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A B S T R A C T   

Supervised learning-based medical image segmentation solutions usually require sufficient labeled training data. 
Insufficient available labeled training data often leads to the limitations of model performances, such as over- 
fitting, low accuracy, and poor generalization ability. However, this dilemma may worsen in the field of med-
ical image analysis. Medical image annotation is usually labor-intensive and professional work. In this work, we 
propose a novel shape and boundary-aware deep learning model for medical image segmentation based on semi- 
supervised learning. The model makes good use of labeled data and also enables unlabeled data to be well 
applied by using task consistency loss. Firstly, we adopt V-Net for Pixel-wise Segmentation Map (PSM) prediction 
and Signed Distance Map (SDM) regression. In addition, we multiply multi-scale features, extracted by Pyramid 
Pooling Module (PPM) from input X, with 2 − |SDM| to enhance the features around the boundary of the 
segmented target, and then feed them into the Feature Fusion Module (FFM) for fine segmentation. Besides 
boundary loss, the high-level semantics implied in SDM facilitate the accurate segmentation of boundary regions. 
Finally, we get the ultimate result by fusing coarse and boundary-enhanced features. Last but not least, to mine 
unlabeled training data, we impose consistency constraints on the three core outputs of the model, namely PSM1, 
SDM, and PSM3. Through extensive experiments over three representative but challenging medical image 
datasets (LA2018, BraTS2019, and ISIC2018) and comparisons with the existing representative methods, we 
validate the practicability and superiority of our model.   

1. Introduction 

Medical imaging can help doctors make a rapid diagnosis and clinical 
interventions based on the visual manifestation of organs, tissues, and 
lesions in medical images such as Computed Tomography (CT), X-ray, 
Ultrasound, and Magnetic Resonance Imaging (MRI) [1,2]. Visual seg-
mentation of organs, tissues, and lesions is one of the basic technologies 
for automatic and intelligent analysis of medical images. In most cases, 
deep neural networks are trained in a supervised fashion, which requires 
sufficient labeled training data. However, manual labeling is an 
experience-oriented and time-consuming task, while unlabeled samples 
in the hospital are abundant. If we can make good use of these unlabeled 
data, intelligent analysis of medical images will make good progress. 
Therefore, even if new technologies or directions emerge in the future, 
Semi-Supervised Learning (SSL) is still one of the most promising fields 
of machine learning, especially in the application of medical image 

analysis. 
In recent years, many medical image segmentation methods have 

emerged to cope with the limitations of available labeled training 
datasets. For instance, to reduce the workload of manual labeling, re-
searchers have developed interactive segmentation techniques to select 
specific organs or lesions with less manual intervention [3–7]. This 
semi-automatic segmentation technology can effectively improve the 
efficiency of manual image annotation. Weakly supervised learning 
adopts image-level or object-level annotations with bounding boxes, 
instead of pixel-wise annotations that are more difficult to obtain [8,9]. 
The SSL approaches directly mine essential information from limited 
labeled data and a large amount of unlabeled data. Unlike fully super-
vised learning, the SSL methods can obtain better segmentation results 
by using training data with limited annotations. Our goal in this work is 
to improve the accuracy of fully automatic pixel-by-pixel segmentation 
when only limited labeled data are available, so weak supervision and 
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interactive methods are not our choices. 
In this work, we mainly concentrate on semi-supervised medical 

image segmentation methods, which are more effective and suitable for 
current actual needs. Only a handful of labeled data are available, and 
the rest are massive amounts of unlabeled data. In the early years, semi- 
supervised learning of medical image segmentation relied on the self- 
training and data augmentation strategies [10–13]. In the past two or 
three years, many SSL approaches have emerged that utilize unlabeled 
data by performing consistent regularization [14–16]. For example, in 
Ref. [14], Shuailin Li, Chuyu Zhang, and Xuming He developed a 
multi-task model to predict a Pixel-wise Segmentation Map (PSM) and 
the corresponding Signed Distance Map (SDM) according to the same 
input. They used an adversarial loss to enhance the consistency between 
the predicted SDMs of labeled and unlabeled samples, thereby ensuring 
more effective capture of shape-aware features. In Ref. [17], Yu et al. 
employed a mean teacher model [18] to mine consistency information 
from unlabeled samples. In Ref. [15], Li et al. introduced a trans-
formation consistency to enhance the regularization effect of medical 
image segmentation models. For the same input, the output of the stu-
dent and teacher models should be the same. Most of the existing 
methods promote the application of semi-supervised learning in medical 
image segmentation. 

Inspired by the consistency of parallel dual-task [16] and 
boundary-aware [19], we propose a shape and boundary-aware mul-
ti-branch model for semi-supervised medical image segmentation. The 
core idea of the proposed method is to construct the consistency between 
two sequence-related tasks, namely the regularized SDM regression task 
and the pixel-level segmentation task. The SDM obtained from the 
previous branch captures redundant information such as the boundary 
and shape of the segmented object, and has substantial guiding signifi-
cance for the subsequent pixel-level segmentation. The main contribu-
tions of this work are summarized as follows:  

● We propose a shape and boundary-aware multi-branch model for 
medical image segmentation. First, this model utilizes a V-shaped 
model to predict coarse PSM and regress SDM, containing rich in-
formation about shape and boundary. What’s more, through SDM 
and FFM, this model further extracts boundary-enhanced features. 
Finally, under the guidance of coarse PSM and boundary-enhanced 
features, we get the final segmentation of the targets.  

● We exploit the task consistency among the three critical outputs on 
unlabeled samples. At the same time, through adversarial training, a 
large amount of unlabeled data is further utilized for model training.  

● We conduct extensive experiments using 5-fold cross-validation on 
the BraTS2019, Atrial Segmentation 2018, and ISIC2018 datasets to 
evaluate the effectiveness of our model. Experimental results show 
that our model outperforms the state-of-the-art methods in terms of 
multiple evaluation metrics. 

The rest of this paper is arranged as follows. The basic knowledge of 
semi-supervised medical image segmentation is reviewed in Section 2. 
Section 3 introduces the proposed shape and boundary-aware multi- 
branch model. Section 4 discusses the comparison experiments and re-
sults. Section 5 gives a general summary of the whole work. 

2. Related work 

We review the fundamental technologies involved in this work, such 
as semi-supervised medical image segmentation, consistency regulari-
zation, and signed distance map. 

2.1. Semi-supervised medical image segmentation 

The widespread popularity of Deep Learning (DL) has greatly pro-
moted the rapid development of computing power, the availability of 
massive labeled samples, and the transition from manual feature 

extraction to automatic feature extraction. Thanks to the technological 
progress, the performance of semantic segmentation has been rapidly 
improved. 

