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A B S T R A C T   

Accurately locating and segmenting lesions, organs, and tissues from medical images are necessary prerequisites 
for disease diagnosis, monitoring, and treatment planning. Semantic segmentation refers to the classification of 
each pixel/voxel in two-dimensional or three-dimensional space, which is beneficial to clinical parameter 
measurement and disease diagnosis. Due to the diversity of features such as size, shape, location, and intensity, 
segmenting lesions or organs from medical images has always been a challenging worldwide topic. Especially for 
low-contrast medical images, boundary recognition is particularly difficult. In this paper, we propose a novel 
region-to-boundary deep learning model to provide a feasible solution to alleviate this problem. First, we use a U- 
shaped network with two branches behind the last layer, one of which generates the target probability map, and 
the other obtains the corresponding signed distance map. Secondly, with the help of the signed distance map and 
obtained multi-scale features, we focus on the boundary of the target lesions or organs to be segmented. Finally, 
we fuse the region and boundary features and acquire the final results. We conduct extensive experiments on two 
public data sets and compare with seven the representative methods. The results show that the proposed model is 
superior to the comparative methods in most evaluation metrics, especially boundary tracking.   

1. Introduction 

In recent years, with the development of Artificial Intelligence (AI) 
technology, especially Deep Learning (DL), there has been an unprece-
dented development in the high-level understanding of natural images. 
Some applications in certain areas, such as license plate recognition and 
face recognition, have been popularized in our daily lives. Many scholars 
have introduced various DL algorithms into medical image processing 
and analysis, and have achieved promising results [13,19]. 

In the process of clinical medical image analysis, radiologists usually 
use X-rays, B-ultrasound (B-US), Magnetic Resonance Imaging (MRI), 
Computed Tomography (CT) and other medical images to visualize or-
gans, tissues and lesions, which can help doctors quickly make a correct 
diagnosis. Generally speaking, when doctors diagnose diseases based on 
medical imaging, they often need to locate the lesions and perform fine 
segmentation to facilitate subsequent measurement and further analyze 
the related indicators. This process can guide significance in disease 
assessment and surgical intervention. Currently, the correct diagnosis of 
diseases through medical imaging requires the full participation of 

experienced radiologists. The localization and segmentation of organs, 
tissues, and abnormal parts is an unavoidable link in the process of 
intelligent medical imaging. 

There are two popular methods applied to medical image segmen-
tation. One is based on a generative model, which uses a Generative 
Adversarial Network (GAN) to construct a generative model by using 
only health data [18]. The model projects disease images to healthy ones 
and roughly locate possible lesions. The other is based on a discrimi-
native model, which is the most mainstream and practical choice [8]. In 
the following, we will discuss some critical methods that rely on 
discriminative models, especially the widely used U-shaped 
architecture. 

Since 2015, Ronneberger et al. created a typical U-Net architecture 
for two-dimensional (2D) medical image segmentation [24]. A large 
number of experiments have confirmed the powerful strength of the U- 
Net model. Since then, many variants of U-Net models have been 
developed and applied to the field of medical image segmentation 
[15,20,22]. For example, in [20], Andriy et al. described an encoder- 
decoder-based architecture, which is a variety of U-Net and used for 
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brain tumors segmentation. An additional decoder was interpolated into 
the bottleneck of the model, and it can be used to regularize the shared 
encoder. Fortunately, the achievement ranked first in the MICCA. In the 
same year, Isensee et al. proposed a NNU-Net model [15]. They did not 
design a complex structure, but focused on data preprocessing, results 
post-processing, and automatic hyper-parameter adjustment. Surpris-
ingly, this model won the all-around champion in the Medical Seg-
mentation Decathlon.1 Even so, based on a large amount of literature 
and experiments, we cannot ignore the importance of network structure. 
For instance, Oktay et al. suggested Attention U-Net [22], a novel 
attention gate (AG) model for medical image segmentation. 

Following U-Net, Oktay et al. proposed a new Attention Gate (AG) 
model for medical image segmentation [22]. Compared with the orig-
inal U-Net architecture, the performance of the AG model has been 
significantly improved. Alom et al. designed two related models based 
on U-Net, called R2U-Net and Attention R2U-Net [1]. Gao et al. 
improved U-Net by employing an additive channel–spatial attention 
(ACSA) module in skip connection and applying multi-scale deep su-
pervision to different layers of the decoding module, which made good 
progress in model performance [7]. Reza and Azad et al. respectively 
built the BCDU-Net [3] and MCGU-Net [2] models, in which two-way 
LSTM, densely connected convolution and Squeeze-and-Excitation 
(SE) block are correctly integrated into U-Net. The models also inte-
grated with the corresponding U-Net and other latest technologies, and 
achieved good improvements. In [23], Qin et al. provided a nested U- 
shaped structure for salient target detection, in which the basic convo-
lution block is replaced by a U-shaped sub-block. Unlike ordinary U-Net 
model, the U-shaped sub-block does not change the characteristic 
channel in up-sampling and down-sampling stages. 

