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Recently, graph neural networks (GNNs) have been widely used for graph representation
learning, where the central idea is to recursively aggregate neighborhood information to
update the node feature based on the graph topology. Therefore, an appropriate graph
topology is crucial for effective graph representation learning in GNNs. However, most
existing GNNs assume that the initial graph is complete and accurate, and utilize the fixed
initial graph structure in the entire network, which may limit the learning representation
capability of the model. In this work, we propose a novel differentiable graph structure
learning neural network (DGSLN), which learns suitable graph structures for GNNs.
Specifically, our DGSLN presents a general graph generation scheme that integrates various
useful graph prior messages to generate normal structures. We describe the generation
process with homophily, node degree, and sparsity as examples. Moreover, we develop a
hybrid loss function to ensure the quality of learned graphs, which combines task-
specific loss and graph regularization loss to optimize graph structures from both struc-
tural adaptive and task-driven aspects. Extensive experiments on graph classification
and node classification have shown that our approach significantly improves performance
on different benchmark datasets compared to state-of-the-art GNNs methods.

� 2023 Elsevier Inc. All rights reserved.
1. Introduction

Convolutional Neural Networks (CNNs) have achieved great strides in many artificial intelligence tasks, such as computer
vision [1] and machine translation [2]. There is a common property behind these tasks: the underlying data can be repre-
sented as a grid-like structure. However, many real-world data are in an irregular domain and can be represented naturally
as graphs, including social networks, citation networks, etc [3]. Owing to the great success of CNNs, it is quite appealing to
extend the classical convolution to graph-structured data.

Recently, many studies have generalized neural networks to process graphs of arbitrary structures, called graph neural
networks (GNNs) [4]. GNNs usually follow the neighborhood aggregation scheme, which recursively aggregates neighbor-
hood information based on the given graph structure to update node features. Therefore, GNNs are strongly sensitive to
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the quality of the given graph structure [5]. Nevertheless, most existing GNNs [6–8] assume that the initial graph structure is
ground-truth information, and apply the fixed initial graph to the entire network for recursive message passing. Such an
assumption may suffer from the following limitations. (i) Since the process of collecting graph data usually contains uncer-
tainties or errors, real-world graphs commonly contain noisy edges or missing edges [3,41]. As illustrated in Fig. 1(a), some
nodes in the initial graph structure on the Cora dataset do not have edge connections and suffer from missing edges. (ii) The
initial graph structure reflects the topological relationship among the original node features. After multi-layer feature aggre-
gation and update, the initial graph structure may no longer accurately represent the true interaction relationship. Recent
studies [5,9] have discovered that unreliable graph structures can greatly limit the representation capability of GNNs, and
thus exploring appropriate graph structures for GNNs is essential to learn robust graph representations.

To tackle these issues, some studies have been presented to conduct graph structure learning (GSL) in GNNs to improve
performance of GNNs. These methods [10–12] utilize metric functions to compute node pairwise interactions to adjust the
graph structure, and then use the revised graph to guide the message-passing process. Although these methods have
achieved positive results, there are some limitations: (i) These methods greatly rely on the quality of the metric function
design. Most existing methods [10,11] directly construct the graph structure using a simple distance metric, which would
probably render the learned graph topology not well suited to the node features. In addition, some methods [8,13] employ
the learnable attention mechanism to re-weight the existing edges of the given graph. However, these methods do not mod-
ify the graph structure and the model is still prone to interference from noisy data. (ii) The above metric-based methods con-
sider only feature similarity in the process of graph structure learning, and graph structures learned from a single
information source inevitably appear to lead to bias and uncertainty. In real-world applications, the graph structure may
be constrained by many underlying principles, such as homophily [14], sparsity [15], degree distribution [14]. Some studies
[16,17] have indicated that combining various graph properties to optimize the initial graph structure can help improve GNN
performance. Nevertheless, these approaches ignore exploring the underlying graph topology in node features.

In this work, we aim to design a proper graph structure learning approach to adaptively learn better graph structures. In
the meanwhile, it can be combined with GNNs to improve the message-passing process in GNNs by the learned graph struc-
tures. To achieve these objectives, we hope to design a differentiable graph structure neural network in the stack of GNNs. It
is extremely challenging in technical terms, and three obstacles need to be addressed: (i) How to consider both the given
graph structure and node features to learn a better graph structure in the differentiable neural network? (ii) Real-world
graph structures followmany basic principles, such as homophily [14], sparsity [15]. How to take these graph properties into
consideration in a differentiable neural network? (iii) A proper loss function needs to be designed to optimize differentiable
neural networks.

To this end, we propose a differentiable graph structure learning neural network (DGSLN), which learns appropriate graph
structures for GNNs to achieve robust graph representation learning. Specifically, we first employ the attention mechanism
[18] to explore the homophily of graphs for learning the basic graph structure. Different from previous work, we directly
learn the new graph topology by adaptively capturing interactions among node features through the attention mechanism.
To satisfy graph sparsity, we propose a differentiable graph sparsity operation, which efficiently converts the learned dense
connected graphs into sparse graphs through an explicit masking function. Besides, we develop a gated graph integration
mechanism that combines the initial graph structure with the learned sparse graph. Finally, we design a hybrid loss function
to co-optimize the graph representation and learned graph structure. It consists of a task loss function and a graph regular-
ization loss, and the graph regularization loss can force the learned graph to satisfy graph properties. In this manner, the
network model can be optimized from both data-driven and task-driven aspects.

More importantly, our proposed DGSLN is a general building block that can be easily integrated into each layer of various
GNNs. To validate the generality and effectiveness, we plug DGSLN into the most commonly used graph pooling and convo-
lution operations. The redesigned graph convolution layer learns the new graph topology before neighborhood aggregation,
and utilizes the generated topology to guide subsequent message passing. The redesigned graph pooling layer learns a new
topology for the reduced graph after pooling to ensure the integrity of the pooled graphs. Extensive experiments on graph
classification and node classification have demonstrated the superiority and robustness of our approach compared to state-
of-the-art GNNs methods.

Overall, our contributions are as follows:

� We propose a novel differentiable structural learning neural network (DGSLN), which utilizes the attention mechanism to
dynamically learn an adaptive graph topology from node features in each layer for robust graph representation learning.

� DGSLN simultaneously considers both node features, initial graph structures, and graph properties in the graph structure
learning process.

� DGSLN is a general building block that can be easily integrated into various GNNs. We also design a hybrid loss function,
so that graph representation and graph structure can be learned simultaneously.

� Extensive experiments on graph classification and node classification have demonstrated the superiority and robustness
of our approach compared to state-of-the-art GNNs methods and graph structure learning (GSL) methods.
95



Fig. 1. Visualization of (a) the initial graph structure and (b) the learned graph structure on Cora dataset, where different colors denote different node
categories. The nodes pointed by arrows in (a) reveal that some nodes in the initial graph structure are not connected by edges and there are missing edges.
While our DGSLN can effectively capture more meaningful topology information, which complements the initial graph structure. (c) Neighbor change of the
rightmost green node in (a).
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2. Related work

In this section, we review the relevant literature in two main domains: i) graph neural networks and ii) graph structure
learning.
2.1. Graph neural networks

Recently, various GNNs have been proposed for the complexity of graph data [4]. GNNs are generally viewed as a neighbor
aggregation scheme, which iteratively updates node representations by gathering neighboring node features. Kipf et al. [7]
explored GCN, which utilizes mean aggregation to generate new feature representations. [6] proposed GraphSAGE that uses
multiple aggregation schemes to gather feature messages from neighbors, including max/mean/lstm. Veličković et al. [8]
developed GAT, which employs self-attention mechanism to determine the weights of neighbors during the information
aggregation process. Nevertheless, all the above methods only apply the fixed static graph to update the node representation,
and cannot dynamically capture the graph topology in each layer of the network, which may result in local optimal solutions.

