
Scheduling Precedence Constrained Stochastic
Tasks on Heterogeneous Cluster Systems

Kenli Li, Xiaoyong Tang, Bharadwaj Veeravalli, Senior Member, IEEE, and Keqin Li, Senior Member, IEEE

Abstract—Generally, a parallel application consists of precedence constrained stochastic tasks, where task processing times and
intertask communication times are random variables following certain probability distributions. Scheduling such precedence constrained
stochastic tasks with communication times on a heterogeneous cluster system with processors of different computing capabilities to
minimizeaparallel application’s expected completion time is an important but very difficult problem in parallel anddistributed computing. In
this paper, we present a model of scheduling stochastic parallel applications on heterogeneous cluster systems. We discuss stochastic
scheduling attributes and methods to deal with various random variables in scheduling stochastic tasks. We prove that the expected
makespan of scheduling stochastic tasks is greater than or equal to themakespan of scheduling deterministic tasks, where all processing
times and communication times are replaced by their expected values. To solve the problem of scheduling precedence constrained
stochastic tasks efficiently and effectively, we propose a stochastic dynamic level scheduling (SDLS) algorithm, which is based on
stochastic bottom levels and stochastic dynamic levels. Our rigorous performance evaluation results clearly demonstrate that the
proposed stochastic task scheduling algorithm significantly outperforms existing algorithms in terms of makespan, speedup, and
makespan standard deviation.

Index Terms—Directed acyclic graph, heterogeneous cluster system, parallel processing, stochastic task scheduling

1 INTRODUCTION

1.1 Motivation

IN the past few years, cluster systems have become primary
and cost-effective infrastructures for parallel processing.

Parallel processing is a promising approach to meet the
computational requirements of a large number of current and
emerging applications, including information processing,
fluid flow, weather modeling, and image processing. The
data and computations of such an application can be distrib-
uted on the processors of a cluster system, and thusmaximum
benefits from these systems can be obtained by employing
efficient task partitioning and scheduling strategies.More and
more evidence show that the scheduling of parallel applica-
tions is highly critical to the performance of cluster systems.
The common objective of scheduling is to map tasks of a
parallel application onto processors of a cluster system and
order their executions, so that task precedence constraints are
satisfied and the minimum makespan is achieved [1]-[4].

Most classical and existing scheduling researches focus
on the deterministic version of the scheduling problem
with deterministic computation and communication times

[1]-[9]. That is to say, most of the known algorithms assume
that parameters such as task processing times and intertask
communication times are fixed and deterministic, which are
known in advance. However, in many real-world problems,
tasks may not have fixed execution times. Such tasks usually
contain conditional instructions and/or operations that could
have different execution times for different inputs [10]-[15],
[34], such as the smoothed particle hydrodynamics computa-
tion in interfacial flows numerical simulation [33]. Further-
more, communication times among tasks can also fluctuate
according to network traffic.

Although many deterministic scheduling techniques can
thoroughly check for the best assignment of tasks to proces-
sors, existing methods are not able to deal with randomness
and uncertainty effectively. A natural step to tackle this
problem is to consider stochastic task scheduling, that is, to
interpret processing times and communication times as
random variables and to measure the performance of an
algorithm by its expected objective value. In this paper, we
let be a set of precedence constrained
tasks that need to be scheduled on a cluster system with
heterogeneous processors, so as tominimize themakespan. A
processor can process at most one task at a time, and every
taskhas to beprocessedononeof the processors. In contrast
to deterministic tasks, an important assumption for stochastic
tasks is that the taskprocessing time of is not known in
advance. Instead, one assumes that the task processing time

is a random variable, for which we are just given its
probability distribution function. A similar assumption is
made for communication times. Throughout the paper, task
execution times and intertask communication times are
supposed to be stochastically independent.

Some works have focused on stochastic task scheduling
[16]-[21], [24], [25], [35]. Dong et al. proposed amechanism to

• K. Li, X. Tang, and K. Li are with the School of Information Science and
Engineering, National Supercomputing Center in Changsha, Hunan
University, Changsha 410082, China.
E-mail: lkl510@263.net; tang_313@163.com; lik@newpaltz.edu.

• B. Veeravalli is with the Department of Electrical and Computer
Engineering, National University of Singapore, 117576 Singapore.
E-mail: elebv@nus.edu.sg.

• K. Li is also with the Department of Computer Science, State University of
New York, New Paltz, NY 12561.

Manuscript received 29 Dec. 2012; revised 21 July 2013; accepted 07 Oct. 2013.
Date of publication 17 Oct. 2013; date of current version 12 Dec. 2014.
Recommended for acceptance by C.-Z. Xu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.205

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015 191

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

estimate the probability distribution of a task’s execution time
based on resource load, and a resource load based stochastic
scheduling algorithm for grid environments was developed
[25]. The weakness of the above technique is that computing
the probability distribution of the makespan is inefficient and
some solutions can never be selected even if they are not
dominated (i.e., only solutions on the convex hull can be
selected). There remain very challenging problems. Examples
are, how to incorporate the expected values and variances of
random computation and communication times into sched-
uling to improve the system performance, and how to deal
with heterogeneity of processors in a cluster system. These
issues are worth of further investigation, and there is still
much room for improvement [10], [18], [24].

1.2 Our Contributions
In the present paper, we make new contribution to the
problem of scheduling precedence constrained stochastic
tasks of a parallel application on heterogeneous processors
of a cluster system. We give a model of scheduling stochastic
tasks on heterogeneous processors. We show that a lower
bound for the expectedmakespan is themakespan of
scheduling deterministic tasks whose processing times and
communication times are replaced by their expected values.
We discuss effective ways to deal with various random
variables in stochastic scheduling, such as the finish time of
a processor, the finish time of a communication, the data
ready time of a task, and the earliest execution start time and
completion time of a task. In particular, we assume that all
task processing times and intertask communication times
have normal distributions, and we employ the well known
Clark’s equations [28], [31], [36]. In order to efficiently and
effectively schedule precedence constrained stochastic tasks,
we develop a stochastic dynamic level scheduling (SDLS)
algorithm. We establish a stochastic task scheduling simula-
tion platform and compare experimentally the SDLS sched-
uling algorithm with three existing heuristic scheduling
algorithms, i.e., Rob-HEFT, SHEFT, and HEFT.