In practical applications, it is a good concept to consider boundary 
information in medical image segmentation. In [26], Wu et al. proposed 
a two-level neural network, where a center-sensitive mechanism was 
embedded into the global heat map to ensure the center of the tooth is 
accurately found. Then, in the local stage, a dense ASPP-UNet module 
was used to fine segment each single tooth. In [21], Andriy et al. 
introduced a fully CNN model with end-to-end boundary perception. By 
designing a special boundary branch supervised by the loss of edge 
perception, the kidney and kidney tumors can be reliably segmented 
from the 3D CT scan of the artery and abdomen. In [12], Hu et al. 
suggested a boundary-aware network for kidney and kidney tumor 
segmentation. The model uses a skip connection from the boundary 
decoder to the segmentation decoder to guide the segmentation process, 
especially for error-prone regions. In [29], Zhou et al. recommended a 
volume progressive lesion segmentation model, which uses a scale- 
invariant and boundary-aware deep convolution network to automati-
cally segment 3D lesion volume from the 2D contour. Two additional 
studies designed dedicated edge-aware branches to capture richer 
boundary-aware context, and achieved good results by increasing their 
perception of boundary information [10,29]. 

In this paper, we focus on the boundary recognition of low-contrast 
medical images, and propose a novel region-to-boundary deep learning 
model to provide a feasible solution for medical image segmentation. 
The proposed model can not only ensure the overall segmentation per-
formance, but also consider the boundary tracing. The main contribu-
tions of this work are summarized as follows:  

• We propose a region-to-boundary deep learning model and divide 
the segmentation task into two stages. In the first stage, we classify 
all input pixels indiscriminately. In the second stage, we focus on the 
boundaries of all target medical tissues. Finally, we fuse the two 
intermediate results to get the final outcome.  

• To locate the boundary features required in the second stage, we 
obtain the signed distance map of the segmented object at the same 

time, and get the boundary attention through a simple trans-
formation (1 − |SDM|). With the boundary attention matrix, the 
subsequent refinement network will focus on edge pixels.  

• We conduct extensive experiments on commonly used data sets and 
compare the proposed model with the state-of-the-art methods. The 
experimental results show that our model is superior to most 
comparative methods in terms of numerical evaluation criteria and 
vision, further verifying the effectiveness and feasibility of the pro-
posed model. 

The rest of the paper is organized as follows. Section 2 reviews the 
related work from the perspectives of U-Net, signed distance map, and 
visual attention mechanism. Section 3 describes the structure of our 
proposed region-to-boundary segmentation model and the related loss 
functions. Experimental results and performance evaluations are dis-
cussed in Section 4. Section 5 concludes the paper with a discussion of 
future work. 

2. Related work 

2.1. U-Net 

U-Net is a typical U-shaped structure, including an encoder and a 
decoder, and has received extensive attention in recent years. By 
reducing the size of the feature map and increasing the channels, the 
encoder expects to extract high-level semantic features. Then, the 
decoder up-samples the output of the previous layer and reduces the 
number of channels layer by layer, which is symmetrical with the 
encoder. However, quite apart from this, there are also skip connections 
between the symmetrical layers of the encoder and decoder. 3D U-Net 
[5] and 2D U-Net [24] can be regarded as different versions of U-Net. 2D 
U-Net is not only suitable for 2D image segmentation, both have good 
segmentation performance for 3D medical images. In recent years, each 
of them has its wins or losses in different tasks in MICCAI.2 

Since the publicity of the U-Net framework, a large number of 
improved versions have emerged, and excellent excellent have been 
achieved, especially in the application of medical image segmentation. 
For instance, in [14], the TernausNet model replaced the encoder of U- 
Net with VGG11, which is pre-trained on ImageNet. Fortunately, it stood 
out from 735 teams and won the first prize in the annual Carvana Image 
Masking Challenge. 

In many cases, the improvement work can achieve good results 
through small changes based on the U-Net model. For example, the Res- 
UNet model in Ref. [27] integrated the residual connections based on U- 
Net. The residual connection refers to the skip link of the front and back 
layers. The Dense-UNet model in Ref. [9] adopted the dense connections 
The dense connection here means that the output of a certain layer in the 
sub-module is regarded as a part of the input of the subsequent layers. 
The input of a certain layer comes from the combination of part or all of 
the outputs of the previous layers. 