The pooling operations in GNNs can gradually capture hierarchical high-level features and expand the receptive field,
thus achieving better generalization effects. Some studies explored advanced clustering techniques to group node features
to achieve graph pooling, including spectral clustering [19], compressed Haar transform [20], etc. However, its potential
drawback lies in the high computational cost of the feature decomposition of the clustering algorithm, which leads to sig-
nificant scalability problems. Recently, some learnable graph pooling methods [21–23] have attracted attention because they
can adaptively coarse the graphs based on the graph contents. A pioneer work [21] proposed DiffPool that learns a dense soft
assignment matrix to map each node to a set of clusters, resulting in expensive calculations and poor scalability. Following
the line, Gao et al. [22] devised gPool, which learns the scores of nodes by a learnable projection vector and then selects the
subset of nodes with the highest scores to form a reduced graph. It effectively alleviates the issue of high complexity, but
does not consider the graph topology during pooling. SAGPool [23] improved upon gPool by using GCN to aggregate neigh-
borhood features while scoring nodes. However, SAGPool only takes the local structure into account, while ignoring the glo-
bal connectivity of the graph, which may lose the integrity of the graph topology and hinder the downstream message-
passing process.
2.2. Graph structure learning

Graph structure learning (GSL) is not a brand new topic, and there have been numerous works exploring various methods
to learn graph structures from data. Some approaches [24,25] learned graph structure by learning probability distributions
that fit graph relationships. Other methods [26,27] adopted auto-regressive models to generate graphs graph structures.
However, these works deviate from graph representation learning.

Recent studies [10,11,16,17] have attempted to explore graph structure learning in GNNs for learning robust graph rep-
resentations. These methods can be categorized into two categories: metric learning methods [10,11] and graph optimiza-
tion methods [16,17]. Li et al. [10] designed AGCN, which constructs a graph by computing the Mahalanobis distance for each
node pair, and utilizes the generated graph to guide the message-passing process. Jiang et al. [11] proposed GLCN utilizing a
single-layer neural network to learn the pairwise relationship among two nodes. However, these methods only exploit fea-
ture similarity to construct graph structures, ignoring the diversity of graph principles. Besides, graph optimization methods
[16,17] combined various graph properties to directly optimize the initial graph structure. For instance, Pro-GNN [17] opti-
mized the given graph by employing sparsity, low rank, and feature smoothness regularizers. However, these methods are
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quite dependent on the initial graph structure and ignore the exploration of structural information implicit in the node
features.
3. Methodology

3.1. Problem formulation

Let G ¼ V; E;Xð Þ represents an undirected graph, where V denotes the node set with n nodes, and E denotes the set of
edges between the nodes in V;X ¼ x1; x2; . . . xnf g 2 Rn�d is the node feature, each row denotes a node and each node contains
d-dimensional features. The graph structure of G can be represented by an adjacent matrix for binary graphs A 2 0;1f gn�n or
weighted graphs A 2 Rn�n. Here, we focus on two common graph learning tasks: graph classification and node classification,
which predict the class label of a graph and the class label of a node respectively. For the node classification, given a partially
labeled graph G, the goal of GNN is to learn a predictive function f h that maps the nodes to their true class label:
f h X;Að Þi ! Yi; ð1Þ

where Yi is the ground truth of node v i; h is the training parameters of f h, and f h X;Að Þi is the prediction of v i, which is fully
determined by the node feature X and graph topology A. Therefore, an appropriate graph topology is essential for effective
graph representation learning. Nevertheless, most existing GNNs apply the initial graph topology to the entire network,
which may suffer from many limitations. Because real-world graphs are often incomplete or noisy. Furthermore, the given
graph topology may hinder the downstream message-passing process since the initial graph structure may not reflect the
real topological relationship after multi-level feature transformations.

With the above analysis, the graph structure learning (GSL) problem can be formally defined as: Given a graph G ¼ A;Xð Þ
with original graph structure A and feature matrix X, the task of graph structure learning is to simultaneously learn an opti-
mized graph structure and the GNNs parameters to improve the representational power of GNNs.

3.2. Differentiable structural learning

In real-world applications, graph generation obeys some underlying principles, such as homophily, sparsity, and degree.
Combining these prior knowledge can drive a better generative process and learn a more reasonable graph structure. How-
ever, it is challenging to consider different graph properties in the same generative mechanism. In this section, we propose a
differentiable graph structure learning approach, as depicted in Fig. 2. It first introduces the basic graph generation scheme,
and then extends it according to specific graph properties to integrate useful prior knowledge and learn the best graph struc-
ture. There are three main processes: (1) Adaptive structural learning: dynamically capturing pairwise node relationships via
self-attention mechanism. (2) Differentiable graph sparsification: efficiently converting the dense connected graph into a
more reasonable sparse graph with an explicit masking function. (3) Gated graph integration: adaptively integrating the
learned graph with the original graph by a gating function. The specific process is as follows.

3.2.1. Adaptive structural learning
Homophily is a very crucial principle in graphs. Specifically, if two nodes are similar to each other, they are likely to be

connected. Based on this principle, we can transform the graph structure learning problem into similarity metric learning,
which constructs a basic graph structure by measuring the similarity among nodes. A good similarity metric should be learn-
able and expressively powerful. The attention mechanism [18] has been proven to be an efficient learnable similarity metric,
which can capture the relational importance of feature space. However, the majority of GNNs [8,13] only utilize the attention
mechanism to adjust the weights of edges that already exist in the initial graph for better representation. Instead, we employ

the attention mechanism to explore the underlying graph structure. Given the node features Xl 2 Rn�d at the l-th layer as
input, we apply the attention mechanism to learn the pairwise dependency relationship of graph nodes.
al
ij ¼ LeakyReLU HTConcat Wxli;Wxlj

h i� �
; ð2Þ
where xli and xlj are the features of the node v i and v j, respectively, al
ij means the dependency among node v i and v j, Concat �½ �

is the concatenation operator, HT 2 R1�2d is the learnable weight vector. LeakyReLU �ð Þ is the activation function, that can
guarantee the non-negativity of the learned graph edges.

The above method is a basic graph generation scheme with a large enhancement scope. Since the attention mechanism
(Eq. (2)) needs to compute the pairwise interactions for all graph nodes, which requires O n2

� �
complexity in time and space.

