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DeepRB: Deep Resource Broker Based on Clustered
Federated Learning for Edge Video Analytics

Xiaojie Zhang™, Saptarshi Debroy

Abstract—Edge computing plays a crucial role in large-scale
and real-time video analytics for smart cities, particularly in envi-
ronments with massive machine-type communications (mMTC)
among IoT devices. Due to the dynamic nature of mMTC, one
of the main challenges is to achieve energy-efficient resource
allocation and service placement in resource—constrained edge
computing environments. In this paper, we introduce DeepRB,
a deep learning-based resource broker framework designed for
real-time video analytics in edge-native environments. DeepRB
employs a two-stage algorithm to address both resource allocation
and service placement efficiently. First, it uses a Residual
Multilayer Perceptron (ResMLP) network to approximate tradi-
tional iterative resource allocation policies for IoT devices that
frequently transition between active and idle states. Second, for
service placement, DeepRB leverages a multi-agent federated
deep reinforcement learning (DRL) approach that incorporates
clustering and knowledge-aware model aggregation. Through
extensive simulations, we demonstrate the effectiveness of
DeepRB in improving schedulability and scalability compared to
baseline edge resource management algorithms. Our results high-
light the potential of DeepRB for optimizing resource allocation
and service placement for real-time video analytics in dynamic
and resource-constrained edge computing environments.

Index Terms—Energy efficiency, edge computing, resource
management, service placement, real-time video analytics.

I. INTRODUCTION

N RECENT years, driven by the nimbleness and mobility
Iof Internet of Things (IoT) devices, the pervasive adop-
tion of massive Machine-Type Communications (mMTC) [1]
has significantly impacted the landscape of mission-critical
surveillance scenarios, such as smart city [2] and Industry
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Fig. 1. Use cases of edge-supported video analytics. In this scenario, a
large number of IoT devices equipped with camera sensors periodically or
occasionally request computing services from nearby Hybrid Access Points
(HAPs) [5] to enable real-time and energy-efficient video processing. An HAP
typically consists of a standalone Wireless Access Point (WAP) to provide
network infrastructure, as well as heterogeneous computing units (e.g., GPUs
and CPUs) to provide computation resources.

4.0 [3] to name a few. Such surveillance scenarios often use
video analytics as a technique to automate the analysis of the
video content (collected by IoT devices), which usually has
strict end-to-end (E2E) processing requirement. Moreover, to
obtain high analysis accuracy, most video analytics technolo-
gies rely on Artificial Intelligence (AI) models to interpret the
video data and extract insights, e.g., object detection and track-
ing. Considering the low processing speed and battery capacity
of embedded computing chips (i.e., CPU, GPU) on modern
IoT devices, running such Al models locally on IoT devices
although desirable, is far from realistic. On the other hand,
streaming large amount of video content to remote cloud data-
center is counterproductive, as it significantly increases overall
response time. Therefore, edge computing has emerged as an
ideal compromise between IoT device processing and remote
cloud-based processing by moving computing resources and
data storage to the edge of the network, providing faster, more
reliable, and more secure computing services [4].

In Fig. 1, we show an exemplary edge-supported mMTC
scenario in the context of a smart city use case, where IoT
devices (such as unmanned aerial vehicles, industrial robots,
and other monitoring devices) are strategically distributed
in an urban area, each serving a specific purpose, such as
manufacturing automation [6], smart healthcare [7], smart
transportation [8], home security [9], and so on. In such
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scenarios, end users (such as private companies, schools,
manufacturers, and government entities) utilize IoT devices to
capture raw video data of the surrounding environment with
targeted scenes or objects. The data is then transmitted to a
nearby hybrid access point (HAP) [5]. The video analytics
applications hosted by such HAP units process the data (using
the computation resources of the HAPs) and feed the results
back to the respective consumers. The consumers subsequently
use these results for informed decision-making with or without
a ‘human-in-the-loop’. Such an mMTC ecosystem thus facil-
itates real-time and context-aware analysis, decision making,
and actions that are of paramount importance for the efficient
and effective operation of modern smart city use cases [10].

Although edge computing is recognized as a critical enabler
for implementing mMTC in dynamic real-world environ-
ments, it still faces several challenges. Firstly, due to the
spatio-temporal variance of the radio spectrum, the wireless
channel quality and consequently the radio transmission char-
acteristics experienced by IoT devices in urban areas can
vary greatly resulting in time-varying network delay, which
in turn impacts the end-to-end latency of video analytics.
Secondly, in smart cities, a vast number of IoT devices that
require sporadic or occasional communication [11], [12], are
connected to an edge network simultaneously. Such random
transitions of IoT devices between active and idle states
introduce additional complications to overall system resource
management. Finally, in edge computing, joint optimization
is frequently required for resource allocation and service
placement, with discrete and continuous variables tightly
interconnected. This need is especially pronounced in dynamic
edge environments, where solving long-term Mixed-Integer
Nonlinear Programming (MINLP) problems poses a signifi-
cant challenge.

Works such as [13], [14], [15], [16], [17] use problem
decomposition or other similar methods to address above
challenges. However, these traditional methods struggle to
adapt to the dynamic changes in computing environments
and often result in convergence to local optima too easily. In
contrast, studies such as [18], [19], [20], [21], [22] leverage
deep learning algorithms to address edge dynamism. These
approaches empower learning agents to interact within the
edge environment, facilitating optimal resource allocation and
service placement strategies [23]. Nevertheless, none of the
aforementioned work addresse the schedulability and scala-
bility issues in mMTC scenarios, where the number of IoT
devices can frequently change. This requires a more flexible
model that can adapt to a varying number of IoT devices,
a capability that centralized methods lack. To the best of
our knowledge, this article is among the few that develop
a distributed training framework based on Multi-agent Deep
Reinforcement Learning (MADRL), utilizing clustering and
knowledge-aware model aggregation inspired by Federated
Learning (FL).

In this article, we propose an edge-assisted resource bro-
kering (RB) framework, viz., DeepRB, that performs joint
resource allocation and service placement for large-scale video
analytics. The main contributions are summarized as follows:

1) System Model: We study a dynamic scenario where

IoT devices may frequently transition between active
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and idle states, resulting in constant fluctuations in
computation and communication demands. We then
formulate this fundamental problem as a long-term
MINLP problem, aiming to determine energy-efficient
resource allocation and service placement in resource-
constrained edge computing environments. To reduce the
complexity of the proposed problem, we decompose it
into two sub-problems: Resource Allocation and Service
Placement.

2) Resource Allocation: We design an [terative Resource
Algorithm (IRA), a robust iterative algorithm based on
Lagrangian multipliers and the sub-gradient method to
jointly optimize computational and networking resource
allocation for enhanced energy efficiency. To boost
responsiveness and scalability, we introduce ResMLP,
a Residual Multi-Layer Perceptron-based model specif-
ically designed to emulate the policies generated by the
IRA, achieving near-optimal performance with reduced
computation time.

3) Service Placement: we propose a cutting-edge Proximal
Policy Optimization (PPO)-based algorithm to determine
optimal service placement strategies, ensuring efficient
utilization of distributed resources. To further enhance
training efficacy and adaptability, we design a novel
Digital Twin (DT)-enabled distributed training frame-
work. This framework incorporates clustering techniques
and knowledge-aware Federated Learning (FL), signif-
icantly improving the scalability and efficiency of the
service placement process.

4) Validation: The proposed DeepRB framework is exten-
sively validated through a case study using real-world
applications, demonstrating its scalability and efficiency
in large-scale IoT deployments. The proposed algo-
rithm achieves a 25.8% improvement in task completion
ratio compared to naive resource allocation schemes.
Additionally, the ResMLP model significantly acceler-
ates resource allocation decision-making by a factor of
10X to 500X, nearly without any noticeable loss (<
3.16%). For service placement, DeepRB shows strong
robustness, achieving over 60% energy savings in static
environments and a 22% to 25.1% reduction in energy
consumption in dynamic scenarios when compared to
state-of-the-art methods.