In [13], Ibtehaz et al. proposed a MultiResUNet model with multi- 
residual modules, where the three outputs of three consecutive convo-
lutions and the 3× 3filter are spliced together as a combined feature 
map. Then, a residual connection is added to the model by using a 1 × 1 
convolution. In [1], Alom et al. proposed a R2U-Net model. They com-
bined the residual connection and the recurrent convolution to replace 
the corresponding sub-components on the U-Net model. The perfor-
mance of the R2U-Net model was evaluated by several common data sets 
such as skin disease images, retina images, and lung images. Note that U- 
Net [22] introduces the attention mechanism into the standard U-Net. 
An attention module is inserted on the skip connection to re-adjust the 
outputs of the encoder, thereby generating gated signals to control the 
importance of different spatial features. This so-called importance 

1 http://medicaldecathlon.com/. 2 http://www.miccai.org/. 
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means that the weights near the target are often larger than other re-
gions, which is very useful for improving the accuracy of target seg-
mentation. In [2], Asadi et al. proposed the BCDU-Net model, which is a 
hybrid of U-Net, bi-directional Long Short Term Memory (LSTM), dense 
convolution, and Squeeze Excitation (SE) block, and has gained amazing 
results. 

2.2. Signed distance map 

For the binary object segmentation mask, the corresponding distance 
map [4] can be acquired by calculating the distance from each pixel 
(marked as 1) in the target area to the nearest boundary pixel. This 
representation provides rich and powerful knowledge about the 
boundaries, shapes, and positions of segmented objects. In the same 
way, perform the above calculation on the background to obtain another 
distance map. The two distance maps take different signs, and then they 
are added by element. The result is a Signed Distance Map (SDM). 
Mathematically speaking, for a binary segmentation mask, SDM is 
usually defined in Eq. (1): 

ϕ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x ∈ ∂Ω;
− inf

y∈∂Ω
‖x − y‖2, x ∈ Ω,Ω ∕= ∅;

+ inf
y∈∂Ω

‖x − y‖2, x ∕∈ Ω,Ω ∕= ∅;
1, Ω = ∅,

(1)  

where Ω = {xi|li = 1, i ∈ S } is the pixel set of foreground, xi denotes 
any pixel, li represents the corresponding label, the index i is traversed 
the entire input image or the corresponding segmentation mask, and S 

is the index set. At the same time, we mark the boundary pixel set as ∂Ω. 

The SDM defined above has no upper limit. Because it changes with the 
size of the segmented objects and the entire images, so it is often 
normalized first in use. Here, the middle two terms in this piece-wise 
function are normalized to the range [ − 1, 1] by the Mini-Max method. 

Generally, the value of an element in SDM implies the vector distance 
from any point to the nearest pixel on the boundaries. The negative sign 
represents the target region, and the positive sign represents the back-
ground region. SDM is also a general definition of level set functions, so 
we name it phi(x). It should be noted that when there is no foreground, 
the value of each element in SDM will be set to 1. 

2.3. Visual attention mechanism 

Visual attention is a physiological mechanism that focuses on certain 
things and ignores most other information. If the background informa-
tion is not filtered out by the attention mechanism, a person will be 
submerged by the large amount of visual information captured by the 
eyes. Inspired by this biological mechanism, computer vision directly 
benefits a lot. In most DL models, the attention mechanism is usually 
implemented as an add-on block, which can be easily plug and play to 
assign different weights to different regions. In addition to hard atten-
tion, soft attention is more widely used, which is also our concern. 

Soft attention is like looking through a foggy glass window, and hard 
attention is like looking forward with a telescope. In the former case, we 
can see the whole image, but concentrate on certain places. In the latter 
case, we can only see a part of the world ahead, hopefully, the part most 
relevant to our task. Hard attention means that a pixel is either 
completely visible or completely invisible, which is equivalent to a 0–1 
discrete problem. This non-differentiability directly leads to the 

Fig. 1. Overall structure of the proposed region-to-boundary segmentation model. The proposed model consists of two parts, one is used for region segmentation, and 
the other is responsible for exploring the classification of pixels near the edge with the help of SDMs and multi-scale feature maps. The former is mainly composed of 
an encoder, an ASPP module, and a decoder. The encoder receives multi-scale inputs here. In the bottleneck, ASPP uses multiple receptive fields to refine image 
features. In the decoder, each layer has deep supervisions, and there is also an SDM regression branch to assist in obtaining boundary information. The latter mainly 
consists of a scale attention module and a fusing module. The scale attention module fuses the output features of different scales and the fusion module reconciles f1 
and the output of scale attention modules. 
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difficulty of training. For the ”clipping part” that only needs to be stored 
and manipulated, the calculation and memory requirements are very 
small. The soft attention level of each region, channel, time, or other 
dimension is expressed as a floating number from 0 to 1, which is a 
continuous problem. Due to its differentiability, soft attention is easy to 
train, but usually requires more memory and computation resources 
than hard attention. 

Soft attention can act on space, channel, and time dimensions, 
respectively, while temporal attention mainly acts on sequence data 
such as videos and natural language. So for static vision, we usually only 
use spatial attention, channel attention, and their mixed mode. As for 
spatial attention, Spatial Transformer Networks (STNs) [16] are a classic 
case, which use spatial transformers to transform spatial information 
into another space and retain key features. The spatial transformer is 
essentially the realization of the spatial attention mechanism, because 
the trained spatial transformer can find out the area in the image that 
needs to be focused. 