Our most significant contribution is to invent the concepts
of stochastic bottom level and stochastic dynamic level (SDL),
and to assign a task to a processor such that the SDLof the task
on the processor is optimal according to a unique definition
introduced in this paper. Our SDLS algorithm is able to
effectively handle task dependency, time randomness, and
processor heterogeneity simultaneously, leading to currently
the best algorithm for scheduling precedence constrained
stochastic tasks on heterogeneous cluster systems. Our exten-
sive experimental data on various kinds of task graphs dem-
onstrate that our proposed algorithm can achieve reduced
makespan, increased speedup, and reduced deviation of
makespan.

2 RELATED WORK

A popular representation of a parallel application is the
directed acyclic graph (DAG), in which the nodes represent
application tasks and their execution times, and the directed
arcs or edges represent the execution dependencies as well as
the amount of communication. It is widely known that the
problem of finding an optimal schedule is NP-hard [5], even
for very special cases. Therefore, a heuristic algorithm can be

used to obtain a sub-optimal schedule rather than parsing all
possible schedules. These heuristic algorithms can be broadly
classified into the following three categories, namely, list
scheduling algorithms [1], [2], [6], [7], clustering algorithms
[3], [8], and duplication based algorithms [4].

Compared to algorithms from the other two categories, a
list scheduling heuristic usually generates good quality sche-
dules at a reasonable cost. The basic idea of list scheduling is to
assign priorities to the tasks of aDAG and to place the tasks in
a list arranged in descending order of priorities. A task with a
higher priority is scheduled before a taskwith a lower priority
and ties are broken using some method. To compute the
priorities of the tasks, a DAG must be labeled with the
processing times (weights) of the tasks and the communica-
tion times (weights) of the edges. Two frequently used attri-
butes for assigning priority are the (top level) and

(bottom level) [9]. The of a task is the length
of a longest path (there can be more than one longest path)
from an entry task to (excluding). Here, the length of a
path is the sumof all the task and edgeweights along the path.
The of a task is the length of a longest path from to
an exit task. Examples of list scheduling algorithms are
modified critical path (MCP) [7], [9], mobility directed (MD)
[9], dynamic level scheduling (DLS) [2], [9],mapping heuristic
(MH) [9], and dynamic critical path (DCP) [7].

However, all of the above works assume that task proces-
sing and communication times are deterministic and cannot
be effectively applied to stochastic scheduling. Stochastic
schedulingproblemshavebeenwell studied in the scheduling
theory literature over forty years. One of the earliest results in
stochastic scheduling dated back to 1966, when Rothkopf
gave a simple proof that is optimally
solved by greedily ordering tasks according to the weighted
shortest expected processing time (WSEPT) policy [16]. This
policy is so named because if all weights are equal, it becomes
the shortest expected processing time (SEPT) policy, where we
always execute the task having the shortest expected proces-
sing time. In the general case, Weiss analyzed the optimality
gap of WSEPT, and proved that WSEPT is asymptotically
optimal under mild assumptions on the input parameters of
the problem [17]. A breakthrough occurred with the work of
Möring et al. [10], who proved the general bounds for many
stochastic completion time scheduling problems. Their meth-
od is based on LP relaxations of a deterministic problem,
where an optimum solution to the LP yields a lower bound.
Later,Megowet al. improved the results under amore general
environment [11]. Scharbrodt et al. presented an average-case
analysis for that problem [12].

Precedence constraints between tasks play a particularly
important role in most real-world scheduling problems.
Therefore, itwouldbe of both theoretical andpractical interest
to incorporate such constraints into stochastic scheduling.
Considering stochastic tasks with precedence constraints,
such as the stochastic DAG model, Skutella and Uetz
obtained a theoretical performance guarantee for weight
execution time [18]. In most cases, the makespan is the key
objective of stochastic schedulingwith precedence constraints
on heterogeneous systems. In scheduling theory, this problem
is represented by the notation . The
difficulty of this problem was impressively underlined by
Hagstrom [19], who showed, among other things, that

192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

computing the probability distribution of the makespan is an
-completeproblem (Intuitively, a -complete problem is

to count the number of solutions of anNP-complete problem)
even for a simple class of stochastic scheduling problemswith
precedence constraints.

Several authors have proposed solutions to estimate the
distribution of the makespan. Canon and Jeannot looked
upon the stochastic scheduling problem as a stable state of
a system [20], [21]. They compared the robustness metrics
(makespan standard deviation,makespandifferential entropy,
mean slack, probabilistic metric, lateness likelihood, make-
span 0.99-quantile) and showed that a good metric is the
makespan standard deviation. They also proposed a heuristic
scheduling algorithm Rob-HEFT, which generates a set of
solutions intended to have good performance for makespan
andmakespan standard deviation for stochastic applications.
In our preliminary work [24], we proposed the stochastic
heterogeneous earliestfinish time (SHEFT) scheduling algorithm,
which confirmed that the variance of a task’s processing time
is a key attribute and has much effect on performance in
stochastic scheduling. However, the method of computing
stochastic DAG path length is simple and should be effective-
ly improved. Both Rob-HEFT and SHEFT algorithms will be
compared with our proposed SDLS algorithm in this paper.

3 A STOCHASTIC SCHEDULING MODEL

3.1 Stochastic Parallel Applications
Generally, a stochastic parallel application with precedence
constrained tasks is represented by a directed acyclic graph
(DAG) [23], [24],where is a set
of tasks that can be executed on any of the available
processors, and is a set of directed arcs or edges
between the tasks to represent thedependencies. For example,
edge represents the precedence constraint such that
task should complete its execution before task starts its
execution. The weight assigned to task represents its
processing time, and the weight assigned to edge
represents its communication time. The set
of all direct predecessors of is denoted by pred , and the
set of all direct successors of is denoted
by succ .A taskmayneed input data from its predecessors.
When all its input data are available, the task is triggered to
execute, provided that there is an available processor or its
designated processor is available. After its execution, a task
generates its output data for its successors. A task
without predecessors, i.e., , is called an entry task.
A task without successors, i.e., , is called an exit
task. Without loss of generality, we assume that a DAG has
exactly one entry task and one exit task . If multiple
entry tasks or exit tasks exist, they may be connected with
zero-time weight edges to a single pseudo-entry task or a
single pseudo-exit task that has zero-time weight.