The rest of the paper is organized as follows. Section II
presents the related works. Section III proposes the system
model and problem formulation. Section IV presents the
resource allocation algorithm. Section V discusses the ser-
vice placement. Section VI discusses performance evaluation.
Section VII concludes the paper.

II. RELATED WORKS

The performance of real-time video analytics at the edge
is heavily influenced by key factors such as resource allo-
cation and service placement strategies—terms also referred
to as server assignment or task offloading in related studies.
Recently, a growing number of works has focused on achieving
energy-efficient video analytics through the joint optimization
of these factors. However, this joint optimization is inherently
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TABLE I
COMPARISON OF PROPOSED SOLUTION WITH RELATED WORKS

Ref Stochastic Task
[13] v
[14]
[15] v
[16]
[17]
[18]
[19], [20]
[21]
[22]

Ours

Method
BCD

Decomposition

Heuristic
Lyapunov + Cooperative Game

Hungarian

NN

Two-sided Matching Game
DQN
Distributed-DDQN
DDPG
PPO
v ResMLP + Clustered-PPO

NN N

challenging, as it involves solving a complex MINLP problem.
Due to its discrete and combinatorial nature, this problem
is typically NP-hard [24], posing significant computational
and scalability challenges. Table I compares the proposed
solution with existing studies in terms of task feature, problem
decomposition, and methodology.

A. Problem Decomposition and Iterative-Based Algorithm

Since finding an optimal solution to complex MINLP
problems is notably challenging and time-consuming, many
existing works focus on designing low-complexity methods
(such as decomposition or bi-level optimization, game theory,
etc) to obtain near-optimal solutions. In their work [13], the
authors introduce FACT, a block coordinate descent (BCD)
approach, which iteratively tackles the server assignment and
frame resolution selection sub-problems by sequentially fixing
one variable at a time. In [14], the authors utilize a heuristic
algorithm, which iteratively executes either the remove oper-
ation or the exchange operation, to derive the binary task
offloading decisions. The authors in [15] present JORA, a
Lyapunov optimization-based online approach, formulating the
task offloading problem as a distributed non-cooperative game.
Likewise, works such as [16], [17] employ the Hungarian
method and a two-sided matching game to devise optimal
offloading strategies. However, these works are often required
to solve the resource allocation sub-problems repeatedly
many times, which is also time-consuming as the number
of IoT devices grows; especially for works that rely on
iterative parameter update (e.g., gradient descent or sub-
gradient descent methods). In addition, none of these works
have addressed the aspect of minimizing the decision time
for resource allocation. Therefore, they are not designed for
dynamic edge computing environments.

B. DRL-Based Algorithm

Due to recent advancements of deep learning technologies,
such as Deep Q-Network (DQN) and Double Deep Q-Network
(DDQN) [18], [19], DRL-based algorithms have gained sig-
nificant attention in the domain of edge computing. Compared
to the previously mentioned iterative-based algorithms, DRL
approaches offer a more efficient and adaptable means of
decision-making by allowing continuous interactions between
agents and environment. This has led to their popularity in
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Fig. 2. Al-based city surveillance for smart city through real-time edge IoT
video analytics.

tackling complex and dynamic edge computing problems.
Reference [20] proposes DeepEdge, a DDQN based algorithm
for server selection in a stochastic edge environment with
dynamic offloading requests and time-varying communication
conditions. The authors in [21] develop a Deep Deterministic
Policy Gradient (DDPG) empowered model, called D3PG, to
optimize task partitioning and resource allocation. In D3PG,
noises sampled from the Dirichlet distribution are added
to actions as the exploration mechanism. Reference [22]
presents EPtask, which is designed based on Proximal Policy
Optimization (PPO) algorithm to make joint decisions on task
offloading and priority assignment.

Nevertheless, none of the aforementioned works have taken
into account the sporadic or occasional communication charac-
teristics of mMTC, combined with a fast and highly adaptable
resource allocation policy of HAPs. To the best of our
knowledge, our work is the first to address the conjunction of
these two aspects.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 2, we consider a standalone edge
computing framework tailored for smart city applica-
tions, called DeepRB, which consists of a set of HAPs
K = {1,...,k,...,K} and numerous IoT devices N =
{1,...,n,..., N} (it is assumed that N > K). The IoT
devices n € N are randomly distributed across the service
area, carrying out their designated real-time video analytics
missions with the assistance of a selected HAP k € K
(e.g., anomaly detection, activity recognition, asset tracking).
In this article, we particularly focus on IoT devices that
operate sporadically or intermittently due to their mission
attributes. We define a time-slotted optimization system 7 =
{1,...,t,..., T}, where the edge environment is assumed
to remain unchanged within each time slot, denoted by t.
Moreover, we describe the service placement problem as
an k(t) € {0,1}, where a,, 1,(¢) = 1 indicates that the n-th IoT
device is connected to the k-th HAP in time slot #; otherwise,
an,k(t) = 0. Since ToT device can be connected to only one
HAP, we have 25:1 n(t) =1, Yn € Nforall t € T.
The DeepRB framework is centrally managed by a coordinator,
hosted by one or a collection of HAPs acting in unison.
It is responsible for orchestrating resource allocation and
service placement between HAPs and IoT devices. The major
notations used in the system model and problem formulation
are summarized in Table II.
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TABLE 11
TABLE OF NOTATIONS

Symbol Definition
K Set of HAPs
N Set of IoT devices
k k-th HAP
n n-th IoT device
anyk(t) Service placement indicator between IoT device n and
HAP k
(n,yn) 2-D coordinate of n-th IoT device
Un Activation state of n-th IoT device
T Latency requirement of IoT devices
tC, (t) Task computation latency of n-th IoT device on k-th HAP
mp DNN model type of task for n-th IoT device
Bn Number of captured frames per time slot for n-th IoT
device
Un Resolution of captured frames for n-th IoT device
Cm,, (un)  Computational complexity of the task for n-th IoT device
with DNN model m,, and resolution
S,k (t) Allocated computational resources from k-th HAP to the
n-th IoT device
Fynar Computation capacity of k-th HAP
W, 1 (t) Allocated bandwidth from k-th HAP to the n-th IoT
device
Wi Available bandwidth of k-th HAP
T,k (t) Available data rate for n-th IoT device when connected
to k-th HAP
D,k (L) Transmission power for IoT device n when connected to
k-th HAP
In K Channel power gain for IoT device n when connected to
k-th HAP
TT’? L (1) Task transmission latency for IoT device n when con-
’ nected to k-th HAP
D(un) Data size of tasks released by n-th IoT device with frame
resolution wy,
en,k(t) Energy consumption of n-th IoT device when connected
to k-th HAP
prmar Maximum transmission power of IoT device

A. IoT Device State and Application Model

As previously mentioned, IoT devices are distributed ran-
domly across the service area. We define locy, = (zp, yn) and
locj, = (x,,yy,) as the geolocation of n-th IoT device and k-th
HAP, respectively. Then, the euclidean distance between the
n-th IoT device and k-th HAP is defined as 1, ;, = ||loc,, —
loc||. It is assumed that each IoT device may transition
to idle state in each time slot with probability p. We set
vp(t) = 1 if the IoT device n is in active state; otherwise,
vp,(t) = 0. Moreover, our primary focus is on Deep Neural
Networks (DNNs) for video analytics, which are extensively
utilized in public safety and automation scenarios. Specifically,
we concentrate on DNN models that accept individual video
frames as inputs and generate customized results accordingly.