For channel attention, we can understand the principle of channel 
attention from the perspective of signal conversion. In signal analysis, 
any signal can be decomposed into a linear combination of sine waves. 
For example, in the Convolutional Neural Networks (CNNs), many new 
signals are generated in each channel through multiple convolutional 
kernels. That is, each input features is decomposed into multiple chan-
nels. In [11], Hu et al. focused on the relationship between the channels, 
and proposed a new type of structure called Squeeze and Excitation (SE). 
It is essentially a process of amplification and contraction. By multi-
plying the features of different channels with different weights, the 
attention of key channel regions can be improved. 

For mixed attention, on the one hand, spatial attention ignores the 
information in the channel and treats the features in each channel 
equally, which limits its ability to extract features. On the other hand, 
the channel attention focuses on the global information of multiple 
channels, while ignoring the local information of each channel. To 
integrate the advantages and avoid the disadvantages of the two, mixed 
concerns have emerged. Dual Attention [6] and CBAM [25] are two 
typical examples of this attention mechanism. In dual attention, spatial 
attention and channel attention are executed in parallel, while in CBAM, 
the two attentions are connected in series. 

3. Proposed method 

In this section, we will manifest the structure of our proposed region- 
to-boundary segmentation model and the related loss functions. 

3.1. Overall structure 

The structure of the proposed region-to-boundary segmentation 
model is shown in Fig. 1. The u-shaped network on the left is used to 
classify all pixels equally. Among them, multiple instances of a sample 
are input into each layer of the encoder. In the decoder, feature maps of 
different scales are output from each layer. At the end of the decoder, 
there are two branches, one is to generate a segmentation map, and the 
other is generate a regression SDM. All the features from the decoder are 
first concatenated along channels, and then thrown to the next 
boundary-aware module, where we focus on the edges of segmented 
objects. These modules involved in the proposed model are detailed 
below. 

3.2. Region segmentation 

The task of region segmentation is completed by a U-shaped 
network, including an encoder and a decoder, as shown in Fig. 1. In the 
encoder, four instances of a sample with different scales are input into 
the network to obtain multi-scale features. As shown in Fig. 2, The 
convolutional block of each layer is composed of the Residual U-shaped 
Blocks (RUB), which is similar to the RSU structure in U2-Net [23]. 

The structure of RUB(Cin,CM,Cout) is a typical U-shaped structure, as 
shown in Fig. 2. Among them, Cin and Cout represent the input and output 
channels respectively, and CM is the number of channels in the RUB 
internal layer. It can be seen that the u-shaped block here is different 
from ordinary U-Net. Except for the first two basic convolutional blocks, 
the parameters in channel and out channel of other convolution blocks 
are both CM. The basic convolutional block consists of a convolution, a 
batch normalization, and a ReLU function. The number of channels is 
not doubled during downsampling in the encoder, and the number of 
channels is not halved during upsampling in the decoder. That is, the 
size of the feature map is this block will never change. Last but not least, 

Fig. 2. Illustration of the Residual U-shaped block. 
Unlike the traditional U-Net, the channel of the 
feature maps will not change during up-sampling 
and down-sampling, but only the size will change. 
The output of the first convolutional block is con-
nected to the end of the decoder through element- 
wise addition. This block can be expressed in 
parameter form as RUB(Cin, CM , Cout), where 
CinandCout represent the input and output channels 
respectively, and CM is the number of intermediate 
channels used in the inner layers.   
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there is a residual connection between the output of the first convolution 
block and the end of the decoder. At the bottleneck, we place the Atrous 
Spatial Pyramid Pooling (ASPP) block for feature extractions at different 
scales. Then, we balance the number of downsampling in the RUB layer 
according to the scale of the current layer. 

In the decoding stage, the size and channels are gradually recovered 
upward. We use 1 × 1 convolution to change the number of channels to 
1 on the right side of each layer. Then, we upsample the obtained single- 
channel features to the size of the first input. By performing the Sigmoid 
function, multi-scale deep supervision is added in the model. It is worth 
noting that all single-channel features that are not activated by the 
Sigmoid function are spliced together as the input of the next stage. At 
the end of the decoder, in addition to the segmentation branch, there is 
an auxiliary branch used to obtain SDM through regression. This oper-
ation will help subsequent modules to pay more attention to boundary/ 
edge details. 

3.3. Refined segmentation 

Overall Process. After region segmentation, we collect all the feature 
maps of different sizes, including the four side outputs on the right side 
of the decoder, and then refine their boundaries. Specifically, these 
feature maps are first concatenated together along the channels. Sec-
ondly, the side features are enhanced by SDMs and sent to the scale 
attention blocks for boundary refinement. Finally, the two intermediate 
results are merged to obtain the result. We formalize this process as 
follows: 

fcoarse = Concat(f1, f2, f3, f4), (2)  

Iscale = (2 − abs(SDM)) × fcoarse, (3)  

f5 = SA(Iscale), (4)  

f final = conv(Concat(f5, fcoarse)), (5)  

Ofinal = Sigmoid(ffinal), (6)  

where f1, f2, f3, f4 are the output features on the right side of each layer in 
the decoder (as shown in Fig. 1). They have the same size and channel. 
For Eq. (2), we firstly use Concat to connect these features along the 
channel. Then, we use Eq. (3) to calculate the features with detail edge 
information, and input them to the Scale Attention (SA) block by Eq. (4). 
Finally, we simply fuse f5 and fcoarse by Eqs. (5) and (6) and get the final 
output. 