In recent years, some popular DL-bases semi-supervised methods 
have been proposed, such as self-training [10], co-training [20], 
adversarial learning [21,22], consistency regularization [18,23–26], 
and data augmentation-based methods [12]. The main idea of 
self-training is to train a pre-trained network on unlabeled data by using 
estimated labels (pseudo labels) in an iterative way. For instance, in 
Ref. [10], Bai et al. developed an iterative semi-supervised strategy for 
cardiac MRI image segmentation. The initial weights of the model come 
from training the network only on labeled samples. Here exit the next 
two steps: step 1 is to use the pre-trained model to predict segmentation 
map on unlabeled samples, and step 2 is to use the ground truths of 
labeled samples and estimated segmentation of unlabeled samples to 
update the network parameters. By iteratively executing the two steps, 
the model would be optimized to obtain better segmentation results. 

Nowadays, combined with adversarial learning, the segmentation of 
medical images in a semi-supervised manner is also a popular research 
topic. In Ref. [21], Zhang et al. proposed a new deep adversarial network 
for biomedical image segmentation. The model contains two 
sub-networks: a generator for performing segmentation and a discrim-
inator for evaluating the quality of segmentation. The generator en-
courages good segmentation results, and the discriminator decides 
whether the segmentation results come from unlabeled input or labeled 
input. In Ref. [14], Li et al. introduced an adversarial loss of 
semi-supervised learning to calculate the error between the predicted 
SDMs of labeled data and unlabeled data, where the SDMs contain rich 
geometric shape and boundary information. In Ref. [20], Peng et al. 
proposed a segmentation method based on the idea of model integra-
tion. Like the collaborative training method, the proposed method uses 
labeled data subsets for training and unlabeled data subsets for infor-
mation exchange. 

One way to solve the scarcity of labeled samples is to apply random 
geometry, color and intensity transformation, and interpolation strate-
gies for data augmentation. Recently, many scholars choose Generative 
Adversarial Networks (GANs) to product samples as a supplement to 
model training [12,27]. For instance, in Ref. [12], Chaitanya et al. re-
ported a creative data augmentation approach for learning using limited 
labeled training samples, where two conditional generative models are 
responsible for modeling shape and intensity characteristics, respec-
tively. The holistic method is another way to alleviate the predicament 
of insufficient training samples for available markers, and is dedicated to 
integrating various SSL paradigms. For example, in Ref. [28], Berthelot 
et al. mixed consistency regularization, entropy minimization, and 
MixUp [29] together, and achieved significantly better performance. 

2.2. Consistency regularization 

In the field of computer vision, consistency regularization solutions, 
such as data-level consistency and task-level consistency, play a prom-
inent role in self-supervised learning, unsupervised learning, and semi- 
supervised learning [16]. Data-level consistency encourages the 
assumption that decision boundaries maybe located in low-density areas 
where the predictions of the same input should be the same before and 
after the interference. Task-level consistency strives to ensure that the 
representations of similar tasks are equivalent. These representations 
can be uniquely converted to each other to reflect the consistency of 
tasks. 

Most consistency regularization is at the data level. In Ref. [30], 
Antti Tarvainen and Harri Valpola implemented a Mean Teacher (MT) 
model to improve performances of SSL by using data-level consistency. 
In the MT model, they trained two sub-models to promote each other. 
Specifically, this consistency was embodied in that taking one sample as 
the input of the two sub-models, the outputs of the teacher and student 
sub-models should be consistent, even if different disturbances were 
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attached to the two sub-networks [15]. Significantly, the student model 
updated the parameters by Exponential Moving Average (EMA) method, 
while the parameters of the student model depend on loss function 
optimization. In Ref. [15], Li et al. devised a semi-supervised method 
based on MT model and transformation consistency. The model en-
courages consistent predictions for two sub-networks with the same 
input under different data disturbances, including flipping, rotation, 
re-scaling, adding noise, etc. In Ref. [24], Ouali et al. described a Cross 
Consistency Training (CCT) model for semi-supervised semantic seg-
mentation. The model consists of an encoder and multiple decoders, 
where the primary decoder uses labeled samples, and multiple second-
ary decoders use unlabeled samples for training. For all samples, the 
output of the primary decoder is consistent with the output of multiple 
secondary decoders using different perturbations. 

Recently, Luo et al. proposed a task-level consistency method for 
semi-supervised medical image segmentation, and obtained different 
representation diversity of segmentation results, including signed dis-
tance maps and pixel-level segmentation maps [16]. In Ref. [31], Zamir 
et al. illustrated that cross-task consistent learning can make more ac-
curate predictions and better generalize outliers, which is due to the 
invariance of inference paths on any task map. In Ref. [32], Navarro 
et al. adopted the idea of multi-task learning and constructed two 
additional sub-tasks, such as distance map regression and contour map 
detection. Unfortunately, they trained the model only in a 
fully-supervised manner. Inspired by the studies in Refs. [19,32–34], we 
propose an SSL model for medical image segmentation and use unla-
beled data for consistency regularization and adversarial training to 
obtain a more robust model. 

2.3. Signed distance map 

By calculating the distance from each pixel marked 1 in the binary 
segmentation map to the nearest boundary pixel, we can get the distance 
map [35] of the binary segmentation mask, which gives rich and robust 
information about the boundary, size, shape, and position of the 
segmented objects. For a binary segmentation mask, the Signed Distance 
Map (SDM) is usually formulated as: 

φ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x ∈ ∂Ω;

− inf
y∈∂Ω

‖x − y‖2, x ∈ Ω,Ω ∕= ∅;

+inf
y∈∂Ω

‖x − y‖2, x ∕∈ Ω,Ω ∕= ∅;

1,Ω = ∅,

(1)  

where Ω = {xi|yi = 1, i∈ 𝒮} is the pixel set of the foreground, xi is the i-th 
point/pixel, yi is the corresponding label, the index i traverses the entire 
input image or the corresponding segmentation mask, and 𝒮 is the index 
set. At the same time, we use the symbol ∂Ω to represent the boundary 
pixel set. The middle two terms in Eq. (1) also need to be normalized to 
[-1,1] by using the mini-max normalization. Specifically, the absolute 
value of SDM indicates the distance from a pixel/voxel to the nearest 
pixel/voxel on the contour, and the symbol indicates the internal (− ) or 
external (+) boundaries of the segmentation object. SDM is also a gen-
eral definition of level set functions, so we name it φ(x). Zero means that 
the point is exactly on the boundary. It is worth noting that when there is 
no foreground (Ω = ∅), each element in SDM should be 1. In other 
contexts, SDM should normalize to [ − 1, 1] by using the mini-max 
normalization method. 

3. Proposed approach 

In this section, we propose a novel network for medical image seg-
mentation. The model can learn image features from labeled and unla-
beled data by using the corresponding losses. 