In our stochastic setting, the processing and communica-
tion times are random and known only in advance as proba-
bility distributions. In this paper, we study the stochastic task
scheduling problem with normal distributions of processing
and communication times, and assume that the expected
values and variances of the distributions are known. The
assumption of normal distribution has been justified bymany

real applications, and also makes the analysis of many ran-
dom variables analytically tractable. Such an approach has
been adopted by many researchers [10], [24], [26]-[28]. Let

denote the normal distribution with mean and
variance . Then, the processing time of task follows

, and the communication time of edge
follows , respectively.

Fig. 1 shows an example of a parallel applicationDAGwith
normal distributions of computation and communication
times.

3.2 Heterogeneous Cluster Systems
In this study, we consider a heterogeneous cluster system
which is modeled as a finite set of heterogeneous
processors . Each processor consists of a single
processing core, and each task must use a core exclusively. A
weight assigned to a processor represents the pro-
cessor’s computation capacity, i.e., the relative speed com-
pared to a standard reference processor. Thus, the execution
time of task on processor is . All processors
are connected bya special network, such as a fast Ethernet.We
assume that the communication time of two tasks and is

, if the two tasks are executed to two different proces-
sors, and the time is independent of the particular processors.
However, the communication time between two tasks sched-
uled on the same processor is taken as zero [9], [23], [24]. The
above computing system can be easily altered into a grid
system by a little change and our scheduling model can be
applied to grid systems.

3.3 A Motivational Example
To illustrate the complexity of scheduling stochastic tasks,
which are known only their probability distributions in
advance, and minimizing the makespan, we give a demon-
stration of the processing and communication times in Fig. 1.
Table 1 provides the average-case processing times and the
worst-case processing times of the tasks in Fig. 1, which are

Fig. 1. An example of a stochastic parallel application.

LI ET AL.: SCHEDULING PRECEDENCE CONSTRAINED STOCHASTIC TASKS ON HETEROGENEOUS CLUSTER SYSTEMS 193

usedbydeterministic scheduling algorithms. Table 2gives the
execution times of the tasks in Fig. 1, which are obtained from
a cluster system based on Intel Xeon X5670 processors and
Linux. From Table 2, we can conclude that a task’s computa-
tion time or an edge’s communication time can be far from its
average-case and worst-case computation/communication
time. Thus, the deterministic scheduling strategy is ineffective
and we should use the stochastic scheduling approach to
improve the performance of scheduling. The example will be
continued and completed in later sections.

4 PRELIMINARIES

4.1 Scheduling Attributes
To describe scheduling of an application DAG on
a heterogeneous cluster system, the following notations are
defined and used throughout the paper. denotes
the earliest execution start time of task on processor

, and is the execution time of
task on processor . As the computing capacities of
processors in a heterogeneous cluster system are different
from each other, the execution times, i.e., the ’s, are
different too. The earliest execution completion time of
task on processor is calculated as

Notice that in this study, we assume that the processing
time is a random variable with normal distribution.
Thus, the execution time and the earliest comple-
tion time are random too.

The processor on which task is executed is denoted by
. A schedule is a task

assignment to the processors (equivalently, a processor allo-
cation to the tasks). Furthermore, let

be the finish time of processor . For a schedule to be feasible,
the following condition must be satisfied by all tasks in the
DAG [29], i.e., for any two tasks , we have

The above condition essentially states that the execution of
two tasks on the same processor cannot overlap.

The data ready time (DRT) of task on processor ,
represented by , is

where is the communication finish time of edge
calculated by

If pred , i.e., is an entry task, then we have
, for all . The start time of

task on processor is constrained by processor ’s finish
time and the entering edges of as follows,

for all and .
The makespan is , assuming that

. In solving the
problem, one of the objectives is to minimize the

average makespan .

4.2 Manipulation of Normal Random Variables
Since the processing time of a task and the communication
time of an edge in a stochastic parallel application are given as
random variables, many quantities in stochastic scheduling,
such as the length of a path from a task to the exit task, are also
random variables, which differ from the deterministic ones.
Before presenting our stochastic dynamic level scheduling

TABLE 2
The Execution Times of Tasks in Fig. 1 on a Cluster System

TABLE 1
The Processing and Communication Times of Tasks in Fig. 1 for Deterministic Scheduling

194 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

(SDLS) algorithm for the problem,
we would like to explain how to calculate the probability
distributions of various random variables involved in our
stochastic scheduling.

There are several basic operations on normal random
variables which are employed throughout this paper. First,
a normal random variable can be scaled by a
constant factor , e.g., the random variable is divided by
a constant in Eq. (1). It is clear that .

Second, we encounter summations of normal random
variables. An important fact about normal random variables
is that if is normally distributedwith expected value and
variance , where , then is also
normally distributedwith parameters and . In other
words,

This attribute can be applied to calculate the distribution
of the length of a path consisting of tasks and edges in a
DAG, such as Fig. 2a. Here, the length distribution of
path in Fig. 2a is

. We also notice that , i.e., the
difference of two normal random variables is also a normal
random variable. This property will be used in Eq. (14).

Third, we need to find the maximum of several random
variables, such as in Eq. (2) and the opera-
tor in Eq. (4). Unfortunately, the maximum value of a set of
normal random variables is no longer a normal random
variable. However, in a pioneering work [28], [31], [36], Clark
developed a method to recursively estimate the expected
value and variance of the greatest value of a finite set of
random variables that are normally distributed. The normal
distribution based on the obtained expected value and vari-
ance is close to the actual distribution of the random variable
defined by the operator. Let us consider the tasks in
Fig. 2b, where task has predecessors. The data ready
time of task can be expressed as

The above equation implies that the distribution of
can be calculated recursively by using Clark’s

method elaborated as follows.
As the communication times are independent and normal-

ly distributed, the correlation coefficient between any pair of
them is zero. That is,

(Note: Strictly speaking, although the above condition holds
for Fig. 2b, it is not true when Fig. 2b is part of a DAG. The
reason is that the task completion times of the predecessors
are not independent, although the edge communication
times are independent. However, since we are only interest-
ed in getting an approximate probability distribution for
the operator, we still adopt this assumption, so that
Clark’s equations can be applied easily.) Clark’s equations

to compute the expected value and variance of
with are as follows. The expectation of

is given by Clark’s first equation.
That is,

where,

(since ,) and

and , and ,
and

The variance of is given byClark’s
second equation. That is,

Fig. 2. Example random variables in stochastic scheduling.