Scale Attention. Scale Attention (SA) is a special block used to fuse 
multi-scale features. As shown in Fig. 3, the first part is a channel-wise 
attention, which includes two parallel SE paths and generates a pro-
portional coefficient in [0,1] for each channel. The second part is a 
spatial attention, which consists of two ordinary convolutions. The first 
reduces the number of channels of the feature maps, and the second 
further reduces the number of channels to 1. That is, these two attention 

modules create a spatial map by highlighting the regions of interest. 
All in all, each of the two attention modules has a jump connection. 

The former is used for the feature fusion of different channels, and the 
latter is used for the spatial feature fusion of all channels. Last but not 
least, the module is to fuse multi-channel and spatial features by using 
enhancement rather than exclusion. Therefore, the fusion features and 
the input feature map are added at the end of the proposed model. 

3.4. Loss functions 

Similar to HED [28] and U2Net [23], we train our model in a deep 
supervision mode. The loss functions in region segmentation are 
different from the loss functions in fine segmentation. The former uses 
binary cross-entropy for segmentation, such as the L2 loss for SDM 
regression. In contrast, the latter uses cross-entropy for segmentation, 
including dice loss and boundary loss. We define the loss functions used 
in our work. 

Losses in Region Segmentation. As shown in Fig. 1, for region seg-
mentation, four feature maps f1, f2, f3, f4 and their concatenation fcoarse 
(2) are used as deep supervision. Here, binary cross-entropy is hired to 
calculate the average cross-entropy over all pixels. Let Ω denote the 
domain of all pixels and y be the ground truth. Further, let ŷbe the 
predicted probabilities of each pixel, which comes from the output of the 
Sigmoid function, taking f1, f2, f3, f4, and fcoarse as input. Based on the 
above assumptions, our training loss for region segmentation is defined 
as: 

Lk(ŷ, y) =
1
|Ω|

∑

i∈Ω
− yilog(ŷi) − (1 − yi)log(1 − ŷi) (7)  

where k = 0,1, 2,3, 4 corresponds to the five supervised terms. In 
addition, we use L2 loss between the predicted SDM and real SDM for the 
SDM regression. This term can be written easily as below Eq. (8): 

Ll2 = ||SDMpred − SDMgt||2, (8)  

where SDMpred denotes the predicted SDM and SDMgt is the SDM 
calculated from labeled segmentation masks. So in general, the total loss 
in region segmentation is summarized as follows: 

Lregion = Ll2 +
∑4

i=0
Lk, (9)  

where no weight is set up, means that the weight of all sub-losses is equal 
to 1. 

Losses in Refined Segmentation. For refined segmentation, in addition 
to the Cross-Entropy (CE) loss (treating all pixels equally), we also use 
boundary loss (focusing on points around the boundary) to enhance the 
boundary perception. We define the former as: 

Lrefine = L5 +L6, (10)  

where L5 means the CE loss between ground truth and the output of f6 

Fig. 3. Illustration of the Scale Attention with residual connections, where Channel Attention (CA) and spatial attention are chained together, and its input is a 
combination of resized feature maps with different scales obtained in the decoder. 
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(as shown in Fig. 1), and L6 is the CE loss between ground truth and Ofinal 

(as shown in Eq. (6). 
Inspired by Kervadec et al. [17], we employ the boundary loss in our 

work: 

L B(θ) =
∫

Ω
ϕG(q)pθ(q)dq, (11)  

where pθ is the predicted probability map of the input q, θ is model 
parameters, ϕG is a real SDM, which can be acquired readily from the 
labeled mask G. From Eq. (11), the boundary loss is a weighted sum of all 
elements of predicted probability maps, and ϕG acts as the weight 
tensor. 

Total Losses. Ultimately, we define the final loss by combining the 
boundary loss with the standard regional loss: 

L final = (1 − α)LR(θ) +αL B(θ), (12)  

where α is a coefficient weight that balances the boundary loss and the 
regional loss, as defined as: 

L R = Lrefine + Lregion =
∑6

i=0
Lk + Ll2. (13)  

4. Experiments 

4.1. Implementation details 

We use PyTorch to implement the proposed DL framework, and 
conduct all experiments on a device equipped with XEON E5-2678V3 
CPU, 32G RAM, and NVIDIA 2080Ti GPU with 11G memory. For 
hyper-parameter setting, the initial learning rate is set to 2e − 4, the 
weight decay is set to 0.0005, and the momentum is set to 0.99. In 
particular, for α in Eq. (12), we use a step-dependent Gaussian warming 
up function: 

β(t) = exp

(

− 5
(

1 −
t

tmax

)2
)

, (14)  

to balance the regional loss and boundary loss, where t represents the 
current training step, and tmax means the maximum training step. In the 
final stage of our method, we fuse the results of boundary and region 
segmentation as the final output. The experimental results show that our 
framework is superior to the comparison methods in different evaluation 
metrics. 

