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Abstract
High performance computing (HPC) has seen significant advancements and widespread application in recent years. To

conduct a comprehensive analysis of HPC systems, modern supercomputing environment requires the deployment of

multiple monitoring tools to collect diverse HPC datasets. However, existing monitoring systems lack adequate mecha-

nisms to facilitate the coordination among these tools. When data from various tools are aggregated into a single dataset,

issues such as time misalignment, increased anomalous data, and low data representativeness arise, leading to datasets that

fail to accurately reflect the actual system status. To mitigate the impact of these data correctness issues in the analysis of

HPC systems, this paper evaluates the factors affecting data correctness and proposes an organizational framework for

integrating multiple monitoring tools. The framework incorporates the time synchronization, anomaly detection, and

change point detection to reduce the adverse effects on data correctness during the HPC dataset generation. Extensive

experiments demonstrate that the proposed framework outperforms commonly used methods in terms of missing data rates,

anomaly percentages, and stability, offering more reliable data support for HPC system analyses.

Keywords System monitoring � Supercomputing � Data science � Anomaly detection

1 Introduction

With the advancement of scientific computing, the scale

and complexity of high-performance computing (HPC)

systems have progressively increased. To enhance the

efficiency of modern HPC systems, researchers analyze the

runtime data of applications and system components to

gain a deeper understanding of their operational charac-

teristics, thereby informing the design of hardware/soft-

ware optimizations. The most notable examples are the

TOP500 and GREEN500 rankings. Researchers worldwide

are dedicated to improving the performance and efficiency

of supercomputers running the HPL, showcasing the

overall capabilities of their supercomputers [1–3]. In HPC

production environments, system analysis plays a crucial

role in achieving efficient job management and resource

allocation [4–6].

In the aforementioned studies on HPC system analysis,

the outcomes are primarily influenced not only by the

design of the algorithms but also by the quality of the

dataset. A broader range of data types can more compre-

hensively reflect the characteristics of the HPC system,
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while fine-grained data enables more precise capture of

temporal state changes [7]. Additionally, factors such as

anomalous noise and missing values significantly impact

the results of data analysis. In conclusion, a high-quality

dataset is essential for effectively analyzing and optimizing

HPC systems and applications [8].

Obtaining a high-quality dataset for complex modern

HPC systems is a challenging task. HPC systems comprise

multiple hierarchical data layers (as shown in Fig. 1),

requiring the monitoring system to concurrently observe

various components, including the job layer, parallel

framework layer, and node hardware layer. As a result,

HPC monitoring systems often integrate diverse monitor-

ing tools and store data in different formats and with

varying sampling intervals, typically as logs for subsequent

analysis. However, due to the independent operation of

these monitoring tools, correlating features from different

tools within the HPC dataset to enable comprehensive

system analysis becomes difficult. Furthermore, the dataset

contains substantial redundant and anomalous data, with

only a small portion of relevant data being valuable for

analysis [9], which further complicates the analytical

process.

In this paper, we propose a novel monitoring framework

from the perspective of integrating multiple monitoring

tools. The framework aims to enhance the correctness of

HPC datasets, i.e., datasets that accurately reflect the true

operational state of the HPC system, while minimizing

misinformation that may distort the results of data analysis.

We focus on improving dataset accuracy at the generation

stage rather than relying on more advanced data processing

techniques (e.g., data compression) applied to the gener-

ated data. Given the availability of numerous robust engi-

neering implementations for large-scale network

transmission, data storage, and system visualization [10],

these aspects fall outside the scope of our work. Specifi-

cally, the contribution of this paper is as follows:

• We analyze the data correctness problems of existing

HPC public datasets, using partial data in a popular

HPC dataset M100 as a case study. Additionally, we

evaluate the factors affecting data correctness at each

stage of dataset generation.

• We found that the time alignment problem caused by

multiple monitoring tools has a significant impact on

the quality of the dataset. Therefore, we implemented a

synchronization algorithm for multiple monitoring tools

using Linux signaling mechanism to reduce the prob-

ability of data inconsistency.

• We analyze the generation principles of anomalous data

in the HPC system monitoring scenario and propose an

anomaly detection algorithm based on power modeling.

The algorithm can accurately identify anomalous data

due to hardware failures, inconsistent acquisition peri-

ods and other problems, thereby minimizing the occur-

rence of erroneous information in the dataset.

• We propose a data aggregation method based on

change-point detection to solve data representativeness

issue. The method effectively addresses the inconsistent

data distribution caused by load changes, ensuring that

the log data is representative of the overall operating

status of the servers.

The rest of this paper is organized as follows. Section 2

reviews related work in HPC system monitoring and M100

dataset. Section 3 analyzes the factors that may affect the

correctness of the HPC dataset. Section 4 details the design

of our monitoring organizational framework. Section 5

shows the experiments in a specified cluster environment.

Section 6 discusses the significance of this paper. Section 7

summarizes this work.

Fig. 1 A typical HPC system

architecture diagram
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2 Background

2.1 Monitoring tools

From the generation granularity, HPC metrics can be

divided into serial metrics and aggregated metrics. Serial

metrics are generated at a fixed time granularity, such as

CPU utilization, power consumption, and other server-level

data. In contrast, aggregated metrics are generated at

granularities other than fixed time intervals, such as job

status, runtime, and other metrics that produce a set of data

for each HPC job. Aggregated metrics tend to have lower

complexity and less potential for data quality improve-

ment. This paper focuses on server-level serial metrics.

A wide variety of monitoring tools have been developed

for acquiring different types of data to meet the different

system analysis scenarios. Ganglia [11] is a mature tool

widely used in HPC system monitoring. It efficiently col-

lects information on the overall status of large-scale clus-

ters, offering advantages such as high efficiency, low

overhead, flexibility, and scalability. Collectd [12] is a

lightweight system monitoring tool that implements a large

number of independent plugins to support a wide range of

monitoring functions. By adjusting the plugin types, it can

easily adapt to different monitoring requirements. TACC

Stats [13] is a monitoring tool developed by the Texas

Advanced Computing Center, designed to collect and

analyze various performance data in HPC systems, with a

particular focus on resource utilization efficiency metrics.

Darshan [14] is a monitoring tool dedicated to HPC I/O

system analysis, providing a detailed view of I/O system

performance and behavioral patterns. LIKWID [15] is a

monitoring tool for hardware performance data, including

performance counters, hardware topology and other

information.

Table 1 summarizes the types of metrics collected by

each tool, which are commonly used in various types of

HPC system analysis and research. Including:

• Hardware Usage: CPU utilization, memory allocation,

disk throughput, and other metrics that reflect overall

load levels

• Sensor: power, temperature, fan speed, and other

physical attributes of servers that need to be obtained

using sensors

• PMU: instruction execution, cache hits, branch predic-

tion, and other CPU micro-architecture information

• OS: average loads, number of processes, and other

operating system information

• File System: capacity, bandwidth, latency, and other

operational status of file systems used in HPC (e.g.,

Lustre)

• POSIX I/O: open count, read/write count, read/write

latency, and other underlying file information

• Parallel I/O: bandwidth, data block size, number of

parallel file operations, and other I/O information of

parallel framework used in HPC (e.g., MPI)

It can be observed that no single tool is capable of covering

all metric types. Due to varying design objectives, there are

significant differences in the specific metrics accessible by

different tools within the same metric category. When a

comprehensive analysis of the HPC system is required, the

concurrent use of multiple monitoring tools becomes nec-

essary. Moreover, we found that none of the tools exam-

ined consider the collaboration between multiple tools, and

even the multiple sub-monitoring tools integrated within

some of the tools fail to achieve unified monitoring

behavior. As a result, data patterns for individual metrics

may appear normal, but when combined across multiple

metrics, the data patterns may exhibit correctness issues

(see Section 3 for further details).