LI ET AL.: SCHEDULING PRECEDENCE CONSTRAINED STOCHASTIC TASKS ON HETEROGENEOUS CLUSTER SYSTEMS 195

Now, let us consider

The correlation coefficient becomes the correlation
coefficient between and . It is
clear that . The expected value of

is as follows:

where,

and

The variance of can be
computed as

In a similar way, Clark’s equations can be used recur-
sively for more steps to determine the expected value
and variance of .

5 A LOWER BOUND ON THE EXPECTED MAKESPAN

For the scheduling problem , a
lower bound for the expected makespan can be obtained by
replacing all processing and communication times by their
expected values and turning the stochastic model into a
deterministic model. Let denote the completion time of
task under a schedule . The makespan under is

. We define a deterministic DAG in the
same way as , but replacing each random variable by
its expected value. Let be the completion time of task in

and be the makespan under schedule .
The following theorem gives a lower bound for the ex-

pected makespan.

Theorem 1. For the problem with
random processing and communication times, we have

for all . Consequently, the expected
makespan satisfies the following inequality:

for any schedule .

Proof. Weprove for all by a structural induction
on aDAG, i.e., the statement is true for as long as it holds
for all its predecessors. First, for the induction basis, we
notice that

that is, the statement if true for a task without any
predecessor. Next, for the induction step, we consider
any task with predecessors. Assume that under
schedule , task is processed by processor . Hence,
by Eq. (1), we have

where the start time can be obtained by Eqs. (2) and (4),

Thus, we get

Since the above function is convex [30], by
applying Jensen’s inequality, we obtain

The communication finish time is the sum of the
task completion time and the communication time

of edge . Since the finish time of
processor is determined by the expected processing
times of its assigned tasks, is equal to

of the deterministic DAG under
schedule . The above inequality becomes

196 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

where the last inequality is from the induction hypothesis
that the inequality holds for all task ’s
predecessors . Finally, we notice that

. This completes the proof of the
theorem. ◽

The above lower bound theorem can be used to evaluate
the quality of a schedule in solving the

problem.

6 A STOCHASTIC SCHEDULING ALGORITHM

6.1 Stochastic Bottom Level
In a heterogeneous cluster system, the different computa-
tion times of the same task on different processors present
us with a problem, that is, the priorities computed using the
task computation times on one particular processor may
differ from the priorities computed using the task compu-
tation times on another processor. To overcome this prob-
lem, some scheduling algorithms set the task computation
times to their median values, as in the DLS algorithm [2].
Some set to their average values, as in the HEFT algorithm
[23]. For heterogeneous processors, the impacts of different
computation capacity assignment methods are investigated
in [32], where the authors compared different methods
such as average value, median value, best value, and worst
value. Results show that the average value is the most
suitable method for heterogeneous cluster systems.
Here, we use the average computation capacity, which is
defined as

In deterministic scheduling algorithms, the key attri-
butes such as top level and bottom level can
be easily computed bymethods proposed in [9]. However, for
stochastic scheduling algorithms, it is difficulty to compute
the above attributes, because all processing times of tasks
and communication times among tasks are random. Here,
we propose an algorithm to calculate the distribution of

, which we call stochastic bottom level represented by
. The of a task is the random length

of a longest path from to the exit task, and is recursively
defined as

For the exit task , its is

Algorithm 1 is developed for computing the of all
tasks in a parallel application.

Algorithm 1: Computing the

Input: A task DAG of a parallel application.

Output: The tasks’ stochastic bottom levels.

1 Construct a list of tasks in a reversed topological order and
call it RevTopList;

2 Compute by using Eq. (12) and remove task
from RevTopList;

3 while the RevTopList is not empty

4 Remove the first task from RevTopList;

5 Get a child of and use Eq. (5) to compute the
expected value and variance of

;

6 for each other child of do

7 Use Eqs. (7) and (8) to compute the expected value
and variance of

8 end

9 Use the expected value and variance of to
construct an approximate normal distribution of

;

10 Use Eq. (5) to compute
;

11 end

As an illustration, Table 3 presents the values
obtained by Algorithm 1 for the sample DAG in Fig. 1 on a
heterogeneous system with average computation capacity

.

6.2 Stochastic Dynamic Level Scheduling
In this section, we present our Stochastic Dynamic Level
Scheduling (SDLS) algorithm, which is derived from DLS
[2], [9], and is based on stochastic dynamic level (SDL) to be
defined below.

For heterogeneous systems, the computation capacities of
processors are different. To account for the varying computa-
tion capacity, we define

A large positive indicates that processor is
faster than most processors, while a large negative
indicates the opposite. The of task on processor

is defined as task ’s stochastic bottom level
subtracted by task ’s earliest execution start time
on , and added by , as given by the following
equation:

The SDL has a straightforward interpretation. When consid-
ering prospective tasks for scheduling, a task with high

LI ET AL.: SCHEDULING PRECEDENCE CONSTRAINED STOCHASTIC TASKS ON HETEROGENEOUS CLUSTER SYSTEMS 197

stochastic bottom level is desirable, because it
indicates a high priority for execution. When comparing
candidate processors for allocation, a processor with later
starting time is undesirable; however, a processor

with large is desirable.

Algorithm 2: The SDLS Algorithm

Input: A task DAG of a parallel application.

Output: A schedule .

1 Calculate of each task using Algorithm 1;

2 Push the entry task into the ready task pool;

3 While the ready task pool is not empty do

4 for each task in the ready task pool do

5 for each processor do

6 Use Eq. (14) to compute

7 end

8 end

9 Find the optimal task-processor pair whose
is stochastically greater than the SDL of all

other task-processor pairs;

10 Remove task from the ready task pool;

11 Assign task to processor , i.e., ;

12 Push the unconstrained child tasks of into the ready
task pool;

13 Update the earliest execution start times of tasks on
processors;

14 end

The SDLS algorithm is formally described in Algorithm 2.
Similar to the DLS algorithm, in each repetition of the while
loop, the SDLS algorithm uses Eq. (14) to compute the SDL of
all ready tasks on all processors in a heterogeneous cluster
system. Then, the task-processor pair which gives the
maximum is selected and task is scheduled on
processor .However, the difference between SDLS andDLS
is how to select the task-processor pair with the maximum
SDL, because the SDL’s are random variables with normal
distributions. Here, we define an operator to get the maxi-
mum SDL. Let denote the cumulative density function
of a random variable . Assume that and are two
random variables with normal distributions, and is the
point such that , and is the point such that

. We say that is stochastically less than , or

is stochastically greater than , denoted by , if and
only if < . Algorithm SDLS finds the optimal task-pro-
cessor pair whose is stochastically greater
than the SDL of all other task-processor pairs. Fig. 3 shows
two cumulative density functions and also demonstrates that
the random variable is stochastically greater than . The
operator can get the greater SDL in a stochastic sense. The
probability 0.9 is high enough to yield good scheduling
performance.

