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Abstract

We propose an approach based on self-attention generative adversarial networks to accom-
plish the task of image completion where completed images become globally and locally
consistent. Using self-attention GANs with contextual and other constraints, the generator can
draw realistic images, where fine details are generated in the damaged region and coordinated
with the whole image semantically. To train the consistent generator, i.e. image completion
network, we employ global and local discriminators where the global discriminator is respon-
sible for evaluating the consistency of the entire image, while the local discriminator assesses
the local consistency by analyzing local areas containing completed regions only. Last but
not least, attentive recurrent neural block is introduced to obtain the attention map about the
missing part in the image, which will help the subsequent completion network to fill contents
better. By comparing the experimental results of different approaches on CelebA dataset, our
method shows relatively good results.

Keywords Attention mechanism - Images completion - Non-local neural net - Semantics
completion

1 Introduction

1.1 Background

In many application scenarios, image completion is a very useful research area, which allows

filling in target regions with alternative contents [31] and it is a fundamental problem of
human low-level and high-level visual perception. As it can be used to fill occluded image
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regions or repair damaged photos, it has aroused widespread interest in computer vision
[39]. This technology has also been extended to other related applications, such as video
completion [36,37].

Nevertheless, it is still a challenging problem, because it often requires high level semantic
understanding of the scene. It is not only necessary to complete the texture in the picture, but
also understand semantic anatomy of the scene and object being completed.

Essentially, for image completion tasks, the generator needs to know the data distribution
of individual objects in the image and the overall structure of the scene, just like a real
life painter can draw something well. However structural characteristics and distributions
of different objects are quite different. It is difficult to directly learn distributions of a large
number of different objects at once. Generally speaking, learning the distribution of the same
kind of object is relatively simple, such as a face image, whose structure is relatively fixed.
Once the probability distribution of the object to be completed is known, the completion task
will become a natural state of being as a painter knows how to draw the unfinished portrait.
So at this stage, many completion methods are based on this idea. Here, we review some of
classical methods both in the past and in the present.

There are many methods of image completion, such as patch-based image synthesis [2,
5,8,13,16,34], especially in the task of background inpainting, which has been widely used
in practice, eg. the smart filling function in photoshop [13]. However, since they assume that
missing patches can be found somewhere in the background area, they can’t draw novelty or
contents never appeared in the image. In those challenging situations, the damaged region
always involves complex, non-repetitive structures as a whole, but it has a relatively fixed
pattern. For example, if a mouth is missing from a face image, a second mouth cannot be
found elsewhere in the face, then all faces have a fixed pattern-there is a mouth under the
nose. Furthermore, these methods cannot capture high level semantics.

Deep convolution neural network (CNN) has a strong ability to learn image represen-
tations, and has been successfully applied to inpainting in varying degrees [10,22,42,48].
Inspired by [9,15,32,38] etc, it is generally better to fuse multiple information to accomplish
this task. And in recent years, semantic image inpainting has been regarded as an image
generation problem and solved within the framework of Generative Adversarial Networks
(GANSs) [14], where there is a generator against a discriminator and it can successfully gener-
ate seemingly reasonable visual content with clear details. State-of-the-art results have been
achieved [22,27,42].

1.2 Motivation

Nevertheless, some deep GANs-based methods [6,22,27,42,48,50] have shown prospective
results for challenging tasks of filling missing areas in facial images. However, there are some
common limitations in all existing solutions based on GANs and deep convolution network.

First, in most cases of image ranking, image retrieval, classification, gesture estimation as
described in [11,19-21,45-47], they take advantage of an auto-encoder architecture, in which
the entire input information will be encoded into a multi-dimensional vector, and the decoder
in turn. In this way, there will be information loss in the encoding process, which is similar to
a lossy compression, while the decoder struggles to restore the defective information to orig-
inal information. Moreover, local characteristics of CNN limit the ability of discriminators
and generators. Even so, existing GANs-based methods strive to understand the high-level
semantics in image context and generate semantically consistent content. These methods can
generate visually plausible images, but usually produce distorted structures or blurred tex-
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tures that are inconsistent with surrounding areas, mainly because the convolutional neural
network is not available when referring to information from long-distant spatial locations
[35]. Combining the above two main reasons, it finally leads to the inaccurate recovery of
space-related information during decoding.