2.2 Marconi100 dataset [16]

Marconi100 is a Tier-0 supercomputer hosted by CINECA.

The M100 dataset encompasses its operational information

over a span of more than two and a half years. This dataset

is one of the most comprehensive datasets currently

available in the HPC field. It includes not only system-wide

information about more than 980 compute nodes but also

Table 1 Summary of the metric

types that can be collected by

the monitoring tools

Tool Hardware Usage Sensor PMU OS File System POSIX I/O Parallel I/O

Ganglia U � � U � � �
Collectd U U � U � � �
TACC stats U � � U � � �
Darshan � � � � U U U

LIKWID � � U � � � �

� indicates the data has some limitations compared to other tools, e.g. Colletcd only supports PMU

collection with partial Intel CPUs
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data on liquid cooling infrastructure, air conditioning sys-

tems, power supply units, workload manager statistics, job

information, system alerts, and weather.

The M100 dataset consists of data from nine plugins:

Ganglia, IPMI, Job Table, Logics, Nagios, SLURM, Sch-

neider, Vertiv, and Weather. As previous mentioned, this

work focus on the correctness of the server serial data.

Therefore, data from the Ganglia and IPMI plugins are

emphasized. Ganglia records the hardware status of CPU,

GPU, memory, etc.. Key metrics include GPU utilization,

GPU memory utilization, CPU utilization, network

throughput, and average load. IPMI records the out-of-band

server sensor data. Key metrics include server power

consumption, CPU power consumption, GPU power con-

sumption, and fan speed. Most data from these two plugins

are collected at 20-second intervals.

Several studies have been conducted to analyze HPC

system behaviors using the M100 dataset, including

anomaly diagnosis [17], thermal management [18], and job

scheduling [19]. However, most works considered only a

few metric for analysis and did not jointly analyzed the

system status across multiple metrics. As a result, the

impact of data correctness issues on the analysis results has

been minimal. As the demand for global and comprehen-

sive analysis of HPC systems grows, the issue of dataset

correctness should be given greater emphasis.

To increase the generalizability of the study, some of the

experiments were also repeated using the SURFsara [20]

and Acme [21] datasets. SURFsara contains data collected

by SURF’s Lisa cluster from December 2019 to August

2020. Acme contains data for the Shanghai AI Lab cluster

from March 2023 to August 2023. Both are commonly

used datasets in the industry.

3 Dataset correctness

HPC datasets are typically derived from log data, which is

transformed from fine-grained monitoring data. Monitoring

data is primarily used to characterize the HPC system over

short periods for real-time decision-making tasks such as

hardware diagnosis and optimization strategy adjustment.

In contrast, log data is typically used for detailed analysis,

with a broader time span and higher data granularity. The

quality of HPC datasets can be assessed from several

perspectives. In this work, we focus on the data correct-

ness, which refers to the ability of the log data to accurately

reflect the server’s operating status, unaffected by factors

such as load fluctuations and monitoring anomalies. This

chapter discuss the impact of assurance diversity metrics

on log data correctness in scenarios where multiple moni-

toring tools are employed simultaneously. We demonstrate

that the correctness issue in the HPC public dataset is

evident through partial data in the M100 dataset. Then, we

will analyze the factors influencing data correctness in

terms of monitoring data collection and aggregation, two

key processes in log data generation.

3.1 Log data correctness

A comprehensive HPC dataset should capture the system

status at multiple levels to support various aspects of data

analysis. In the context of this paper’s discussion of server

serial data, data diversity requires that the dataset to

encompass the operational state of various hardware and

software, such as CPU, memory, and file system. As noted

in Sect. 2, no monitoring tool can completely cover all

metrics. An effective way to enhance data diversity is by

concurrently utilizing multiple independent tools to collect

data from specific components and aggregating them dur-

ing the dataset generation phase. This aggregation forms

comprehensive data that characterizes the operational sta-

tus of HPC nodes at multiple levels.

The primary challenge in monitoring with multiple tools

is the time alignment issue, where the collection times of

data points acquired by different tools may not coincide,

resulting in data reflecting the state of the server in a

confusing way [22–24]. For tools with inconsistent col-

lection intervals, there are differences in the time at which

data samples are generated. For example, for tools with

collection intervals of 10 and 20 s, respectively, one out of

every two data samples is missing the server state infor-

mation obtained by the latter. Even when the tools have the

same collection intervals, misalignment can still occur due

to varying start times of tools. This further exacerbates the

differences in the time points of the data samples obtained

by the different tools. Based on our observation, this issue

is prevalent in the M100 dataset. For example, when ana-

lyzing the data from June 2021, we concatenated all the

data from the Ganglia and IPMI plugins based on collec-

tion time and found that the data missing rate exceeded

70%.

A common approach to handling inconsistencies in

collecting time is to integrate data points from similar

times together, such as sliding window aggregation, nearest

neighbor aggregation [25, 26]. However, this method poses

a problem as the status reflected by each monitoring tool

may differ due to variations in collection times. If the

workload carried by the server changes during this time

difference, it can result in significantly divergent data being

acquired by multiple tools. As a result, integrating these

data points together does not accurately reflect the overall

server status, especially for datasets with long collecting

intervals. For instance, using data from Server No. 100 in

June 2022, we integrated data points within a time span of

20 s and extracted several key metrics for analysis. Table 2
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presents a partial data, which reveals multiple inconsistent

information. At timestamps 1654052520 and 1654052540,

the total power consumption of the server with timestamp

1654052520 consumes more than twice as much as the

other, while the remaining metrics are nearly identical. At

timestamps 1654052560 and 1654052580, CPU power

doubles while CPU utilization remains nearly unchanged;

GPU power decreases by 50W while GPU utilization

increases by 20%. At timestamps 1654052640, the cumu-

lative power of the CPU and GPU has exceeded the total

power. The behavior of the metrics for these data points

contradicts common sense and differs significantly from

the patterns observed in other data.

To quantitatively analyze the proportion of such data

and its impact on the analysis, we construct three power

models using data from No. 100 Server in June 2021. CPU

and GPU are the most energy-consuming components of

the server, and an increase in their power consumption

typically indicates increased load pressure on the server,

which is accompanied by higher power consumption from

other server hardware. Consequently, the server power

model takes CPU power and GPU power as modeling

features. For both the CPU and GPU, utilization serves as a

critical indicator of load pressure, and the feasibility of

utilization-based power modeling has been validated by

numerous studies [27]. Accordingly, the CPU power model

uses CPU utilization as the modeling feature and the GPU

power model uses GPU utilization as the modeling feature.

All three models are fitted using polynomial functions.

To ensure accurate modeling, we use relatively

stable data and divide it into a training set and a validation

set in an 8:2 ratio. Finally, we use all data (including

unstable data) as the test set. Stable data is defined as data

in which the maximum fluctuation of any metric across five

consecutive points does not exceed 20%. Stable data

accounts for 24.9% of the total dataset, covering a variety

of power distributions ranging from 360W to 1260W for

the server, from 28W to 366W for the CPU, and from

158W to 932W for the GPU. Table 3 summarizes the

percentage of training error, validation error, and test error

greater than a specific value for the three power models. It

can be observed that while the validation error closely

approximates the training error, the prediction error for

most test data significantly exceeds the training error.

