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A futures trading evaluation system is used to help investors analyze their trading history and find out 
the root cause of profit and loss, so that investors can learn from their past and make better decisions 
in the future. To analyze trading history of investors, the system processes a large volume of transaction 
data to calculate key performance indicators (KPI) as well as time series behavior patterns, and concludes 
some recommendations with the help of an expert knowledge base. This work is based on our early work 
of parallel techniques for large data analysis for futures trading evaluation service. In our early work, we 
have used the query rewriting technique to avoid joining between fact table and dimension table for 
OLAP aggregation queries, and used a data driven shared scanning of data method to compute KPIs 
for one customer. However, the query rewriting technique cannot eliminate joining for queries which 
aggregate on an intermediate level of the hierarchy of a dimensional table, so we propose a segmented 
bit encoding of dimensional table method which can eliminate the joining operation when the query 
aggregates on any level of the hierarchy of any dimensional table. Furthermore, our previous method 
perform badly when concurrency is high, so we propose an inter customer data scan sharing scheme to 
improve system performance in highly concurrent situations. We present our new experimental results.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

With the fast development of economy, more and more in-
vestors put money into futures markets with the expectation of 
making profit. A futures market has the characteristics of high-
risk and high-return due to its high leverage ratio. A large number 
of non-professional investors participate in futures trading. Some 
of them make profits, and most of them lose money because of 
their different capabilities. For these participants, what they are 
most concerned about is to receive some recommendations from 
experts according to their past trading transactions. We design a 
futures trading evaluation system to help them. The system is a 
profit making capability assessment software, which is developed 
by the authors and GT Futures Brokerage Company.

The system processes historical transaction data of a specific 
investor, and extracts key performance indicators and trading be-
havior patterns. Through the analysis of these indicators and pat-
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terns, with the help of the knowledge of investment experts, the 
system gives customers some suggestions on trading capabilities, 
trading habits, and trading psychology, etc. to help customers iden-
tify their shortcoming and improve themselves in the future. In 
short, according to a customer’s historical transaction data, the sys-
tem generates an assessment report, with the hope that it can help 
the customer improve his (her) trading capabilities, stop loss, and 
make profit. The futures trading evaluation system tries to discover 
some valuable information, i.e., the customer’s behavior charac-
teristics buried in the process of trading, from large volume of 
historical transaction data.

In the evaluation system that we built, the volume of the data is 
greater than 200 GB, and it is growing at a pace of 300 to 500 MB 
per day. The data should be analyzed as timely as possible, so that 
customers can adjust their trading strategies according to the ana-
lytic results.

Our contributions in this paper include: (1) we propose a seg-
mented bit encoding of dimensional tables for star schema data, 
which can eliminate join operation during aggregating on any level 
of the hierarchy of any dimension; (2) we exploit inter customer 
data scan sharing, which can improve report generation through-
put greatly; (3) we have conducted a series of experiments to 
evaluate the proposed techniques.
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Fig. 1. The structure of the trading evaluation system.

2. Working logic of the futures trading evaluation system

GT Company has accumulated ten years’ experience in fu-
tures brokerage. Its investment research department has gathered 
a group of futures market analysts. The core of the futures trad-
ing evaluation system is a knowledge base, which has solidified 
knowledge of these investment analysts.

The concept architecture of the system is shown in Fig. 1. The 
data for the evaluation system comes from production systems 
(they can also be downloaded from the China Margin Monitoring 
Centre Co., Ltd.). The data include daily status of Holding con-
tracts, Open transactions, Close transactions, status of funds, and a 
number of ancillary information such as customers, varieties, and 
exchanges.

The indicator computing module calculates 87 key indicators 
including degree of risk, profit and loss, etc., from the data set 
of the reporting period. At the same time, the system analyzes 
45 time-series patterns from the customer’s trading transactions. 
These indicators and patterns are sent to the expert knowledge 
base for further processing. Finally an evaluation (assessment) re-
port is generated, and it is sent to the users in the PDF file format.

We have adopted widely used indicators, but how to put indi-
cators into groups and how to use them is the key of the futures 
trading evaluation system, and depends on experts’ knowledge. 
Since the focus of this paper is to demonstrate some parallel tech-
niques for large data analysis, and due to the requirements of 
confidentiality, we do not present further details of the knowledge 
based evaluation algorithm.