The experimental results show that the method is superior to the 
existing representative methods in the six evaluation indicators. 

4.2. Data sets and evaluation metric 

4.2.1. Data sets 
We train and test our model on three widely used datasets: ISIC- 

2018,3 a lung segmentation dataset,4 and left atrial segmentation.5 

ISIC 2018. The ISIC data set comes from 2018 ISIC challenges for 
three tasks: lesion segmentation, lesion attribute detection, and disease 
classification. We use the training data set of the first task, which con-
tains 2594 images and the corresponding masks. To train, validate, and 
test our proposed framework, we divide it into three parts: 1815 images 
for training, 259 images for validation, and 520 images for testing. Due 
to hardware limitations and the size of each sample, we adjust the size of 
all images and corresponding masks to 256 × 256. There are no more 
data pre-processing operations, including spatial transformation and 
augmentation of color, brightness, and noise, except normalizing the 
samples before inputting them into the comparison models. 

Lung Segmentation Data Set. The lung segmentation data set is a 
collection of CT images. It is introduced in the 2017 Kaggle Data Science 
Bowl’s Lung Nodule Analysis (LUNA) competition to detect lung lesions 
in CT images. We first truncate the value of each 3D CT image to the 
range of [− 512, 512], and then normalize them to [0, 1] through min-
–max normalization. We divide all slices containing lungs into a training 
set (70%) and a test set (30%), and adjust the size of each image to 512 ×
512. 

Left Atrial Segmentation Data Set. This data set includes 154 3D MRIs 
from patients with atrial fibrillation. The original MRI images are in 
grayscale, and the manual labels are presented by a binary mask. The 
size of the MRI images on the X-Y plane may vary from patient to pa-
tient, but the z-axis contains 88 fixed 88 slices. In our experiments, we 
slice 3D MRI images along the z-axis and re-sample them to 512 × 512 
on the X-Y plane. To facilitate local testing, we only use 100 3D training 
data with labels. These 3D data are cut into 2D along the z-axis, and then 
divide them at a ratio of 7:3. The former is used for training and the 
latter is used for validation. 

4.2.2. Evaluation metrics 
For medical image segmentation, we use several related metrics for 

performance evaluation of the comparison methods, including Dice, 
HD95, Jaccard Similarity (JS), Accuracy (AC), Specificity (SP), Sensi-
tivity (SE), and Precision (PC). When the validation loss remains un-
changed for 12 consecutive epochs, we will stop model training. For the 
ISIC2018, LUNG data sets and LA segmentation, the maximum number 
of training epochs is set to 100. 

4.3. Comparison experiments 

In this section, we compare the proposed framework with 7 latest 
methods, including U-Net [24], Attention U-Net [22], R2U-Net [1], 

Table 1 
Comparison results on the ISIC-2018 data set.  

Method⧹ Metric  Dice HD95 SP SE ACC PC JS 

U-Net [24] 0.832 ± 0.179 4.702 ± 2.152 0.987 ± 0.040 0.784 ± 0.197 0.941 ± 0.090 0.934 ± 0.169 0.742 ± 0.206 
Attention U-Net [22] 0.857 ± 0.156 4.804 ± 2.269 0.980 ± 0.049 0.856 ± 0.181 0.944 ± 0.090 0.900 ± 0.160 0.775 ± 0.192 

R2U-Net [1] 0.867 ± 0.139 4.67 ± 2.147 0.971 ± 0.050 0.882 ± 0.150 0.949 ± 0.073 0.887 ± 0.159 0.786 ± 0.170 
Attention R2U-Net [1] 0.857 ± 0.150 4.648 ± 2.010 0.986 ± 0.025 0.830 ± 0.183 0.946 ± 0.085 0.924 ± 0.138 0.771 ± 0.180 

MSF-ACSA [7] 0.862 ± 0.152 4.459 ± 2.109 0.987 ± 0.037 0.825 ± 0.176 0.947 ± 0.086 0.948 ± 0.134 0.782 ± 0.186 
BCDU-Net [2] 0.875 ± 0.142 4.625 ± 2.028 0.976 ± 0.039 0.884 ± 0.154 0.956 ± 0.059 0.900 ± 0.148 0.799 ± 0.169 
U2-Net [23] 0.880 ± 0.145 4.371 ± 1.991 0.982 ± 0.048 0.889 ± 0.161 0.954 ± 0.081 0.913 ± 0.141 0.808 ± 0.171  

Ours 0.887 ± 0.133 4.360 ± 1.974 0.979 ± 0.043 0.892 ± 0.156 0.957 ± 0.069 0.919 ± 0.129 0.817 ± 0.168  

3 https://challenge2018.isic-archive.com.  
4 https://www.kaggle.com/kmader/finding-lungs-in-ct-data.  
5 http://atriaseg2018.cardiacatlas.org. 
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Attention R2U-Net [1], MSF-ACSA [7], U2-Net [23], and BCDU-Net [2]. 
Please note that all results of the above methods are obtained by running 
the source code ourselves or by the author’s pre-calculation. The source 
codes of the comparison methods for training and testing are provided in 
[22,1,23,2]. 