Notably, 11.7% of the data exhibits an error of over 50% in

predicting at least one type of power. Although this per-

centage appears small, considering the high percentage of

redundant data (about 1/4 of the data in this dataset is

stable) and the limited scope of evaluated metrics, the

impact of inconsistent data can be more severe than these

results suggest. In addition, we directly divide the entire

dataset into training and test sets in the ratio of 8:2 to

evaluate the impact of datasets containing inaccurate

information on power prediction. The test errors of the new

server power model, CPU power model and GPU power

model are 12.8, 25.2 and 14.1%, respectively. Compared

with the validation errors of the original models, the model

accuracy is significantly degraded.

Table 2 A partial data from the M100 dataset with 20-second

intervals

Timestamp Power Utilization

Total CPU GPU CPU GPU

1654052460 480 88 271.8 5.3 24.8

1654052480 480 84 236.7 0.1 21.2

1654052500 460 92 161.5 0.1 11.7

1654052520 1620 120 175.2 4.5 13.3

1654052540 660 118 190.3 4.5 13.3

1654052560 760 116 523.3 4.5 50.4

1654052580 740 244 477.1 4.5 71.8

1654052600 640 90 437.5 4.5 48.0

1654052620 900 120 597.6 4.3 49.0

1654052640 740 252 600.5 4.3 77.1

1654052660 680 124 493.4 3.9 74.6

Table 3 Error metrics for power measurements in different datasets

Dataset Metric Total CPU GPU

M100 Training Error 3.9 13.8 6.6

Validation Error 4.0 14.2 8.2

Test Error[10% 29.8 55.1 37.6

Test Error[20% 15.7 23.0 15.3

Test Error[30% 10.2 10.4 7.6

Test Error[50% 4.9 5.6 2.6

Test Error[80% 1.9 4.1 0.9

SURFsara Training Error 15.5 – 25.9

Validation Error 15.6 – 26.1

Test Error[10% 67.5 – 78.3

Test Error[20% 37.8 – 55.7

Test Error[30% 21.8 – 40.3

Test Error[50% 8.0 – 17.8

Test Error[80% 2.3 – 7.9

Acme Training Error 15.9 2.3 –

Validation Error 16.0 2.3 –

Test Error[10% 46.3 24.9 –

Test Error[20% 30.7 15.2 –

Test Error[30% 17.5 7.2 –

Test Error[50% 8.3 1.2 –

Test Error[80% 2.4 0.2 –
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The experiments are also conducted on the SURFsara

and Acme datasets. Since the SURFsara dataset does not

provide CPU power, CPU utilization, or GPU utilization,

we use the one-minute average load (node_load1) as the

feature to build both the server power model and the GPU

power model. The accuracy of the model built in this way

is of course not as high as the one built using the utiliza-

tion, but similar experimental results can be reflected by

the change in accuracy in different data sets. Additionally,

the SURFsara dataset spans a long period with most of the

time in an idle state. A simple baseline using the power

value of the previous record as the prediction achieves over

90% accuracy. To avoid unreasonable errors caused by

excessive redundant data, we applied a 10% sampling rate

to obtain a streamlined dataset. In the Acme dataset, GPU

power data is not available. Therefore, the experiments

build the server power and CPU power modeling. The

results from both datasets are consistent with those

observed on the M100 dataset, supporting the generaliz-

ability of our experimental conclusions.

3.2 Monitoring data correctness

Besides the time alignment problem of data points, the

monitoring data itself also affects the correctness of the log

data. If the monitoring data contains incorrect information,

it cannot reliably reflect the server status even if the col-

lecting time of multiple tools are close. Factors such as

hardware design, monitoring configurations, and sensor

failures can lead to inherent inaccuracies in the raw data

collected by monitoring systems [28–30]. These inaccura-

cies are often highly randomized and manifest as outliers.

Table 4 provides an example of an outlier anomaly, where

the second data point exhibits an order-of-magnitude

increase in the number of cycles without corresponding

significant changes in other metrics. Removing such out-

liers prevents excessively biased data from skewing the

overall performance of averaged data.

However, not all outliers are anomalies, particularly for

periodic IO metrics. Disk reads and writes, file system

accesses, network communications, etc., often accumulate

data until a certain threshold is reached before triggering,

resulting in data spikes. For such outliers, it is obviously

not reasonable to directly eliminate them; however, using

the spike directly as a log data point is also not represen-

tative of the server’s overall status. In any case, outlier data

must be identified, and further analysis is needed to

determine whether to eliminate them as anomalies.

Outliers can occur in various system monitoring sce-

narios. Based on our observations, a new anomaly emerges

when multiple monitoring tools are used simultaneously,

which we refer to as shift anomalies. Shift anomalies

resemble the time alignment problem discussed in the

previous section, except that they occur at a much smaller

temporal granularity. Figure 2 illustrates the principle

behind the generation of shift anomalies. Within a single

collection period, multiple collectors do not gather metrics

at the strictly same period due to differences in the timing

of initiation as well as the response speed. This deviation

between collection periods causes data to be shifted when

the workload changes. In the depicted example, collectors

A and B both acquire one-second metrics as monitoring

data points. When the compute node completes its job at

the time shown in the figure, the majority of data collected

from collector A reflects the compute node’s status during

its workload execution. Conversely, the data from collector

B mirrors the compute node’s performance during idle

periods. As a result, the collected data exhibits numerical

variations similar to those shown in Table 5.

The table shows four performance metrics collected by

three monitoring tools (with instructions and cycles origi-

nating from the same tool). We use a matrix computation

job that periodically reads data from disk and computes the

matrix multiplication result using multiple cores as the

workload. The job ends at the timestamp 1712124614. The

data before and after this point can accurately reflect the

compute node status. However, at the moment the job ends,

the power metric still indicates a full load status. The

instructions, cycles, and CPU utilization show a low load

status but with slightly different load levels. Since their

values are still within the normal range, the hidden nature

of shift data causes it to contain error messages that are

difficult to detect and are misinterpreted as valid infor-

mation for analysis.

Table 4 A data segment with an outlier anomaly

Timestamp Power Instructions Cycles CPU

1713000871 384 139487706639 18333224668 70.14

1713000872 360 187092397498 133521710981 61.59

1713000873 378 150124836103 18833479629 64.65

Fig. 2 Schematic diagram of shift data generation principle
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To demonstrate the prevalence of shift anomalies, we

also conducted the above experiment using Ganglia and

Collectd, as shown in Table 6 and Table 7. CPU utilization

and memory usage are collected in Ganglia. The times-

tamps 1745745825 and 1745745885 have obvious incon-

sistent information. The former maintains idle memory

usage when utilization increases significantly, and the latter

maintains a high level of memory usage when utilization

decreases significantly. Disk throughput, CPU utilization

and memory usage are collected in Collectd. The times-

tamps 1745752920 and 1745752990 have obvious incon-

sistent information. In the former case, the memory usage

is close to its peak when the load has just been started, and

in the latter case, the memory usage is close to its idle

value while the computation is still in progress.

Shift anomalies usually occur during load switching. In

this experiment, when a sub-matrix completes the com-

putation and loads a new matrix into memory, or when the

new matrix is loaded and the computation is started, the

probability of shift anomalies will increase significantly.