3. Parallel techniques for large data analysis

In this section, the scalable data processing architecture is 
firstly presented, followed by the data encoding scheme for star 
schema and corresponding query processing algorithms.

3.1. The scalable parallel data processing architecture

In the whole cluster architecture, different nodes are responsi-
ble for different jobs as follows.

3.1.1. Different nodes for different jobs
In order to support the increasing volume of data, we use clus-

ter computing to do the job of data analysis. Cluster nodes are 
divided into three categories, including front-end processing nodes, 
data processing and analysis nodes, and data loading nodes (see 
Fig. 2).

Front-end processing nodes are responsible for pre-processing 
parameterized queries, and handing them over to the data process-
ing and analysis nodes for further processing. We adopt a Scatter-
Gather style of data processing method. When one of the front-end 
processing nodes receives an evaluation request, it decomposes the 
request into parts, and distributes the parts to data analysis and 
process nodes for real computing. Partially aggregated results are 
Fig. 2. The parallel data processing architecture.

Table 1
Nodes and functions.

Node Functions

Front-End Node Query Pre-processing
Task Assignment
Result Merging
Meta Data Management

Data Processing and Analysis Node Local Calculation of Indicators
Local Calculation of Time Series Patterns

Data Loading Node Data Extraction
Data Transformation
Data Splitting and Loading

merged in the front-end processing node later, and sent to the ex-
pert knowledge base to generate the evaluation report. The report 
is returned to the client using a URL, which can be used to down-
load the generated PDF file.

Meta data about data distribution are stored in front-end nodes, 
which are used by the query dispatcher to select appropriate 
data processing and analysis nodes for parallel query processing. 
All front-end nodes could access a shared database engine which 
stores the meta data. To support highly reliability of the system, 
the hot standby technology can be used to protect the database.

Calculation of indicators can be expressed using SQL aggrega-
tion queries. Most SQL aggregation queries could be executed in a 
Scatter-Gather manner.

Each data processing and analysis node manages a subset of 
data, and it is responsible for local calculation of indicators and 
local time-series analysis, and returning partial results to the front-
end processing nodes to merge. For example, the holding profit of 
a customer can be calculated on data nodes, and the partial results 
are merged on front end nodes to get the final result.

Since data analysis touches large volume of historical data, and 
the data are seldom updated (a data append is not an update, 
and new data are imported into the system by the data loading 
nodes), we decided to use non-transactional database storage en-
gines to manage the data on processing and analysis nodes. MySQL 
is used as the underlying storage engine. By modifying the code 
base, the transaction management burden is avoided. Compared to 
database systems with fully transaction management support, the 
storage engine becomes much lighter, and data accessing speed is 
increased.

Data loading nodes are responsible for splitting, transforming, 
and loading new data. We adopt a data distribution scheme that is 
similar to GFS (Google File System) [1], where each data partition 
is replicated to at least three nodes for high fault-tolerance. Table 1
summarizes functions of the three types of nodes.

The system architecture is inspired by MapReduce (the Google’s 
large-scale data processing platform). The difference is that we 
use database engines for data management, rather than a file sys-
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Fig. 3. Star schema of the data.

tem. The storage engine achieves higher structured data processing 
speed after transaction capabilities are removed.

The architecture makes the system very easy to scale. As the 
data volume grows, more data processing and analysis nodes are 
added to the system for acceptable performance. Currently, we 
have built an evaluation system based on a cluster consisting of 
24 PCs, with 2 machines for data loading, 16 machines for data 
processing and analyzing, and 6 machines for front-end process-
ing.

Data loading nodes use the above mentioned simple mapping 
scheme to load data into data processing and analysis nodes. When 
the number of nodes increases, the meta data about mapping has 
to be modified manually, so that data distribution could be cor-
rectly carried out. In future research, we will focus on methods 
that support automatic system scaling out without manual inter-
vention, just like the consistent hash technique used in Amazon’s 
Dynamo [2].

As for network topology, front-end processing nodes, data pro-
cessing and analysis nodes, and data loading nodes are put in 
different network segments respectively. The three networks ex-
change data through an uplink core switch.