Limited by high memory and computational complexity, it may lead to significant scalability issues. Moreover, computing
the pairwise interactions for all nodes will introduce a lot of redundant edges. For some nodes, redundant edge connections
may introduce noise, which runs counter to the original purpose of graph structure learning. Therefore, some useful prior
knowledge can be integrated to improve the generation process and learn more reasonable graph structures. We take the
degree as an example to propose a scalable graph generation scheme.
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Fig. 2. Overall framework of the proposed DGSLN. It contains three main sub-procedures: adaptive structure learning, differentiable graph sparsification,
and gated graph integration. Given the node features Xl in the l-th layer, we employ adaptive structure learning to dynamically learn pairwise node
relationships Sl . Then, the learned dense connected graph Sl is converted into a more reasonable sparse graph ~Sl by differentiable graph sparsity. Finally, we
adopt gated graph integration to adaptively integrate the learned graphs ~Sl with the graphs Al�1 of the previous layer to form the new graph structure Al .
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Scalable Graph Generation. Node degree is a common property of graphs. Theoretical analysis according to [14] revealed
that the relative degree of nodes is one of the important factors affecting the quality of node feature aggregation. The low-
degree nodes will become less linearly separable in message passing and are prone to be misclassified. Therefore, we pay
more attention to low-degree nodes in the graph structure learning process. Based on this insight, we further propose a scal-
able relationship learning technique based on node sampling operation [28]. Specifically, we sort the nodes according to
their in-degree, and then perform the top-k operation to sample a set of low-degree nodes Vs 2 Rs�d from the node set
V 2 Rn�d. Notice that s is a fixed hyper-parameter that determines the sampling numbers. It is normally much smaller than
n in large graphs. Second, we generate binary masks mask for each nodes v i 2 Vs, and acquire the new feature matrix �Xl by

multiplying the raw feature Xl with the generated masks, i.e., �Xl ¼ mask � Xl. Thus, Eq. (2) can be rewritten as:
�al
ij ¼ LeakyReLU HTConcat W�xli;Wxlj

h i� �
; ð3Þ
where �xli 2 �Xl and xlj 2 Xl. In this way, we only compute pairwise interactions for low-degree nodes Vs, which require only
O nsð Þ time and space complexity. While s � n, we can significantly reduce the memory and space consumption.

Then, we utilize the softmax function to normalize �al
ij:
Slij ¼ softmax �al
ij

� �
¼

exp �al
ij

� �
XN
j¼1

exp �al
ij

� � : ð4Þ
3.2.2. Differentiable graph sparsification
Since the softmax function always generates non-zero values, the learned graph becomes a dense connected graph, i.e.,

(1) 8i; j 2 n; Sij – 0, (2)
Pn

j¼1Sij ¼ 1. The computational cost of dense connected graphs is expensive, and it runs counter to the
sparsity of real-world graph data, which may introduce lots of noise to subsequent graph representation learning. A naive

idea is to directly construct the learned graph Sl as k-nearest neighbors (kNN) graph. However, this approach may cause a
problem: it can distract the model from the important edge connections, especially when the attention probability distribu-
tion is flat.

To this end, we consider performing a sparse attention masking operation M �ð Þ on al
ij to extract a sparse adjacency matrix.

Specifically, we select the k-th largest element of each row in al
ij as the threshold, and concatenate them to form a vector

c ¼ c1; c2; � � � ; cn½ �. Then the elements in al
ij that are lower than the threshold are filtered to form a sparse graph structure.

The masking function M �ð Þ can be formulated as:
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~al
ij ¼ M al

ij; k
� �

¼ al
ij al

ij P ci
�1 otherwise;

(
ð5Þ
where k is a hyper-parameter, ci is the k-th largest value of row i. As al
ij is smaller than ci, the masking function assigns al

ij to
negative infinity. In the subsequent normalization, these values below the threshold are normalized to 0, while the values
above the threshold are retained. In this way, we prompt the model to focus on the edges with important contributions,

and retain them to generate a sparse graph structure. The output graph structure ~Slij can be computed as below:
~Slij ¼ softmax M al
ij; k

� �� �
: ð6Þ
Compared with sparsemax [29], our proposed method not only has the ability to generate sparse distribution, but also has
higher efficiency. This is due to our method does not introduce too much extra computational or memory cost, detailed anal-
ysis can be found in Section 5.5.4. Below, we show the back-propagation process of graph sparse operation.

Given the masking function ~a ¼ M a; kð Þ in Eq. (5). When calculating the gradient in back-propagation, we regard ci as
constants:
@~aij
@amn

¼ 0 i–m; j– nð Þ
@~aij
@aij

¼ 1 al
ij P ci;

0 otherwise:

( ð7Þ
The next step after masking process is normalization:
@~Sl
ij

@aij
¼

XN
p¼1

XN
q¼1

@~Sl
ij

@~apq
@~apq
@aij

¼ @~Sl
ij

@~aij

@~aij
@aij

¼
@~Sl

ij

@~aij
al
ij P ci;

0 otherwise:

8<:
ð8Þ
The softmax function is evidently differentiable, therefore, we can prove that the proposed graph sparse operation is
differentiable.

3.2.3. Gated graph integration
The graph integration process aims to incorporate the learned graph structure into the raw graph structure. This is

because the initial graph structure is constructed from specialty domain knowledge, which reveals much useful information
about the graph topology. Moreover, we may be limited by the fact that the given node features may not contain adequate
information to learn a good graph structure. Therefore, we need a fusion function, which can effectively fuse the given graph
and the learned graph to form an optimal graph that adapts to the current layer.

Previous work [10,40] adopted the residual learning to directly fuse the graphs. However, this method does not consider
that the influence degree of different graphs may be varied. We introduce the gated fusion mechanism that computes the
weight factors for each graph and fuses the graphs using a weighted sum. Formally, the gated fusion is given as:
Al ¼ Ws � ~Sl þWa � Al�1
; ð9Þ
where � denotes element-wise product. Ws;Wa 2 Rn are the learnable parameters that determine the influence degree of ~Sl

and Al�1 on the new graph topology. ~Sl means the learned graph structure in the l layer, while Al�1 means the graph structure

of the previous layer (as the initial graph of the l layer), and Al is the fused optimal graph of the current layer. For instance,

when l ¼ 1;A0 is the initial graph (ground truth), ~S1 is the graph learned from the initial node features X1, and A1 is the opti-

mal graph of the first layer formed by the fusion of A0 and ~S1. In this manner, we can hierarchically learn the adaptive graph
structure in different layers of the network.

State-of-the-art GNNs [4] broadly follow the neighborhood aggregation strategy, which utilizes an aggregation function
to gather feature messages from neighboring nodes and an update function to generate new node representations. Our pro-
posed method is a general building block that can be easily integrated into various GNNs, including GCN [7], GAT [8], Graph-
SAGE [6], GIN [30], etc. Specifically, we simply adopt DGSLN to generate new graph topology before the GNN performs
neighborhood aggregation, and utilize the resulting topology to guide the subsequent message passing. For simplicity, Sec-
tion 4.1 details the integration of DGSLN in GCN.

3.3. Graph optimization via hybrid loss function

In this section, we further consider optimizing the learned graph structure to ensure the quality of the learned graphs.
Previous work [10,15] learns graph structures from a single information source, and directly optimized the learned graphs
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by minimizing the task loss function. However, these approaches do not consider constraints from the underlying properties
of the graph (e.g., sparsity and connectivity [16]), which may lead to a suboptimal solution for the learned graph structure.
For this reason, we design a hybrid loss function for graph optimization. Specifically, we utilize regularization techniques to
guide the learning of the graph structure, driving the learned graph to satisfy more graph attributes, and integrating these
constraint terms into the task prediction loss as optimization objectives. By minimizing the hybrid loss function, the graph
topology and GNN parameters are jointly learned from both data-driven and task-driven aspects. Formally, the loss function
is defined as:
L ¼ Lpred þ
X
l

Ll
reg ; ð10Þ
where Lpred is the task prediction function (e.g., cross-entropy), and Ll
reg is the regularization function for optimizing the

graph structure in layer l. Notice that Ll
reg can be dynamically adjusted, and selecting different regularization terms can cap-

ture different prior knowledge.