Since in real HPC environments, job executions are not

completely stable, even if no load switching occurs. Nor-

mal load fluctuations may also cause some tools to collect

data at relatively high load levels and some tools to collect

data at relatively low load levels. Table 8 shows CPU

utilization data for a segment of the computation using

Top, Ganglia and Collectd, where Top contains the cpu_-

sys, cpu_usr and cpu_idle, while Ganglia and Collectd

contain the cpu_usr and cpu_idle utilization respectively.

From the utilization in Top, the sum of the three types of

utilization is equal to (or close to) 1. However, if we take

cpu_sys from Top, cpu_usr from Ganglia, and CPU(idle)

from Collected, there are significant fluctuations in the sum

of the three utilization. In general, CPU utilization col-

lection is not given to multiple tools to complete at the

same time. This experiment is just to show the possible

effect of data shifting in load fluctuation, since the char-

acteristic of sum of three CPU utilization is 1 can be used

to determine the specific data shifting. We do not have

precise criteria for determining data from multiple hard-

ware sources, for example, we do not assume that a 20%

drop in CPU utilization is accompanied by a 20% drop in

memory usage. From the analogy of multiple tools

obtaining different CPU utilization to multiple tools

obtaining data from multiple hardware, load fluctuations

can have some negative impact on their joint information,

even if the impact is not so large as to be visible as to be

judged anomalous.

3.3 Log data representativeness

Converting monitoring data into log data involves an

aggregation process that reproduces the HPC system over a

period of time through multiple discrete data points.

Therefore, a major indicator of log data correctness is

representativeness, i.e., the ability to accurately reflect the

system’s overall status.

The most common approach for generating log data data

points is to directly average the monitoring data over the

aggregation period. Ideally, this method handles minor

load fluctuations and provides a consolidated view of ser-

ver status. However, in complex HPC systems, simple

averaging fails to mitigate the effects of the unbalanced

Table 5 A data segment with a shift anomaly

Timestamp Power Instructions Cycles CPU

1712124612 396 128658957468 241130150965 95.89

1712124613 402 132943574789 247098868730 97.78

1712124614 396 19105036922 33946416640 21.58

1712124615 294 65342876 600040392 0.02

1712124616 294 221420944 778422372 0.05

Table 6 Shift anomalies in Ganglia

Timestamp CPU utilization Memory (used)

1745745810 0 26.16GB

1745745825 46.76 26.16GB

1745745840 50.1 40.69GB

1745745855 58.22 43.44GB

1745745870 97.25 57.83GB

1745745885 0.66 57.85GB

1745745900 0 29.20GB

Table 7 Shift anomalies in collected

Timestamp Read Write CPU Memory (used)

1745752910 0MB 3MB 0.21 23.77GB

1745752920 106MB 82MB 9.29 34.98GB

1745752930 454MB 82MB 33.09 36.28GB

1745752940 0MB 112MB 39.86 37.83GB

1745752950 0MB 95MB 40.38 30.34GB

1745752960 0MB 82MB 37.29 31.58GB

1745752970 0MB 82MB 30.42 36.47GB

1745752980 0MB 82MB 40.98 33.98GB

1745752990 0MB 84MB 39.53 25.74GB

1745753000 0MB 113MB 11.92 23.51GB

1745753010 0MB 28MB 1.34 24.17GB
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distribution of monitoring data. When the load state

changes during the aggregation period, the monitoring data

may exhibit multiple data patterns, at which time the

averaged data may deviate severely from any of them, as

illustrated in Fig. 3.

Even though aggregation of data using the averaging

method results in a significant difference between the data

distribution and the actual distribution, the impact of this

difference on data analysis is dependent on the specific

scenario. Table 9 shows the accuracy of building the server

power model, CPU power model, and GPU power model

after averaging every 30 stable data. Comparison with

Table 3 shows that the accuracy of the aggregated models

is not significantly different from the original models. This

is because although the distribution of the data changes, the

mapping relationship between the data and the power

remains the same.

However, the impact of data aggregation will be more

pronounced for some resource use statistical analysis

studies [4, 31, 32]. Figure 4 shows the distribution of CPU

utilization and GPU utilization for the M100 dataset before

and after the average data aggregation. After data aggre-

gation, lower utilization levels tend to exhibit value

increases (more apparent in CPU), whereas higher uti-

lization levels tend to exhibit value decreases (more

apparent in GPU). In most case, the aggregated data shows

substantial distributional deviation from the original data.

If the cluster manager performs operations such as job

scheduling, resource sharing, and power management

based on the aggregated data, there is a risk of server

overloading and thus affecting the performance of user

jobs. It should be noted that due to the lack of more

granular monitoring data from datasets such as M100, the

above experiments can only be realized by further aggre-

gation on log data. However, the overall logic is consistent

with the process of obtaining log data by aggregating

monitoring data.

In summary, factors in various aspects such as time

alignment, raw data anomalies, and aggregation methods

affect the correctness of the log data. Since a single mon-

itoring tool does not need to consider the time alignment

issues and shift anomalies, while having low data dimen-

sions and outlier probabilities, the correctness issue is less

serious. However, single data is difficult to support in-

depth HPC system analysis, and multi-source data plays an

increasingly important role [33]. For HPC datasets gener-

ated using multiple monitoring tools, the impact of the

above factors will be magnified. Enhancing the correctness

of HPC datasets is essential for advancing HPC data

analysis research.

Table 8 CPU utilization shift in

load fluction
Timestamp cpu_sys

(Top)

cpu_usr

(Top)

cpu_idle

(Top)

cpu_usr

(Ganglia)

cpu_idle

(Collectd)

Sum

(Top)

Sum

(Hybrid)

1745750535 1.40 52.86 45.74 59.93 42.74 100.00 104.07

1745750550 1.54 48.58 49.88 41.18 43.35 100.00 86.07

1745750565 0.66 47.16 52.12 54.00 62.19 99.94 116.85

1745750580 1.25 47.23 51.52 41.77 57.95 100.00 100.97

1745750595 1.20 31.92 66.88 30.86 60.60 100.00 92.66

1745750610 1.03 54.03 44.90 57.81 49.85 99.97 108.69

1745750625 3.42 29.58 66.94 27.60 57.87 99.94 88.89

Fig. 3 Monitoring data from the LAMMPS program during execution, reduced to one dimension using PCA
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4 Framework design

Individual monitoring tools are well established. This

framework does not take into account the development of

custom monitoring tools, but focuses on the organization of

multiple monitoring tools. Many factors that influence data

correctness are difficult to avoid during the collecting

process. We recommend using fine-grained collection

intervals to provide more information for guiding data

processing, and aggregating multiple monitoring data

points into a single log data point to reduce storage over-

head. Additionally, averaging allows for normal spikes

(such as the IO metrics described above) to be distributed

over over the entire collection period, resulting in more

accurate information.

Although our framework increases the monitoring over-

head, for mature tools that are designed for 24/7 monitoring,

the running overhead has been kept within acceptable limits

[14, 34, 35]. Thus, the overhead of our framework remains

within acceptable limits, a conclusion that will be further

verified in the subsequent evaluation section.

4.1 Time alignment

Since the time alignment problem cannot be solved at the

data processing level, we can only ensure that the col-

lecting time of different tools are as close to each other as

possible. A logical solution would be to start all tools

simultaneously. However, even if all tools are launched

exactly at the same time, various factors can still cause the

monitoring data to be misaligned.