4.3.1. Quantitative comparison 
To report the average performance and stability of all methods, each 

image must be tested separately. The experimental results on the three 
data sets are reported in Tables 1–3. In general, our method has achieved 
the best performance in two key indicators: Dice and HD95 with a big 
gap and other indicators have also achieved at least suboptimal per-
formance. Specifically, for the segmentation of skin lesion, as shown in 

Table 2 
Comparison results on the Lung data set.  

Method⧹ Metric  Dice HD95 SP SE ACC PC JS 

U-Net [24] 0.944 ± 0.146 6.002 ± 1.481 0.997 ± 0.003 0.946 ± 0.114 0.992 ± 0.004 0.949 ± 0.160 0.915 ± 0.162 
Attention U-Net [22] 0.945 ± 0.151 5.890 ± 2.076 0.998 ± 0.002 0.933 ± 0.134 0.991 ± 0.009 0.963 ± 0.157 0.919 ± 0.163 

R2U-Net [1] 0.950 ± 0.142 6.036 ± 1.833 0.995 ± 0.003 0.969 ± 0.096 0.993 ± 0.003 0.940 ± 0.157 0.926 ± 0.158 
Attention R2U-Net [1] 0.951 ± 0.133 6.012 ± 1.653 0.995 ± 0.004 0.972 ± 0.064 0.993 ± 0.003 0.945 ± 0.153 0.926 ± 0.152 

MSF-ACSA [7] 0.954 ± 0.127 6.971 ± 3.075 0.993 ± 0.008 0.961 ± 0.110 0.991 ± 0.006 0.951 ± 0.133 0.929 ± 0.139 
BCDU-Net[2] 0.961 ± 0.125 5.136 ± 1.654 0.997 ± 0.003 0.969 ± 0.092 0.995 ± 0.003 0.963 ± 0.131 0.943 ± 0.143 
U2-Net [23] 0.959 ± 0.129 5.193 ± 1.689 0.997 ± 0.002 0.971 ± 0.076 0.995 ± 0.003 0.958 ± 0.144 0.940 ± 0.145 

Ours 0.966 ± 0.115 4.947 ± 1.577 0.997 ± 0.003 0.983 ± 0.047 0.995 ± 0.003 0.960 ± 0.131 0.948 ± 0.131  

Table 3 
Comparison results on the LA data set.  

Method⧹ Metric  Dice HD95 SP SE ACC PC JS 

U-Net [24] 0.827 ± 0.180 3.724 ± 1.071 0.998 ± 0.002 0.887 ± 0.163 0.997 ± 0.002 0.802 ± 0.203 0.736 ± 0.205 
Attention U-Net [22] 0.839 ± 0.168 3.662 ± 1.062 0.998 ± 0.002 0.881 ± 0.167 0.997 ± 0.002 0.828 ± 0.183 0.750 ± 0.195 

R2U-Net [1] 0.846 ± 0.173 3.511 ± 0.934 0.999 ± 0.001 0.842 ± 0.183 0.997 ± 0.002 0.876 ± 0.175 0.762 ± 0.192 
Attention R2U-Net [1] 0.847 ± 0.168 3.547 ± 0.982 0.999 ± 0.001 0.853 ± 0.185 0.997 ± 0.002 0.868 ± 0.169 0.762 ± 0.192 

MSF-ACSA [7] 0.856 ± 0.143 3.492 ± 1.006 0.999 ± 0.001 0.878 ± 0.154 0.997 ± 0.002 0.857 ± 0.153 0.770 ± 0.172 
BCDU-Net [2] 0.830 ± 0.186 3.636 ± 1.094 0.999 ± 0.002 0.823 ± 0.195 0.997 ± 0.003 0.873 ± 0.189 0.741 ± 0.209 
U2-Net [23] 0.859 ± 0.161 3.337 ± 0.887 0.999 ± 0.001 0.850 ± 0.177 0.998 ± 0.001 0.890 ± 0.161 0.778 ± 0.185 

Ours 0.865 ± 0.149 3.323 ± 0.892 0.999 ± 0.001 0.870 ± 0.157 0.998 ± 0.001 0.883 ± 0.154 0.785 ± 0.180  

Fig. 4. ROC diagrams of the proposed method for three data sets.  