3.1.2. Data partitioning and data distribution
We adopt a timestamp-based partitioning method to partition 

the data among the data nodes. After the data are partitioned, they 
are distributed to adjacent nodes using the round-robin strategy. 
For example, when data are partitioned into P1 and P2, P1 is 
stored on the nodes N1, N2, and N3; P2 is stored on the nodes 
N2, N3, and N4. After data loading is completed, the meta in-
formation is registered into the database engine shared by the 
front-end nodes, so that newly loaded data could be used. The 
data partitioning method can avoid the situation that a customer’s 
transaction data is accumulated on just one node. Thus the scheme 
can mobilize all data processing and analysis nodes to perform 
data computing in parallel, which can improve system perfor-
mance.

We observe that the data volume of dimension tables includ-
ing the customer dimension, the varieties dimension, the market 
(exchange) dimension, and the time dimension, is far smaller than 
that of the fact tables. In our system, the data volume of the fact 
tables is more than 200 GB, while the data volume of all dimen-
sion tables is less than 50 MB. So we store dimension tables on 
the database engine which is shared by front-end nodes.

3.2. Data encoding and query processing

3.2.1. The star schema
The data schema of the futures trading evaluation system is 

a typical star-schema. Fig. 3 shows the star schema used in our 
data processing system. The tables of time, exchange, variety, and 
customer are dimension tables, which store data about time infor-
mation of year–quarter–month–day, different exchanges, different 
varieties, and customers respectively. There are several fact tables, 
including opening, closing, holding, and fund status, which store 
Open transactions, Close transactions, Holding contracts, and fund 
status of the customers every day.
Fig. 4. The hierarchy of the variety dimensional table.

3.2.2. Query rewriting to eliminate the joining and the shortcomings
In our previous work [12], we have used the query rewriting 

technique to eliminate the join between the fact table and dimen-
sional tables. The technique is illustrated by an example as follows.

The queries for indicator calculation and that for time-series 
analysis can be expressed in parameterized SQLs, which join the 
fact table and dimension tables.

For example, to calculate holding profit distribution over dif-
ferent varieties (different futures), the SQL query joins two tables, 
i.e., the cust_hold table and the vari_info table (the cust_hold table 
stores holding contract information, and the vari_info table stores 
varieties information). The SQL statement of the query (Q 1) is:

select vari_code, vari_name, sum(hold_profit)
from cust_hold h, vari_info v
where h.cust_no = ?
and h.vari_code = v .vari_code
group by v.vari_code, v. vari_name.

The SQL query groups some customer’s holding profit by vari-
eties.

Joining operations make the system performance declined 
sharply because of massive data exchange between data nodes 
when distributing data onto a large cluster. The parameterized 
SQL queries are rewritten by a query rewriting module, and the 
join operation is eliminated. After query rewriting, the above men-
tioned Q 1 is transformed into:

select vari_code, sum(hold_profit)
from cust_hold h
where h.cust_no = ?
group by h.vari_code.

The SQL query has eliminated the join operation between ta-
bles. However, there is a major shortcoming for the rewriting 
technique, i.e. it cannot deal with queries which aggregate on an 
intermediate level of the hierarchy of a dimension. In the new ver-
sion of evaluation system, we are concerned about some more 
indicators, which are calculated by aggregating the data on an 
intermediate level of the hierarchy of the dimensional table. For 
example, for the Variety dimensional table, there is a concept hi-
erarchy of three levels, i.e. “Category → Sub Category → Variety”. 
Some sample data is provided in Fig. 4. Not only we are interested 
in profit distribution on different Varieties, but also we are con-
cerned about the profit distribution on different sub categories.

In a relational data schema which conforms to BNF (Backus 
Naur Form) 3, the dimension of Variety is comprised of three ta-
bles, which are linked together by foreign keys. In the table of 
Category (the first level of the hierarchy of the Variety dimension), 
there are different categories such as “Commodity futures”, “Finan-
cial futures” etc. In the table of Sub Category (the second level 
of the hierarchy of the Variety dimension), commodities such as 
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Fig. 5. GROUP BY times.

“Agricultural Product”, “Energy Futures” etc belong to the category 
of “Commodity Futures”. “Foreign Exchanges” and “Interest Rate” 
etc. belong to the category of “Financial Futures”. In the table of 
Variety (the third level of the hierarchy of the Variety dimension), 
“Soybean” and “Corn” belong to the sub category of “Agricultural 
Product”. And “USD” and “EU” etc. belong to the sub category of 
“Foreign Exchanges”. (Please notice the difference of Variety dimension 
and the Variety table.)