First, monitoring tools need to perform preparatory tasks

such as warm-up, cache initialization, and kernel module

loading before collecting data [36]. The time required for

these preparations varies across tools. resulting in the first

data collection times differing even if the tools are started

simultaneously. For example, on our experimental plat-

form, it takes approximately 0.4 s of preparation time to

fetch 16 PMU events, including instructions, cycles, LLC-

loads, etc. using perf, whereas it takes about 1.6 s of

preparation time to monitor similar PMU events using

LIKWID. Although these values are seriously affected by

the environment, they still reflect the differences in the

preparation time of various monitoring tools, particularly

when the metrics collected by different monitoring tools

very significantly.

Secondly, the monitoring tool does not strictly follow

the configured time interval during the monitoring process.

Due to factors such as the time to perform collection,

process scheduling delays in the operating system, and

inaccurate timers, each data acquisition tends to take longer

than the configured time interval [37, 38]. In particular,

server load may have a significant impact on the moni-

toring system. On our experimental platform, when using

Perf to capture 16 PMU events per second in an idle state,

the average interval for each collection is approximately

1.02 s. However, when performing the same monitoring

operation during the execution of an HPC program, the

average interval for each data collection increases to

around 1.08 s. This means that during the job execution, a

piece of monitoring data is missed approximately every

15 s (since the 1.2-second delay exceeds the configured

data acquisition interval by 1 s). As the monitoring con-

tinues, the time of the data points from multiple monitoring

tools gradually shift because of the differences in the

latency.

In summary, due to the differences in monitoring ini-

tialization and monitoring process, there is no method to

make the time of data points obtained by multiple tools

aligned over extended periods. Our solution is to continu-

ously correct this misalignment during the monitoring

process using the SIGSTOP and SIGCONT signals,

ensuring that the moments when log data points are gen-

erated by each monitoring tool are synchronized. SIGSTOP

Table 9 Error metrics for power measurements using data

aggregation

Dataset Metric Total CPU GPU

M100 Training error 4.3 12.1 6.8

Validation Error 4.4 14.1 8.7

Test Error[10% 31.6 55.3 38.2

Test Error[20% 14.8 22.1 14.9

Test Error[30% 9.6 10.1 7.6

Test Error[50% 4.7 5.4 2.5

Test Error[80% 1.8 4.1 0.9

SURFsara Training error 14.8 – 26.3

Validation Error 15.6 – 28.4

Test Error[10% 54.1 – 73.6

Test Error[20% 24.8 – 49.9

Test Error[30% 13.0 – 35.6

Test Error[50% 4.9 – 18.4

Test Error[80% 1.7 – 7.9

Acme Training error 14.2 2.4 –

Validation Error 15.0 2.4 –

Test Error[10% 43.6 25.3 –

Test Error[20% 26.7 12.1 –

Test Error[30% 15.2 9.2 –

Test Error[50% 6.9 1.5 –

Test Error[80% 1.9 0.4 –
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and SIGCONT are signals used for process control in

Linux. When a process receives the SIGSTOP signal, it

saves its current state and halts. It resumes execution upon

receiving the SIGCONT signal. These signals are widely

used for multi-process coordination [39] and are also well-

suited for scenarios where multiple monitoring tools need

to operate in synchronization.

Algorithm 1 Time synchronization algorithm for multiple monitoring

tools

The time synchronization mechanism is shown in

Algorithm 1. The algorithm is used to correct the run-time

behavior of the tools and therefore does not contain any

output. Our framework sets the monitoring tool collecting

interval Itool slightly larger than the actual time interval for

generating monitoring data Idata. During the startup phase,

all monitoring programs are launched simultaneously, and

the timing of subsequent monitoring data is determined. In

each monitoring period, the delay required to generate the

next data is calculated based on the timestamp of the most

recent data. To prevent ant single synchronization opera-

tion from consuming excessive time, the delay operation is

implemented by non-blocking SIGSTOP and SIGCONT

singles. Specifically, the signals are sent outside the syn-

chronization algorithm, ensuring the synchronization pro-

cess does not block the monitoring operations.

The above method continuously calibrates the data

collection times during monitoring, ensuring that fine-

grained monitoring data from different tools is generated

within a similar time frame. This mechanism significantly

reduces inconsistencies caused by the time alignment

problem and mitigates the adverse effects on subsequent

Fig. 4 Numerical density plot of CPU utilization and GPU utilization in the M100 dataset before and after data aggregation
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analyses, such as anomaly detection and change-point

detection.

4.2 Anomaly detection

The anomalies discussed in this section differ from those

addressed in existing studies. Most HPC anomaly detection

studies focus on identifying job performance anomalies

caused by incorrect configurations or hardware inefficien-

cies [40, 41]. In the context of HPC system monitoring,

such anomalies accurately reflect the actual operating sta-

tus of the HPC system, even if the operating results deviate

from the user’s expectations. For example, if a user mis-

configuration causes a job that should use 30 CPU cores to

use only 1 CPU core. From the monitoring system’s per-

spective, the low power consumption and CPU utilization

are reasonable. Such data can accurately reflect the server’s

operational status and allow administrators to identify the

presence of application-level anomalies that do not meet

the user’s expectations. In our view, the anomalies that

should be eliminated from the dataset are those that fail to

accurately represent the system status, such as the outlier

anomaly and the shift anomaly described above. These

inaccuracies introduce erroneous information into the

dataset, undermining the accuracy and reliability of sub-

sequent data analyses.

Outlier anomalies and shift anomalies share the char-

acteristic that a few metrics contain erroneous information

significantly deviating from the server status reflected by

other metrics. Based on the this property, we propose an

anomaly detection algorithm leveraging multiple power

models. Specifically, we train a power model for each

monitoring tool to establish a mapping between metrics

and server power. This design is motivated by the absence

of shift anomalies within the metrics collected by a single

monitoring tool, as these metrics are typically gathered

simultaneously (assuming they are fetched by the same

process). Differences in power predictions arise only when

comparing metrics across different monitoring tools.

For training data, we smooth the monitoring data to

reduce the interference of anomalous data on the model,

which is a common method of unsupervised anomaly

detection to acquire training data [42, 43]. Regarding the

fitting algorithm, we adopt ridge regression, as our focus is

on the differences between power models rather than

absolute accuracy in power prediction. Ridge regression

smoothes the metric weights, preventing extreme values

while maintaining sensitivity to all relevant metrics. This

dual effect ensures that load fluctuations do not dispro-

portionately influence power predictions while still cap-

turing the impact of less significant metrics, allowing their

anomalies to be reflected in the power predictions.

When generating log data using multiple monitoring

data sources, we utilize multiple power models to predict

the server status from the perspectives of different moni-

toring tools (Algorithm 2). If there is a significant spike in

the power variation of a single monitoring tool, it indicates

that at least one metric is considerably higher than the

others for that data point. For monitoring tools with metrics

exhibiting periodic characteristics (e.g., file system reads

and writes), such spikes are treated as reasonable and

retained. Otherwise, they are removed as outlier anomalies.

To identify shift anomalies, we take the predicted power

sequence from one monitoring tool as the baseline and

evaluate whether other monitoring tools have shifted from

it. Not all monitoring tools can reflect the actual power

status. For instance, when the server runs a single-node

program, the power model from network monitoring tool

may output low values. To address this, we analyze relative

power data to identify anomalies. Significant peaks or

valleys in the relative power indicate that the power ratios

for certain tools deviate markedly from the rest of the data

within a sliding window, signaling a shift anomaly.