3.3.1. Feature smoothness

The first regularization term is introduced to control the feature smoothness of the learned graph ~Sl. Some studies [31,32]
have demonstrated that the nodes connected in a graph are likely to have similar features. Meanwhile, feature smoothness is
a metric reflecting the similarity of node representations. Thus, we can impose feature smoothness constraints in the objec-
tive function to assure the learned graph structure adapts to the node features, i.e.,
Ll
f ¼

X
i;j2V

/ xi; xj
� �

; ð11Þ
where /is a metric function that measures the difference among nodes v i and v j. We can adopt typical measures such as
Square Error, Kullback–Leibler(KL) divergence for /, and we list the corresponding function below,
/1 ¼
Xn
i;j¼1

xi � xj
�� ��2

F
~Slij ¼ tr XTLX

� �
;

/2 ¼
Xn
i;j¼1

KL xi xj
��� �

~Slij ¼
Xn
i;j¼1

xi log
xi
xj

� �
~Slij;

ð12Þ
where tr �ð Þ is the trace of a matrix, L ¼ D� eSl is the graph Laplacian matrix, and D is the degree matrix. If v i and v j are con-

nected in ~Sl (i.e., ~Slij – 0), we expect the feature smoothness / xi; xj
� �

to be small. In other words, smaller / xi; xj
� �

indicates that

the feature of v i and v j are quite similar, thus the larger value of ~Slij. Therefore, minimizing Ll
f can encourage adjacent nodes

to have similar features, thereby enhancing the feature smoothness on the learned graph eSl. However, this approach may

produce a trivial solution eSl ¼ 0 [33]. Since it not only forces similar nodes to connect, but also causes other nodes to
disconnect.

3.3.2. Property constraint

To prevent eSl from falling into the trivial solution. Meanwhile, the learned graph is constrained to satisfy more graph
structure properties (such as sparsity and connectivity). We impose the second regularization term on the learned graph
for exploring more prior information.
Ll
p ¼ �k11

T log eSl1
� �

þ k2
2

eSl
��� ���2

F
; ð13Þ
where 1T ¼ 1; . . . ;1½ �T; �j jF is the Frobenius norm, eSl1 is the node degree vector. The first term applies the logarithmic barrier

on eSl1, which can force the degrees to be positive, but does not prevent the edges from being 0. In this way, the graph con-
nectivity can be improved without affecting the sparsity. Nevertheless, adding only logarithmic term causes the graph to be
quite sparse, thus we add the second term to control sparsity by penalizing large degrees.

In summary, we define the total regularization loss as follows:
Ll
reg ¼ k0Ll

f þ Ll
p; ð14Þ
where k0; k1, and k2 are predefined hyper-parameters that control the contribution of the regularization term to the overall
task.

3.4. Complexity analysis

In this section, we analyze the model complexity. For DGSLN, the cost of learning the graph structure is O n2d
� �

, while
computing graph sparse operation costs O nð Þ, computing gated fusion cost O nð Þ. Most existing GNNs [7,8,6] compute the
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node embedding costs O ndd0 þ Ej jd� �
. GLCN [11] is a special case whose time complexity is O n2dþ ndd0 þ n2d

� �
. Since GLCN

learns the dense graphs to guide neighborhood aggregation. If DGSLN is integrated into a general GNN, we obtain the total
time complexity O n2dþ 2nþ ndd0 þ Ej jd� �

. Among them, n2 	 Ej j 	 n and d 
 d0. Thus, the computational complexity of our
DGSLN is higher than the general GNNs, but much smaller than GLCN.

For the scalable version, the cost of learning the graph structure is O nsdð Þ. If it is integrated into the existing GNNs, we
obtain the total time complexity O nsdþ 2nþ ndd0 þ Ej jd� �

.

4. Model architecture

The proposed differentiable structure learning is a generic building block that can be easily integrated into various GNNs.
To validate the generality and effectiveness, we redesign the graph convolution and graph pooling operations based on struc-
ture learning, and extended the redesigned operations to node classification and graph classification tasks.
4.1. Graph convolution with structure learning

Based on the proposed DGSLN, we redesign a new graph convolutional layer, termed as GSLConv. Different from [7,8], the
new convolutional layer first learns the optimal graph adapted to the current node features, and then uses the learned graph
to guide the feature propagation to generate new node representations.

Suppose the current feature matrix Xl and the optimal graph Al�1 of the previous layer are inputs. Based on Section 3.2, in

the new convolutional layer, we first perform our proposed DGSLN to learn potential structural information eSl from Xl. Then,

the optimal graph Al of the current layer is obtained by Eq. (9), i.e., the previous graph structure Al�1 is added to the learned

graph eSl through gated fusion. Finally, we utilize the optimal graph Al to gather the neighborhood information for generating
a new node representation. The layer-wise propagation process is defined as:
Al ¼ DGSLN Xl;Al�1
� �

;

Xlþ1 ¼ r bD�1
2Al bD�1

2XlWl
� �

;
ð15Þ
where Wl 2 Rd�d0 is the trainable weight, Xlþ1 2 Rn�d0 denotes the updated node features.
4.2. Graph pooling with structure learning

Some work [22,23] have achieved the graph coarsening by calculating the importance scores of the nodes in the graph
and adaptively retaining several nodes with higher scores. However, these methods only retain a subset of graph nodes,
it is inevitable to lose the integrity of the graph structure information. To solve the problem, we redesign a new graph pool-
ing layer (GSLPool), which can reduce the size of graph and learn the topology information of the reduced graph to ensure the
integrity of the graph structure.

Similar to the previous work [22], we first remove some task-irrelevant nodes to approximate the graph information.
Specifically, we utilize the attention mechanism to evaluate the relative importance of each node, and perform topk selection

to retain several critical nodes to form a new reduced graph A0 and node features Xlþ1. Since the unselected nodes are directly
filtered during the selection process, which causes a massive loss of graph structure information. We employ our proposed

DGSLN to learn the hidden edge connections from the reduced node features Xlþ1, and combine themwith the reduced graph

A0 to generate the output graph structure Alþ1. In this way, we can supplement the structure information lost in the pooling
process and ensure the integrity of the reduced graph structure. The process can be formulated as:
p ¼ softmax r WTXl
� �� �

;

idx ¼ topk p; r � Nd eð Þ;
A0 ¼ Al

idx;idxð Þ;

Xlþ1 ¼ Xl
idx;:ð Þ;

Alþ1 ¼ DGSLN Xlþ1;A0
� �

;

ð16Þ
where p 2 Rn�1 is the node importance scores, r is the pooling ratio, idx is the indices of the selected node, and Al
idx;idxð Þ and

Xl
idx;:ð Þ perform the row/column extraction.
101



Fig. 3. Overview of Node Classification Architecture DGSLNn. GSLConv represents the redesigned convolution operation.
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4.3. Node classification