3.1. Network architecture 

As shown in Fig. 1, the overall framework includes a V-shaped 
backbone network for dual tasks, and a Pyramid Pooling Module (PPM) 
for extracting multi-scale features, and a Feature Fusion Module (FFM) 
for refining Pixel-level Segmentation Map (PSM). The dual tasks are 
completed by two branches, where branch A is for coarse PSM genera-
tion, and branch B is for Signed Distance Map (SDM) regression. First, 
branch A is in charge of PSM1 generation, and the intermediate product, 
F1 also guide the refinement of the final result PSM3. Second, branch B is 
responsible for the regression of SDM containing information such as 
boundaries and shapes. Third, the FFM module mines information from 
the boundary enhanced features, i.e., (2 − |SDM|)*PPM(x), and outputs 
the boundary refined feature, F2. Then, PSM2 is obtained. Finally, F1 
and F2 pass through a Concatenation, a Convolution and a Sigmoid 
function in turn, then we can acquire the ultimate PSM3. Essentially, it is 
a coarse-to-fine strategy. 

3.1.1. Backbone network 
The backbone network of the proposed model includes two compo-

nents: the encoder and the decoder. The encoder uses multiple down- 
sampling layers to extract high-level features, while the decoder up- 
samples the features to recovery the size. As shown in Fig. 1, in the 
down-sampling stage, the input images pass through a series of con-
volutional layers to get high-level feature maps. Then, in the up- 
sampling stage, bilinear interpolation or deconvolution is used to 
restore the feature scale step by step. Finally, there is a skip connection 
that combines the symmetric layer features of the encoder and decoder. 
In our experimental section, we will adopt a typical V-Net [36] structure 
in our model. 

3.1.2. Coarse pixel-wise segmentation branch 
As shown in Fig. 1, branch A is a coarse pixel-wise segmentation 

branch, the upward branch at the end of the backbone. In branch A, a 
convolutional operation is performed on the extracted features in the 
decoding stage of the backbone for adjusting the channels to 1 (F1), and 
then run a sigmoid to get a coarse PSM, called PSM1. In particular, the 
intermediate F1 will be conducive to the generation of final PSM, i.e., 
PSM3. 

3.1.3. Pyramid Pooling Module 
At the bottom of our proposed model as Fig. 1, Pyramid Pooling 

Module (PPM) is used to extract multi-scale features of the input image 
x. The pipeline of PPM is demonstrated as Fig. 2. This module takes a 2D 
image or 3D patch as input and consists of four parallel pooling 
branches, which pools inputs into the initial size of 1/2, 1/4, 1/8, and 1/ 
16, respectively. After that, multi-scale feature maps can be obtained 
through Convolution, Batch Normalization, and ReLu, respectively. 
Finally, these features are upsampled to the original scale and spliced 
together to form a multi-scale feature pool. 

3.1.4. SDM regression branch 
Due to the area difference between the boundary and all other re-

gions, it is difficult to directly obtain the accurate contour of the 
segmented object even using a cross-entropy loss. Therefore, as an 
alternative, we choose the SDM regression method. As shown in Fig. 1, 
branch B is to regress SDM, which implies redundant information, such 
as coarse contour, shape, and segmentation target size. Based on the 
PPM and predicted SDM, we can obtain the boundary enhanced features 
by (2 − |SDM|) × PPM(X), which strengthens the contour of the 
segmented object and does not alienate the regions far from the 
boundary. Simultaneously, (1 − |SDM|) × PPM(x) ignores features far 
from the boundary. In branch B, there are only two operations, including 
a convolution to adjust the channel to 1 and a tanh to regress the SDM. 
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3.1.5. Feature Fusion Module 
In our model, FFM is a channel spatial group module [37], which 

combines a spatial and a channel attention module. As shown in Fig. 3, 
FFM receives boundary-enhanced feature maps X ∈ RB×C×H×W×D, where 
B, C, H, W, D are the batch size, channel number, height, width and 

depth, respectively. Before grouping, we firstly employ “channel 
shuffle” to make different groups of information flow freely along the 
channel, which is inspired by ShuffleNet v2 [38]. Secondly, FFM divides 
X into g groups along the channel dimension, i.e., X = [X1, …, Xg],

Xk ∈ RB×C/g×H×W×D. Thirdly, the parallel attention module generates the 

FFM
F2

Branch B

Branch A

SDM

V-shaped Network

SDM: Signed Distance Map

PSM: Pixel-wise Segmentation Map
FFM: Feature Fusion Module

F1

PPM SDM

PPM

PPM: Pyramid Pooling Module

Fig. 1. Overview framework of the proposed shape 
and boundary-aware deep learning model for medical 
image segmentation based on semi-supervised 
learning. The model consists of a U-shaped or V-sha-
ped backbone network for feature extraction, coarse 
pixel-wise segmentation branch (branch A) for coarse 
Pixel Segmentation Map (PSM) generation, Signed 
Distance Map (SDM) regression branch (branch B), 
Pyramid Pooling Module (PPM) for extracting multi- 
scale features and Feature Fusion Module (FFM) for 
PSM refinement.   

Fig. 2. Pyramid Pooling Module (PPM). This module includes several parallel pooling branches with different pooling parameters responsible for multi-scale 
feature extraction. 

...

AdaptiveAvgPool(1)+Sigmoid

SigmoidConv

Spatial Attention

Channel Attention

Channel Attention&&Spatial Attention

element-wise product

channel-wise concatenation

...

...

channel shuffle

Fig. 3. Feature Fusion Module (FFM). This pipeline has four steps. First, FFM shuffles all feature maps along channels randomly. Second, it evenly splits shuffled 
features into g sub-groups. Third, it fuses those sub-features through spatial and channel attention blocks in parallel and finally aggregates these feature maps. 
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corresponding importance coefficients for sub-features as each group 
and fuses the sub-features themselves from both the channel and spatial 
views. Specifically, at the front of each attention block, the sub-features 
are equally divided into two partitions of equal channel sizes, i.e., Xk =

[Xk1,Xk2],Xk1,Xk2 ∈ RB×C/2g×H×W×D, k = 1, 2,…, g, k1 = 0, k2 = 1. As 
shown in Fig. 3, one partition Xk1 is sent into a channel attention block, 
while the other partition Xk2 is fed to a spatial attention block. So, this is 
a simplified version of the dual attention mechanism. Channel Attention 
Block (CAB) utilizes a AdaptiveAvgPool(1) to pool Xk1 to RB×C/2g×1×1×1 

and a Sigmoid to generate a channel attention map, which implies the 
importance of different channels. Spatial Attention Block (SAB) adopts a 
Conv to adjust Xk2 from RB×C/2g×H×W×D to RB×1×H×W×D and a Sigmoid to 
produce a spatial attention map, which implies the importance of 
different position. Then, the channel feature fusion result Ok1 and the 
spatial feature fusion result Ok2 are spliced together to form Ok, as the 
same size as Xk. And finally, all Ok are also stitched together to gain Y, as 
the same size as X. 

3.2. Loss functions 

Next, we will introduce each loss function used at all outputs in detail 
below. 