As an illustration, consider the stochastic tasks in the DAG
shown in Fig. 1 and a heterogeneous cluster system with 3
processors , , and , where , , and

. The schedules generated by the classical deter-
ministic list scheduling algorithmDLS [2], [9], which uses the
tasks’ mean processing and communication times, and our
proposed algorithm SDLS, are shown in Figs. 4a and 4b
respectively. The processing times and communication times
of Fig. 4 are obtained from their real values on processors,
such as, task ’s processing time is 2.27 on processor and
task ’s processing time is 5.45 on processor . The schedule
generated by the SDLS algorithm has makespan 14.46, which
is shorter than the makespan 15.33 of the schedule generated
by the DLS algorithm.

7 PERFORMANCE EVALUATION

In this section, we compare the performance of the SDLS
algorithmwith three existing scheduling algorithms, i.e., Rob-
HEFT [21], SHEFT [24], and HEFT [23]. Algorithms Rob-
HEFT and SHEFT are heuristic algorithms for scheduling
stochastic tasks. The main idea of Rob-HEFT is to choose the
processor that leads to the desired trade-off between make-
span and standard deviation. The SHEFT algorithm simply
transforms the expected value and variance of stochastic task
execution time into deterministic time. Both Rob-HEFT and
SHEFT attempt to get the approximation of task execution

TABLE 3
The Values of Tasks in Fig. 1

Fig. 3. Illustration of the operator .

198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

times,with precision lower than SDLS. TheHEFTalgorithm is
a deterministic one and not very suitable for stochastic task
scheduling.

We have built a simulation environment for cluster sys-
tems with 16 processors, with their computation capacities in
the range from 2,000 MIPS to 3,000 MIPS. Stochastic parallel
application graphs are randomly generated by varying para-
meters such as the size of aDAG, the height of aDAG, the link
density, the minimum and maximum expected values

and variances of task proces-
sing times, the minimum and maximum expected values

and variances of communica-
tion times among tasks. The comparison is intended not only
to present quantitative results, but also to qualitatively ana-
lyze the results and to explain the reasons, for better under-
standing of the stochastic scheduling problem.

7.1 Performance Metrics
The comparison of the algorithms are based on the following
three performance metrics.

Makespan—Themakespan (or schedule length) is defined
as the completion time of the exit task .
Speedup—The speedup is computed by dividing the se-
quential execution time (i.e., the cumulative execution
time) by the parallel execution time (i.e., the makespan of
the output schedule)[23], [24], [37] as shown in Eq. (15):

where is the execution time of task . The sequen-
tial execution time is computed by assigning all stochastic
tasks to a single processor that minimizes the cumulative
of the computation times. If the sum of the computational
times is maximized, it results in higher speedup, but
ends up with the same ranking of the scheduling
algorithms.
Makespan standard deviation—Intuitively, the standard
deviation of the makespan tells how narrow the

makespan distribution is [21]. The narrower the distribu-
tion, the smaller the standard deviation. This metric is
examined in this paper, because when we are given two
schedules, the one with smaller makespan standard de-
viation is more likely to have stable performance in a
cluster system.

7.2 Randomly Generated Application Graphs
In our experiments, we considered randomly generated ap-
plication graphs, whose task processing times and edge
communication times are assumed to be normally distributed
[10], [24], [26]-[28]. Our simulation-based framework allows
assigning sets of values to the parameters used by the random
graph generator. This framework first executes the random
graph generator program to construct application DAGs.
Then, it executes the scheduling algorithms togenerate output
schedules. Finally, it computes the performancemetrics based
on the schedules. For the generation of randomgraphs, which
are commonly used to compare scheduling algorithms [2], [6],
[7], [9], five fundamental characteristics of a DAG are
considered.

Size of a DAG: The number of stochastic tasks in an
application DAG is .
Height of a DAG: The tasks are randomly partitioned
into levels.
Link density : The probability that there is a directed
edge from a task of level to a task of level is

where > , and .
The minimum and maximum expected values

and variances of task pro-
cessing times: The expected value and variance of each
task processing time on every processor are uniform
random variables in the intervals and

respectively.
The minimum and maximum expected values

and variances of communication
times among tasks: The expected value and variance of
the communication time on each edge are uniform ran-
domvariables in the intervals and

respectively.

In our simulation experiments, graphs are generated for
different combinations of the above parameters with number
of tasks ranging between 50 and 300. Every possible edge is
created with an appropriate link density, which is calculated
basedon the averagenumber of edgesper tasknode. Every set
of the above parameters are used to generate several random
graphs in order to avoid scattering effects. The results pre-
sented below are the average of the results obtained from
these graphs. To make the comparison fair, all scheduling
algorithms (SDLS, Rob-HEFT, SHEFT, and HEFT) are given
the same parameters.

7.3 Randomly Generated DAG Experimental Results
For thefirst set of simulation studies,we compare and analyze
the performance metrics by changing the number of proces-
sors from 4 to 16 in steps of 2. The results are shown in Figs. 5,
6, and 7, where each data point is the average of the data

Fig. 4. Scheduling of the stochastic tasks in the DAG of Fig. 1 by using
(a) DLS (); (b) SDLS ().