In this article, we define the features of computation tasks as
a tuple ¢, = {Bn, mn, up }, denoting the number of captured
frames per time slot 3, the application’s DNN model m,, €
M=AL,....m,...,M} (e.g., yolov5, SSD, AlexNet), and
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the frame resolution uw, € U = {128 x 128,...,640 x
640}, respectively. We assume that ToT devices continuously
generate such tasks, and each task must be processed within
a deadline 7. We recognize that task heterogeneity poses a
significant challenge, especially as the number of active IoT
devices grows. Thus, jointly optimizing resource allocation
and service placement becomes critical for the efficient oper-
ation of the DeepRB framework.

B. Analytical Models

1) Computation Model: Define the computational com-
plexity of a task as S, x Cp, (up), the computation latency
is computed by

Bn X C'mn (un)
fn,k‘(t)
0 an,  (t) vn ()

where Cp,, (up) (measured in CPU cycles) is the compu-
tational requirements of a single inference on DNN model
myp with frame resolution uy, and f, j(t) is the amount of
computational resources allocated from k-th HAP to the n-th
IoT device in time slot ¢. It needs to satisfy the following
constraint for all ¢ € T:

0

N
D ha(t) = F, Yk e K )
n=1

where FJ"* is the computation capacity of k-th HAP.

2) Transmission — Model: We  consider  Orthogonal
Frequency-Division Multiple Access (OFDMA) [25] based
communication networks, where each HAP occupies an
exclusive wireless channel whose bandwidth is denoted
as Wi, Vk € K (measured in Hz). Additionally, we
define wy(t) = [wy (), .., wyp(t), .., wyx(t)] as the
bandwidth allocation vector of the k-th HAP, where wy, (%)
represents the bandwidth of a sub-channel allocated to IoT
device n. Our model does not account for either inter-HAP or
intra-HAP interference, therefore the follow constraint needs
to be satisfied

N
> wn(t) = Wi, VE €K 3)
n=1

Given wy(t), the available data rate experienced by IoT
device n connected to the k-th HAP is expressed by the
Shannon-Hartley formula as follows:

“)

Pk (8) 9n ke
o (£) = { W,k (1) logy <1 + N ) an, i (t)vn(t)

=1
an,k‘(t)vﬂ(t) =0

where p,, (1) < P™% is the transmission power of IoT

device n, g, 1, = g(ty 1) is the channel power gain between
IoT device n and HAP k (we consider a log-distance path
loss mode, therefore the channel gain is a function of
distance), and Ny indicates the constant background noise
variance [26], [27], [28]. To estimate the data size of a video
frame, we adopt the model used in [29] and define data size
as D(uy) = ou? (measured in bits), where o is a constant.
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Thus, the transmission latency is computed by

1Py = {ﬁn x DUk (B)on() = 1
" 0

T,k (1) (5)
an 1 (£)on(t) = 0
3) Energy Model: In this article, the energy consumption of
IoT devices refers to the energy used during the data offloading
phase, which is computed by

_ tnD (t)pn, (t) A, (t)vn(t)
en,k(f) = {o e Byt

(6)

1
0
C. Problem Formulation
DeepRB aims to achieve energy-efficient resource allocation
and service placement in resource-constrained edge computing
environments. First, let us define the following sets of variables
that need to be optimized by DeepRB:
1) The transmission power of IoT devices pgp(t) =
[ka(t), oo 7pn,k(t)7 oo ,pNJﬁ(t)] for all £ € K.
2) The service placement vector of IoT devices ag(t) =
[al,k(t)7 e anvk(t), R aN’k(t)] for all £ € K.
3) The computational resource allocation vector fi(t) =
k() fak(t), - v g (8)] for every k € K.
4) The network resource allocation vector wy(t) =
[U)Lk(t), RN wn’k(t), RN wN,k(t)] for every k € K.
In DeepRB, the proposed long-term optimization problem is
stated as

o (S )

min
N
st. Cl: Y for(t)=F™ VEe K, VteT
n=1
N
C2: > wyy(t)= Wi, Vke K, VteT
n=1
K
C3: Zamk(t):l, VneN,VteT
k=1
Ca: p,(t) <P™® VneN, Vkek, VteT
K
C5 : Z(tﬁk(t) + tﬁk(t)) <t VneN, vVteT
k=1
C6: a,(t)e{0,1}, Vne N, Vke K, VteT

(PT)

In (P1), C1 and C2 specify the computational and network
resource allocation constraints. C3 indicates that IoT devices
can only be connected to one HAP in any time slot. C4 states
the range of transmission power of IoT devices. Finally, CS
presents the task deadline requirement of IoT devices.

We notice that Problem (P1) is a classic MINLP problem,
solving such type of problems in a long-term manner is noto-
riously challenging mainly due to following reasons: firstly,
the coupling of resource allocation and service placement
results in a combinatorial optimization problem. Secondly, the
state of IoT devices is a time-varying parameter, requiring
that Problem (P1) be solved repeatedly and continuously.
However, with the number of IoT devices increases, while
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traditional iterative-based optimization methods may find high-
quality solutions, they can be very time-consuming. Therefore,
the goal of DeepRB is to solve Problem (P1) rapidly and
efficiently.

D. Solution Methodology

In this article, to address above challenges, we apply
problem decomposition to convert Problem (P1) into following
two sub-problems:

1) Resource Allocation (RA) - Section IV: Given ser-
vice placement vectors aj(?),...,ag(t),...,ax(t),
Problem (P1) is decomposed into multiple iden-
tical resource allocation sub-problems, denoted by
Pi(t),...,Pr(t),..., Pk (t) (dedicated to each HAP).
Each sub-problem Py (¢) only serves the connected IoT
devices, which determines resource allocation vectors
Pr (1), £ (t) and w(1).

2) Service Placement (SP) - Section V: Once the resource
allocation policy is obtained, Problem (P1) becomes a
classic zero-one integer linear programming problem.
The service placement sub-problem is denoted by
Psp(t), which determines service placement vectors
ay(t),...,ag(t),...,ag(t).

The interrelationship between the two sub-problems is
depicted in Fig. 3. In Section IV, we address the first
sub-problem (RA). We first introduce an iterative resource
allocation algorithm as the baseline solution, which uses the
subgradient update method. Subsequently, to enable rapid
decision-making, we design a residual MLP network to
approximate the policy of the proposed iterative algorithm. In
Section V, the second sub-problem (SP) is solved repeatedly
and continuously using a novel distributed DRL algorithm,
where the learning agents are clustered. In each iteration,
the solution to the first sub-problem is utilized by the DRL
algorithm to evaluate the quality of the actions it selects for
service placement.

IV. MLP-BASED JOINT NETWORK AND COMPUTATIONAL
RESOURCE ALLOCATION

We first define N™% ¢ Z¥% as the maximum num-
ber of IoT devices allowed to connect to each HAP
(pre-defined from HAP’s experience). With fixed ser-
vice placement vectors ai(t),...,ag(t),...,ag(t), we use
Ni(t) ={n| ap(t) =1, ;¥n € N} to represent the subset
of 10T devices that are connected to the k-th HAP ([N} (t)] <
N™4Z) Tn this section, the resource allocation sub-problem
Py (t) which works with Ny (¢) and HAP &, is stated as

. .
PEO2 el e ne%(t) e (8
s.t. Cl: Z Jo i (8) = Fi"°
neN.(t)
C2: D wy(t) =W
neN(t)
C3: () + t5 k(1) <7, Vn e Ni(t)

P2)
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Obviously, we need to solve P.(t) = Problem (P2) for
individual HAPs. Nevertheless, Problem (P2) is still time-
consuming to solve due to the coupling of f;,(¢) and wy(¢) in
constraint C3 among all IoT devices in N (¢).

To solve Problem (P2), we first design an iterative algo-
rithm (called /RA) by utilizing Lagrangian multipliers and
a subgradient method. Moreover, we propose a residual
MLP network (called ResMLP) to estimate the outcome of
IRA algorithm, aiming to significantly shorten the decision
time. The proposed ResMLP network is a crucial enhance-
ment for incorporating all resource allocation sub-problems
{P1(t),..., Pp(t),...,Pr(t)} into the service placement
Psp(t), as its fast decision-making speed enables the DRL
agent to be trained online (this will be introduced in the next
section).