For a fair comparison, we adopt the network architectures similar to GCN [7], referred to as DGSLNn. As shown in Fig. 3,
we stack two GSLConv layers. In each GSLConv layer, we dynamically capture the optimal graph adapted to the current fea-
tures, and then uses the learned graph to guide feature aggregation to generate new node representations. We apply the
softmax function to output features to predict the label of each node, and the loss function is defined as the cross-
entropy of all labeled nodes:
Lnode ¼ �
Xn

i¼1

Xc

j¼1

Yij log Ŷ ij; ð17Þ
where n is the set of labeled instances, c is the number of categories, Ŷ ij means the predicted probability, and Yij denotes the
ground truth. Finally, we integrate the graph structure learning loss (Eq. (14)))) into the task prediction loss, and optimize the
network model by minimizing the hybrid loss function. For node classification tasks, the total loss function is defined as:
L ¼ Lnode þ
X
l

Ll
reg : ð18Þ
4.4. Graph classification

In this setting, we implement a hierarchical graph classification model recently proposed by [34], referred to as DGSLNh.
As illustrated in Fig. 4, the architecture consists of several blocks, each of which is stacked with a GSLConv layer followed by a
GSLPool layer. GSLConv layer is responsible for aggregating neighborhood information to generate a hidden graph represen-
tation, while GSLPool reduces the graph size to extract higher-order features. The proposed model learns the graph repre-
sentation in a hierarchical manner, thus we would observe that each block has a different size of the graph
representation. The readout function [34] is utilized to aggregate the node features in the subgraph for generating a
fixed-size global representation.
r ¼ 1
n

Xn

i¼1

xijjmax
n

i¼1
xi; ð19Þ
where jjis the concatenation operator.
Finally, the output of each block is added to generate a graph level representation, and the graph level representation is

input to an MLP with softmax function for graph classification tasks. Similar to the node classification task, its loss function
can be defined as:
L ¼ Lgraph þ
X
l

L lð Þ
reg : ð20Þ
5. Experimental results

5.1. Datasets

For graph classification task, we carry out comprehensive experiments on five commonly used public benchmark data-
sets: D&D, PROTEINS, NCI109, NCI1, COLLAB, and Mutagenicity [23].
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Fig. 4. Overview of Garph Classification Architecture DGSLNh . GSLConv represents the redesigned convolution operation, GSLPool represents the redesigned
pooling operation.
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For node classification task, we employ three popular citation network benchmark datasets: Citeseer, Cora, and Pubmed
[3]. To further validate the scalability of our proposed model, we utilize a large graph dataset: CoraFull, which is an extended
version of Cora. The statistics of these datasets are depicted in Table 1.
5.2. Baselines

5.2.1. Graph classification task
We compare our method with some representative and state-of-the-art GNNs and graph pooling methods. The classic

GNNs include: GCN [7], GraphSAGE with mean aggregator [6], GAT [8], and GIN [30]. Since the group of methods does
not include any pooling layer, we directly input the learned graph representation into the readout function for graph
classification.

Graph pooling methods can be grouped into two main categories: (1) Global pooling methods, which contain multiple
graph convolutional layers but only one pooling layer. The global pooling methods include: SortPool [35], and SAGPoolg
[23] that adopts the global pooling architecture for graph classification. (2) Hierarchical pooling methods, which contain
multiple graph convolutional layers and pooling layers. Six hierarchical pooling methods are used as baselines: DiffPool
[21], gPool [22], SAGPoolh that adopts the hierarchical pooling architecture for graph classification [23], EigenPool [36], Haar-
Pool [20], HGP-SL [15] which introduces a structure learning method in graph pooling operations to ensure graph integrity.
5.2.2. Node classification task
We first compare our model against the baseline of GCN [7], which is the most relevant model to our model. We then

against some other graph neural networks, including GAT [8], SGC [37], GMNN [38], GLCN [11], GRCN [12], and GDC[39].
Among them, GLCN and GRCN are graph structure learning methods, which learn an optimal graph structure by combining
graph convolution and graph structure learning in a unified network structure. GDC is a diffusion model-based approach for
improving graph structure. To facilitate a fair comparison, all baselines adopt the identical setting.
5.2.3. DGSLN variants
Some variants are constructed to further validate the effectiveness of the proposed DGSLN: DGSLNn that removes the

pooling layer and the structure learning is only considered in the convolutional layer. DGSLNg adopts the global pooling
architecture for graph classification. DGSLN-Fast leverages the proposed scalable relationship learning technique in
Section 3.2.1.
5.3. Implementation details

5.3.1. Graph classification settings
Our experimental setup is consistent with previous work [22,23] and adopts the same data partition as in [23]. We imple-

ment our methods utilizing PyTorch1, and the Adam optimizer is utilized to optimize the network. For all methods and data-
sets, the dimension of the node embedding is set to 128. We set the learning rate to 0:0005, the weight decay to 0:0001, the
pooling ratio r to 0:5, the layers to 3, the hyper-parameter k 2 2;4½ �, the trade-off parameter k0 to 0:0005; k1 to 0:1, and k2 to
0:01. For DGSLN-Fast, we set s ¼ 0:4. The MLP consists of three fully connected layers, the hidden sizes set to 256;128;64,
respectively. The early stop strategy is adopted during training, i.e., if the validation loss does not improve within 50 epochs
or in the iteration number exceeds a maximum of 1000 epochs, the training is stopped. For a fair comparison, the pooling rate,
learning rate, and weight decay are set as the same in all the hierarchical pooling methods (including gPool, SAGPoolh and HGP-
SL).
1 The source code can be provided on request and will be released to the public after this paper review to facilitate more research.
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Table 1
Dataset statistics.

Dataset Type Dataset Graphs Avg. nodes Avg. Edges Classes

Graph classification D&D 1,178 284.32 715.66 2
PROTEINS 1,113 39.06 72.82 2
NCI109 4,127 29.68 32.13 2
NCI1 4,110 29.87 32.30 2
COLLAB 5,000 74.49 2457.78 3
Mutagenicity 4,337 30.32 30.77 2

Dataset Type Dataset Nodes Edges Feature Classes

Node classification Cora 2708 5,429 1433 7
Citeseer 3327 4,732 3703 6
Pubmed 19717 44,338 500 3
CoraFull 19793 65,311 8710 70
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5.3.2. Node classification settings
For a fair comparison, we adopt the network architecture consistent with [7]. We set the network depth to 2, and the

dimension of feature vector in each layer to 16. We apply dropout of p ¼ 0:5 for the input in each layer, and adopt LeakyReLU
as the activation function. We utilize Adam optimization to train proposed models, the maximum of training iterations are
200 epochs, the learning rate is 0:1, and the weight decay is 0:0005.
5.4. Performance comparison

5.4.1. Graph classification
Table 2 demonstrates the average accuracy of our proposed DGSLN compared with other baselines. From this table, we

can obtain several insights:
First, we can easily observe that the proposed DGSLN performs significantly better than other baseline methods in 5 out of

6 benchmarks. The results demonstrate that the proposed method can adaptively learn useful structural information and
effectively improve the ability of representation learning.

Second, our approach is significantly better than all methods that do not consider structure learning, including classic
GNNs and graph pooling methods. Particularly, our approach surpasses the recently proposed EigenPool and HaarPool
among all datasets. This effectively validates the necessity of learning appropriate graph structures in GNNs.

Third, HGP-SL performs better than previous methods that do not apply structure learning. One possible reason is that
HGP-SL applies structure learning in the pooling operations to learn the appropriate graph structure and obtain a better
graph representation. Compared with HGP-SL, our method achieves better performance. This is because DGSLN is able to
learn the optimal graph adapted to node features from both task-driven and data-driven aspects through the designed
hybrid loss function.