If we aggregate some measures on the second level of the hier-
archy of the Variety dimension, the SQL would be:

select s.sub_cat_name, sum(hold_profit)
from cust_hold h, vari_info v, sub_cat s
where h.cust_no = ?
and h.vari_code = v.vari_code
and v.sub_code = s.sub_code
group by s.sub_cat_name.

For such a SQL query, which joining three tables, and aggregate 
on the intermediate level of the hierarchy of a dimensional table, 
query rewriting technique cannot transform it into a query that 
completely eliminate the joining.

Joining elimination has demonstrated superior performance in 
our previous work. Through the elimination of join operation, 
the performance of GOUPY BY operation is improved greatly. The 
time is reduced from about 3–5 seconds to about 380–440 mill-
seconds, as shown in Fig. 5, where the y-axis uses a logarithmic 
scale.

Min Join and Max Join denote the minimum and maximum time 
to perform a Group-By using joining. Min no Join and Max no Join
denote the minimum and maximum time to perform a Group-By 
without joining.

We propose an encoding method to encode hierarchical infor-
mation of dimensional tables into the fact table to speedup queries 
which aggregate on any level of the hierarchy, by eliminating join-
ing.

3.2.3. Segmented bit encoding of dimensional tables and query 
processing

We use the dimension of Variety to illustrate how to encode 
the hierarchical information of a dimensional table, and how to 
rewrite the query to leverage the encoded information.

In the holding fact table, the information in each row is as fol-
lows.

Variety key Time key Customer key Exchange key Holding 
Information

The “variety key” is a foreign key, which is linked to the Variety 
table in the Variety dimension. We try to encoding three levels of 
hierarchy into a bit string to replace the “Variety key” in the fact 
table.
Firstly, according the cardinality of the Category table, i.e. there 
are at most C categories in our system, then we can encode each 
category into 

⌈
logC

2

⌉
bits (Catbits). Secondly, according the max 

number S of the sub categories under each category (we do not 
use the cardinality of the whole Sub Category table to reduce space 
consumption), we encode the sub categories under each category 
into bits in the same manner (Subbits). Thirdly, according to the 
max number V of the varieties under each sub category, we en-
code each variety into bits (Varbits).

Catbits, Subbits and Varbits are concatenated together as a new 
variety_key to replace the foreign key in the fact table of cust_hold. 
Suppose Catbits is 4 bits long, Subbits is 4 bits long and Varbits is 
8 bit long. The soybean under agricultural product (which is under 
commodity futures) can be encoded into “0001.0001.00000001”, 
the points inside the bit string are there for reading convenience 
only.

Hierarchical information in other dimensional tables are also 
encoded and used to replace their foreign keys in the fact tables 
respectively.

SQL queries which aggregate on intermediate levels of the hier-
archy of any dimension can be easily rewritten to eliminate the 
join. For example, the SQL in the end of Section 3.2.2 can be 
rewritten as follows:

SQL select s.sub_cat_name, sum(hold_profit)
from cust_hold h, vari_info v, sub_cat s
where h.cust_no = ?
and h.vari_code = v.vari_code
and v.sub_code = s.sub_code
group by s.sub_cat_ name

rewritten select s.varity_key, sum(hold_profit)
from cust_hold h
where h.cust_no = ?
group by variety_key & “0000.1111.00000000”

The trick is that by grouping by variety_key & “0000.1111.00000
000”, we not only correctly aggregate on the second level of the 
hierarchy of the Variety dimensional table, but also eliminate the 
need to join between the fact table and dimensional tables.

Not only group by can be transformed into bit string opera-
tions just like the example above, but also various predicate in the 
where clause of a SQL can be transformed to operate on bit strings.

For example, equation predicate such as “Variety.vari_name
= ‘soybean’” can be transformed into “cust_hold.variety_key =
‘0001.0001.00000001’”. Queries containing equation predicates, 
range predicates, LIKE predicate, as well as IN predicate are trans-
formed into a query which operates only on the fact table, specifi-
cally on the replaced foreign keys, which have encoded hierarchical 
information of the dimensions.

Worthy to mention is that, when data is loaded into the data 
warehouse, the data should be encoded. This is a practical strategy 
in that data warehouse follows the usage pattern of “write once, 
query many times”, thus it is worthy of paying some cost while 
loading data, the overhead will finally pay off during data ware-
house using.

3.2.4. Intra customer data scan sharing and low concurrency
In the new version of evaluation service, we still use the itera-

tive algorithm in our previous work [12] to calculate the indicators. 
For integrity of this paper, we briefly present the idea here.