Second, how to design the loss or difference between the generated image and the original
image, which is very difficult for this similarity measurement. It is obvious that, we need
losses or differences not only at the underlying pixel-level, but also high semantics-level. To
be able to meet all these requirements, we need to combine various measurement methods.

Third, for image completion in any position and size, existing models [22,27,31,42,48]
need to input the mask matrix corresponding to the image to be completed, where this mask
matrix requires input or marking manually. This will become a disaster for a large number
of completion tasks.

1.3 Our Contributions

To overcome above limitations and achieve better results, we design a novel deep gener-
ation network for semantic inpainting. To this end, we mainly make the following three
contributions:

First, for solving the first problems in the previous Sect. 1.2, we no longer strictly abide by
the traditional auto-encoder structure, even in the flatting block of the model, data flows still
maintain multidimensional tensors type. To solve the local limitation of convolution network,
we employ non-local neural blocks [35], which are complements to convolutional operations
and helps with modeling long range, multi-level dependencies across image regions. At the
same time, the use of dilated convolution also enlarges receptive field further.

Second, in terms of similarity measurement, we use a perceptual loss or semantic loss,
which is promising in capturing high-level semantic difference. For example, we can use the
same neural network to extract features from both, and then calculate the differences between
features. Among them, a face parsing net whose task is the face semantic segmentation can
be used to maintain semantic consistency of synthesized facial images compared with the
ground truth.

Third, for concentrating more on the missing region automatically, we employ an attentive
LSTM module to gain attention map of the corrupted region in portrait, with the help of which
it is convenient for the generator close behind to focus on the missing/damaged region, i.e.
a key part to be synthesized.

In our experiments, our model can successfully reduce semantic errors and get better
visual results. This shows that our model can infer visually and semantically valid content
from context information of an entire image, especially the missing/damaged area and its
surroundings. The experimental results demonstrate that our proposed approach generates
higher quality completion results than most of existing ones.

2 Related Work

A large number of literatures exist for image inpainting, and due to space limitations we
are unable to discuss all of those in detail. Groundbreaking work in that direction includes
the aforementioned works and references therein. Since our method is based on generative
models and neural networks, we will review relevant academic researches and technical
works below.
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2.1 Generative Adversarial Network

GANSs was first proposed by Goodfellow et al. [14], which trains two adversarial networks
simultaneously to capture data distribution of input images. Therefore, a typical GANs net-
work consists of a generator and a discriminator, in which the generator tries to learn the
optimal transport mapping from inputs to outputs, and the discriminator judges the quality of
its generation. The generator continuously improves the ability to generate images that may
fool the discriminator to determine the artificial as a real one. However, the discriminator
keeps improving itself to tell whether the image is generated or real. By mutually learning
with alternating iterations between the discriminator and generator, a nash equilibrium will
be achieved in theory, when the generator can generate images that are visually plausible
enough to make the discriminator unable to determine whether the image is synthetic. The
zero-sum game between both can be expressed as the following optimization of min-max
problem:

me mgx V(D, G) = Ex~piuae 108 D(x) + Ez~p,(z) log(l — D(G(2))) (1)

where x is obtained by random sampling from the training sample set, which yields to
distribution P, (x), and z stands for a random vector in some latent space. In our model, z
is not a random vector, but a latent tensor generated by a encoder, one of the components of
the completion module as shown in Figs. 1 and 2. Here, G(-) represents a generator who is
inspired by the latent tensor and generates a sample, and D(-) is responsible for evaluating the
likelihood that a sample is in the training data set. In the final stage of training, G (-) become
perfect at last, when D(-) unable to determine where the input generated image comes from,
that is, the output is 1/2.

2.2 Non-local Neural Network and Self-attention GAN

Recently, Wang et al. [35] first presented a non-local neural structure as a generic build-
ing block for capturing long-range dependencies. Inspired by the classical non-local means
method in [3] for image denoising, the proposed non-local operation computes the response
at a position as a weighted sum of the features at all positions. This building block can be
easily hot-plugged into many neural network architectures involving global awareness. From
this, Zhang et al. [51] proposed self-attention GANs (SA-GANs) where the non-local block
was integrated into GANs. In SA-GANS, feature cues from all locations can be used to gen-
erate details. Moreover, the discriminator can inspect whether far-end details of the image
are consistent with others. In our model, we use non-local neural blocks in both the generator
and discriminator.

2.3 Image Inpainting

Face inpainting is only one aspect of image restoration technology. Therefore, image restora-
tion technology is very useful for face inpainting.