Fourth, the performance of DGSLNn is better than GCN, which proves that the redesigned convolutional layer can learn the
appropriate graph structure and generate a better node representation. Furthermore, the performance of DGSLNg and
DGSLNh is better than DGSLNn, which indicates that the redesigned pooling layer can ensure the integrity of the reduced
graph after pooling while encoding advanced features. This proves that our DGSLN is a general building block that can hier-
archically learn the adaptive graph structure in different layers of the network.

Finally, DGSLNh-Fast can achieve comparable or even better performance than DGSLNh. This indicates that DGSLNh-Fast
can efficiently learn the appropriate graph topology while significantly reducing the computational complexity, and increas-
ing the scalability of DGSLN.
5.4.2. Node classification
Table 3 demonstrates the comparison results of the benchmark datasets. Our DGSLNn performs better on all datasets than

the baselines that do not consider graph structure learning, including GCN, GAT, SGC, and the recently proposed GMNN. It
effectively validates the importance of learning appropriate graph structure in GNN. Moreover, our approach outperforms
GLCN, GRCN, and GDC, which demonstrates the superiority of our proposed structural learning algorithm. Different from
GLCN which learns a dense fully connected graph and applies it to the entire network, DGSLN can dynamically learn the
adaptive sparse graph structure of different layers, thus obtaining a better node representation. Compared with GRCN
and GDC, DGSLN considers more graph properties and learns a more reasonable graph structure. Finally, we can find that
DGSLNn-Fast performs nearly as well as DGSLNn. On the large dataset CoraFull, DGSLNn fails due to memory limitations,
while DGSLNn-Fast achieves the best performance. It demonstrates that DGSLNn-Fast can significantly reduce the memory
and space consumption, and effectively address the scalability problem of DGSLN.
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Table 2
Overview of graph classification results, and the symbol ’-’ means the results are unavailable.

Categories Baselines PROTEINS D&D NCI1 NCI109 COLLAB Mutagenicity

GNNs GCN [7] 74:17� 1:63 75:26� 2:46 72:49� 1:79 70:70� 1:84 80.60 � 2.10 78:01� 1:58
GraphSAGE [6] 74:60� 4:27 76:58� 3:91 73:23� 1:34 70:37� 2:89 79.70 � 1.70 78:55� 1:18
GAT [8] 74:72� 4:01 77:30� 3:68 73:90� 1:72 75:81� 2:68 - 78:89� 2:05
GIN [30] 76:20� 2:80 77:78� 1:81 80.14 � 1.40 78:64� 1:40 79.30 � 2.70 79:93� 1:25

Global SortPool [35] 73:20� 0:44 77:76� 1:21 72:98� 2:19 72:23� 1:31 71:38� 0:98 78:78� 1:02
SAGPoolg [23] 70:04� 1:47 76:19� 0:94 74:18� 1:20 74:06� 0:78 74:48� 0:78 77:35� 0:67

Hierarchical DiffPool [21] 75:54� 2:02 78:05� 2:41 75:32� 1:90 74:18� 1:98 69:18� 1:71 71:34� 0:89
gPool [22] 71:10� 0:90 75:01� 0:86 67:02� 2:25 66:12� 1:60 71:26� 1:39 72:12� 1:37
SAGPoolh [23] 71:86� 0:94 75:45� 0:97 67:45� 1:11 67:86� 1:41 72:76� 1:74 77:02� 1:23
EigenPool [36] 77:12� 1:25 76:77� 1:65 76:65� 1:12 74:82� 1:35 77:25� 1:21 79:53� 1:04
HaarPool [20] 80:4� 1:8 - 78:6� 0:5 75:6� 1:2 - 80:9� 1:5
HGP-SL [15] 83:92� 1:65 77:12� 1:25 77:13� 1:12 76:33� 1:35 - 78:85� 1:04

Ours DGSLNn 82:76� 0:85 76:95� 0:56 75:22� 0:92 76:94� 2:19 81.82 � 1.27 80:15� 0:76
DGSLNg 83:37� 1:17 78:55� 1:03 79:76� 1:28 80.34 � 0.59 79.86 � 0.85 81.92 � 0.99
DGSLNh 86.84 � 0.76 79.97 � 0.75 76:92� 1:07 77:20� 0:84 82.67 � 0.97 80:48� 0:84
DGSLNh-Fast 85:98� 0:54 79:07� 0:66 76:56� 0:71 77:26� 0:69 82.06 � 0.81 80:15� 1:12

Table 3
Overview of node classification results. ‘‘oom” means out of memory.

Baselines Citeseer Cora Pubmed CoraFull

GCN [7] 70.3 �0.7 81.5 �0.6 78.4 �0.6 60.3 �0.7
GAT [8] 72.5 �0.7 83.0 �0.7 79.0 �0.3 59.9 �0.6
SGC [37] 71.9 �0.1 81.0 �0.0 78.9 �0.0 59.1 �0.7
GMNN[38] 73.1 83.7 79.4 -
GLCN [11] 72.4 �0.4 83.4 �0.5 79.1 �0.4 59.1 �0.7
GRCN [12] 72.6 �1.3 83.7 �1.7 77.9 �3.2 60.2 �0.5
GDC [39] 73.2 �0.3 83.6 �0.2 78.7 �0.4 59.5 �0.4

DGSLNn 73.4 �0.8 84.2 �0.5 79.4 �0.2 oom
DGSLNn-Fast 72.6 �0.5 83.9 �0.5 79.1 �0.2 60.7 �0.4
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5.5. Ablation study

5.5.1. Robustness analysis
To verify the robustness of DGSLN, we randomly remove edges on Cora dataset to generate a synthetic dataset. Specifi-

cally, the edge deletion rates are 20%;40%;60%;80%. Fig. 5 shows that the classification accuracy of GCN decreases as the
edge deletion rate increases, which means that GNN is very sensitive to the quality of the original graph structure. Compared
with GCN and GRCN, DGSLN achieves better results. It indicates that the proposed DGSLN can effectively capture meaningful
graph topology without relying on the initial graph structure. In particular, our method shows the more significant perfor-
mance improvement when the edge deletion rate becomes larger. These results all demonstrate that the proposed DGSLN
can learn the more robust graph representation.
5.5.2. Impact of different metric functions
To explore the impact of different metric functions on pairwise relationship learning, we design three variants: DGSLNh-

ED and DGSLNh-CS represent adopting the euclidean distance (ED) and cosine similarity (CS) to obtain the pairwise relation-
ship. DGSLNh-MLP means directly employing the single-layer MLP proposed by GLCN [11] for graph learning.