LI ET AL.: SCHEDULING PRECEDENCE CONSTRAINED STOCHASTIC TASKS ON HETEROGENEOUS CLUSTER SYSTEMS 199

obtained from 100 experiments. Fig. 5 shows the simulation
results of the four scheduling strategies on cluster systems for
stochastic application DAGswith 100 tasks.We observe from
Fig. 5 that the stochastic scheduling algorithms SDLS, Rob-
HEFT, and SHEFT,which take the randomvariable attributes
such as expected value and variance into account, are better
than the deterministic scheduling algorithmHEFT in terms of
makespan, speedup, and makespan standard deviation. We
also observe that our proposed algorithm SDLS significantly
outperforms Rob-HEFT by 14.07%, SHEFT by 30.03%, HEFT
by 33.85%, respectively, in term of the averagemakespan. For
the average speedup, SDLS outperformsRob-HEFTby 15.0%,
SHEFT by 19.1%, HEFT by 30.2%, respectively. Furthermore,
we conclude from Fig. 5c that SDLS has more stable perfor-
mance than the other three algorithms, since the makespan
standard deviation of SDLS is less than those of Rob-HEFT,
SHEFT, andHEFT. This is due to the fact that SDLS considers
the expected values and variances of task processing
times and edge communication times, and produces better

schedules for the stochastic scheduling problem
. However, the other scheduling algo-

rithms only consider the expected values of task processing
times and edge communication times, and are less suitable for
stochastic task scheduling. Finally, we would like to mention
that as the processor number increases, the makespan and
makespan standard deviation of the four scheduling strate-
gies decrease, and the speedup of them increase.

From Fig. 5, we observe that SDLS is better than the other
two stochastic scheduling algorithms Rob-HEFT and
SHEFT. This is mainly due to two advanced techniques
employed by our algorithm. First, the SDLS algorithm is
able to handle normally distributed task processing times
and edge communication times more effectively by using
the techniques developed in this paper, especially Clark’s
equations and our method of comparing random variables.
Second, the SDLS algorithm uses two key techniques, i.e.,
stochastic bottom level and stochastic dynamic level

, to improve the quality of scheduling. However, the

Fig. 5. Performance data for 100 tasks: (a) Makespan; (b) Speedup; (c) Makespan standard deviation.

Fig. 6. Performance data for 200 tasks: (a) Makespan; (b) Speedup; (c) Makespan standard deviation.

Fig. 7. Performance data for 300 tasks: (a) Makespan; (b) Speedup; (c) Makespan standard deviation.

200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Rob-HEFT algorithm which uses a criteria space (makespan
and standard deviation), and the SHEFT algorithm which
uses the approximate weights of random variables, are not
able to predict the distributions of various random scheduling
attributes, and have lower quality of scheduling stochastic
tasks.

The improvements of SDLS over Rob-HEFT, SHEFT, and
HEFT could also be concluded fromFigs. 6 and 7. Fig. 6 shows
the simulation results for stochastic parallel applicationDAGs
with 200 tasks. The results demonstrate that SDLS outper-
forms Rob-HEFT by 11.50%, SHEFT by 16.40%, HEFT by
27.73%, respectively, in termof the averagemakespan. For the
average speedup, SDLS outperforms Rob-HEFT by 6.4%,
SHEFT by 28.3%, HEFT by 31.7%, respectively. We also
observe from Fig. 6c that SDLS outperforms Rob-HEFT by
5.56%, SHEFT by 10.22%, HEFT by 40.50%, respectively, in
term of makespan standard deviation. Fig. 7 shows the
simulation results for stochastic parallel application DAGs
with 300 tasks. Again, SDLS performs better than Rob-HEFT,
SHEFT, and HEFT in terms of makespan, speedup, and
makespan standard deviation. From these experimental re-
sults, we can conclude that the integration of the variances of
randomvariables into consideration, such aswhat SDLSdoes,
has significant impact on the performance of a stochastic
scheduling algorithm for the problem

, and is likely to yield better scheduling performance.
In the second set of simulation experiments, we compare

and analyze the performance metrics by changing the DAG
size from 50 to 300 with step 50. The results reported in Fig. 8
for 10 processors and Fig. 9 for 16 processors reveal that the
SDLS algorithm outperforms the Rob-HEFT, SHEFT, HEFT
algorithms, in terms of makespan, speedup, and makespan
standard deviation. As the stochastic parallel application

DAG size increases, the makespan and makespan standard
deviation increase too. However, the speedup does not
always increase as the DAG size increases, with the best
speedup at roughly 200 tasks. The above simulation results
also show the fact that the deterministic scheduling algo-
rithms such as HEFT and DLS are not suitable for the sto-
chastic scheduling problem .

7.4 Special DAG Experimental Results
In this set of simulation experiments, we examine the perfor-
mance of these four algorithms in scheduling some special
DAGs. One special DAG in Fig. 10a has 50 tasks of width no
more than 3,which represents a parallel applicationwith very

Fig. 8. Performance data for 10 processors: (a) Makespan; (b) Speedup; (c) Makespan standard deviation.

Fig. 9. Performance data for 16 processors: (a) Makespan; (b) Speedup; (c) Makespan standard deviation.

Fig. 10. Examples of special DAGs: (a) A low parallelism degree applica-
tion; (b) A high parallelism degree application.

LI ET AL.: SCHEDULING PRECEDENCE CONSTRAINED STOCHASTIC TASKS ON HETEROGENEOUS CLUSTER SYSTEMS 201

low parallelism degree. The other special DAG in Fig. 10b has
50 tasks with 3 levels, which represents a parallel application
with very high parallelism degree. Fig. 10b is part of a real-
world application DAG graph based on a liquid metal silver
solidification processes simulation. This simulation is a clas-
sical high performance computing problem and widely used
in material and engineering research.

Figs. 11 and 12 show the simulation results of scenario
shown in Fig. 10 on heterogeneous cluster systems. From
Fig. 11, we observe that the four scheduling algorithms have
almost the same performance for low parallelism degree
applications. However, from Fig. 12, we observe that the
SDLS algorithm has better performance and is suitable for
high parallelism degree applications.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have emphasized the significance of sched-
uling stochastic parallel applications with precedence con-
strained tasks on heterogeneous cluster systems. We believe
that it is mandatory to design and implement efficient sto-
chastic scheduling algorithms to meet the increasing chal-
lenge from real applications with random task processing
times and edge communication times on diversified cluster
systems with variable computing capabilities. We also men-
tioned that integration of both expected values and variances
of random variables is a key feature which affects the perfor-
mance of a stochastic scheduling algorithm. We formulated
our stochastic task schedulingmodel and developed effective
methods to deal with normally distributed random variables.
We proved a lower bound on the expected makespan. We

developed a stochastic dynamic level scheduling algorithm
SDLS, which employs stochastic bottom level and stochastic
dynamic level to produce schedules of high quality.