Algorithm 2 Anomaly detection algorithm based on multiple power

models
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Spikes in the power sequences and relative power

sequences are identified using the z-score, calculated

within a sliding window. The window size is affected by

the monitoring data collection interval and the log data

generation interval. The z-score threshold varies depending

on the type of monitoring tool and the metrics being ana-

lyzed. On our experimental platform, variations in the

window size and threshold within reasonable ranges have

minimal impact on detection accuracy. According to our

practice, power differences caused by outlier anomalies are

generally larger than those from shift anomalies. Therefore,

slightly lowering the z-score threshold for relative power

sequences improves detection performance.

By employing the above algorithm, our framework

effectively mitigates the error information introduced by

outlier and shift anomalies, thereby enhancing the cor-

rectness of the log data. Additionally, due to the simplicity

of ridge regression and the relatively small data volume,

this process incurs minimal overhead when applied in an

online environment.

4.3 Aggregation

After time synchronization and anomaly detection, the

correctness of the monitoring data is significantly

improved. Guaranteeing the correctness of log data pri-

marily depends on the aggregation process (Algorithm 3).

As discussed in Sect. 3.3, the main factor affecting the data

correctness during the process of monitoring data aggre-

gation into log data lies in the inability of simple

smoothing operations to handle multiple data distributions

effectively. When server load states change during the log

generation periods, directly averaging all the monitoring

data may result in the log data completely deviating from

the actual server status. While averaging may represent the

overall status, considering the long runtime of HPC

applications, the server status after a load change will still

be captured by subsequent log data. To avoid a temporary

fluctuation being misrepresented as a new data pattern in

the log, it is more reasonable to use the segment with the

largest percentage of data as the log data, rather than the

averaged data.

To identify the status changes of the server, our

framework incorporates the Windows change point detec-

tion algorithm. This algorithm uses a sliding-window to

calculate differences in metrics such as the mean and

variance of data points, effectively identifying moments

when significant changes occur in the time series data.

Change point detection techniques are commonly

employed in signal processing, and the Windows algorithm

is particularly well-suited for online identification of server

status changes due to its low computational complexity

[44].

If the server’s load state undergoes significant changes,

applying the Windows algorithm to the monitoring data

sequence will generate multiple change points, thus

dividing the sequence into several sub-monitoring data

segments. The longest sub-sequence is then averaged to

produce the log data. Since anomaly detection has been

performed, the probability that the Windows algorithm will

misclassify the mutated monitoring data as change points is

low. Furthermore, mutated data segments are typically

short in duration, making it unlikely for them to qualify as

the longest sub-sequence for generating log data.

Algorithm 3 Data aggregation algorithm based on Windows change

point detection.

The method described above effectively addresses the

issue of log data representativeness arising from multiple

data distributions. Consequently, the log data can reflect

the operating status of the server in the vast majority of the

time, avoiding situations where transient load changes

create misleading patterns in the log dat.

5 Evaluation

5.1 Experimental environment

Due to the unavailability of more granular monitoring data

for the M100 dataset, we use a self-built environment to

evaluate the performance of the proposed monitoring

framework in terms of data correctness. Table 10 outlines

the hardware and software configuration. The test setup

consists of a five-node cluster simulating an HPC system
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environment, where one node functions as the control node

and the remaining nodes serve as compute nodes. Since our

study is focus on single server, aiming to improve the

accuracy of the data reported by the server to the cluster

manager. Therefore, the problems do not become pro-

gressively more complex as the cluster size increases. For

the test workloads, the platform uses MPICH as the parallel

framework to run five samples (Chain, EAM, LJ, Chute,

and Rhodo) from the atomistic molecular simulation soft-

ware LAMMPS. It is important to note that the workloads

used in the experiments are solely intended to generate

varying monitoring data, and workload analysis is not part

of this study. Therefore, the experiments involve simply

repeating the five examples to construct the HPC job

environment.

Based on the experimental environment, we selected the

following tools for acquiring monitoring data (169 features

in total) from the HPC compute nodes:

• Redfish: node power, fan power, inlet and outlet

temperature, core and memory temperature, fan speed.

• Procfs: CPU utilization, memory usage, disk through-

put, disk queuing, disk utilization, network throughput,

network packet, NUMA status.

• Perf: instruction execution, context switch, cache,

branch prediction, TLB, prefetch, stall.

5.2 Data overview

The experiment used five LAMMPS examples, with each

example repeated five times to simulate load flow. Moni-

toring was initiated during the program runtime. We tested

three monitoring and log generation methods separately.

The first method follows the approach used by most

monitoring tools, where monitoring data is collected at

fixed time intervals (30 s in this experiment) and saved

directly as log data. The second method collects monitor-

ing data at a fine-grained time interval (1 s in this

experiment), and then averages all the monitoring data

within a fixed time interval (30 s in this experiment) to

generate log data. Each tool operates independently in this

method. The third method introduces the data synchro-

nization mechanism from our framework (excluding

anomaly detection and change point detection), building

upon the second method. In this case, the monitoring tools

collect data at 1-s intervals, while the log data is generated

at 2-s intervals.

Table 11 summarizes the collection results of each

method, including the number of data rows collected by

each tool, the missing rate of merged data, and the CPU

occupied by the monitoring program. The missing data rate

(NA%) refers to the percentage of rows with missing

metrics after merging the data collected by the three tools

based on time. The CPU overhead is calculated by mea-

suring the single-score occupancy of all monitoring tools,

along with any overhead from higher-level monitoring

organization programs. While there are fluctuations in the

execution of the load flow, the run times remain similar

overall: 23,395 s for the coarse-grained collection method,

23,357 s for the unsynchronized fine-grained collection

method, and 23,388 s for the synchronized fine-grained

collection method. For comparison, the load flow without

monitoring took 23,360 s. Given the low CPU occupancy

and minimal differences in load flow runtime, the addi-

tional overhead introduced by monitoring is deemed

acceptable for HPC applications. Considering the low

memory occupation of the three methods (all less than

500MB) and the generally large memory capacity of

modern servers, the additional memory occupation intro-

duced by the monitoring does not have a significant per-

formance impact on the HPC job in the vast majority of

cases.

Coarse-grained collection does not involve the process

of aggregating monitoring data into log data. Its monitoring

results are consistent with the log results. However, due to

the fact that the actual time spent on a single collection is

slightly more than 30 s and the latency differences between

tools, the timing of the data points gradually shifts during

monitoring. Additionally, the startup time for Perf is sig-

nificantly longer than for other tools, leading to deviations

in the first data point. These time alignment issues result in

a high missing data rate in the coarse-grained collection

dataset. The unsynchronized fine-grained collection per-

forms the monitoring process independently from the log

generation process. The log data is generated in strict

accordance according to the configured time interval,

eliminating missing data. However, there is an obvious

alignment problem with its monitoring data. This increases

the likelihood of shift anomalies and negatively impacts the

detection of subsequent anomalies and change points.

Although our method experiences some loss in the amount

Table 10 Experimental environment

Node Num 5

CPU Kunpeng920 7260

Memory 16*HMA84GR7JJR4N-WM (32GB)

Main Disk SAMSUNG MZ7LH480 (480GB)

Network HNS GE/10GE/25GE RDMA

Network Controller

OS CentOS 7.7

Kernel linux 4.18.0

MPI MPICH 4.1.2

Workload LAMMPS 2023-Aug-Stable2
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of monitoring data, the collected monitoring data and

aggregated log data are fully aligned. Compared to

unsynchronized fine-grained collection, there is only a

difference in time synchronization, demonstrating the

synchronization algorithm in our framework can effec-

tively solve the alignment problem of multiple monitoring

tools.