3.2.1. SDM loss 
Inspired by the work in Ref. [34], we use L1 loss function in our 

model, which is the L1 difference between the predicted value and the 
real SDM. The L1 loss function can be written as: 

ℒL1 =‖SDMpred − SDMgt‖1, (2)  

where SDMpred denotes the predicted SDM from branch B, and SDMgt is 
from the binary mask of GT. Based on GT, we can acquire the SDM by 
using morphological methods. For multi-object segmentation, we can 
obtain the L1 loss by adding all the L1 losses corresponding to different 
binary segmentation maps. Although the L1 loss is robust to outliers, it 
may causes the training process unstable. To overcome the disadvantage 
of the L1 loss function, we further combine it with a product loss, as 
defined below: 

ℒproduct = −
1
N

∑N

i=1

yipi

(yipi + pi
2 + yi

2 + ε), (3)  

where N is the number of all pixels/voxels, yi and pi are the element of 
real SDM and predicted SDM, respectively, and ε is a small constant to 
prevent division by zero. Here, we set it to 1e − 5. We can find that Eq. 
(3) has the following properties: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
1
3
≤ Lproduct < 0, if yipi > 0;

0 < Lproduct ≤ 1, if yipi < 0;

Lproduct = 0, if yi = 0 or pi = 0,

(4)  

where if yi and pi have the same sign, the smaller the gap between yi and 
pi, the smaller the loss. Especially if yi = pi ∕= 0, the loss value will be − 1/ 
3. If yi and pi have different signs, the loss will be a positive value, which 
means the penalty is heavy right now. 

Based on the above properties, we can conclude that the ℒproduct 
enhances the perception of boundaries by emphasizing the correctness 
of the signs. Therefore, the final SDM loss is defined as: 

ℒSDM = ℒL1 + ℒproduct. (5) 

SDM loss pays more attention to the elements close to zero, that is, 
the boundary represented by SDM. Therefore, SDM loss in our model can 
improve boundary perception. 

3.2.2. PSM loss 
There are many ways to calculate the Pixel-wise Segmentation Map 

(PSM) loss. Here, we hire Dice and Cross-Entroy losses, as defined below: 

ℒPSM = ℒDice + ℒCE, (6)  

where 

ℒdice = C −
∑C

i=1

2
∑

yipi
∑

y2
i +
∑

p2
i +ε, (7)  

and 

ℒCE = −
∑C

i=1
yilog(pi) (8)  

where C is the number of categories, pi is the predicted value, and yi is 
the corresponding ground truth. Since the model has three PSM outputs, 
the final PSM loss is summarized as: 

ℒTotalPSM =
∑3

i=1
ℒPSMi. (9)  

3.2.3. Boundary loss 
To recognize the boundary more accurately, the model needs to pay 

more attention to the area near the contour of the segmented target. We 
hire the boundary loss [39] for that, defined as follows: 

ℒB(θ) =
∫

Ω
φG(q)pθ(q)dq, (10)  

where pθ(q) is the predicted probability map of the input q, θ indicates 
model parameters and φG stands for a real SDM. From Eq. (10), the 
boundary loss can be seen as a weighted summation of all elements of 
predicted probability maps (i.e., PSM), and φG acts as this weight. 

The uncertainty of the segmentation task often focuses on the 
boundary, so it is unwise to pay too much attention to it. In Eq. (16), the 
boundary loss only plays a small role, and the weight β is set to 0.1. So, 
we apply this loss to PSM2 only. 

3.2.4. Consistency loss 
We use consistency loss to guarantee the consistency of SDM, PSM1, 

and PSM3 in Fig. 1. To reduce computational consumption and training 
instability, we don’t take PSM2 into account. And our experiments 
confirm this programme. In Fig. 4, we show this consistency among the 
three outputs, i.e., SDM, PSM1, and PSM3. 

First, to guarantee consistency between SDM and PSM1, i.e., C1− 2 
and C2− 1, we hire L2 loss, i.e, Eq. (11) as follow: 

Fig. 4. Cycle consistency of the three outputs. We take advantage of the 
network structure itself and design consistency losses to guarantee the consis-
tency of the three outputs. The direction of arrows implies the promotion of the 
former to the latter. The dotted line means that the network structure makes the 
ascension by itself, and the solid line indicates that it relies on the loss function. 
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ℒc1 = ‖F(SDM) − PSM1‖2, (11)  

where 

F(x) =
1

1 + e− k⋅x = σ(k ⋅ x) , (12)  

where k is a constant coefficient, which affects the slope of the curve. 
The larger the value of |k|, the steeper the slope, closer to a step function. 
The sign of k determines whether the curve is uphill or downhill. 
Inspired by the work in Ref. [34], we set k to − 1500, which matches the 
normalized SDM defined in our work. As we can see, Eq. (12) convert the 
predicted SDM to PSM. Moreover, due to the differentiability of Eq. (12), 
bi-directional promotion, that is, C1− 2 and C2− 1, can be realized by Eq. 
(11). Second, we use Eq. 13 

ℒc2 = ‖PSM3 − PSM1‖2. (13)  

to relize C3− 1. That is, for the learning of unsupervised samples, PSM3 
provides the learning objectives of PSM1. According to the design of 
network architecture, SDM and PSM1 guide the generation of PSM3, so 
it is no need to design additional loss functions to ensure the consistency 
of C1− 3 and C2− 3. 

Finally, the total consistency loss (Eq. (14)) is the sum of these two 
sub-consistency losses, as defined below: 

ℒcl = ℒc1 + ℒc2 . (14)  

3.2.5. Adversarial loss function 
Inspired by the work in Ref. [14], we introduce an adversarial loss to 

regularize model training further. To this end, we use a discriminator to 
distinguish whether the final predicted PSM3 comes from the labeled or 
unlabeled input. We assume that the quality of PSM3 in the supervised 
learning method is high, while the other parts in the unsupervised 
learning method are of low quality. As the training progresses, the 
discriminator will not discriminate whether the input data correspond-
ing to the predicted PSM3 is from a subset of labeled or unlabeled data. 
From there, the predicted results of PSM3 based on the unlabeled subset 
are as good as predictions based on the labeled subset. It is worth noting 
that the adversarial loss increases more perturbation, making the model 
easier to approach the optimal solution of this problem. 

Specifically, the adopted discriminator takes PSM3 and the corre-
sponding image as input and predicts its probability from the labeled 
data subset. Given the discriminator D and segmentation network G, an 
adversarial loss on a batch of training data can be formulated as: 

min
θ

max
ζ

ℒadv(θ, ζ) =
1
N
∑N

n=1
log D(Xn,G(Xn|θ)PSM|ζ)

+
1
N

∑2N

m=N+1
log
(
1 − D(Xm,G(Xm|θ)PSM |ζ)

)
,

(15)  

where 2 N is the batch size, consisting of N labeled images and N un-
labeled images. Xn and Xm are the labeled and unlabeled inputs, 
respectively. D(⋅|θ) and G(⋅|ζ) represent the discriminator and segmen-
tation networks, where θ and ζ are the weight parameters of the net-
works. Since the adversarial loss imposes on PSM3, the output of G 
(X|θ)PSM is namely PSM3. 