A. Iterative-Based Algorithm for Resource Allocation

In this subsection, let us first define the Lagrange function
of Problem (P2), which is stated as follows

Z en,k(t)

L’Pk(t) ({(8), Wi (8), pi(2), @) =

neN,(t)
DD CRORRSNOEEY
nENk(t)
+)‘k < Z fn,k(t) - anuz) + v ( Z wn,k(t) - Wk)
TLGN)@(O ne./\/’k(t)

)

where @ are sets of Lagrangian multipliers, including A\, v,
and py, = [t ks -y M ks> N, k). These multipliers are
associated with constraints C1, C2 and C3, respectively. To
make DeepRB agile to the time-varying IoT device states,
DeepRB further reduces the complexity of Py (t) by applying
a 2-step method.

1) STEP 1 — Optimal Resource Allocation £, (t) and w(t):
In 15 step, we solve Problem (P2) by fixing p; (). By fixing
pr(t), we can easily observe that the elements in Hessian
matrix of Eq. (7) are as follows

2 Cmn n _
V2L, (1) __{Nnkﬁnxc%g n=n

- fn, 8
Vi (D) fur () 0] ®)

0 n # n'
and
V2L
Py (t)
an,k(’f) \V4 wn’,k(t)

(pn,k(t)+/"ﬂ,,k)ﬁ7L 2D(Un) !
_ r® T fue@f " ©

0 n#n'

which are positive semi-definite in terms of variables fj(¢)
and wy,(¢), making Problem (P2) a convex problem. Since
Problem (P2) is convex and it satisfies the Slater’s condi-
tion [30], Problem (P2) holds strong duality (by fixing px(?)).
Thus, Problem (P2) can be solved by alternatively solving
its dual problem. As the Lagrange function of Problem (P2)
is differentiable, we apply a sub-gradient method to find the
optimal solution by updating the multipliers iteratively.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 4, AUGUST 2025

Problem (P1)

Section IV v Section V
Resource Allocation ( Service )

(RA) Placement (SP)
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Fig. 3. Problem Solving Methodology.

Under given o, let the derivation of Eq. (7) w. . . variables
f.(t) and wy(¢) be zero, i.e.,
Vipy _ o Ve _
an,k(t) ’ an,k(t)
By solving Eq. (10), the optimal solution f;(¢) and wj ()
are obtained either though closed-form expression or bisection
search method.
2) STEP 2 — Optimal Transmission Power pj(t): In 27¢
step, we solve Problem (P2) by conversely fixing f}(¢) and

wy, () (which are obtained from the 15¢ step). We then define
the following helper function

Tn,k(t)
g(rak()) = No <2u’n,k(t) _ 1)

which is a monotonically increasing function w. r. t. data rate
. D (u,

T,k (t). Since 7, () = B ¥ tD(:(tg’

can alternatively be expressed as:

pn,k(t) = min{w?‘pmax}

When A, 1(t) = 7 — (tgk(t) + trgk(t)) > 0, we allow
IoT devices to adjust their transmission time tf: (1) with
the purpose of energy saving and making A, r(t) = 0.
The Problem (P3) of finding the optimal transmission time is
defined as follows

(10)

Y

the transmission power

(12)

. g(rn k(t»
min tnD (t) x ———==
{t,?k(t),VNENk(t)} ne%k:(t) & g(’l/)n,k)
st.C1: 0<tPp(t) <7 —t5 (1), ¥n € Nj(t)
C2: §Q@ﬁdfn—g_P"mx,VnezA@(w (P3)
g(wn,k)

Considering that g”(r,, 5 (t)) > 0, objective function ¢, (t) x

Bk (t)) is convex in terms of tnD i (t) [31], thus Problem (P3)

. g(d)n,k) . . .
is convex. The optimal solution is stated as
D In(2
tD.(t) = ﬁn_ (un)(Z( ))+N (13)
wn,k(t) [WO( Mn,,kiNgék 0) + 1}
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Algorithm 1: Iterative Resource Allocation (/RA)

1 # Initialization: input & € /C, M ay(t), and w.

2 Set Nou(t) = {n | ap () = 1, vn € N}.

3 Set fi, (t) and wy, (¢) with FAIR resource allocation policy.
4 Set py (t) with P4,

5 while j < jmaz do
6
7
8
9

# Update variables:
for each n € Nk(t) do
Obtain fy, 1, (t) and wy, j(t) by solving Eq. (10)
Compute tnDk(t) based on Eq. (13)
10 Obtain p,, 1 (t) from Eq. (12)
1 # Update multipliers:
+
no |l =+ AGDED ) + 1851 - r)]
1
ao | T = M AG Y fup - FP)]
nGNk
o | T =AY wa k() — W)
'VLEN]‘,
s it [t2, (1) + tC (1) — 7| < e, ¥n € Ny () then
16 | break
17|+

18 return {f (t), wy (¢),pr(t)}

s.t. ,tD () < %51(‘;3), where 70"

data rate when set py, 1 (t) = P™%. As wy, ;(t) and D(uy,)
are already given, the transmission power p, 1 (t) can be
computed by Eq. (12) once Problem (P3) is solved.

3) Subgradient Method: The ultimate solution (i.e.,
£.(t), wy (), pg(t)) of Problem (P2) is derived by performing
the above two steps alternatively and repeatedly, with
gradually updating the Lagrangian multipliers ®. The
proposed iterative-based algorithm, called IRA, is depicted
in Algorithm 1. In IRA, f;,(t) and wy(¢) are initialized with
FAIR resource allocation policy, where resources are evenly
distributed to connected IoT devices Ny (t). Other settings
are as follows. A(j) indicates the diminishing step size (e.g.,
{1/ }%) and jmqz is maximum number of steps allowed for
updates. Specifically, any feasible set of @ which leads to
|t£k(t) + tgk(t) — 7| <€, Vn € Ng(t) yields an optimal
solution to Problem (P2). € is the maximum tolerance of task
deadline (e.g., 1072 sec).

(t) is the maximum

B. Residual MLP-Assisted Resource Allocation

However, Problem (P1) is a long-term optimization
problem Which requires us to solve multiple sub-

problems (P2) = {731( )yeoos Pr(t), ..., P (t)} repeatedly
using Algorithm 1. This can be problematic, especially for
edge environments with a large number of IoT devices. Beside,
the state of IoT devices is a time-varying parameter (active
vp(t) = 1 or idle vy, (t) = 0), each HAP is going to serve a
distinct subset of IoT devices in different time slots, adding an
additional layer of complexity. Obviously, the IRA algorithm
in Algorithm 1 can not satisfy these requirements.

Our design goal is to make resource allocation decisions
on the fly for arbitrary set of IoT devices with heterogeneous
attributes. The decision time should be measured in a few
milliseconds and it should not increase with the size of Ny (¢).
In DeepRB, we design a Residual Multilayer Perceptron
(MLP) network, called ResMLP, to approximate the [RA

3331

input,;,  fread1
U Softmax
Backbone ¢
input,,;, | torch.cat = & —> L){ Pfk
60
v »

torch.cat —» & features
I

1024
—
L1024 |

‘ torch.cat —» & —>

e

T Softmax
60 —
Head2

input,;,

Fig. 4. An example of ResMLP based resource allocation, where N"™%% =
10. The numbers represent the parameter size of each fully connected layer.

algorithm, which is stated as
(N ();0) — {f(t), wi(t)}, YNR(1) CN, VE € K
(14)

Once f},(t) and wy(t) are given, the optimal transmission
power py(t) can be computed by Eq. (12) and Eq. (13). As
shown in Fig. 4, the ResMLP structure consists of a backbone
for feature extraction and two heads dedicated to resource
allocation.