Nowadays, image completion problems can be considered to be an application of image
generation. Especially in recent years, there are a large number of academic papers on
image generation, most of which are based on the deep GANs framework. And almost
all GANs frameworks are presented with image generation as examples. Such as Radford
et al. [33] further developed deep convolutional GANs (DCGANSs) that have certain archi-
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tectural constraints combining convolution neural network, and demonstrate that they are
a strong candidate for image generation. Kataoka et al. [25] mixed GANs with a special
kind of attention mechanism, and generated more real images. Ouyang et al. [30] proposed a
novel learning architecture of LSTM conditional generative adversarial networks to generate
plausible images from word descriptions.

It is quite intuitive to apply image generation technology to image completion. Moreover,
in the real image completion task, the data distribution of the image to be completed should
be loaded, and the perfect image generator has naturally acquired this distribution. Many
scholars have done the work of image inpainting and completion, e.g. Pathak et al. [31]
used AlexNet architecture as the encoder with a novel channel-wise fully connected layer
for feature learning for semantic inpainting. Yu et al. [48] proposed a new method based on
the deep generative model, which not only can synthesize novel image structures, but also
make better prediction by using the surrounding image features as reference during network
training. In particular, Li et al. [27] developed an effective facial completion model using
GANSs with many losses.

2.4 Visual Attention

Attention-related neural processes have been extensively investigated in neuroscience. Visual
attention is a particularly interesting aspect: many animals focus on specific parts of their
visual inputs. This principle is of great significance to the visual system as we need to choose
the most pertinent part of information, rather than using all available information, a large part
of which is independent of the response of the nervous system. This is very similar to the
focusing function of a camera, which concentrates on one or two targets only and burs others
as a background at a particular moment. A similar idea focusing on specific parts of inputs
has been applied to all possible areas of deep learning, such as natural language processing,
reasoning, and computer vision [4,7,23].

From the perspective of attention’s role, visual attention includes temporal and spatial
attention. Our application scenario has nothing to do with time, so we only use spatial
attention, which is the ability to focus on specific objects in a visual environment. In deep
learning, there have been many studies [1,24,25,29,41,48] on learning spatial attention. Here,
we choose to review some representative models related to the proposed contextual attention
model. For example, Mnih et al. [29] presented a novel recurrent neural network model, which
can extract information from images or videos by adaptively selecting a sequence of regions
or locations. Ba et al. [1] presented a multi-objects recognition model based on attention
mechanism. The model is a kind of recurrent neural network trained with reinforcement
learning, which is used to identify the most relevant regions in input images. Jaderberg et
al. [24] first proposed a parameterized spatial attention model, called spatial transformation
network for object classification. However, this model is not suitable for modeling patch-wise
attention for some reason. Recently, Ouyang et al. [30] described an attention-based model
that automatically learns to annotate the content of images and gazes at salient objects and
generates equivalent words in output sequences. Qian et al. [32] injected visual attention into
both the generative and discriminative networks for Raindrop Removal. Based on the above
ideas, we put forward the following model—attention LSTM module as shown on the left
in Fig. 1, specially used to obtain the attention map of the corrupted area in the input image.
Through end-to-end training the contour weight of a face can be obtained as shown at the
bottom of the attention LSTM module in Fig. 1.
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Fig. 1 Our global architecture of proposed model, which is consists of two parts—a generator and a discrimi-
nator as the usual GAN. The generator is made up of an attention LSTM module and a completion module, and
the global and local discriminators compose the whole discriminator module. Two discriminators are learned
to distinguish the synthesize contents in the corrupted region and whole generated image as real and fake. Face
parsing network is a semantic segmentation network which is a pre-trained and fixed model and its loss is a
regularization term of GAN objective function, which further ensures that the newly generated face and the
original face are more semantically consistent. In detail, it is employed to compute the semantic loss between
the synthetic and real one. Note that only the generator (attention LSTM module and completion module) is
needed during the testing phase

3 Approach

Our method is based on self-attention GANs and consists of two main parts: a generator
module and a discriminator module. The generator consists of an attention LSTM module
and a completion module. The discriminator module is made up of a global discriminator and
local one. Additionally, there is a face semantic segmentation net, called face parsing network,
which is a pre-trained model and remains fixed, for further ensuring the new generated face
and the corresponding ground truth more consistent semantically. In practice, it is employed
to compute the semantic loss between the synthetic and real one. Next we will introduce each
module of the entire model in detail.