On the one hand, when D(⋅|ζ) is fixed, sufficient training of G(⋅|θ) 
will make D(⋅|ζ) unable to determine whether the input is from labeled 
or unlabeled data. In Eq. (15), these two terms are minimized at that 
time. On the other hand, given a fixed generator (a segmentation 
network) G(⋅|θ), the goal is to sufficiently train the discriminator and 
output 0 for the unlabeled input and 1 for the labeled input. In Eq. (15), 
these two terms are maximized at the same time. 

3.2.6. Hybrid loss function 
We linearly combine all of the above losses to form a hybrid loss 

function: 

ℒfinal = (1 − γ)(ℒTotalPSM +αℒSDM) + γ(ℒcl +ℒadv + βℒboundary), (16)  

where α, β, and γ balance these different sub-losses. In comparison ex-
periments, we will set α to 0.3 and β to 0.1, which is determined by the 
grid search and through past experience values. γ(t) is defined as a 
function with the number of training steps as the independent variable, 
as shown in Eq. (17) below: 

γ(t) = a⋅exp

(

− 5
(

1 −
t

tmax

)2
)

, (17)  

where t denotes the current training step, tmax represents the maximum 
training step, and a is the maximum weight, a constant coefficient 
greater than zero. Therefore, as the training progresses, the proportion 
of ℒcl + ℒadv + βℒboundary will increase with the increase of t, and will 
eventually be equal to a. In comparison experiments, we will set a to 1. 
Therefore, ℒfinal can exploit both the labeled subset and the unlabeled 
subset to optimize all modules in a semi-supervised manner. 

4. Experiments 

4.1. Dataset 

To evaluate our proposed model, we conduct comparison experi-
ments on three different medical image datasets to complete the tasks of 
3D brain tumor segmentation, 3D left ventricular segmentation and 2D 
skin lesion segmentation. 

BraTS 20191: BraTS 2019 focuses on the segmentation of brain tu-
mors (gliomas) using preoperative MRI scans from multiple hospitals. 
Each scan has four modalities, namely T1, T1ce, T2, and Flair, while 
each tumor region is labeled as core, whole, and enhancement. For 
simplicity, we evaluate the segmentation effect of the whole tumor re-
gion only using a flair-modal scan instead of segmenting three sub- 
regions. In the first two rows of Fig. 5, we list a brain tumor case and 
the corresponding label from three perspectives (axial, sagittal, and 
coronal). The white part in the first row represents the whole tumor 
area, and the red region in the second row corresponds to the white part 
in the first row. We divide 335 original training samples into a training 
set (335 × 90% = 302) and a test set (335 × 10% = 33). The training 
subset is for 5-fold cross-validation, and the test subset is for visualiza-
tion by fusing the generated five models. Note that each partition is 
hierarchical according to the ratio of HGG to LGG, which leads to 
stratified k-fold cross-validation. 

Left Atrial 2018 (LA2018)2: This work involves a total of 154 3D 
MRIs with a resolution of 0.625 × 0.625 × 0.625 mm3 from patients 
with atrial fibrillation. Since the test data is not labeled and the chal-
lenge is over, only training data (100 samples) is available. We divided 
them into two groups, one group holds 90% × 100 = 90 samples for five- 
fold cross-validation, and the other one holds 10%*100 = 10 samples for 
visualization, which is obtained by fusing five models (from 5-fold cross- 
validation). In Fig. 5, the middle two rows show an atrial sample (line 3) 
and the corresponding label (line 4). 

ISIC 20183: The ISIC 2018 challenge [40] contains three indepen-
dent tasks: lesion segmentation, lesion attribute detection, and disease 
classification. Here, we only focus on the first task, namely lesion seg-
mentation. In Fig. 5, the last row demonstrates a sample and the cor-
responding label. Only the training set containing 2594 images is for 
5-fold cross-validation, and the validation set containing 100 images is 
for testing. All images are normalized based on the mean and variance of 

1 https://www.med.upenn.edu/cbica/brats-2019.  
2 http://atriaseg2018.cardiacatlas.org.  
3 https://challenge2018.isic-archive.com. 
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the data population and resized to 512 × 512. 
Last but not least, we only report the performances of cross- 

validation on all datasets, which means that we exhibit the mean and 
standard deviation of each model on all training data. For visualization, 
we input each testing sample into all five models (obtained by 5-fold 
cross-validation) at the same time and calculate the average value of 
the five probability maps for the final results. In summary, the testing 
data is only for visual presentation. 

4.2. Implementation details and evaluation metrics 

In this work, we adopt the V-Net [36] as a backbone in all compar-
ative experiments. We implement our model in PyTorch, and list all 
hardware and software environments in Table 1. Unlike other models, 
our model consists of an SDM regression branch B and a PSM branch A, 
where these two branches are attached to the end of the V-Net, as shown 
in Fig. 1. After the two branches, an FFM is used to refine the segmen-
tation results. All models involved in the comparison are trained by an 
SGD optimizer for 20K iterations, with an initial learning rate 0.01 
decayed by 10% every 5K iterations. 

For 3D datasets, i.e., BraTS 2019 and LA2018, we obtain 3D patches 

by cropping each scan and normalizing these patches by using the Min- 
Max Normalization. The patch size of training and prediction is [96, 96, 
96]. We set the labeled and unlabeled batch size to 3 and prediction 
stride to [64, 64, 64] along three axes. Before being fed into the network, 
we perform random rotation ([− 20, 20]) and flipping operations on the 
fly. For the 2D dataset, i.e., ISIC 2018, we resize all images into 512 ×
512 first and then normalize them by adopting Z-score Normalization. 
Similarly, we perform random rotation (±90◦, ±180◦and ± 270◦) and 
flipping operations on the fly. The labeled and unlabeled batch size are 
set to 3 both. 

We hire several highly correlated metrics for quantitative analysis, 
including Accuracy, Dice, Jaccard index, Average Surface Distance 
(ASD), and 95% Hausdorff Distance (95HD). 

4.3. Quantitative comparison 

We verify the effectiveness of the proposed model in comparison 
experiments from quantitative and qualitative perspectives. From a 
quantitative point of view, we design two groups of comparative ex-
periments. One group verifies the positive effects of the proposed semi- 
supervised strategy, and the other group compares the proposed model 
with other methods. From a qualitative point of view, we discuss the 
segmentation results of the comparative methods, as shown in Fig. 6. 

4.3.1. Effectiveness of proposed model 
To justify the effectiveness of the proposed semi-supervised learning 

model, we conduct comparison experiments on LA 2018 by comparing a 
baseline and two variants of the proposed model. They are a V-Net 
model, a fully supervised version of our model, and a semi-supervised 

Fig. 5. Images and their segmentation results of three samples. The first two rows are from BraTS2019, which shows 2D slices from three views (axial, sagittal, and 
coronal) and the corresponding labels. The middle two rows are from LA2018, and the last row is from ISIC2018. 

Table 1 
Software and hardware experimental environment configurations.  