Since we have also using data scan sharing between customers 
(generating evaluation reports for different customers), the data 
scan sharing for indicator calculation for one customer is called 
intra customer data scan sharing here.

The calculation process of indicators is as follows. Firstly, each 
indicator is initialized. Secondly, each indicator is pre-processed; 
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Fig. 6. Access frequencies of data across different months.
when the cursor produces one tuple (one row of data), each in-
dicator uses the tuple to calculate its own internal value. Lastly, 
all indicators are post-processed and the calculation is com-
plete.

The calculation of holding profit distribution over different ex-
changes is used as an example to illustrate the iterative algorithm.

During the initialization stage, a hash map to store hold-
ing profit of different exchanges is created. At the stage of pre-
processing, nothing is done. When consuming one tuple from the 
SQL cursor of holding contract table, the exchange_no is used to 
lookup the hash map. If the holding profit of some exchange_no
could be found, then the profit in current tuple is added to the 
value in the hash map; if not, then a new hash map entry hav-
ing the form of < exchange_no, holding_profit > is created and in-
serted into the hash map. During the post-processing stage, noth-
ing is done to the hash map. When the front-end node merges 
partial results from data processing and analysis nodes, it looks 
up in the Exchanges table to replace the exchange_no with ex-
change_name, and produces the final holding profit distribution 
over exchanges.

Intra customer data scan sharing can compute indicators in one 
pass of data scanning. However, in a highly concurrent situation 
where assessment reports of different customers need to be gen-
erated, the throughput of the system is low because there is no 
coordination between data accessing between customers (please 
see our later experiment results).

We have analyzed the access log of the evaluation system, and 
found that most customers are interested in evaluation of trading 
in the recent year, especially in most recent 6 months. The access 
frequencies of data across different months is depicted in Fig. 6
(the data has been normalized).

We design an inter customer data scan sharing scheme with the 
expectation that system throughput could be improved in highly 
concurrent situations.

3.2.5. Inter customer data scan sharing for higher concurrency
When many users access the data warehouse concurrently, 

there are some opportunities that we can exploit to improve query 
performance. When these queries need some common data blocks, 
disk I/Os should be shared between them.

3.2.5.1. Clockwise shared scanning For high performance of concur-
rent access, we adopt a data driven query execution strategy which 
is based on clock wise shared scanning of data blocks.

The data blocks on each node are organized into a virtual cir-
cle. The scanning thread will prepare the data, block by block in 
a circular manner. Fig. 7 shows a high level idea of the algo-
rithm.
Fig. 7. Clock wise shared scanning.

After a block of data is fetched, it is fed into the virtual pipeline. 
The pipeline contains some data blocks, and the data blocks will 
be consumed by the queries. Each query maintains a private in 
memory table (hash) to store local aggregation results.

When some new query comes, the data fetch thread may be 
currently preparing data block of number i, the number of the data 
block is recorded in the query’s in memory data structure. When 
the data fetch thread reach the data block number i again, the 
query has seen all data blocks, it can finish.

Queries are run in their threads, but scheduled by a scheduler. 
The scheduler coordinates the whole thing of invoking data fetch 
thread, and executing every waiting query. The algorithm of the 
scheduler is as follows.

Algorithm 1: Scheduling of Queries
01, i = 0;
02, wait for ready of current data block i;
03, Check to see whether there are some new queries, if so put the query into 
the running queue and set its start block number to i;
04, put the data block into the virtual pipeline;
05, for (int j = 0; j < running queue. length; j + +)
06, {
07, tell the query of number j to run;
08, feed the data block into the query;
09, };// queries now are running concurrently
10, for (int j = 0; j < running queue. length; j + +)
11, {
12, wait query j to finish work on the data block;
13, };
14, i + +;
15, i = i % number of data blocks;
16, check to see whether there are some queries in the running queue that 
could finish, if so finish them;
17, goto step 2;

Note: the current data block will be prepared by the data fetch thread.

When there is enough memory, some memory will be used as 
data buffer to accommodate data blocks. When the requested data 
block is resident in the buffer, it can be accessed with low latency; 
otherwise the data block should be read from disks.

Usually executing queries in memory is much faster than re-
trieving records from disks. To accelerating disk I/O operations, it is 
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preferable to fetch data from disk by sequential reading. A thread 
called data fetch thread is uniquely in charge of preparing next 
data block. If the block is not in memory, it will read the block 
from the disk.