3.1 Attention LSTM Module

It is a recurrent neural network (RNN) based module, where we use long short-term memory
(LSTM) [18] instead of the ordinary RNN unit. The attention LSTM module as shown in
Fig. 1 finds the area of interest in the input image for repair. These areas are mainly the
missing areas and their surrounding structures necessary to complete the network, in order to
help obtain better local image restoration results. As shown in Fig. 1, not only three generated
attention maps focus on missing parts, but also concern about the surrounding face contour,
such as the other eye, the only nose, mouth and hair in long-distance from the corrupted
region. Each unit of the module consists of four parts—a Residual neural network (Resnet)
[17] block, a non-local neural block, an LSTM unit and a conv2d operation.

3.1.1 Resnet Block

This block may have multiple resnet blocks and try to extract features from input corrupted
images. As shown in Fig. 1, The resnet block is in the front end of each RNN cell. The
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Input Images [BatchSize, ImageHeight, ImageWeight, 3]

Parameter order:
Kernel, stride, out channel, padding
3*3, 1*1, 32, SAME

[BatchSize, ImageHeight, ImageWeight, 32]

1*1, 1*1, 32, SAME

[BatchSize, ImageHeight, ImageWeight, 32]

1*+1, 1*1, 32, SAME

[BatchSize, ImageHeight, ImageWeight, 32]

Addition operation

Can repeat N times

Fig. 2 Resnet blocks. BN means batch normalization operation, Lrelu is short for Leaky-ReLU and con2d
is a convolutional operation whose parameters and their order are shown on the left side of the graph. On the
right side, the shape of the flowing tensor have be listed in vertical direction at a specific time. Input images
are colorful face images, which have three channels and come from CelebA. E.g. the last item in the upper
right corner of the above figure indicates the number of channels in input images

detailed structure is shown in Fig. 2. The residual block marked with orange background
can be repeated N times. In our implementation, N is set to 3, which is up to your hardware
configuration of computers.

3.1.2 Non-local Neural Block

Next, extracted feature maps flow into non-local neural block which can capture long distance
dependencies. Using 1 x 1 convolutions, matrix multiplication and soft-max operation, the
following Eq. (2) is essentially achieved [3,35]:

1
T Vij(xi,xj)g(xﬂ )

i =

Here i is the index of an output location in space, time or space—time, and its response
will be calculated. j is the index of enumerating all possible locations. x is the input signal
(image, video and often their highly enriched features) and y is the output signal of the
same size as x. A pairwise function f computes relationship representation (such as affinity)
between positions of index i and all j. The unary function g computes a representation of the
input signal at the position j, whose response is normalized by a factor C(x). For detailed
discussion, please refer to literature [35]. The implementation here is shown in Fig. 3.

3.1.3 LSTM Block

Through a non-local block, we can pick up more global associated feature information. After
that, we are arriving at the LSTM block in our RNN module, which strengthen the learning of
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Fig. 3 A space non-local block. The feature maps are shown as a shape of their tensors, e.g., BS*H*W*32
for 32 channels, where BS refers to batch size, H and W are the height and width of the input image
respectively. “®” denotes matrix multiplication, and “@” denotes element-wise sum. The gray boxes denote
1 x 1 convolutions. Here we show the embedded gaussian version, with a bottle-neck of 16 channels. The last
thing to note is that the purpose of the second “reshape and transpose” operation marked by red color is to
match the dimension of the tensor obtained by the first “reshape” operation when the two are multiplied

the missing part of the input image, and finally the learned attention map will be input into the
completion net to guide the image inpainting, actually tells the network to pay more attention
to the corrupted part. This guiding process may be implicit, but in our model, we explicitly
use our attention information to emphasize new losses that need to be reduced. Finally, a
conv2d operation is employed for getting a attention map with the same dimension as the
missing labeling matrix and one channel. The detailed LSTM cell diagram is no longer drawn
here. For detailed discussion, please refer to the corresponding literatures [12,18,30,40] etc.