The performance of the SDLS algorithm was compared
with three existing scheduling algorithms, i.e., Rob-HEFT,
SHEFT, andHEFT. The comparisonswere basedon randomly
generated application DAGs. The simulation results demon-
strate that deterministic scheduling algorithms such as HEFT
and DLS are not suitable for stochastic task scheduling.
Furthermore, the stochastic scheduling algorithm SDLS is
better thanRob-HEFTandSHEFTandhas better performance
in terms of makespan, speedup, and makespan standard
deviation on cluster systems.

Future studies in this area can be conducted in several
directions. It will be interesting to extend our stochastic task
scheduling algorithm to consider more factors, such as hetero-
geneous communication links. One can also investigate other
variations of the problem, such as parallel tasks, scheduling
with deadlines, preemptive scheduling, etc. It will also be
interesting to conduct a general investigation to accommodate
all probability distributions for stochastic scheduling problem.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous re-
viewers for their suggestions on improving the paper. This
researchwaspartially fundedby theKeyProgramofNational
Natural Science Foundation of China (Grant 61133005),
National Science Foundation of China (Grant Nos. 61070057,
61370098, 61370095), PhD Programs Foundation of Ministry
of Education of China (20100161110019), and a project

Fig. 11. Experimental results of scenario shown in Fig. 10a: (a) Makespan; (b) Speedup.

Fig. 12. Experimental results of scenario shown in Fig. 10b: (a) Makespan; (b) Speedup.

202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

supported by Scientific Research Fund of Hunan Provincial
Education Department (Grant 12A062).

REFERENCES

[1] M.A. Khan, “Scheduling for Heterogeneous Systems Using
Constrained Critical Paths,” Parallel Computing, vol. 38, no. 4-5,
pp. 175-193, Apr./May 2012.

[2] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architec-
tures,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2,
pp. 175-186, Feb. 1993.

[3] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 5, no. 9, pp. 951-967, Sept. 1994.

[4] D. Bozdağ, F. Özgüner, and U. Catalyurek, “Compaction of Sche-
dules and a Two-Stage Approach for Duplication-Based DAG
Scheduling,” IEEE Trans. Parallel and Distributed Systems, vol. 20,
no. 6, pp. 857-871, June 2009.

[5] M.R. Gary and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[6] X. Tang, K. Li, G. Liao, and R. Li, “List Scheduling with Duplication
for Heterogeneous Computing Systems,” J. Parallel and Distributed
Computing, vol. 70, no. 4, pp. 323-329, Apr. 2010.

[7] Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An
Effective Technique for Allocating Task Graphs onto Multiproces-
sors,” IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 5,
pp. 506-521, May 1996.

[8] Z. Liu, T. Qin, W. Qu, and W. Liu, “DAG Cluster Scheduling
Algorithm for Grid Computing,” Proc. IEEE 14th Int’l Conf. Compu-
tational Science and Eng. (CSE), pp. 632-636, 2011.

[9] K.Y.-K. Kwok and I. Ahmed, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, vol. 31, no. 4, pp. 406-471, Dec. 1999.

[10] R.H.Möring, A.S. Schulz, andM. Uetz, “Approximation in Stochas-
tic Scheduling: The Power of LP-Based Priority Policies,” J. ACM,
vol. 46, no. 6, pp. 924-942, Nov. 1999.

[11] N.Megow,M. Uetz, and T. Vredeveld, “Models andAlgorithms for
Stochastic Online Scheduling,” Math. Operations Research, vol. 31,
no. 3, pp. 513-525, Aug. 2006.

[12] M. Scharbrodt, T. Schickingera, and A. Steger, “A New Average
Case Analysis for Completion Time Scheduling,” J. ACM, vol. 53,
no. 1, pp. 121-146, Jan. 2006.

[13] F. Ahmadizar, M. Ghazanfari, and S. Fatemi Ghomi, “Group Shops
Scheduling with Makespan Criterion Subject to Random Release
Dates and Processing Times,” Computers & Operations Research,
vol. 37, no. 1, pp. 152-162, Jan. 2010.

[14] S. Tongsima, E.H.-M. Sha, C. Chantrapornchai, D.R. Surma, and
N.L. Passos, “Probabilistic Loop Scheduling for Applications with
Uncertain Execution Time,” IEEE Trans. Computers, vol. 49, no. 1,
pp. 65-80, Jan. 2000.

[15] M. Qiu and E.H.-M. Sha, “Cost Minimization While Satisfying
Hard/Soft Timing Constraints for Heterogeneous Embedded Sys-
tems,” ACM Trans. Design Automation of Electronic Systems, vol. 14,
no. 2, Article 25, pp. 1-30, Mar. 2009.

[16] M.H. Rothkopf, “Scheduling with Random Service Times,”
Management Science, vol. 12, no. 9, pp. 703-713, May 1966.

[17] GWeiss, “Turnpike Optimality of Smiths Rule in Parallel Machines
Stochastic Scheduling,” Math. Operation Research, vol. 17, no. 2,
pp. 255-270, May 1992.

[18] M. Skutella and M. Uetz, “Stochastic Machine Scheduling with
Precedence Constraints,” SIAM J. Computing, vol. 34, no. 4,
pp. 788-802, 2005.

[19] J.N. Hagstrom, “Computational Complexity of PERT Problems,”
Networks, vol. 18, no. 2, pp. 139-147, 1988.

[20] L.C. Canon and E. Jeannot, “Precise Evaluation of the Efficiency
and the Robustness of Stochastic DAG Schedules,” Research
Report 6895 INRIA, Apr. 2009.

[21] L.C. Canon and E. Jeannot, “Evaluation and Optimization of the
Robustness of DAG Schedules in Heterogeneous Environments,”
IEEETrans. Parallel andDistributedSystems, vol. 21, no. 4, pp. 532-546,
Apr. 2010.

[22] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation, and
Comparison of Algorithms for Scheduling Task Graphs on Parallel
Processors,” Proc. Int’l Symp. Parallel Architectures, Algorithms, and
Networks, pp. 207-213, June 1996.