Software OS CUDA Pytorch V-Net  

Ubuntu18.4 11.1 1.7.1 [36] 
Hardware CPU Memery GPU Video Memery  

Xeon(R) 62G 2 × Tesla V100 2 × 32G  
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variant of our model, respectively. We report the performance of these 
three models in Table 2, where there are three groups of comparison 
experiments. The variable is the different proportion of labeled samples 
and unlabeled samples. In the last row, we apply all labeled data to train 
V-Net and get the best performance. The results confirm that the per-
formance of the semi-supervised versions is always better than the 
corresponding fully-supervised variants. As the labeled data increases, 
their performance gap is narrowing. In particular, when the number of 
labeled samples is 20, the performance of our semi-supervised method is 
better than that of full supervision in Accuracy, Dice, and Jaccard, and it 
is slightly inferior in the two distance-based criteria (ASD and 95HD). It 
shows that when there is considerable labeled data, the role of semi- 
supervised learning is not necessarily positive totally. In short, thanks 
to the effective use of unlabeled data, the proposed semi-supervised 

model is better than the fully-supervised models when there is less 
labeled data. 

4.3.2. Comparison with semi-supervised methods 
We compare our model with four state-of-the-art semi-supervised 

methods, including the Mean Teacher (MT) model [30], Entropy Mini-
mization (EM) model [41], Uncertainty-Aware Mean Teacher (UA-MT) 
model [17], and Dual-Task Consistency (DTC) model [16]. All 
comparative experiments were conducted on the training sub-sets from 
three data sets. We report the mean and standard deviation of every 
measure. All data in the table comes from 5-fold cross-validation. 

4.3.2.1. Per0066ormance comparisons on BraTS2019. Firstly, we eval-
uate our proposed model on the BraTS2019. In each fold, about 240 

Fig. 6. Visualization of comparative methods. Each row refers to a case, and each column refers to a different method.  

Table 2 
Segmentation performance of the comparative models on the LA2018 dataset using 5-fold cross validation.  

Method Scans used Metrics 

Labeled Unlabeled Accuracy Dice Jaccard ASD [voxel] 95HD [voxel] 

V-Net 5 0 0.962 4 ± 0.023 9 0.759 6 ± 0.176 7 0.643 3 ± 0.184 3 5.237 1 ± 6.608 5 22.034 5 ± 16.336 6 
Ours 5 0 0.964 6 ± 0.024 5 0.762 2 ± 0.213 2 0.651 5 ± 0.210 6 3.600 4 ± 4.733 0 19.364 7 ± 21.286 5 
Ours 5 67 0.967 7 ± 0.019 0 0.806 6 ± 0.130 6 0.692 0 ± 0.149 1 3.445 8 ± 1.927 3 14.253 0 ± 9.210 0 
V-Net 10 0 0.971 4 ± 0.014 6 0.830 1 ± 0.116 3 0.722 2 ± 0.130 1 2.917 3 ± 2.251 0 18.556 6 ± 14.747 4 
Ours 10 0 0.972 3 ± 0.020 0 0.835 8 ± 0.172 2 0.738 2 ± 0.173 0 2.431 0 ± 1.625 0 13.545 8 ± 19.248 9 
Ours 10 62 0.976 3 ± 0.014 7 0.867 1 ± 0.695 2 0.772 0 ± 0.097 9 2.426 6 ± 1.626 6 10.025 2 ± 6.668 0 
V-Net 20 0 0.977 2 ± 0.010 1 0.870 1 ± 0.057 5 0.775 8 ± 0.078 5 2.195 7 ± 0.881 2 14.317 7 ± 11.235 3 
Ours 20 0 0.978 9 ± 0.012 2 0.874 2 ± 0.101 9 0.786 8 ± 0.114 5 1.930 0 ± 0.897 4 8.410 2 ± 9.934 1 
Ours 20 52 0.979 8 ± 0.007 9 0.884 9 ± 0.042 6 0.795 9 ± 0.063 3 2.560 3 ± 1.723 7 9.773 1 ± 7.441 8 
V-Net 72 0 0.981 4 ± 0.009 2 0.891 7 ± 0.070 7 0.810 1 ± 0.088 0 1.839 9 ± 1.141 5 6.554 0 ± 4.176 8  
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samples are prepared for model training and 62 samples for validation. 
The first three rows of Table 3 lists the performances of V-Net under fully 
supervised settings (with 34, 68, and 240 labeled samples) as the 
reference. Apart from these, there are two groups of semi-supervised 
models, where the first group uses 34 labeled samples and the second 
increases to 68. Compared with fully supervised V-Net trained with only 
34 labeled samples, all semi-supervised approaches improve the seg-
mentation performance significantly with the blessing of the remaining 
unlabeled samples. From rows 4–13, UA-MT is slightly better than MT 
on most metrics, and the uncertainty map plays a good role here. DTC 
model has good advantages in Accuracy, but it is not satisfactory in other 
indicators. When there are 34 labeled samples and 206 unlabeled sam-
ples, our model ranks first on Dice, Jaccard, and 95HD, and second on 
Accuracy. When using 68 labeled samples and 172 unlabeled samples, 
our model ranks first on Accuracy, Dice, Jaccard, and 95HD, but fourth 
on ASD. 

4.3.2.2. Performance comparisons on LA2018. We further verify our 
model on the LA2018 dataset. A quantitative comparison is shown in 
Table 4. We can see that no matter how much labeled data, our approach 
achieves the best performance than other approaches on almost all 
evaluation metrics. Surprisingly, UA-MT performs poorly, while the MT 
model performs very well. DTC is almost the worst when the number of 
labeled samples is 20. 

4.3.2.3. Performance comparisons on ISIC2018. Finally, we validate our 
method on a 2D medical image set, ISIC 2018, and report the results in 
Table 5. Based on this data set, UA-MT is better than MT in Accuracy, 
Dice, and Jaccard but worse in ASD and 95HD. DTC performs very well 
when the number of available labeled samples increases to 580. When 
290 labeled samples are available, our method is best than all the other 
models on all metrics. When 580 labeled data are available, it is still best 
on Accuracy, Dice, Jaccard, and 95HD, but not very poor on ASD. 
Therefore, our framework achieves better performance than other 
frameworks, almost on all evaluation indicators. 

4.3.3. Visualization comparison 
The quantitative comparison and analysis in the previous sections 

have verified the effectiveness of our model on three commonly used 
data sets. We utilize test subsets for visualization. Fig. 6 shows a total of 
six visualization results, of which two results are selected for display in 
each dataset. We acquire each result by taking the average value of the 
probability maps of the five models obtained from 5-fold cross- 
validation. Specifically, the first two cases (row 1–2) are from 
BraTS2019, the middel two cases (row 3–4) are from LA2018, and the 
last two cases (row 5–6) are from ISIC2018. For the details of the circle 
part, our method is closer to the ground truth. For example, in the last 
row, the results of columns 1–3 are significantly worse than DTC’s and 

our results. Our results are closer to GT because of the thin and long 
characteristics of the segmented region. Compared with other methods, 
our results possess a higher overlapping degree with GT, fewer false 
positives, and more details visually. All of them further reveal the 
effectiveness, generalization, and robustness of our proposed approach. 