3.2 A Completion Module

By and large, the completion network belongs to an encoder—decoder architecture. The dif-
ference is that we add dilated convolutions [44] and non-local residual neural blocks at both
ends of the flatting block to learn spatial long dependences. The completion network structure
is shown in Fig. 4 in details. A down-sampling block, a flatting block and an up-sampling
block consist of the whole completion network. The down-sampling block consists of a series
of convolutions, batch normalization (BN) and leaky rectified linear unit (LRelu) alternately
arranged. This part extracts main features through familiar convolution operations. Later,
we are going to the next block, a flatting block that further refine the features and find
long range dependences using non-local blocks and dilated convolutions. Finally, we hire a
decoder architecture to restore the corrupted image from extracted features at the stage of
down-sampling. A more detailed description is given in the notes below the Fig. 4.
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Fig.4 Completive network diagram. It is a general encoder—decoder architecture that mainly consists of three
blocks, namely a down-sampling block, a flatting block and an up-sampling block. The down-sampling block
makes use of a series of conv2d operations. From left to right, the size is getting smaller and the thickness of
the layer grows. In the flatting block, the height and weight of tensor data flow are relatively minimum. Dilated
convolution alternate with batch normalization having non-local neural blocks both ends. The last part is an
up-sampling block, which makes up of many convolutions and deconvolution. Finally the size and channel
number of the input image are recovered. The last point is to explain, there may be some residual connections
between the down-sampling and the up-sampling

up—-sampling block

3.3 Discriminator Module

Our complete discriminator here is composed of a local and a global network, which are
learned to distinguish the synthesize contents in marked regions and assess whole images
formed by splicing the generated missing part with the input image. At the end of the dis-
criminator, Two sub-discriminators will judge global and local consistency and facticity
respectively, and both of them will output a scalar, that is, the probability of judging to be
true. Its rough architecture is shown in the lower right corner of the Fig. 1. The detailed
structure is similar to [22], which is no longer drawn here.

The discriminator is only useful in the training stage, but no longer in the testing stage.
The reason for the existence of discriminators here is to train better generators. Since only
one hole was dug in the original image during training, only a local discriminator was used. If
you dig two holes, you should employ two local discriminators and so on. But when there are
too many holes, too many local discriminations are unreasonable. Furthermore, if dividing
the image into four blocks fixedly and setting up four local discriminators, we will encounter
the problem of the number of positive and negative examples mismatching in training. For
simplicity’s sake here, we only dig one hole when training, whose size and position is random.
But the input of local discriminator is a fixed window bigger than the hole.

3.4 Loss Functions

Due to our architecture based on GANSs, loss functions, i.e. objective functions are com-
posed of two parts, a generative part and a discriminative one, similar to Eq. (1). Firstly, the
representation of image completion is introduced, and then conventional loss functions and
additional loss functions as regularization terms are elaborated in detail.
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3.4.1 Representation of Problems

The problem of image completion can be represented by the following Eq. (3):
Iree = (C(I, AN) @ M) & (I ® (1 — M)) 3)

Here I, is the final reconstruction result, which is a combination of the part that has been
repaired (corresponding to the missing/corrupted part in the original image) and the one
that is not missing/corrupted in the original image. C(-) is the completion network that use
missing/corrupted images I and corresponding attention map Ay generated by automatic
recognition of input damaged images with attention LSTM module. M denotes a label matrix
with same sizes as the input image. In the M, the value of an element can only be 0 and 1,
label 1 represents the missing/corrupted pix and O represents the undamaged. The operation
® here is an element-wise multiplication and @ denotes an element-wise addition. & in Eq.
(3) merges the known context region and the synthesized missing region to obtain the final
inpainting result.

In the pre-training phase, the damaged input image / can be generated by Eq. (4), but then
you have to turn a black hole white.

I=1I,®(—M) “)

where Iy, is uncorrupted images in training data set such as CelebA and as explained above
M is alabel matrix which markups holes in images. In the training phase, M can be generated
randomly. However, the missing area is filled with 0, i.e. black color now. After that, it should
be replaced by 255, i.e. white color in our implementation. It is also common to fill it as the
average value of the training image pixels. Anyhow, other areas remain unchanged.

3.4.2 Attentive Reconstruction Loss

To stabilize the training, a mean square error (MSE) loss considering the inpainting region
is used. The MSE loss is defined by Eq. (5):

Lyyse = HM ® (C, An) — Igt) || S
Here M is the label matrix, which can be easily derived from the subtraction of training
facial image pairs (the raw face and the corresponding corrupted one). ||-|| denotes a MSE
computation.