5.3 Anomaly detection experiment

This section evaluates the anomaly recognition capability

of our framework using the dataset acquired by synchro-

nized fine-grained collection from the previous section. We

also compare our anomaly detection algorithm with several

unsupervised time-series anomaly detection algorithms,

including DeepSVDD [45], AnomalyTransformer [46], and

DeepIsolationForest [47]. All algorithm implementations

are derived from the original paper and run with default

hyper-parameters.

The original dataset was smoothed every 15 data to

generate training data for anomaly detection models. The

trained models performed anomaly detection on the origi-

nal monitoring data. To quantitatively assess the effec-

tiveness of different algorithms, we excluded the

anomalous data identified by different algorithms and used

the remaining monitoring data to train power prediction

models. Higher model accuracy indicates that the dataset

contains less error information. R-squared was used to

evaluate the model accuracy. Figure 5 shows the average

results of the experiment repeated ten times, including the

accuracy of the model trained with original test data, the

accuracy of the model trained with test data after removing

anomalies, and the number of anomalies identified by

different algorithms.

In respect of modeling accuracy, our method performs

best among all algorithms and can improve model accuracy

by 14.52%. The DeepSVDD struggles to accurately

identify the anomalies, resulting in decreased model

accuracy. DeepIsolationForest has an accuracy improve-

ment effect similar to that of our framework, but it iden-

tifies more than three times as many anomalies. This

suggests that DeepIsolationForest not only removes outlier

and shift anomalies but also eliminates a significant amount

of normal data.

To present the results of different algorithms more

intuitively, Fig. 6 demonstrates a segment of time-series

data (length 500, downscaled to 1 dimension using PCA)

and the anomalies identified by each algorithm (with the

numbers of anomalies are shown in the legend). The fig-

ure highlights that AnomalyTransformer and DeepIsola-

tionForest tend to recognize long segments of continuous

anomalous data, resulting in a higher total number of

anomalies across the entire test set. Specifically, DeepIso-

lationForest identified even 46% of the data in the figure as

anomalous. The long segments of anomalous data identi-

fied by AnomalyTransformer were not concentrated in the

period of the listed data, so the anomalous data accounted

for only 11%. However, both outlier and offset anomalies

are unlikely to occur for long periods. AnomalyTrans-

former and DeepIsolationForest happen to eliminate some

anomalies in the process of removing a large amount of

data. On the other hand, DeepSVDD’s anomaly distribu-

tion is more plausible, but it performs poorly overall,

making it difficult to accurately detect genuine anomalies.

From the distribution perspective, the anomalies iden-

tified by our algorithm exhibit characteristics of random

triggers. The figure also shows the variation curve of the

data after removing the anomalies detected by our algo-

rithm. Compared to the raw data, the corrected curve is

smoother at the points of abrupt changes, which are likely

caused by outlier anomalies. In addition, many of the

anomalies removed show little difference from the original

data (which accounts for 41.7% of the total in the figure).

This subset of anomalies is most likely due to data shifts.

Table 11 Data results of different monitoring methods

Method Tool Rows (Mon) Rows (Log) NA% (Mon) NA% (Log) CPU%

Coarse-grained collection Redfish 770 770 92.1% 92.1% 1.13%

Procfs 767 767

Perf 758 758

Unsynchronized fine-grained collection Redfish 22,110 778 21.4% 0% 5.82%

Procfs 21,476 778

Perf 19,792 778

Synchronized fine-grained collection Redfish 11,696 779 0% 0% 4.77%

Procfs 11,696 779

Perf 11,696 779
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Since the other data behave similarly to those in this figure,

we do not repeat the plotting. By considering both model

accuracy and anomaly distribution, we can conclude that

our anomaly detection algorithm effectively identifies a

wide range of anomalies that may occur in the HPC

environment.

5.4 Log aggregation experiment

This section evaluates the impact of the aggregation

method proposed in this framework, comparing it with the

full average aggregation method. Both algorithms keep the

same window size for comparison. To visualize the dif-

ference between the two methods, Fig. 7 plots the change

Fig. 5 Changes in model

accuracy after removing

anomalous data using different

algorithms

Fig. 6 Distribution of raw data and anomaly detection results
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curve when a sub-log sequence is downscaled to one

dimension. The blue curve represents the log data gener-

ated by directly averaging the 30-second monitoring data

(with outliers removed), while the other curve shows the

log data obtained by averaging the longest sub-series of

monitoring data based on detected change points.

It is intuitively evident that the log data generated by the

full averaging method contains numerous spikes. Most of

these spikes result from unrepresentative averaged data

caused by workload state changes. Such log data points

appear only briefly and fail to reasonably represent a new

server status. In contrast, our method effectively mitigates

this issue, producing relatively smooth log data even during

workload state transitions. Since the other data behave

similarly to those in this figure, we do not repeat the plotting.

To further quantify the volatility of the log data, we

employed a sliding window to calculate the standard

deviation (STD), the mean absolute deviation (MAD) and

the difference between the maximum and minimum values

(range) of the log data generated by the two methods.

These metrics are commonly used to assess the volatility of

data sequences. The experimental results, shown in

Table 12, were evaluated for sliding window sizes of 10,

20, and 30, with the log data normalized for consistency.

Across all window sizes and metrics, our aggregation

method demonstrates significant advantages over direct

averaging. On average, the STD, MAD and Range metrics

are reduced by 7.77, 7.48 and 7.52%, respectively. Since

workload state changes are infrequent, these improvements

primarily reflect the overall effect. During periods of

workload transitions, the benefits of our method are even

more pronounced.

The above experiments demonstrate that the proposed

aggregation method provides a more stable representation

of server operational status, effectively reducing the impact

of load fluctuations and state transitions on log data.

5.5 Example: Power capping optimization

In order to specifically demonstrate the impact of dataset

quality, this experiment takes the power capping opti-

mization scenario as an example. Considering that the

probability of servers being fully loaded simultaneously are

low, racks tend to overdeploy servers to increase power

supply efficiency. When the total power of the servers

exceeds the maximum power that the UPS can provide, the

power capping technique is used to limit the maximum

power consumption of some servers to ensure the elec-

tricity safety [48]. Due to the hysteresis of power collec-

tion, many researches use models to improve the response

time of capping. [49, 50].

Data sets of varying quality will affect the accuracy of

the power model and thus the validity of the power cap-

ping. The three data collection methods in Sect. 5.2 are

used to obtain the power models. This experiment uses

CPU frequency adjustment to control server power, and

three strategies are use for implementing power capping

algorithms, i.e., capping the maximum power servers

(Power), capping the minimum utilization servers (Per-

formance), and capping the highest energy efficiency ser-

vers (Efficiency). The power value of single server in the

experimental environment ranges from 200W to 450W (the

total power of the four compute nodes ranges from 800W

to 1800W). The power capping will be triggered when the

total power exceeds 1500W. The five samples of

LAMMPS are used to construct workload flow. Each

sample is submitted 20 times and randomly assigned the

number of nodes and threads.

Table 13 shows the optimization results under different

combinations of monitoring methods and power capping

algorithms, including the accuracy of the power model

built from the monitoring dataset, the average total power

of compute nodes during job execution, the percentage of

instances where power capping was triggered (with the

value in parentheses representing the percentage of

instances where total power exceeded 1500W without

triggering capping), the average total power of compute

nodes during capping (with the value in parentheses rep-

resenting the average power when total power exceeded

1500W without capping), and the total time required to

complete all jobs.