[23] H. Topcuoglu, S. Hariri, andM.-Y.Wu, “Performance-Effective and
Low Complexity Task Scheduling for Heterogeneous Computing,”
IEEETrans. Parallel andDistributed Systems, vol. 13, no. 3, pp. 260-274,
Mar. 2002.

[24] X. Tang, K. Li, G. Liao, K. Fang, and F.Wu, “AStochastic Scheduling
Algorithm for Precedence Constrained Tasks on Grid,” Future
Generation Computer Systems, vol. 27, no. 8, pp. 1083-1091, Aug.
2011.

[25] F. Dong, J. Luo, A. Song, and J. Jin, “Resource Load Based Stochastic
DAGs Scheduling Mechanism for Grid Environment,” Proc. 12th
IEEE Int’l Conf. High Performance Computing and Comm. (HPCC),
pp. 197-204, 2010.

[26] J. Gu, X. Gu, and M. Gu, “A Novel Parallel Quantum Genetic
Algorithm for Stochastic Job Shop Scheduling,” J. Math. Analysis
and Applications, vol. 355, no. 1, pp. 63-81, Jan. 2009.

[27] E. Ando, T. Nakata, and M. Yamashita, “Approximating the Longest
Path Length of a Stochastic DAG by a Normal Distribution in Linear
Time,” J. Discrete Algorithms, vol. 7, no. 4, pp. 420-438, Dec. 2009.

[28] S.C. Sarin, B. Nagarajan, and L. Liao, Stochastic Scheduling:
Expectation-Variance Analysis of a Schedule. Cambridge Univ. Press,
2010.

[29] O. Sinnen, L. Sousa, and F. Sandnes, “Toward a Realistic Task
Scheduling Model,” IEEE Trans. Parallel and Distributed Systems,
vol. 17, no. 3, pp. 263-275, Mar. 2006.

[30] G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, 2nd ed.
Cambridge Univ. Press, 1952.

[31] D. LetićandV. Jevtić, “TheDistribution of Time forClark’s Flowand
Risk Assessment for the Activities of Pert Network Structure,”
Yugoslav J. Operations Research, vol. 19, no. 1, pp. 195-207, Jan. 2009.

[32] H. Zhao andR. Sakellariou, “AnExperimental Investigation into the
Rank Function of the Heterogeneous Earliest Finish Time Schedul-
ing Algorithm,” Proc. 9th Int’l Euro-Par Conf., vol. 2790, pp. 189-194,
2003.

[33] A. Colagrossi andM. Landrini, “Numerical Simulation of Interfacial
Flows by Smoothed Particle Hydrodynamics,” J. Computational
Physics, vol. 191, no. 2, pp. 448-475, Nov. 2003.

[34] C. Xu, L.Y. Wang, and N. Fong, “Stochastic Prediction of Execution
Time for Dynamic Bulk Synchronous Computations,” The J. Super-
computing, vol. 21, no. 1, pp. 91-103, Jan. 2002.

[35] N. Fong, C. Xu, and L.Y. Wang, “Optimal Periodic Remapping of
Dynamic Bulk Synchronous Computations,” J. Parallel and Distrib-
uted Computing, vol. 63, no. 11, pp. 1036-1049, Nov. 2003.

[36] C. Clark, “The Greatest of a Finite Set of Random Variables,”
Operations Research, vol. 9, no. 2, pp. 145–162, Mar. 1961.

[37] M.I. Daoud and N. Kharma, “A High Performance Algorithm for
Static Task Scheduling in Heterogeneous Distributed Computing
Systems,” J. Parallel and Distributed Computing, vol. 68, no. 4,
pp. 399-409, Apr. 2008.

Kenli Li received the PhD degree in computer
science fromHuazhongUniversity of Science and
Technology, China, in 2003, and the MS degree
in mathematics from Central South University,
Hunan, China, in 2000. He has been a visiting
scholar at the University of Illinois at Champaign-
Urbana and Urbana from 2004 to 2005. He is now
a professor of computer science and technology
atHunanUniversity,China.He is a seniormember
of CCF. His major research contains parallel com-
puting, grid and cloud computing, and DNA

computer.

Xiaoyong Tang received the MS and PhD de-
grees from Hunan University, China, in 2007 and
2013, respectively. His research interests include
modeling and scheduling in distributed computing
systems, parallel computing, distributed system
reliability, and parallel algorithms. He is a reviewer
of TOC, TPDS, JPDC, FGCS, JS, and so on.

LI ET AL.: SCHEDULING PRECEDENCE CONSTRAINED STOCHASTIC TASKS ON HETEROGENEOUS CLUSTER SYSTEMS 203

Bharadwaj Veeravalli received the BSc degree
in physics from Madurai-Kamaraj Uiversity, India,
in 1987, the master’s degree in electrical commu-
nication engineering from Indian Institute of Sci-
ence, Bangalore, India, in 1991, and the PhD
degree from Department of Aerospace Engineer-
ing, Indian Institute of Science, Bangalore, India,
in 1994. He did his post-doctoral research in the
Department ofComputer Science,ConcordiaUni-
versity, Montreal, Canada, in 1996. He is currently
with the Department of Electrical and Computer

Engineering at The National University of Singapore as a tenured associ-
ate professor. His mainstream research interests include multiprocessor
systems, cluster/grid computing, scheduling in parallel and distributed
systems, bioinformatics & computational biology, and multimedia com-
puting. He is one of the earliest researchers in the field of divisible load
theory (DLT). He is currently serving on the Editorial Boards of IEEE
Transactions on Computers, IEEE Transactions on SMC-A, and Interna-
tional Journal of Computers & Applications, USA, as an associate editor.
He is a Senior Member of IEEE-CS.

Keqin Li is a SUNY distinguished professor of
computer science and an Intellectual Ventures
endowed visiting chair professor at Tsinghua Uni-
versity, Beijing, China. His research interests are
mainly in design and analysis of algorithms, par-
allel and distributed computing, and computer
networking. He has nearly 290 research publica-
tionsandhas receivedseveralBestPaperAwards
for his highest quality work. He is currently or has
servedon theeditorial boardof IEEETransactions
on Parallel and Distributed Systems, IEEE Trans-

actions on Computers, Journal of Parallel and Distributed Computing,
International Journal of Parallel, Emergent and Distributed Systems,
International Journal of High Performance Computing and Networking,
and Optimization Letters.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