3.4.3 Attentive LSTM Loss

The attentive LSTM module is hired to automatically detect missing/corrupted parts in the
missing/corrupted image so that later completion network can pay more attention to the
restoration of missing parts. The loss function in each recurrent block is defined as a mean
square error between the output attention map at time step ¢ and the label matrix M cor-
responding to the input image. Recurrent blocks in the LSTM module is repeatedly for N
times. Intuitively, N will be better if it is bigger. In practice, due to the limitation of computer
hardware configuration (Our config: 2 Tesla P100), N is set to 3. And at this point, batchsize
can only be set to 2 at most.

The N recurrent blocks are used to continuously enhance the position information of the
missing part, and the final output attention map will be the most reliable. If the last attention
map is limited only, it will be very difficult for training. According to the hypothesis that for
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attention loss, the earlier the attention map should have less weight, and the larger N is, the
greater the confidence of the corresponding attention map. The loss function is expressed as

Eq. (6): .
Lar =Y 6" A, — M)l /VHW ©)

t=1

where A; is the attention map output by the attentive LSTM network at time step ¢, 0 is a
hyper-parameter that can be thought of as a fixed weight and its value should be greater than
1 here, ' shows that with the increase of time step 7, the more importance attach to A;. H
and W refer to the height and width of the input image respectively, which also neutralizes
weights greater than one in a sense. Of course, 6 here should match the size of the input
image. We set N to 3 and 6 to 3 here. Obviously, a larger N may produce a better attention
map, but it also requires more storage capacity and more powerful computing power.

3.4.4 Adversarial Loss

During the training phase, the adversarial loss causes the reconstructed image to be close to
samples in the training set, which is achieved by updating the parameters of the attention
LSTM and completion network. At the end of the training, D will predict that the image
from C(-) comes from the training set with a high probability. We use the same loss term,
just like in the original GANs:

Ladv = 10g(1 - D(IreC)) (7)

when D is fixed, the goal of training is that G can deceive the existing D. D stands for
discriminator module, .. represents global (Ig/opai_rec) Or local (Ijpcqr_rec) reconstruction
results. For example, there is a positive example—I/giopal_rec 18 Igr and Ijpcai rec is the real
part corresponding to the missing part in corrupted input images /. At this stage of training,
those inputs of negative examples (generated by our model) should make the output of D(-)
close to 1. In practice, this original log function is generally not used, but the cross-entropy
function or other newer method are used instead.

3.4.5 Weighted Multi-scale Loss

For the weighted multi-scale loss, a loss measure similar to that in [32,49], we extract features
from different upsample layers to form maps in different sizes. Using this method, we intend
to constrain and refine the training of model parameters through loss of different scales. We
define the loss function as:

T
Lyt =y _ 2" 0; — label,) | ®)

t=1

where O; indicates the rth output extracted from the upsample layers, and label, indicates the
ground truth that has the same scale as that of O;. A" are the weights for different scales. The
closer to the original size, the greater the weight, Namely putting more weight at the larger
scale. As shown in the middle of Fig. 4, there are three different scale losses computation
that correspond to 1/4, 1/2 and 1 of the original size respectively. So the T here is 3 and we
set A to 0.75.
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3.4.6 Semantic Loss

It is easy for traditional GANS to learn texture features, but not easy to learn specific topolog-
ical structure and geometric features, such as two eyes, a nose and a mouth, and a relatively
reasonable position to form a normal person’s face. If we want to inpaint images, we should
understand what are missing and their contextual information, so is the neural network.
Before repair, it is very difficult for neural networks to understand the semantics of missing
parts, which is exactly the task of training. Relatively speaking, limiting the semantic loss
of its repair results is simple. After the reconstruction, semantic segmentation of all parts of
the face can be done using the same network. By reducing the difference of semantic seg-
mentation feature between the two faces of the complement and ground truth, more similar
semantic effects can be achieved. The semantic loss can be easily obtained by Eq. (9):

Lsem = Losssofunax (FaceFarsing(lg;), FaceFarsing(Ire.)) )

Here we employ modified Bilateral Segmentation Network (BiSeNet) [43] for face parsing,
the state of the art for semantic segmentation recently. A simple element-wise soft-max loss
is hired to compute this loss L. A more detailed description of the face parsing network
will be given in the experimental section.

3.4.7 Summary of Training Objective Functions

With the above definitions of so many losses, we can get final loss functions. The weight and
other parameters in our proposed model are updated using back-propagation with the total
generative loss:

Lg = o Lagy + Lsem + Lyur + Larr + Linse (10)

where o is weight to balance the effects of L,4 and other losses. In practice, o has to be
relatively small to constrain the recovered image with input pixels. Here, we set o to 1072,
The following 4 weights are set to 1 by default.