Fig. 5. Precision-recall curves of the proposed method for three data sets.  
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Table 1, the performance of our method greatly exceeds that of other 
methods on Dice and HD95, only slightly worse on SP and PC. For lung 
segmentation, as shown in Table 2, our framework is still only slightly 
worse in SP and PC too, and the others are optimal. For the segmentation 
of the left ventricle, as shown in Fig. 3, the conclusion is similar to the 
first two cases. Dice indicates the coincidence degree between the pre-
diction and GT. The larger the value, the higher the coincidence degree. 
Hd95 implies a distance between the prediction and GT boundary. The 
smaller the distance, the closer the two are, the better the prediction 
result will be. In general, the performance of our method is the best in 
these two indicators, but it is deficient in both SP and PC. 

As shown in Table 1, Our results are significantly better than all other 
methods in Dice, ACC and JS, and the HD95 is obviously optimal/ 
minimum, which shows that the coincidence degree between the 
segmented region inferred by our model and the manually labeled mask 
is the highest, and the edge similarity is also the highest. From the 
standard deviation, our result is also the most stable. The conclusion in 

Table 2 is similar to that in Table 1. Only BCDU-Net and u2net have the 
same performance as our method. Our performance is almost all-around. 
Only our PC index is worse than BCDU-Net, which is enough to show the 
superiority of our proposed model. Surprisingly, the performance of 
BCDU-Net in Table 3 is poor. U2-Net and our method are almost always 
the best two methods, followed by the MSF-ACSA model. U2-Net is only 
slightly better than our method in the PC index. 

To show the overall performance of the network on three data sets, 
ROC curves, precision recall curves and confusion matrices are shown in 
Figs. 4–6 respectively. Here, we flatten all test images and corresponding 
labels into 1D arrays respectively for overall calculation. Unlike the data 
in Tables 1–3, each image is evaluated separately, and then the mean 
and standard deviation are obtained. For the above two kinds of curves, 
the shape is not very important, but the key lies in the area formed with 
the X-axis. To show the performance more intuitively, we list the three 
normalized confusion matrices on the three data sets. 

Fig. 6. Confusion matrix presentations of the proposed method for three data sets.  

Fig. 7. Qualitative comparison with seven existing representative methods. The first two lines of the input data are skin disease cases from ISIC-2018, the middle two 
lines are from the Lung data set, and the last two lines are from the LA data set. Visual segmentation results are listed in each column by using different methods. It is 
easy to see that the results of the proposed method are closest to ground truth, and the visual effect is the best in both global positioning and local details, especially 
boundary details. 
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4.3.2. Visual comparison 
In Fig. 7, we show some visualization results to evaluate the effec-

tiveness of our method in object segmentation. From the segmentation 
results, benefiting from the enhancement of edge features, we can see 
that our method can not only accurately locate the whole segmentation 
region, but also highlight the sharp and boundaries of the objects. For 
instance, for the first and second samples with very smooth edges and 
relatively sharp, most comparative methods can only locate those 
approximate positions. However, based on the additional SDM branch 
and the subsequently refined networks, our method can well capture the 
edge features and achieve better accuracy than other methods. For the 
third and fourth samples, almost all methods have achieved good results 
in the outer boundary segmentation, but the inner gap is large. As a 
whole,the edge information of the segmented object is not prominent, 
and our results are still the closest to the ground truth. The last two lines 
show the evaluation results of two samples from the LA test set, where 
u2net, BCDU-Net, and MSF_ACSA can achieve better performance than 
the comparison methods. After careful comparison, our results are still 
closest to the ground truth. 

4.4. Ablation study 

To verify the feasibility and effectiveness of our proposed frame-
work, we conduct an ablation study on the ISIC-2018 data set. Two 
different variants in the last two rows of the proposed model are tested 
on the same dataset, one of which has a refined module and the other 
does not. The hyper-parameter settings of the two models are the same. 
In addition, we also add the first two rows as a comparison to verify the 
impact of multi-scale input. We first train these models to converge, and 
then evaluate them, as shown in Table 4. 

From Table 4, we can see that the SDM branch and the refined 
module can improve overall performances indeed. In addition, the 
multi-scale input can slightly improve the overall performance. 

5. Conclusion 

This paper presented a region-to-boundary and coarse-to-fine deep 
learning framework for medical image segmentation to ensure overall 
segmentation performance and highlight boundary details. First, four 
identical samples of different sizes are input into different layers of the 
encoder of the proposed DL framework. Multi-scale features are 
extracted from each layer of the decoder for deep supervision. In addi-
tion, an SDM regression branch is generated at the end of the decoder to 
obtain the edge probability map of the target, which can well guide the 
subsequent network to segment the boundaries. Finally, we obtain the 
segmentation results by fusing the edge features and overall features. 
With the help of SDM, we can enhance edge features and improve 
boundary segmentation performance. Experiments are performed to 
compare the proposed framework with the latest methods on three 
public datasets, and demonstrate the advantages of our framework in 
medical image segmentation. 
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