challenges of Deep Learning with Big Data 

With the development of powerful computing device such as GPUs and massive 
amounts of data sample from Big Data, deep learning models are able to fully make 
use of huge amounts of data to mine and extract meaningful representations for 
classification and regression. However, deep learning poses some specific challenges 
in Big Data, including processing massive amounts of training data, learning from 
incremental streaming data, the scalability of deep model, learning speed.  

4.1.1 Massive Amounts of Training Sample 

Generally, learning from large number of training samples provided by Big Data 
could obtain complex data representations (features) at high levels of abstraction 
which can be used to improve the accuracy of classification of the deep model. An 
obvious challenge of deep learning in Big Data is the various formats of training 
sample, including high dimensionality, massive unsupervised or unlabeled data, noisy 
and poor quality, highly distributed input data, imbalanced input data, etc [33]. The 
existing deep learning algorithms can’t adapt to train on such various kinds of training 
samples, while how to deal with data diversity is a really big challenge to deep 
learning models.  

4.1.2 Incremental Streaming Data 

Streaming data is one of the key features of Big Data, which is large, fast moving, 
dispersed, unstructured and unmanageable. Such data extensively exists in many areas 
of society, including web sites, blogs, news, videos, telephone records, data transfer, 
and fraud detection. One of the big challenges of learning meaningful information 
with deep learning models from streaming data is how to adapt deep learning methods 
to handle such incremental unmanageable streaming data.  

4.1.3 Learning Speed with Big Data 

The big challenge in training speed of deep learning is mainly from two aspects: 
large scale of the deep network and massive amount of training sample provided by 
Big Data. It has been turned out that focus on models with a very large number of 



model parameters, which are able to extract more complicated features and improve 
the testing accuracy greatly, can become prohibitively computationally expensive and 
time costing. Besides, training deep model on huge number of training data is 
time-consuming and requires large amount of compute cycles. Consequently, how to 
accelerate training speed of large model in Big Data with more powerful computing 
device, distributed and parallel computing is a big challenge.  

4.1.4 Scalability of Deep Models 

To train on large scale deep learning models faster, an important method is to 
accelerate training process with distributed and parallel computing such as clusters 
and GPUs. Existing approaches of parallel training includes data parallel, model 
parallel and data-model parallel. But when training on large scale deep models, each 
of them will be low efficient for the sake of parameter synchronization that needs 
frequent communications between different computing nodes (such as different server 
nodes in distributed system, and heterogeneous computing systems between CPU and 
GPUs). Additional, the memory limitation of modern GPUs can also lead to 
scalability of deep networks. The big challenge is how to optimize and balance 
workload computation and communication in large scale deep learning networks.  

4.2  Future Work 

Big data provides us a very important chance of optimizing the existed deep 
learning models and proposing novel algorithms to address specific problems in big 
data. The future work will focus on algorithms, applications and parallel computing. 

In the perspective of algorithms, we have to research on how to optimize the 
existing deep learning algorithms or explore novel approaches of deep learning to 
train on massive amounts of data sample and streaming sample from Big Data. 
Moreover, we also need to create novel methods to support Big Data analytics, such 
as data sampling for extracting more complex features from Big Data, incremental 
deep learning methods for dealing with streaming data, unsupervised algorithms for 
learning from massive amounts of unlabeled data, semi-supervised learning and active 
learning.  

Application is one of the most research areas in deep learning. Many traditional 
research areas have been benefit from deep learning, such as speech recognition, 
visual object recognition, object detection and many other domains such as drug 
discovery and genomic. The application of deep learning in Big Data is also needed to 
be explored, such as generating complicated patterns from Big Data, semantic 
indexing, data tagging, fast information retrieval and simplifying discriminative tasks.  

The last important point of future work is parallel computing in deep learning. 
We could research on existing parallel algorithms or open source parallel frameworks 
and optimize them to speedup training process. We could also propose novel 
distributed and parallel deep learning computing algorithms and frameworks to 



support quick-training on large scale deep learning models. Specially, to train larger 
deep model, we have to figure out the scalability problem of large scale deep models.  
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