Refer to the normal GANs Eq. (1), our discriminative loss can be expressed as:

Lq = —log(D(Ig)) —log(l — D(rec)) (1

Here, Iy contains global and local ground truth. /,,. includes the synthetic local region and
the corresponding global image containing locally generated region. Multiple discriminators
need to do cumulative operations. Obviously, minimum values are both required for L, and
Ly.

3.5 Training Algorithmic Description

We train our network effectively by gradually increasing the difficulty level and scale of the
network, whose process is scheduled into two stages.

First, we only use the attention LSTM loss L, and MSE loss L. to train the network,
so that we can get rough weights and biases of the attention LSTM module and generator
module. Since the proposed model is end-to-end, the LSTM and generator parts are not
trained separately.

Then, we train our model with all losses including the generator loss L, and global and
local adversarial losses L. We look forward to optimizing overall parameters of LSTM and
generator network through those loss functions. The overall algorithm is shown below:
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Algorithm 1 Training procedure of our proposed framework.

1: while iterations t < Ty train do
Sample a minibatch of images /,4; from training data.
Generate label matrix M with random holes for each image /¢ in the minibatch.
if ¢t < T, then
Train attentive LSTM blocks and the completion network with attentive LSTM loss [Eq. (6)] and
MSE loss [Eq. (5)].
else
Update the completion network and attentive LSTM net with all losses [Eqgs. (10) and (11)].
end if
: end while

VR

Finally, we can get the reconstructed face image in terms of Eq. (3). In order to eliminate
the stitching around missing regions, Poisson blending or other methods can be used for
post-processing.

4 Experiments
4.1 Data Set

We use CelebA [28] as an experimental dataset, in which all images cover large pose variations
and background diversity. For testing, we remove 2K images from the dataset before training
for evaluating our method with two types of corruptions: fixed size and changed position, or
fixed position and gradually increasing in size. Completion tasks are very challenging. For
the former task, the corrupted hole with fixed size in any position has to be recovered from
the surrounding given information. For the latter one, the recovered region in any position
must contain semantically correct content, i.e. eyes, nose, mouse and eyebrows etc. on human
faces. And more importantly, all the content should be coherent perfectly with surrounding
face features.

4.2 Experimental Environment

Software: CentOS 7, cuda 9.0, tensorflow-GPU 1.6 etc.

hardware: 2 computation cards-Tesla P100 16 GB, 1 cpu-xeon e5 etc.

Our model has trained for 60 epochs on celebA dataset, which takes about one mouth.
That is to say, it takes more than 10h for 1 epochs.

4.3 Face Parsing Network

Face parsing is essentially a semantics segmentation of different facial regions, mainly divided
into nose, left eye, right eye, upper lip, lower lip, teeth, skin, left brow, right brow, eye
glass, left ear, right ear, ear earrings, neck, neck lace, cloth, hair, hat and so on. In our face
parsing network, we uses BiSeNet [43] with spatial path and context path in detail, which
combines the features of these two paths with feature fusion module. We train this model with
CelebAMask-HQ [26], a face semantic segmentation data set corresponding to CelebA-HQ.

We change the size of face images to 128 x 128 first and then feed them into the pars-
ing network to predict the label for each pixel. There are several parsing results on the
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Fig.5 Examples of our parsing results on CelebAMask-HQ test dataset (top) and CelebA test dataset (bottom).
In each pair of original images and corresponding semantic segmentation images, all pixels in face images
(left) are classified as specified labels which are shown in different colors (right). Six pairs are shown here

Fig. 6 Sample results fo our model on CelebA. Here are twelve groups of visualization results. Each group
consists of four columns, where each column from left to right is represented as the input image to be repaired,
the corresponding attention map, the repaired result using our proposed model, the ground truth separately

CelebAMask-HQ and CelebA test images presented in Fig. 5. The parsing network should
be pretrained before training, and it remains fixed during training, when we first use the pre-
trained network on the CelebA set to obtain the parsing results of originally undamaged faces
as the ground truth, and compare them with the parsing results on repaired faces. Finally,
this parsing loss is added to generator loss as a regularization term, which can be regarded
as high-level semantic difference between two facial images.
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4.4 Visual Result

Some visual results are shown in Fig. 6, which demonstrates that our method can successfully
predict the missing content with high quality. Here is just a small visualization of the results,
and the next section will compare our methods qualitatively and quantitatively with other
methods.