4.4. Ablation study 

From Eq. (16), we can know that the loss function is composed of five 
parts: ℒSDM, ℒTotalPSM, ℒboundary, ℒcl, and ℒadv. To better demonstrate the 
importance of each loss part, we conduct ablation experiments on these 
parts. We respectively use 5 and 20 labeled samples to train our atrial 
segmentation model. We compare four different combinations of the loss 
combinations: (1) ℒTotalPSM + αℒSDM; (2) (1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)βℒboundary; 3) (1 − γ(t))(ℒTotalPSM + αℒSDM)+ γ(t)(βℒboundary + ℒcl); 
and (4) (1 − γ(t))(ℒTotalPSM + αℒSDM)+ γ(t)(βℒboundary + ℒcl + ℒadv). 

Here, all hyper-parameter configurations of our model are the same 
as previous comparative experiments on LA2018, i.e, α = 0.3, β = 0.1. 
For ℒTotalPSM, ℒboundary and ℒSDM, only labeled are used to train the model. 
ℒcl uses samples without ground truth, while ℒadv requires labeled 
samples too. 

Table 6 reports the performance of the four variants with different 
losses. In Case 1, these two-loss combinations apply to an SDM output 
and three PSMs. In the first and second cases, only labeled data is used. 
In Case 2, The growing weight of boundary loss enables the network to 
pay more attention to the boundary and decrease 95HD. In this way, the 
boundary loss improves the ability to recognize the boundary area, 
especially the boundary line. In Case 3, the segmentation performance of 
the model is improved with the help of consistency loss, which is mainly 
due to the use of unlabeled data. Especially, when the number of labeled 
samples is 20, semi-supervised learning still leads to the decline of 
95HD. In Case 4, the adversarial loss enhances the robustness of the 
model and slightly increases the Dice values. Therefore, we can conclude 
that every part of the loss function in our model is essential and effective 
for model performance. 

5. Conclusion 

In this paper, we proposed a semi-supervised method for medical 
image segmentation based on both labeled samples and unlabeled 
samples. The proposed method consists of a backbone network, an SDM 
regression branch, a Pyramid Pooling Module (PPM), and a Feature 
Fusion Module (FFM). First, we adopted a dual-task learning strategy to 
obtain a PSM and the corresponding SDM. Second, with the help of PPM 
and FFM, the model is conducive to accurately acquiring boundary re-
gions by mining valuable information from (2 − |SDM| × PPM(X)), 
where X denotes the input. Meanwhile, we utilized boundary loss to 
enhance that in the boundary area. Third, the model fuses the coarse 

Table 3 
Quantitative comparison on the BraTS2019 dataset using 5-fold validation.  

Method Scans used Metrics 

Labeled Unlabeled Accuracy Dice Jaccard ASD [voxel] 95HD [voxel] 

V-Net 34 0 0.986 6 ± 0.057 8 0.815 7 ± 0.163 6 0.713 8 ± 0.184 4 2.163 1 ± 2.052 5 14.480 ± 18.538 8 
V-Net 68 0 0.992 7 ± 0.006 4 0.852 3 ± 0.129 0 0.759 9 ± 0.156 5 2.152 7 ± 4.939 8 10.228 ± 16.879 3 
V-Net 240 0 0.994 1 ± 0.004 6 0.883 6 ± 0.094 0 0.801 6 ± 0.122 2 1.810 0 ± 4.951 4 7.963 1 ± 14.209 3 
MT 34 206 0.985 5 ± 0.080 8 0.836 6 ± 0.153 4 0.742 1 ± 0.177 8 2.012 7 ± 2.042 2 9.671 3 ± 14.138 3 
EM 34 206 0.985 6 ± 0.080 8 0.837 0 ± 0.152 4 0.742 4 ± 0.177 2 1.999 7 ± 1.876 4 10.369 9 ± 15.349 7 
UA-MT 34 206 0.989 0 ± 0.057 4 0.839 4 ± 0.146 1 0.744 4 ± 0.171 7 1.891 5 ± 1.730 8 10.791 2 ± 15.797 3 
DTC 34 206 0.991 6 ± 0.008 9 0.834 3 ± 0.164 3 0.741 3 ± 0.185 8 2.917 2 ± 9.666 1 9.319 5 ± 14.633 6 
Ours 34 206 0.989 2 ± 0.057 5 0.847 2 ± 0.141 2 0.755 4 ± 0.171 1 2.265 8 ± 4.163 5 8.536 3 ± 12.216 8 
MT 68 172 0.989 6 ± 0.057 4 0.859 6 ± 0.121 0 0.769 2 ± 0.151 6 1.712 3 ± 1.328 5 9.785 3 ± 15.995 3 
EM 68 172 0.989 9 ± 0.057 3 0.862 4 ± 0.117 9 0.773 1 ± 0.148 2 1.706 0 ± 1.363 4 8.815 0 ± 12.973 2 
UA-MT 68 172 0.989 7 ± 0.057 3 0.860 8 ± 0.114 5 0.770 1 ± 0.145 7 1.664 2 ± 1.127 5 10.246 0 ± 15.745 7 
DTC 68 172 0.992 6 ± 0.008 1 0.862 1 ± 0.155 5 0.772 9 ± 0.180 2 4.072 7 ± 7.014 1 9.555 8 ± 12.230 4 
Ours 68 172 0.993 1 ± 0.006 6 0.863 3 ± 0.120 1 0.774 8 ± 0.148 7 2.203 3 ± 4.688 2 8.070 3 ± 12.387 3  
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PSM and boundary-enhanced features to obtain the final result. Forth, 
we use consistency loss and adversarial loss to mine the knowledge of 
unlabeled samples, where these two loss functions can be imposed on 
the unlabeled and labeled samples. Finally, extensive experiments on 
BraTS 2019, LA 2018, and ISIC 2018 are given to validate our model by 
comparing the proposed model with multiple recent typical approaches. 
Experimental results show that our method achieves good results in 
most evaluation criteria. It can highlight the boundaries and shapes of 
the target organs and lesion regions. In conclusion, our method can fully 
use a large pool of unlabeled data and comparatively few labeled data 
and has broad prospects in the field of automatic medical image 

segmentation. 
In our future work, we will explore different deep learning models of 

medical image segmentation and apply to different organs and tissues. 
We will use semantic context unraveling strategy to roughly segment 
multiple organs and tissues. We also use the transformer methods to 
capture the overall dependence between organs or tissues. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

Thank the reviewers for their hard work and put forward many 
constructive suggestions to improve the quality of this manuscript. 
Thank Hunan Malanshan Computing Media Research Institute for 
providing Tesla V100. This work was supported in part by the National 
Key R&D Program of China under Grant 2018YFB1003401, the National 
Natural Science Foundation of China under Grant 62 002 110, and the 
International Postdoctoral Exchange Fellowship Program (Grant No. 
20180024). 