1) Input to ResMLP: The input to ResMLP concatenates
a vector containing multiple pieces of IoT attributes with a
vector representing specific HAP information, i.e.,

input,,;,, = cat( [inputl-ot, input hapD

e input;,; contains N™% sub-sequences, with the sub-
sequence ID be denoted by ¢ € [I1, N™%]. Each
sub-sequence stores the attributes of a particular IoT
device n € N, including the location of this IoT device
(7n(t), yn(t)), its distance to the k-th HAP )y, 1, its
DNN model m,,, frame resolution u, and frame rate
Bn. respectively. By assigning specific sub-sequences as
all zeros, HAP regulates the number of connected IoT
devices.

o 1nput hap ~contains the location of k-th HAP
(z.(1), yk(t)), its computational capacity F}*** and total
bandw1dth Wi.

Before moving into the two heads, ResMLP concatenates the
feature vector generated by the backbone with its original input
input,,,;,,. This skip connection helps in learning more com-
plex feature representations, thereby enhancing the network’s
expressive power. Additionally, it effectively reduces gradient
attenuation during network propagation and accelerates the
training process.

2) Output of ResMLP: The output of ResMLP includes two
heads, one for f;(¢) and the other for wy(¢), both of which
are normalized. To satisfy the resource allocation constraints
outlined in Problem (P2) (i.e., C1 and C2), and to ensure that
the sum of the head outputs precisely equals to 1 (normalized),
a softmax layer is appended to each output layer as an
activation function.
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3) Data Augmentation: DeepRB implements a data aug-
mentation scheme by randomly distributing the attribute
sequences from all connected IoT devices N} (t) across
different sub-sequences within input;,;. In other words, the
mapping between sub-sequence ID i and IoT device ID n is
arbitrary. This strategy not only increases the training data
size but also enhances the generalization ability of ResMLP,
thereby optimizing training speed and improving accuracy.

V. DRL-BASED DISTRIBUTED SERVICE PLACEMENT

In this section, we aim to address sub-problem Pg, () for
service placement. Here, Py, (t) becomes a classic 0-1 integer
linear programming problem. To solve Ps,(t), we can relax
the binary variables a,, 1 (t) € {0,1} to a, () € [0,1], and
ap, (1) can be interpreted as the fraction of time that the n-th
IoT device utilizes the resources on the k-th HAP.

Although there are well-studied methods that can solve this
relaxed problem, most of them require a huge number of
iterations (just like Algorithm 1), which makes them imprac-
tical and prone to converge to local optima. As the number
of IoT devices increases, their effectiveness in addressing
Psp(t) diminishes due to the necessity for rapid decision-
making in response to the frequent and ongoing changes in
the states of IoT devices. In this paper, we propose a DRL-
based distributed learning algorithm, where agents are trained
collaboratively facilitated by knowledge transfer and clustered
model aggregation.

A. Markov Decision Process

Compared to traditional mathematical methods, reinforce-
ment learning (RL) allows the system to learn from the
interactions between agents and the environment. Such unsu-
pervised learning strategy yields an online algorithm that is
more adaptable to long-term optimization. Let us consider a
typical Markov Decision Process (MDP) for service placement
Psp(t), ie., a tuple (S, A, x,R,v) where S and A are the
state space and action space, respectively. More specifically,
at time 7, an agent observes a state s,(t) € S and takes an
action ap(t) € A. Then, based on state transition probability
(a matrix), its environment state changes from sy (t) to s, (t+
1) with probability x(sn(t + 1)|sn (%), an(t)). Subsequently,
the agent is rewarded with a real-value R(sp(¢), an(t)) € R
that shows the agent’s short-term payoff for being in state
sp(t) and taking action ayp(t). The objective is to maximize
the expected cumulative discounted reward, which is stated as
follows:

In(m) =E

“+o0o
> A R(sa(t), m(sn(t):0))]sa (1) (15)
t=1

where v € (0,1) is the discount factor. The discount factor
ensures that the expected cumulative reward is bounded and
enables the agent to focus on long-term goals.

1) State: In DeepRB, the state of IoT devices, i.e.,
sp(t) € S specifies the observable environmental and system
parameters, which is defined as:
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sn(t) = {
{an,1(t),...,an K (1)} //Serviceplacementresults
{F{"%% ... FR*Y |/ ComputationresourcesofHAPs
{Wi,..., Wk} //Networkresourcesof HA Ps
{(:c{, y{)7 A (x}(7 y}()} // LocationsofHA Ps
{Pnke(®)s- - Pk (1)}
// TransmissionPowersoflo Tdevice
{(zn, yn), Mmn, un, Bn} //Attributesofn — thioTdeivce

K K
037 enw(®, D (6040 + £54(0))}
k=1

k=1
/] Energyconsumptionandlatency

donen (t) //Systemindicator
} (16)

We set donen(t) = 1 if the IoT device can finish its tasks
within deadline 7; otherwise doney (t) = 0.

2) Action: The action a,(t) € A that an IoT device can
take is the selection of HAPs, expressed as:

an(t) = {&n,l(t)a IR &n,K(t)}

where ay, 1,(t) is a relaxed value and is converted back to
integer value by

7)

(18)

_ [ 1, k= argmazyexcan i (t)
O () = {O, otherwise

3) Reward: In DeepRB, we let all IoT devices obtain a
shared reward and we design a partial reward function, which
is formulated as:

N
1 d t
R(sn(t), an(t)) = M
n=1 Un(t)

X ! (19)

Sn=1 Xiet en k()

The objectives embedded within Eq. (19) are twofold: Firstly,
it aims to ensure that the ratio Zgzl doney(t)/ Zgzl op(t) =
1, indicating successful completion of tasks by all active
IoT devices within the given deadline. Secondly, it seeks
to minimize the overall energy consumption. In contrast
with deterministic reward function, which only assigns a
positive reward when Zflv:l donen (t)/ Zgzl vn(t) =1, the
advantage of employing such partial reward function lies in its
ability to gradually guide the search towards feasible solutions,
particularly beneficial when the pool of feasible solutions is
limited.

B. Issues of Distributed Training Data

Many DRL methods outlined in Section II rely on expe-
rience replay technique to improve learning efficiency and
stability. In particular, an experience is denoted as a tuple
(sn(t), an(t),R(sn(t), an(t)), sn(t+1)), which is stored into
areplay memory Dy, Vn € N. With fixed intervals, the agents
are trained by a random mini-batch from D, (while some
DRL agents utilize the entire D,, and subsequently clear it).
However, due to the heterogeneous attributes of IoT devices,
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Dy, can be highly unbalanced, which may lead to sub-optimal
solution due to the absence of coordination among IoT devices
(lacking a global view). Moreover, IoT devices that frequently
switch to idle state or recently enter the service area may
show limited learning ability of their agents. This situation
could potentially result in unexpected performance disruptions
for other IoT devices. Clearly, it calls for coordinated model
training among IoT devices.

C. DT-Empowered DRL Agents

On the other hand, IoT devices are generally subjecting
to limited computational capability and low energy budget,
making it impractical for local training. Therefore, as illus-
trated in Fig. 5, we introduce the concept of Digital Twin (DT)
system, in which DeepRB can be implemented. Through real-
time monitoring and emulation of their physical counterparts
using specialized IoT communication protocols (e.g., Zigbee,
Bluetooth, MQTT), the twin objects within the DT system
can easily establish the modeling of accuracy, latency and
energy consumption (that were described in Section III-B).
With these analytic models, IoT devices operating under com-
putational constraints can effectively host and train their DRL
agents within the DT system using twin objects. Additionally,
DT simulations can serve as a valuable tool for generating
abundant and lifelike training data tailored for the proposed
ResMLP model (proposed in Section IV-B). However, DeepRB
does not focus on constructing a DT system, as that is
beyond the scope of this article. Instead, we presume the
existence of such a DT system maintained by multiple HAPs,
as proposed by many state-of-the-art system models [32], [33],
[34], [35]. Without loss of generality, we refer to the DRL
agents operating within the DT system as DT-IoT devices (the
DT-IoT Layer in Fig. 5).