The data fetch thread works in a looking forward manner, when 
the current data block is processed by all queries, it is told to fol-
low up with a new data block. When the queries are running, the 
data fetch thread is not in an idle state, it will go ahead to see 
whether the data blocks that will be accessed next are ready. If 
the data block is in the memory, it is OK. If not, the data blocks 
should be read from disks and placed in the buffer. Some blocks in 
the buffer will be evicted.

There are two parameters that tune the running behavior of the 
data fetch thread, one is the number of data blocks that should be 
checked in each round of preparing – Numlook ahead, another is the 
threshold of access frequency that a data block should be evicted 
from buffer for new coming data – AF_Thresholdevict.

We vary the number of Numlook ahead and AF_Thresholdevict to 
choose the best ones for higher performance. The data fetch thread 
prepares data blocks, and fetches data blocks from disks when nec-
essary. The algorithm of the data fetch thread is as follows.

Algorithm 2: Data Fetch Thread
01, put the current data block in the virtual pipeline, and tell the ready status 
of the block to the scheduling thread;
02, look ahead to see whether Numlook ahead of data blocks are ready in the 
memory buffer;
03, if some of the data blocks are not ready, select some in memory data blocks 
for eviction;
04, read the data blocks from disks into memory buffer;
05, wait for the scheduling thread to wake itself up;
06, goto step 1;

3.2.5.2. Combing inter customer and intra customer data scan sharing
To combine inter customer and intra customer data scan shar-
ing, firstly data blocks are fetched from disks and put in memory. 
When memory buffer is used up, new data request will evict some 
data blocks in memory.

The current data block is fed into indicator calculation threads 
for different customer (one for each customer). In each indicator 
calculation thread, data is filtered according to cust_id, and fed into 
the iterative indicator calculation algorithm.

The data fetching thread fetches and feeds data in a continuous 
manner, each indicator calculation thread should take care of end-
ing the calculation when all data in the report period is accessed 
(please refer back to Section 3.2.5.1).

3.2.5.3. Sliding window access frequency based data block memory evic-
tion Which data blocks should be resident in the memory buffer 
depends on their access frequency. To deal with hotspot shifting, 
i.e. with the time elapsing, some new hot data will emerge and 
some old one will cold down. The access frequency should be com-
puted by using a sliding time window.

The access frequency is not a single number, but a series of 
access frequencies in recent consecutive time slots. The data struc-
ture to store the access frequencies includes the start timestamp 
of the first time slot, and the access frequencies array. There is no 
need to store the start timestamp of each time slot, based on the 
size of a timeslot, these timestamps can be calculated. The size of 
the access frequencies array Sizeaf-array and the time span of a sin-
gle time slot TimeSpanslot are tunable.

The optimal values for the two parameters are application de-
pendent. In our experiments with SSB (Star Schema Benchmark) 
data set and workloads, the two parameters are set to 8 and 30 
minutes respectively.

Access frequencies of all data block are maintained in a global 
data structure. Fig. 8 depicts a 3 slot access frequency structure. 
Fig. 8. Sliding window access frequencies of a data block.

Fig. 9. Memory allocation for different use.

Upon startup of a data node, the access frequency structure for 
each data block is initialized. With the time going on, if current 
timestamp is still in the current slot, then every access of the data 
block will be added to the slot.

If the time is beyond the current slot and enters the next slot, 
the current slot will be changed, later access of the data block 
will be added to the new current slot. When current time is 
beyond the scope that could be recorded in the three slots, i.e. 
Current time stamp − start time stamp > 3 ∗ TimeSpanslot, the fre-
quency of the slot 1 will be thrown away, slot 2 and slot 3 will 
replace slot 1 and slot 2 respectively (using a memory copy op-
eration), and a new slot 3 is created. The start timestamp of the 
first slot is changed accordingly. The total access frequency of a 
data block is calculated by summing up the frequencies store in 
the slots.

Memory on each node is limited. It is partitioned into three 
major parts, the memory for currently accessed data blocks, the 
memory for data blocks’ buffering, and the memory for queries’ 
private aggregation (Fig. 9).

Since the number of running queries is changing, the mem-
ory need of these queries is also changing. There is a need to 
evict some data blocks from the buffer to provide the memory for 
queries’ private use. The eviction algorithm, which is a variant of 
LRU algorithm, is simply based on access frequency.