From Table 4, we can observe that DGSLNh-MLP is superior to DGSLNh-ED and DGSLNh-CS, which indicates that a good
metric function should be learnable. The proposed DGSLNh and DGSLNh-Fast further improve the performance. This is
because the attention mechanism can explicitly capture the relationship importance of the graph, driving the model to focus
on more important edges.
5.5.3. Effects of hierarchical graph learning
To investigate the effectiveness of hierarchical graph learning, we design two variants: DGSLNg-fixed and DGSLNh-fixed,

which remove the hierarchical graph learning component (i.e., only learn a fixed graph from the input node feature). Table 5
illustrates the comparison results on three graph classification datasets. It is obvious that GSLNNg and DGSLNh perform bet-
ter than GSLNNg-fixed and DGSLNh-fixed significantly. It demonstrates that hierarchical graph learning can dynamically cap-
ture the graph structure adapted to node features and improve the representational power of the model.
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Fig. 5. Test accuracy on the synthetic dataset.
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5.5.4. Effects of differentiable graph sparsification
Five variants are explored to evaluate the effectiveness of graph sparse operation. (1) HGP-SL-Den means adopting

softmax to learn dense graph structure. (2) HGP-SL-SO means removing sparsemax in HGP-SL, and adopting the proposed
graph sparse method. (3) DGSLNh-Den means discarding sparse operations and learning dense graph structure with
softmax. (4) DGSLNh-SM stands for utilizing sparsemax in DGSLNh to obtain a sparse structure. (5) DGSLNh-kNN stands
for utilizing the settings of kNN algorithm to obtain a sparse structure.

Table 6 presents the experimental results on two graph classification datasets. We can observe that HGP-SL-Den and
DGSLNh-Den achieve the worst performance, and DGSLNh-Den is unavailable on D&D dataset due to out of memory. It
demonstrates that learning dense graph structure not only affects scalability, but also might introduce additional noise infor-
mation and cause performance degradation. Whether it is the baseline HGP-SL or DGSLN, our proposed sparse operation can
achieve better performance than sparsemax. More importantly, we can observe from the table that its training speed is 3 or 4
times faster than sparsemax. It indicates that our method can efficiently generate sparse distributions and learn more rea-
sonable graph structures without introducing too much extra computational overhead. Moreover, DGSLNh is also superior to
DGSLNh-kNN, which further verifies the effectiveness of the proposed sparse operation.

5.5.5. Effects of gated integration
To evaluate the proposed gated fusion mechanism, we explore some variants of DGSLNh: (1) DGSLNh-NIG denotes dis-

carding the original graph structure and only utilizing the graph structure learned by DGSLN. (2) DGSLNh-Avg means replac-
ing the gated fusion with the simple addition, i.e., the new graph topology is obtained by an average aggregation.

We present the experimental results in Table 7. The results demonstrate that DGSLNh performs better than DGSLNh and
DGSLNh-Avg. This is because the given graph structure contains rich and useful graph topology information, and discarding
the original graph structure will cause performance degradation. Furthermore, our proposed gating Integration mechanism
can effectively fuse the raw graph structure and the learned graph by learning adaptive weights, thereby forming a fused
graph structure that adapts to the node features.

5.5.6. Effects of hybrid loss function
In this section, some variants are designed to validate the effectiveness of the hybrid loss function: (1) DGSLNh-NHL

means removing the graph regularization loss in DGSLNh. (2) DGSLNh-FS denotes only adopting the feature smoothness con-
strain. (3) DGSLNh-P means only adopting the property constraint. (4) DGSLNh-GL denotes adopting the graph learning loss
proposed by GLCN [11] to replace the proposed hybrid loss.

Table 8 depicts the performance of the four variants and our proposed DGSLNh. From the results, we can observe that the
variant DGSLNh-NHL without hybrid loss function gets the worst performance. It shows that it is difficult to learn the adap-
Table 4
Impact of Different Metric Functions in the Pairwise Relationship
Learning.

Methods PROTEINS D&D NCI1

DGSLNh-ED 82:14� 1:14 76:33� 0:76 74:93� 1:03
DGSLNh-CS 83:92� 0:81 76:42� 1:05 75:13� 1:79
DGSLNh-MLP 85:71� 0:82 78:45� 1:16 75:45� 0:91

DGSLNh 86.84 � 0.76 79.97 � 0.75 76.92 � 1.07
DGSLNh-Fast 85:98� 0:54 79:07� 0:66 76:56� 0:71
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Table 5
Effectiveness of the Hierarchical Graph Learning.

Methods PROTEINS D&D NCI1

DGSLNg-fixed 80.92 � 1.72 77.12 � 1.05 77.13 � 1.79
DGSLNg 83.37 � 1.17 78.55 � 1.03 79.76 � 1.28

DGSLNh-fixed 83.92 � 1.14 77.66 � 1.03 74.13 � 0.73
DGSLNh 86.84 � 0.76 79.97 � 0.75 76.92 � 1.07

Table 6
Effectiveness of the Graph Sparsification.

Methods D&D PROTEINS

Accuracy Training Accuracy Training
(%) time (s) (%) time (s)

HGP-SL-Den 76:02� 1:09 7.5157 83:12� 1:37 1.5635
HGP-SL 77:12� 1:25 13.1136 83:92� 1:65 3.9464
HGP-SL-SO 77:12� 0:92 2.823 84:82� 1:06 1.2396
DGSLNh-Den oom - 84:66� 1:08 1.7992
DGSLNh-SM 78:47� 1:65 16.425 85:62� 1:26 3.6464
DGSLNh-kNN 77:99� 1:23 4.9223 85:24� 0:86 1.2678

DGSLNh 79.97 � 0.75 4.7774 86.84 � 0.76 1.0947

Table 7
Effectiveness of the Gated Fusion Mechanism.

Methods PROTEINS D&D NCI1

DGSLNh-NIG 83:92� 1:72 77:12� 1:05 74:13� 1:79
DGSLNh-Avg 85:71� 0:82 78:45� 1:16 75:45� 0:91

DGSLNh 86.84 � 0.76 79.97 � 0.75 76.92 � 1.07

Table 8
Effectiveness of Hybrid Loss Function.

Methods PROTEINS D&D NCI1

DGSLNh-NHL 84.51 � 1.67 77:45� 1:10 74:45� 1:42
DGSLNh-FS 85.32 � 1.23 78.86 � 1.49 75.47 � 1.06
DGSLNh-P 85.08 � 1.65 78.56 � 1.25 75.34 � 1.12
DGSLNh-GL 85.58 � 0.74 78.99 � 0.64 75.66 � 0.43

DGSLNh 86.84 � 0.76 79.97 � 0.75 76.92 � 1.07
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tive graph structure only by minimizing the task loss function during the training phase. DGSLNh-FS and DGSLNh-P outper-
form DGSLNh-NHL, which shows that the proposed feature smoothness and property constraint can effectively control the
feature smoothness, sparsity and connectivity of the learned graph. DGSLNh combines two regularization terms to obtain the
optimal performance. It reveals the effectiveness of the proposed hybrid loss function, which can force the learned graph to
satisfy more graph properties.

5.5.7. Generality of DGSLN
As mentioned in Section 3.2.3, our proposed DGSLN can be integrated into various GNNs architecture. In order to verify

the generality of DGSLN, we integrate it into the three most widely used graph convolution operations: GCN, GraphSAGE
with mean aggregator, and GAT, and then integrate them into DGSLNh as a basic building block. Table 9 shows that the per-
formance of the three variants on graph classification tasks. These results indicate that the three variants have achieved good
performance. The model performance depends on the selected dataset and the GNN type, thus verifying the effectiveness
and flexibility of the proposed structure learning.

5.6. Visualization

5.6.1. Visualization of graph structure changes
To observe the graph structure changes brought by DGSLN intuitively, we visualize it on Cora dataset and PROTEINS data-

set. Fig. 1 shows the original graph structure and the learned graph structure on Cora dataset. From Fig. 1(a), we can observe
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Table 9
Results of DGSLNh and its variants on graph classification task.