DRL agents operating within the DT system are not man-
dated to achieve optimal solutions in every iteration. Instead,
they can generate a sequence of high-quality solutions through
DT simulation. Here, DeepRB allows the DT-IoT devices
to interact with each other at most Z iterations in the DT
simulation at beginning of each time slot. Therefore, our
focus lies on identifying the action that minimizes energy
consumption by the end of the simulation. In DeepRB, the best
action for time slot ¢ is selected as follows:

N
a*(t) = argmaz,cpy z) Y Rlsn(t), an(2))

n=1

(20)

D. Solution: Clustering and Knowledge-Aware Aggregation

To address above issues, DeepRB proposes a novel dis-
tributed training algorithm, which empowers each IoT device
to autonomously and collaboratively manage its learning agent
with clustering and knowledge-aware model aggregation.

1) Clustering: Considering that IoT devices can vary greatly
in their attributes, using a single global model for model
aggregation may face low training efficiency. In DeepRB, IoT
devices are grouped into distinct clusters based on their locations.
Each cluster holds a shared cluster-specific model, which is then
updated based on the aggregated local updates from IoT devices
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Fig. 5. DT-empowered multi-agent federated training with clustering.

Cluster —k

Fig. 6. Knowledge-aware model aggregation which only fuses the first two
layers in DRL models. 61 and 05 are the weights of the first and second
layer.

within this cluster. Let us define ¥, = [y 1,...,%y k] as
the distance vector of IoT device n. We then apply the K-
means clustering algorithm based on [¢,..., ¥ 5] to divide
10T devices into K clusters. We use variable 7,, € C to denote
the cluster membership of IoT device n. It is assumed that IoT
devices belong to the same cluster k, their twin objects (include
DRL agents) will also be maintained in the k-th HAP (as shown
in Fig. 5). With IoT devices of the same cluster having their
twins hosted on the same HAP, this clustering can effectively
eliminate the transmission cost of model parameters during the
aggregation process.

2) Knowledge-Aware Model Aggregation: In standard
model aggregation for FL, all parameters in local models are
included in the average calculations. However, this approach
can be counterproductive for DRL, given the heterogeneous
attributes of DRL agents and their unbalanced experience
replay. DeepRB adopts the concept of transfer learning (TL).
In TL, the feature extractor (early layers) is often the main
component that is transferred from a pre-trained model to a
new domain. This is because the early layers usually capture
general features, which are common across many domains.
However, the ending layers are often replaced or fine-tuned
to adapt to the new domain. In the context of DeepRB, the
analogy extends to likening the domain concept to an IoT
device. Therefore, as shown in Fig. 6, DeepRB only fuses the
first two layers (give that most of DRL models have three
layers) during the cluster-specific model aggregation.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on August 15,2025 at 02:42:27 UTC from IEEE Xplore. Restrictions apply.



3334

E. Algorithm Design: DeepRB

In Algorithm 2, DeepRB initials a set of cluster-specific
DRL models denoted by {go}:luster, . 7‘P§uster}’ where ToT
devices are grouped into K clusters based on their dis-
tances to HAPs. The IoT devices in the cluster k, use
¢Ic€lu ster 1O initialize their local DRL agents (denoted by
@) ) hosted by the corresponding DT-IoT devices in
DT system. For each time slot #, DeepRB contains four
procedures, namely DT Simulation, Actuator, Local Update
and Model Aggregation.

In DT Simulation (line 10 to line 16), DeepRB allows DT-
IoT devices to interact with DT environment for Z iterations,
and select an optimal action a*(¢) based on Eq. (20). Then,
in Actuator (line 17 to line 19), the DT-IoT devices will send
a*(t) to their physical counterparts to establish real connec-
tions with HAPs. The HAPs in the same time perform resource
allocation using the proposed ResMLP model (Section IV-B).
On the other hand, the Local Update procedure (line 20 to line
23) will be executed every tL time slots, where each DT-IoT
device n € N uses its own experience teplay D,, to train local
model ¢j; . and clear its D,,. Finally, the DeepRB performs
Model Aggregation (line 24 to line 32) every t© time slots
(> tL). In this procedure, only the first two layers (denoted

by @} .;101] and @]} [02]) are aggregated.

F. Complexity Analysis

The computational complexity of DeepRB depends directly
on the number of active IoT devices and the number of
HAPs. For resource allocation, the /RA algorithm has a time
complexity of

O(g x (3N + NlogQ(l))) 21

§

where € is the tolerance for subgradient method and ¢ is the
tolerance for bisection method which may be needed to solve
fnk(t) and wy, 1.(t) [36]. However, since we use the ResMLP
model instead of the IRA algorithm, the time complexity of
resource allocation through model inference is only O(K).
According to [37], the time complexity of DRL algorithms
can be represented as O(training steps). Therefore, the overall
complexity of DeepRB is O(TZKN), where T indicates the
number of training episodes and Z represents the maximum
number of training steps per episode.

In fact, we should focus on the training efficiency of the
proposed models. The training efficiency and robust conver-
gence of both the ResMLP and DRL models are evaluated and
verified in the following sections.

VI. PERFORMANCE EVALUATION

Next, we present emulation results to validate the schedula-
bility and scalability of DeepRB when handling a large number
of IoT devices. DeepRB is implemented using Python and
the PyTorch framework. The experiments in this section are
designed to achieve the following objectives: 1) evaluate
the training and inference efficiency of the ResMLP model,
2) determine the optimal learning rate and model size for
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Algorithm 2: DeepRB

1 # Initialization: input a set of HAPs JC and a set of IoT devices N

2 B Clustering:

3 Compute distance vector ¥,, = [ty 1, ..., Py, k] for every n € N

4 Use K-means to divide IoT devices into K clusters and configure cluster
membership [11, ..., nN].

5 Create K cluster-specific DRL models wlélusteT7 Vk € ]C
6 Create N local DRL models ¢}, .., = (pnzl ,Vn € N
cluster
7 Set DT-IoT device’s experience replay Dn =0,Vn € N
8 for each time slot t:1 — 400 do
9 Observe IoT device state sy (t), Vn € N
10 B DT Simulation:
11 for each iteration z € {1,2, ..., Z} do
12 Each DT-IoT device n chooses an action ay (z) € ./4 using its policy
network ¢, .
13 According to aj, (z), each HAP k runs ResMLP to solve Pk(z) and
obtains fj, (z) and wy, (2).
14 All DT-IoT devices adjust their transmission power based on Eq. (12).
15 All DT-IoT devices obtain a reward based on Eq. (19) and store
transition (s, (2), an(2), R(sn(2), ay(z)), sp(z + 1)) in their
local experience replay Ly, Vn € JV.
16 Obtain optimal action a*(¢) by Eq. (20).
17 B Actuator:
18 Each IoT device n € N connects to the HAP recommend by its twin
DT-IoT based on a* ().
19 HAPs k& € IC perform resource allocation using proposed ResMPL model
(Section IV-B).
20 B Local Update:
21 if t % t“ == 0 then
22 All local models ‘ﬂx)cal’ Vn € Nare trained with their experience
repl%pn.
23 Set n:@,VnGN
24 B Model Aggregation:
25 if t % tE == 0 then
26 for each cluster k € {1,2,..., K} do
27 Set Nﬁluster ={nlnp, =k,Yn € N}
23 wlzluster [01] = | NG ‘ Z (p’lnocal[el]
cluster! ¢ j\ﬂc
1 cluster
2 ‘p](flusf,er [02] = I A ‘ Z ¢Zmal[02]
cluster! pc NE
L cluster
30 for each DT-IoT device n € {1,2,..., N} do
3 w%ml[ﬁ] = ol erl01]
32 L Plocal [92] = wcﬁster[QZ}

the DRL model, and 3) compare the performance of DeepRB
against competing algorithms.