4. Experimental results

4.1. Generation times of evaluation reports

We carried out experiments on a high-end server and a cluster 
respectively. The high-end server is an HP Proliant DL580 G enter-
prise server, and it is equipped with two Intel Xeon E7330, 8 GB of 
RAM, and 500 GB SAS hard disk. The cluster consists of 24 Dell755 
PC entry level servers. Each server is equipped with an Intel Core 
2 Duo E6550, 2 GB RAM, and a 250 GB SATA hard disk.

Note: Cluster denotes our previous work of intra customer data 
scan sharing; Cluster∗ denotes our current work with inter cus-
tomer data scan sharing added.

The report generation time on the HP ProLiant server and the 
cluster are shown in Fig. 10 (the selected reporting period is from 
December, 2008 to December, 2009). The data volumes of the cus-
tomers (C1 to C8) are different due to their different trading habits, 
so their report generation time are different too.
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Fig. 10. Report generation time on a high-end server and a cluster.

Fig. 11. Throughputs of Cluster and Cluster∗ .
Using the high-end server, the report generation times are be-
tween 1 minute and 2.36 minutes; while using the cluster, the 
times are from 30 seconds to 50 seconds.

We can see that report generation times of Cluster∗ are worse 
than Cluster for most of the customers, but by a small margin. 
This can be explained by the reason that when sharing data scan 
among customers, some data loaded into memory is not relevant 
to queries of a specific user. The loading of this data is completely 
a waste. In our following up work, we will try to reduce such 
waste by using some index techniques to filter out irrelevant data 
in blocks.

Although we achieve worse response times, however we achieve 
higher system throughputs, please refer to next section.

4.2. System throughputs

We also measure throughputs of Cluster and Cluster∗ by vary 
the MPL (multi programming level) parameter of test client.

The result is as depicted in Fig. 11. When increasing MPL, both 
throughputs of Cluster and Cluster∗ increase.

Throughput of Cluster reaches its peak when MPL is 32, and 
after that it drops down quickly. However throughput of Cluster∗
reach its peak when MPL is 40 and after that it slowly drops 
down.

At low concurrencies, Cluster outperforms Cluster∗ , however 
Cluster∗ outperforms Cluster at higher concurrencies by exploiting 
inter customer data scan sharing.

5. Related works and discussion

Segmented bit encoding of dimensional information has bor-
rowed ideas from universal relation [3]. However, our scheme
doesn’t put all dimension information but hierarchy information 
into the fact table, thus it is more space-saving compared with uni-
versal relation. Then the hierarchical information is used by most 
aggregation queries in our applications.

IBM has proposed BLINK [4] prototype to pre join dimension 
tables and the fact table to form a single wide table, which results 
in much simpler query processing. Table scanning is parallelized 
and constant query response time is achieved. De-normalization of 
data leads to data redundancy. Our scheme does not incur as much 
data redundancy as BLINK.

In the domain of scientific research, simulation, internet, 
e-commerce, as well as the financial data analysis areas discussed 
in the paper, it is witnessed that the data volume is growing 
rapidly [5]. Traditional data warehouse technology could not deal 
with the rapid exploding data effectively.

Google has brought forward the MapReduce technology, which 
is a parallel computing software framework [6] to deal with very 
large data sets. In Google, more than 20 PB of data is processed ev-
ery day using MapReduce. MapReduce has demonstrated its power 
in the area of big data processing [7].

MapReduce has given us great inspiration, and our scheme fit 
the MapReduce framework well. In our following up work, we are 
planning to embed the data encoding scheme and data scan shar-
ing scheme to the Hadoop [8] system (the open source MapReduce 
implementation). The HadoopDB proposed in [9,10] is used as a 
reference.

Data scan sharing can improve system throughput greatly. In 
[11], the authors proposed merging the execution plans of queries 
for sharing the underlying data scan. Our scheme does not merge 
query plans, but runs queries separately and consumes common 
data providing. Although it is much simpler, it is efficient just as 
demonstrated from experimental results.
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6. Conclusion

In this paper, based on our previous work of a futures trading 
evaluation service, we have proposed segmented bit encoding of 
dimensional tables and exploited inter customer data scan sharing.

By using the segmented bit encoding of dimensional hierar-
chical information, we bring the advantage of eliminating joining 
when aggregating on any level of the hierarchy of any dimension. 
By sharing data scan among customers, report generation through-
put is improved.
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