Methods PROTEINS D&D NCI1

DGSLNh 86.84 � 0.76 79.97 � 0.75 76.92 � 1.07
DGSLNh-GAT 85:62� 1:26 78:47� 1:65 75:47� 1:12
DGSLNh-SAGE 83:51� 1:67 77:45� 1:10 74:45� 1:42
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that the original graph structure contains missing edges and some nodes do not have edge connections. While our proposed
DGSLN can effectively capture more meaningful topology information, which complements the original graph structure.
Fig. 1(c) further zooms in on the local details of the learned graph structure, and illustrates the neighborhood changes of
the rightmost green node in Fig. 1(a). Fig. 6 illustrates the examples of graph structure changes for SAGPoolh and DGSLNh

on PROTEINS dataset. The results show that SAGPoolh cannot retain meaningful global topology and graph connectivity is
severely disrupted. In contrast, DGSLNh preserves the relatively reasonable topology of the protein graph by learning the
graph structure and obtains superior performance.

5.6.2. T-SNE visualization
Fig. 7 presents t-SNE visualization of graph representations learned by DGSLNh, HGP-SL and SAGPoolh on NCI and PRO-

TEINS. In SAGPoolh, the samples are not well clustered, and the boundaries between graph classes are not clear. In contrast,
DGSLNh shows a good clustering for graph samples, which means that DGSLNh can learn more meaningful representations by
capturing the adaptive graph structure.

5.7. Hyper-parameter analysis

The selection of hyper-parameters may directly affect the performance of the proposed model. In this section, we alter the
values of hyper-parameters s; k; r; k0; k1 and k2 to search for the optimal parameter values.

5.7.1. Analysis on hyper-parameter s
In the proposed scalable version, s directly affects the complexity of graph structure learning. A larger s results in higher

model complexity. Fig. 8(a) presents the results of DGSLNh on different s. From this figure, increasing the value of s is helpful
to improve the classification accuracy, but when s is greater than 0.4, the performance improvement begins to slow down.
The weak performance gains are negligible for the added computational complexity, especially on large graphs. Thus, we set
s ¼ 0:4 to carry out the trade-off between accuracy and complexity.

5.7.2. Analysis on hyper-parameter k
In the proposed graph sparse operation, the degree of graph sparseness is affected by the value of k. Specifically, a larger k

results in a dense graph and causes high computational overhead, while a smaller k may lose a lot of the learned structural
information. Therefore, it is critical to choose an appropriate value of k. In Fig. 8(b), we study the effect of different k values
on model performance. The results show that the optimum result differs for different datasets. The larger k value is required
for D&D dataset that contains many nodes and edges. We consistently find the k value of around 2;4½ � to perform best. Since
different graphs have different structures, the k should be adjusted for the dataset under study.

5.7.3. Analysis on hyper-parameter r
We provide an ablation study on the pooling ratio r. Fig. 8(c) displays the classification accuracy under different r values.

The results demonstrate that the optimal r has different values for different datasets. Therefore, the appropriate r value needs
to be selected according to the graph data and application. Note that r cannot be too small, otherwise rich structural message
will be lost during the pooling process, resulting in performance degradation.

5.7.4. Choices of /
We adopt two metric functions to measure feature smoothness in Eq. (12). For facilitate selection, Fig. 8(d) reports the

classification accuracy of using Square error and KL divergence on three datasets. We can observe that the two metrics have
similar performance, but KL divergence has better stability. Therefore, we give priority to KL divergence when expanding to
new datasets.

5.7.5. Analysis on hyper-parameter k0; k1; k2
In the hybrid loss function (Eq. (13)), the weight parameters k0; k1; k2 are the key parameters that affect the model per-

formance. In particular, k0; k1; k2 can scale the loss values to the same scale level and assign different weights to them during
optimization. Here, we evaluate the contribution of the hybrid loss function with different k0; k1; k2. As illustrated in Fig. 9(a)-
9(c), DGSLNh achieves the optimal accuracy on PROTEIN dataset when k0 ¼ 0:0005; k1 ¼ 0:1 and k2 ¼ 0:01.
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Fig. 6. Illustrative examples of graph structure changes for SAGPoolh and DGSLNh on PROTEINS dataset.

Fig. 7. T-SNE visualization of graph representations learned by SAGPoolh, HGP-SL and our proposed DGSLNh . Each color represents a category.

Fig. 8. Hyper-parameter sensitivity analysis.
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5.7.6. Influence of network depth
Network depth is a key parameter, which directly affects the quality of feature learning. From Fig. 9(d), we can find that

when the network depth is 3, the performance model is better than the rest of the models, and when the network depth
deviates from 3, the performance of the model usually decreases. One possible reason is that the shallower network is
not enough to learn the effective representation, and the deeper network will lead to over-fitting problems.
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Fig. 9. (a-c) Experiments on model performance with different k0; k1; k2 values in the hybrid loss function. (d) Influence of the network depth.

Table 10
Model sizes, training time (training for one epoch), testing time comparison (in seconds).

Methods D&D PROTEINS NCI1

Model size Training Testing Model size Training Testing Model size Training Testing
(KB) time time (KB) time time (KB) time time

SAGPoolg 596 0.7681 0.0767 552 0.4669 0.0536 572 2.2725 0.2842
SAGPoolh 340 2.9658 0.1004 300 0.8716 0.0505 316 3.2751 0.2175
EigenPool 1928 39.0185 4.6332 1928 1.6221 0.3392 1928 5.3354 0.6860
HGP-SL 1928 13.1136 1.6396 303 3.9464 0.4558 249 18.2076 2.2706

DGSLNg 598 0.8775 0.0869 554 0.8643 0.0621 572 2.7114 0.1758
DGSLNg-Fast 598 0.6234 0.0671 554 0.6143 0.0509 572 1.6142 0.1152
DGSLNh 343 4.7774 0.3188 300 1.0947 0.0902 317 4.0055 0.3374
DGSLNh-Fast 343 2.2747 0.2162 300 0.5247 0.0623 317 1.9047 0.2144
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5.8. Model storage and running time comparison

In this section, we study the model storage and running time of our method compared to other baselines. Table 10 pre-
sents the model sizes, training time (training for one epoch), testing time of DGSLNg , DGSLNg-Fast, DGSLNh, DGSLNh-Fast, and
other baselines. To facilitate fair calculation, only one NVIDIA P100 GPU is used for all the methods. We can discover that the
model size and running time of DGSLN is bigger than SAGPool in both global architecture and hierarchical architecture.
While the running time of DGSLN-Fast is similar to SAGPool. Moreover, EigenPool and HGP-SL have the largest model sizes
and running time especially on D&D which has many nodes and edges. These results show that our DGSLN can simply and
efficiently obtain better representations.

6. Conclusion and future work

In this work, we explore graph structure learning in GNNs to learn robust graph structures for guiding message passing.
Specifically, we propose a differentiable graph structure learning neural network (DGSLN), which utilizes the attention
mechanism to learn an adaptive graph topology from node features. To learn more reasonable structures, we further propose
a differentiable graph sparse operation, which can transform dense fully connected graphs into sparse graphs. We further
design a hybrid loss function, so that graph representation and graph structure can be co-optimized. DGSLN is a flexible
building block that can be integrated into any GNNs framework. Extensive experiments have demonstrated that our DGSLN
can effectively improve performance compared to state-of-the-art GNNs methods.

In future work, we aim to extend the proposed structure learning method to unstructured point cloud learning.
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