A. Parameter Settings

We consider a service area of 1000 x 1000 m?, where
8 HAPs are located in fixed locations and 52 to 63 IoT
devices are randomly distributed. The maximum number of
IoT devices served by each HAP is N™% = 10. The frame
rate of IoT applications follows B, ~ U(5,10) fps. As
discussed in Section III-B2, we adopt a log-distance path-loss
model, which follows [38]. The path-loss from [oT device
n to the HAP k is estimated by 128.1 + 10010g10(%).
We set 0 = 3.75 in response to the urban area. v, j is the
distance between IoT device and the selected HAP and g is
the reference distance (1 km). The channel background noise
is set to Ng = —174 dbm/hz. The maximum transmission
power of IoT devices is P™% = 1 watts. The state transition
probability of IoT devices is set to p = 0.1 and p = 0.2
(from active to idle). The channel bandwidth of HAPs is
uniformly distributed, with Wy ~ U(5,15) Mhz for all
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TABLE III
PPO NETWORK PARAMETERS

Name Value
Number of Layers in Actor and Critic Network 3
Number of Parameters in Each Layer 64
Learning Rate 0.0001
Local Model Update Interval t© 2
Model Aggregation Interval t& 4
Update Epochs / Clip Parameter 10/0.2
Discount Factor y 0.9
Number of Iterations in DT Simulation Z 256

k € K. The computational capacity of HAPs, denoted as Y7,
is normalized to range between 1 and 2 times the capacity
of the Mvidia® GeForce RTX 2060, which has 1,920 CUDA
cores. In Algorithm 1, we set jpq; = 2000 and € = 1073.
The configurations of the PPO network are summarized in
Table III. The update epochs indicate the number of epochs
per training update, while the clip parameter represents the
epsilon value used in the clipped objective function of the PPO
algorithm.

B. ResMLP-Based Resource Allocation

The successful implementation of DeepRB relies on the
assumption that the system has prior knowledge of the
edge computing architecture, including both its hardware and
software components. This assumption is practical, as the
architecture is specifically designed for a defined set of IoT
devices and video analytics tasks, rather than being open
to general use. In this context, collecting application-specific
profiling data ensures the effective utilization of ResMLP for
resource allocation.

1) Application-Specific Profiling: To create the mathemat-
ical models that is required to construct twin objects, i.e.,
IoT devices and their applications in the DT simulations, we
conduct real-world experiments using YOLOvS5 [39] on an edge
computing testbed. Specifically, we conduct extensive exper-
iments by selecting various combinations of model versions,
frame resolutions (where u is chosen from the range of 128 to
648), number of physical resource blocks (PRBs), and GPU
utilization (representing the realization of system variables).
The detailed descriptions of these experiments are provided in
our previous work [40].

Cyolovsz (1) = 1.06e—10u> + 0.017

Cyolovsi(u) = 6.49e—11u> + 0.015
Cyolovsm (u) = 5.51e—11u3 4 0.012 (22)

Cyolovss(u) = 4.16e—11u3 +0.010
D(u) = 161>

Subsequently, the above mathematical models of computa-
tional complexity and data size are formulated based on the
obtained experimental results.

2) Data Preparation: Based on the obtained analytic mod-
els, we artificially synthesize a large amount of data to train
the proposed ResMLP model. Each training data point is
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Fig. 7. The MSELoss of ResMLP and standard MLP model.

constructed as follows: first, a test scenario (i.e., a service area
consisting of 8 HAPs and 52 IoT devices) is chosen. Next, one
HAP is randomly selected from the chosen scenario. Then,
a random subset of IoT devices is selected to be connected
to the chosen HAP, with the subset size limited to N™% =
10. Finally, ten different subsets are replicated by arbitrarily
switching the order of IoT devices in the subset. These steps
are repeated until the size of training dataset reaches 109,
where the ground truths are produced by running the IRA
algorithm, i.e., Algorithm 1. Note that due to the existence of
permutations and combinations, the total number of possible
data points is significantly larger than our training dataset.

3) ResMLP vs Standard MLP: We compare the training
efficacy of ResMLP with a standard MLP. Both models are
trained with a batch size of 128 using the Adam optimizer,
with an initial learning rate of 10~% and a weight decay of
10~%. The MSELoss function is used as the loss criterion. The
learning rate is decreased by a factor of 10 every 1000 training
episodes using the MultiStepLR strategy. As shown in Fig. 7,
the loss of ResMLP is significantly reduced when compared
with standard MLP model.

4) Validation of ResMLP in Resource Allocation: To evalu-
ate the performance of the trained ResMLP model for fast and
energy-efficient resource allocation, we compare its outputs
with those of the JIRA algorithm. Since both algorithms are
used for the resource allocation of HAPs, this part of the
experiments is conducted on a GPU-enabled Dell workstation,
representing a typical edge server in terms of computing
power.

The results are presented in Fig. 8. We first demonstrate
the high efficiency of IRA compared to the FAIR algorithm,
a naive resource allocation approach that evenly assigns HAP
resources to the connected IoT devices. In Fig. 8 (a), we
can observe notable advantages of IRA in improving the task
completion ratio. Compared to FAIR algorithm, /RA gains an
enhancement of approximately 25.8%. After validating the
IRA algorithm, we proceed to evaluate the proposed ResMLP
model in three aspects. Firstly, the prediction errors in Fig. 8
(b) are within 3.9% to 7.1%, which captures the average dis-
crepancy between the output values of the ResMLP model and
the IRA algorithm (the outcome of computational and network
resource allocation, i.e., fy(t) = [fi x(t), ..., fymas (%)) and
wi(t) = [wy k(t),..., wyma (t)]). Secondly, as depicted
in Fig. 8 (c), the energy consumption of the ResMLP model
is only increased by a maximum of 3.16% compared to
the IRA algorithm (caused by prediction errors). Thirdly,
the ResMLP model demonstrates remarkable acceleration in
decision-making relative to the /RA algorithm. As illustrated
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Fig. 8. Performance of ResMLP model against /RA algorithm Algorithm 1,

experiments are performed on a Dell workstation with /3th Gen Intel®
Core™ i9-13900K and Nvidia® RTX A6000. The acceleration will be
different if it is running on other machines.

in Fig. 8 (d), it exhibits a notable improvement of 10 to
500 times in acceleration (utilizing Nvidia® RTX A6000),
providing crucial support for training our DRL agent in the
subsequent step.

C. Baseline Algorithms

We perform and compare DeepRB with the following

algorithms.

1) Effect: Game-based service placement algorithms, such
as [41], [42]. In Effect, 1oT devices are initially con-
necting to the nearest HAP. Then, the unilateral update
and best response strategies are applied. Specifically, in
each iteration, we randomly select one IoT device and
let it switch its current selected HAP. Effect terminates
when it reaches a Nash Equilibrium (NE) or maximum
iterations.

2) FL-I: standard federated learning, the model aggregation
process involves fusing all layers from all DRL agents
into a unified model. Similar works can be found
in [43], [44].

3) FL-k (k > 1): 10T devices are clustered into k groups,
and during the model aggregation process, all layers
from DRL agents within each cluster are fused into a
cluster-specific model.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 4, AUGUST 2025

TABLE IV
COMPETING ALGORITHMS

Model Aggregation  Clustering ResMLP  PPO
Effect VA
FL-1 V4 Vv Vv
FL-k v v v v
None-FL v v
DeepRB V4 V4 V4 v
TABLE V
IMPACT OF LAYER WIDTH AND LEARNING RATE
Parms. Ir=10"2 ir=10"3 Ir=10"% Ir=10"°
32 0.0177 0.0167 0.0352 0.4287
64 0.0159 0.0149* 0.0145* 0.4169
128 0.0413 0.0192 0.0174 0.3525
256 0.1786 0.0199 0.0185 0.1901
512 0.5093 0.0191 0.0170 0.0215

4) None-FL: Decentralized learning, such as [45], [46]. In
this approach, IoT devices autonomously train their DRL
agents individually, without the need for any model

aggregation.
5) DeepRB: ours.
All algorithms, except Effect, are powered by DRL

(specifically, the PPO algorithm). The detailed functioning
comparisons of the competing algorithms are summarized in
Table IV.