References 

[1] Bin Pu, Ningbo Zhu, Kenli Li, Shengli Li, Fetal cardiac cycle detection in multi- 
resource echocardiograms using hybrid classification framework, Future Generat. 
Comput. Syst. 115 (2021) 825–836. 

[2] Laifa Ma, Xiao Zheng, Kenli Li, Shengli Li, Jianlin Li, Xiaoping Yi, Game theoretic 
interpretability for learning based preoperative gliomas grading, Future Generat. 
Comput. Syst. 112 (2020) 1–10. 

Table 4 
Quantitative comparison on the LA2018 dataset using 5-fold cross validation.  

Method Scans used Metrics 

Labeled Unlabeled Accuracy Dice Jaccard ASD [voxel] 95HD [voxel] 

V-Net 10 0 0.971 4 ± 0.014 6 0.830 1 ± 0.116 3 0.722 2 ± 0.130 1 2.917 3 ± 2.251 0 18.556 6 ± 14.747 4 
V-Net 20 0 0.977 2 ± 0.010 1 0.870 1 ± 0.057 5 0.775 8 ± 0.078 5 2.195 7 ± 0.881 2 14.317 7 ± 11.235 3 
V-Net 72 0 0.981 4 ± 0.009 2 0.891 7 ± 0.070 7 0.810 1 ± 0.088 0 1.839 9 ± 1.141 5 6.554 0 ± 4.176 8 
MT 10 62 0.974 5 ± 0.013 7 0.858 2 ± 0.070 7 0.757 5 ± 0.095 0 2.149 0 ± 0.794 8 16.821 0 ± 13.814 3 
EM 10 62 0.971 6 ± 0.014 8 0.845 6 ± 0.070 9 0.738 5 ± 0.097 8 2.150 4 ± 0.870 4 18.617 9 ± 13.302 9 
UA-MT 10 62 0.970 9 ± 0.015 4 0.840 0 ± 0.082 7 0.731 8 ± 0.108 4 2.300 0 ± 1.085 5 17.746 1 ± 13.142 2 
DTC 10 62 0.973 9 ± 0.015 4 0.854 8 ± 0.072 7 0.752 6 ± 0.098 2 3.853 4 ± 3.180 7 14.699 4 ± 11.657 1 
Ours 10 62 0.974 7 ± 0.014 3 0.867 1 ± 0.095 2 0.772 0 ± 0.097 9 2.426 6 ± 1.626 6 10.025 2 ± 6.668 0 
MT 20 52 0.978 5 ± 0.010 2 0.881 8 ± 0.047 0 0.791 4 ± 0.069 0 1.881 8 ± 0.746 3 12.771 3 ± 11.588 4 
EM 20 52 0.977 8 ± 0.010 0 0.877 3 ± 0.049 0.784 7 ± 0.072 8 1.929 5 ± 0.748 9 14.350 7 ± 12.595 8 
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Table 5 
Quantitative comparison on the ISIC2018 dataset using 5-fold cross validation.  

Method Scans used Metrics 

Labeled Unlabeled Accuracy Dice Jaccard ASD [pixel] 95HD [pixel] 

V-Net 290 0 0.909 9 ± 0.141 9 0.760 8 ± 0.253 5 0.668 3 ± 0.270 0 34.399 7 ± 38.628 9 78.903 0 ± 76.666 5 
V-Net 580 0 0.924 0 ± 0.127 2 0.801 2 ± 0.227 8 0.714 7 ± 0.248 1 26.473 3 ± 33.359 3 61.994 4 ± 68.585 1 
V-Net 2075 0 0.933 5 ± 0.124 0 0.836 6 ± 0.189 0 0.753 0 ± 0.212 7 21.440 6 ± 26.482 4 53.690 2 ± 60.333 8 
MT 290 1785 0.912 8 ± 0.146 7 0.776 9 ± 0.253 2 0.690 0 ± 0.269 3 31.309 9 ± 39.327 5 71.853 7 ± 77.637 9 
EM 290 1785 0.910 0 ± 0.156 3 0.772 2 ± 0.255 7 0.684 3 ± 0.270 1 29.015 8 ± 35.927 0 67.522 9 ± 71.654 6 
UA-MT 290 1785 0.913 2 ± 0.144 0 0.784 8 ± 0.241 7 0.696 6 ± 0.259 2 31.000 5 ± 38.198 0 72.261 1 ± 74.705 5 
DTC 290 1785 0.903 9 ± 0.150 0 0.771 0 ± 0.253 1 0.682 8 ± 0.273 2 38.632 8 ± 47.284 3 82.625 8 ± 84.708 5 
Ours 290 1785 0.920 7 ± 0.132 3 0.792 3 ± 0.238 7 0.706 2 ± 0.258 0 28.894 0 ± 37.279 9 67.248 5 ± 74.968 6 
MT 580 1495 0.929 0 ± 0.131 1 0.816 3 ± 0.219 3 0.733 2 ± 0.239 3 22.898 3 ± 30.427 0 55.233 8 ± 64.468 1 
EM 580 1495 0.927 7 ± 0.131 0 0.813 1 ± 0.217 7 0.728 1 ± 0.239 3 23.780 2 ± 30.582 6 57.864 3 ± 65.485 1 
UA-MT 580 1495 0.929 8 ± 0.120 4 0.816 3 ± 0.214 5 0.731 9 ± 0.236 8 24.969 5 ± 31.909 7 59.364 1 ± 65.990 1 
DTC 580 1495 0.931 2 ± 0.114 9 0.821 2 ± 0.210 0 0.737 7 ± 0.233 7 27.124 8 ± 35.613 2 62.429 8 ± 70.662 0 
Ours 580 1495 0.931 8 ± 0.125 8 0.821 8 ± 0.215 9 0.740 1 ± 0.236 7 23.187 6 ± 31.218 5 54.788 1 ± 64.094 6  

Table 6 
Ablation Study of combinations of different losses on LA2018.  

Different loss combination Scans used Metrics 

Labeled Unlabeled Dice 95HD 

ℒTotalPSM + αℒSDM  5 0 0.761 5 20.364 7 
(1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)βℒboundary  

5 0 0.763 2 18.661 2 

(1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)(βℒboundary + ℒcl)

5 67 0.798 9 14.352 7 

(1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)(βℒboundary + ℒcl + ℒadv)

5 67 0.806 6 14.253 0 

ℒTotalPSM + αℒSDM  20 0 0.874 5 9.314 7 
(1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)βℒboundary  

20 0 0.874 2 8.410 2 

(1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)(βℒboundary + ℒcl)

20 52 0.882 5 9.744 2 

(1 − γ(t))(ℒTotalPSM + αℒSDM)+

γ(t)(βℒboundary + ℒcl + ℒadv)

20 52 0.884 9 9.773 1  
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