Fig. 7 Partial log data generated by different aggregation methods,

downscaled to one-dimensional using PCA

Table 12 Volatility comparison of log data obtained by different

aggregation methods

Windows size Method STD MAD Range

10 All 0.086 0.063 0.270

Ours 0.080 0.058 0.249

20 All 0.097 0.068 0.369

Ours 0.088 0.063 0.337

30 All 0.099 0.070 0.410

Ours 0.092 0.065 0.385
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It can be found that the dataset has a large impact on the

power model accuracy, which further affects the power

capping. When the cluster power is in the rising period, the

high-precision model has a faster response speed, thus

triggering capping at lower power with a higher triggering

ratio, while the miss triggering is basically located near the

power threshold. Therefore, the high-precision model has

advantages in terms of average power and trigger ratio for

both trigger and miss trigger capping. The above trends

appear in all three power capping algorithms, proving that

the significant effect of dataset quality on the power cap-

ping is not an exception.

The job runtime is affected by multiple factors such as

load fluctuations, scheduling, noise. The impact of power

models with different accuracy on the runtime is mostly no

more than 5%, i.e., it is within the range of reasonable

fluctuations. However, the runtime of the Power algorithm

for the highest precision model is significantly increased.

The possible reason is that Power has more frequent fre-

quency limitation on highly loaded servers. The limitation

of other algorithms occurs on low and medium load ser-

vers, which has less impact on the overall runtime. Sec-

ondly, the job runtime of Performance algorithm is overall

larger than the other algorithms. The possible reason is that

the Performance algorithm selects the server with the

lowest load for capping. A single capping results in

insignificant power reduction, and more frequency limita-

tions are required to decrease the total power consumption

to a safe value. The job runtime in Performance has

increased but the capping ratio has not decreased signifi-

cantly, which reflects the fact that the absolute number of

capping is higher in Performance.

6 Discussion

The fusion of data from multiple sources is gradually

becoming the basis for realizing more in-depth data anal-

ysis. Differences in the organization of multi-source data

affect data quality to a certain extent. As the data quality

problems exist in different datasets vary, it is difficult to

integrate data quality and data analysis organically. Most

data quality research is to filter or correct the data through

post hoc analysis, while data analysis research is not clear

what quality problems exist in the data set. As a result,

scholars can only directly use the original data for analysis.

In the HPC system analysis scenario studied in this

paper, we analyzed the correctness issues that exist in data

fusion of multiple monitoring tools with the M100 dataset.

Due to the lack of fine-grained data, the post hoc analysis

was only able to identify some data quality issues without

improving the quality of the dataset. For example, there is

no way to address time alignment issues from a data pro-

cessing perspective, and eliminating the anomalous data

leads to loss of system states. Therefore, we prefer to

optimize the various factors affecting dataset quality during

the data generation process. Benefited from the existence of

more operational privileges and available information, this

approach can efficiently identify inaccurate data and cor-

rect them. From the experimental results, the accuracy of

system profiling data can be significantly improved by

some simple mechanisms that are much less complex

compared to most of the post hoc analysis methods.

Although our research focuses on HPC system moni-

toring scenarios, the basic idea applies to multiple data

fusion scenarios. We are concerned that existing monitor-

ing tools do not have sufficient measures to realize a rea-

sonable mechanism for multi-tool collaboration, which

leads to the problem of correctness of data from multiple

sources. The raw data organization designed by this

framework can be combined with the efficient data transfer

and storage techniques provided by existing mature mon-

itoring tools. We appeal to dataset providers to concentrate

on similar issues and to provide some insights on data

quality beyond the raw data, guiding data analysis

researchers to further enhance the accuracy of their studies.

The quality of datasets has a significant impact on fur-

ther analysis and optimization. We perform an

Table 13 Comparison under

different combinations of

monitoring methods and power

capping algorithms

Capping Monitoring Accuracy Server power Capping power Capping ratio Runtime

Power Coarse 71.62% 1501W 1598W(1576W) 21.3%(36.8%) 16,949 s

Fine(unsync) 87.99% 1496W 1589W(1544W) 28.5%(30.6%) 16,488 s

Fine(sync) 94.73% 1479W 1562W(1518W) 30.6%(15.1%) 17,928 s

Performance Coarse 71.62% 1495W 1604W(1566W) 19%(34.4%) 18,444 s

Fine(unsync) 87.99% 1501W 1586W(1551W) 26.8%(30.4%) 18,667 s

Fine(sync) 94.73% 1483W 1560W(1516W) 34.7%(13%) 18,547 s

Efficiency Coarse 71.62% 1503W 1614W(1582W) 22%(37.7%) 16,545 s

Fine(unsync) 87.99% 1491W 1590W(1547W) 26%(25.8%) 17,228 s

Fine(sync) 94.73% 1482W 1562W(1521W) 33.1%(13.9%) 16,839 s
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experimental analysis on the effectiveness of the power

capping on the basis of the accuracy of power models. To

derive more comprehensive conclusions, further experi-

ments are required to validate the influence of different

qualities of the data set in more complex optimization

scenarios. However, the primary focus of our study is the

improvement of the original dataset. The analysis of

complex optimization scenarios will be considered as a

future research direction.

In the future, we will focus on further enhancing data

correctness. In terms of time alignment, the proposed

method requires incorporating specific logic into the data

collection code to coordinate suspension and resumption

via Linux signals. To further enhance applicability, we will

investigate non-intrusive synchronization mechanisms for

multiple monitoring tools, aiming to minimize the time

discrepancy between sampling points with minimal modi-

fication to existing tools.

Regarding anomaly detection, since the identification of

anomalies heavily relies on expert knowledge, we plan to

leverage the strong inductive capabilities of large language

models to reduce detection overhead and improve accu-

racy. Compared to obvious outliers, inconsistencies caused

by data shift are more challenging to detect. We will

explore the use of fuzzy computing, Bayesian inference,

and related techniques to systematically study such subtle

erroneous information.

In terms of data aggregation, different application sce-

narios have varying requirements, and no universally

optimal aggregation algorithm exists. We will analyze the

characteristics and applicable scenarios of commonly used

aggregation methods, such as mean aggregation, change-

point aggregation, and other aggregation techniques. By

combining automated machine learning (AutoML)

approaches, we aim to evaluate the performance of dif-

ferent aggregation strategies in specific scenarios and

dynamically select the most suitable method.

For data analysis and optimization, this paper validates

the proposed framework using two case studies: power

consumption modeling and power capping. To further

enhance the generality of our research, we will extend our

investigations to additional scenarios, examining how data

quality affects analysis and optimization performance.

Example directions include predicting the temporal evo-

lution of system loads and evaluating workload require-

ments for job scheduling, both of which heavily rely on

models constructed from data-driven insights.

In summary, future work will focus on broader appli-

cation and validation, with the goal of improving the

applicability and generality of the study.

7 Conclusion

This paper proposes an HPC system monitoring framework

designed to deliver accurate datasets for HPC system

analysis research. Using the M100 dataset as a case study,

we investigate common data correctness issues in HPC

public datasets and identify factors influencing data accu-

racy. To address challenges in generating reliable log data,

such as time alignment, anomaly detection, and log rep-

resentation, we propose an organizational framework that

integrates multiple monitoring tools. Experimental results

demonstrate the framework’s notable advantages over

widely used methods in several key aspects.
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