4.4.1 Comparisons

We compare our method with five methods including:

PM: PatchMatch [2], the state-of-the-art non-learning based approach
SIIDGM: Semantic Image Inpainting with Deep Generative Models [42]
CE: Context Encoders: feature learning by inpainting [31]

GLCIC: Globally and Locally Consistent Image Completion [22]
GIICA: Generative Image Inpainting with Contextual Attention [48].

IRl e

A fair comparison with above methods would requires retraining their models on the same
data set with the same train-test splits. For fairness, we perform the same scaling on each
image in CelebA and retrain them. We evaluate on 2000 images randomly. Unfortunately,
subject to hardware resources, all images used in our experiments are resized into 128 x 128.
No post-processing has been done for the results obtained by each method.

4.4.2 Qualitative Comparisons

Figure 7 shows the comparisons of six methods on CelebA. It can be seen that:

1. When the missing area is large, PM method always copy semantically incorrect patches
to fill holes.

2. The results of SIIDGM method depend heavily on the quality of DCGAN network and
the completion results should be pretty good intuitively as long as DCGAN is strong
enough. Obviously, DCGAN is not capable enough here. Simple DCGAN structure may
be difficult to meet the requirements.

3. There are obvious artifacts and blurry in the generated regions with the CE, GLCIC and
GIICA models. It’s easy to see visually that the results are not plausible while our model
achieves the best performance.

In general, our proposed model can automatically detect holes’ location and fuse remote
spatial information with global information, which ensures the completion results more plau-
sibel and consistent visually.

4.4.3 Quantitative Comparisons

As mentioned in many studies [10,22,27,42,48], due to the existence of many possible solu-
tions, there is no good numerical metric to evaluate image inpainting results. Nevertheless, we
still use PSNR and SSIM to evaluate those inpainting results. Table 1 shows the comparison
results. It can be seen that our method outperforms all the other methods on these average
measurements on random masks in different size and position.
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Corrupted
image PM SIIDGM CE GLCIC GIICA Ours Ground truth

Fig.7 Comparisons of testing visual results, which of six methods for inpaiting faces with holes (fixed size-
64 x 64) in the center. Here are 6 rows and 8 columns. Each row represents different test images and each
column represents different results using different methods. Methods represented by each column have been
shown above the figure

o 2000 et images on Coeba - Method PSR SSIM
PM 16.22 0.56
CE 20.02 0.68
SIIDGM 18.22 0.66
GLCIC 21.84 0.75
GIICA 21.46 0.73
Our approach 22.26 0.81

Our approach is superior to other approaches in terms of PSNR and
SSIM

4.5 Discussion

There may be many solutions for image completion, which is good depends mainly on human
visual perception and it’s impossible to quantify the results. For different painters, results of
inpainting the same damaged facial image may be all different. For our method, the artist’s
mind, namely completion network, depends on the training data set. Our proposed method
incorporates a pre-attention map extraction network, namely the attention LSTM module,
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to identify of missing or damaged regions automatically and guide subsequent completion
tasks. Moreover, in our method, we integrate multi-scale losses as regularization terms to
achieve better repair results.

Our model can robustly handle holes of any size and location except for the boundary.
Compared to other methods, our model is able to grasp the overall situation and the sur-
rounding environment. Such as the sample on the left of Fig. 6 in row 4, the beard was also
repaired to a certain extent according to the surroundings. Last but not least, our model testing
does not require any manual intervention because of the attention LSTM module that can
automatically identify the missing regions for us.

5 Conclusion

In this work we propose a deep generative architecture for face completion. The network
is based on a GANs with an encoder—decoder-like model as a generator. Except for the
damaged image itself as input to the generator, attention map of the missing part of the image
is added as a part of inputs too, which comes from an attentive LSTM module. The proposed
model can successfully synthesize semantically valid and visually plausible contents for the
missing facial key parts. Both qualitative and quantitative experiments show that our model
generates the completion results of high perceptual quality and is quite flexible to handle
a variety of holes. Nevertheless, the training model is very time-consuming and hardware
resources-consuming (it need to take about a month to train our model), it is necessary to
optimize the energy consumption of the model in the future, hoping to use less hardware and
get better results in a shorter time.
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