D. Configuring Learning Rate and Layer Width of DRL
Agent

In this subsection, we analyze how the learning rate and
layer width (number of parameters in each fully connected
layer) affect the training efficiency of DeepRB‘s DRL agents
with fixed number of IoT devices. The results, summarized
in Table V (learning rate is denoted by Ir), represent the
average energy consumption of 52 IoT devices. From the given
table, we can make several observations about the impact
of these parameters on energy saving performance. Other
configurations, such as local update interval ¢ and model
aggregation interval tG, may also impact the performance of
DeepRB. However, these aspects are beyond the scope of this
article. For further reference, readers can consult works such
as EdgeFed [47] and FedSA [48].

In Table V, it is observed that there is no clear monotonic
relationship between learning rate, layer width, and energy
consumption. In each row of Table V, a high learning rate
can accelerate learning but may lead to overestimation and
increased energy consumption. Conversely, a low learning rate
can enhance stability but slow down learning, also resulting
in high energy consumption. On the other hand, as illustrated
in each column of Table V, layer width affects the model’s
capacity. Narrower layers may underfit, resulting in slower
learning and higher energy consumption, while wider layers
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Fig. 9. Performance of DeepRB against competing algorithms with fixed number of IoT devices (N

may overfit, especially at higher learning rates, also increasing
energy consumption. Overall, narrower layers generally exhibit
lower energy consumption compared to wider layers at higher
learning rates. However, at a very small learning rate, such as
1075, the energy consumption is lowest for the largest layer
width of 512.

In Table V, the best performance of DeepRB is achieved
with 64 parameters across different learning rates. Specifically,
the combination of 64 parameters and a learning rate of 10~4
or 1073 yields the lowest energy consumption of 0.0145.
(or 0.0149J), indicating optimal performance (by the end of
training).

E. Short-Term Performance Comparisons

This subsection evaluate the performance of DeepRB in
terms of convergence and energy saving against competing
algorithms. The results are depicted in Fig. 9, where DeepRB
and FL-8 (with 8 clusters), and None-FL can quickly converge
within 200 time slots.

Since the experience replay of IoT devices can be highly
unbalanced, fusing all the local models into one global model
can be counterproductive. Standard federated learning (FL-
1) with a single global model often fails to learn effectively.
However, as the number of clusters increases (from FL-2
to FL-8), model aggregation becomes more effective. When
the number of clusters equals 8 (the number of HAPs), the
FL-8 algorithm achieves performance similar to that of None-
FL, where IoT devices train their DRL agents individually
without any model aggregation. In Fig. 9, both FL-8 and None-
FL algorithms result in an average energy consumption of
0.040J (by the end of training). In contrast, the game-based
Effect algorithm, which utilizes unilateral updates and best
response strategies, achieves a more competitive performance
with an energy consumption of 0.038J. However, Effect is
not stable, as the random selection of IoT devices during
its update process can lead to unpredictable outcomes. In
this evaluation, the Effect algorithm experiences a standard
deviation of 0.012.J, whereas FL-8 and None-FL maintain
nearly zero standard deviation over time.

Our approach, DeepRB not only groups IoT devices into 8
clusters based on their distances to HAPs, but also employs

52).

knowledge-aware model aggregation by fusing only the feature
extractors of the actor and critic models (the first two layers).
Thus, compared to None-FL, DeepRB allows for knowledge
sharing; while compared to FL-8, DeepRB enables IoT devices
to preserve their own independent characteristics (in their DRL
agents). In Fig. 9, DeepRB gains remarkable performance
improvements. Compared to FL-8 and None-FL, it reduces
energy consumption by approximately 64%. In comparison
with Effect, DeepRB achieves a saving of 62%.

F. Long-Term Performance Comparisons

In this subsection, we evaluate the long-term performance of
DeepRB, focusing on scenarios where the number of active IoT
devices dynamically changes with probability p. Specifically,
each IoT device may remain in idle state with a probability of
p for various reasons. These reasons include insufficient data
collection in current time slot or system-driven decisions to
prioritize resources by temporarily shutting down certain IoT
devices during periods of high resource competition.

1) Energy Saving: The energy consumption results of long-
term performance with p 0.1 are depicted in Fig. 10,
we can easily observe that all standard federated learning
algorithms generally yield poor performance under these
conditions. Compared to FL-8 and Effect, DeepRB reduces
energy consumption by 43.3% and 37.2%, respectively. When
compared to None-FL, the best-performing algorithm among
the competing algorithms, DeepRB achieves an approximate
25.1% improvement in energy savings. As shown in Fig. 11,
we also present a scenario with relatively high dynamism
by setting p to 0.2 and increasing the total number of IoT
deivces to 63. Compared to Fig. 10, Fig. 11 exhibits more
significant fluctuations. With p = 0.2, DeepRB continues to
outperform all competing algorithms. The enhancements are
44.6%, 29.8% and 22%, when compared to FL-8, Effect and
None-FL, respectively.

2) Schedulability: In addition to energy saving, we also
focus on task schedulability, which is the probability that a
task can be processed within its deadline. The results are sum-
marized in Fig. 13. It is evident that as the system dynamics
increase, the schedulability of the algorithm decreases. Due to
the uncertainty in its random update order, the schedulability
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Fig. 12. Performance of DeepRB against competing algorithms with dynamic number of IoT devices (p = 0.2). In addition, the total number of IoT devices

is increased from 56 to 63 after 500 time slots.

of the Effect algorithm falls between 83.5% and 85.2%,
for p 0.1 and p 0.2, respectively. Although FL-6
and FL-8 demonstrate good schedulability with p 0.1,
their schedulability drops significantly when p increases to
0.2, indicating their poor capability in dealing with higher
dynamism. In contrast, DeepRB and None-FL maintain high
and stable schedulability. When p = 0.2, both algorithms can
still achieve a schedulability of 0.97 and 0.95, respectively.
3) Scalability: Scalability is a critical factor in the
performance evaluation of edge computing systems. In this

context, scalability refers to the ability of the system to
efficiently handle an increasing amount of IoT devices and
adapt to changing conditions. We set p = 0.2 and initialize
the system with 56 IoT devices. After 500 time slots, we
increase the number of IoT devices to 63 by randomly adding
7 new devices into the service area. This setup allows us
to observe how the competing algorithms and DeepRB adapt
to this change. The results are shown in Fig. 12, where
standard federated learning algorithms (FL-k) still exhibit poor
performance. Starting from the significant fluctuation point
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(i.e., 500 time slots), DeepRB reduces energy consumption
by 55.1% and 40.0% when compared to FL-8 and Effect,
respectively. Compared to None-FL, DeepRB achieves an
approximate 34.2% improvement in energy savings.

VII. CONCLUSION

In this paper, we presented DeepRB, a unified resource
broker framework for real-time video analytics at edge. We
showed that unlike existing state-of-the-art solutions, DeepRB
can jointly optimize edge resource allocation and service
placement towards satisfying the real-time latency require-
ments of video analytics applications. We demonstrated how
the proposed DeepRB framework can be applied to large-scale
real-world complex scenarios with massive IoT devices using
decomposition algorithms and deep reinforcement learning
methods. In DeepRB, we implemented a ResMLP network
to accelerate the decision-making process in resource allo-
cation and proposed a novel FL-assisted distributed training
method to improve the model applicability. We performed
extensive simulations to demonstrate DeepRB‘s improvements
towards schedulability and scalability over other traditional
edge resource allocation methods. Overall, the ideas and
results presented in this paper can be critical towards broader
paradigm shift on edge resource management for real-time
video processing.
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