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Abstract—Range-aggregate queries are to apply a certain aggregate function on all tuples within given query ranges. Existing

approaches to range-aggregate queries are insufficient to quickly provide accurate results in big data environments. In this paper, we

propose FastRAQ—a fast approach to range-aggregate queries in big data environments. FastRAQ first divides big data into

independent partitions with a balanced partitioning algorithm, and then generates a local estimation sketch for each partition. When a

range-aggregate query request arrives, FastRAQ obtains the result directly by summarizing local estimates from all partitions.

FastRAQ has Oð1Þ time complexity for data updates and Oð N
P�BÞ time complexity for range-aggregate queries, whereN is the number

of distinct tuples for all dimensions, P is the partition number, and B is the bucket number in the histogram. We implement the FastRAQ

approach on the Linux platform, and evaluate its performance with about 10 billions data records. Experimental results demonstrate

that FastRAQ provides range-aggregate query results within a time period two orders of magnitude lower than that of Hive, while the

relative error is less than 3 percent within the given confidence interval.

Index Terms—Balanced partition, big data, multidimensional histogram, range-aggregate query
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1 INTRODUCTION

1.1 Motivation

BIG data analysis can discover trends of various social
aspects and preferences of individual everyday behav-

iours. This provides a new opportunity to explore funda-
mental questions about the complex world [1], [2], [3]. For
example, to build an efficient investment strategy, Preis et al.
[2] analyzed the massive behavioral data sets related to
finance and yielded a profit of even 326 percent higher than
that of a random investment strategy. Choi and Varian [3]
presented estimate sketches to forecast economic indicators,
such as social unemployment, automobile sale, and even
destinations for personal travelling. Currently, it is impor-
tant to provide efficientmethods and tools for big data analy-
sis. We give an application example of big data analysis.

Distributed intrusion detection systems (DIDS) monitor and
report anomaly activities or strange patterns on the network
level. A DIDS detects anomalies via statistics information
of summarizing traffic features from diverse sensors to
improve false-alarm rates of detecting coordinated attacks.

Such a scenariomotivates a typical range-aggregate query
problem [4] that summarizes aggregated features from

all tuples within given queried ranges. Range-aggregate
queries are important tools in decision management, online
suggestion, trend estimation, and so on. It is a challenging
problem to quickly obtain range-aggregate queries results in
big data environments. The big data involves a significant
increase in data volumes, and the selected tuples maybe
locate in different files or blocks. On the other hand, real-
time systems aim to provide relevant results within seconds
onmassive data analysis [5].

The Prefix-sum Cube (PC) method [4], [6] is first used in
OLAP to boost the performance of range-aggregate queries.
All the numerical attribute values are sorted and any range-
aggregate query on a data cube can be answered in constant
time. However, when a new tuple is written into the cube, it
has to recalculate the prefix sums for all dimensions. Hence,
the update time is even exponential in the number of
cube dimensions. Online Aggregation (OLA) is an important
approximate answering approach to speeding range-aggre-
gate queries [7], which has been widely studied in relational
databases [8] and Cloud systems [9], [10], [11], [12]. The OLA
systems provide early estimated returns while the back-
ground computing processes are still running. The returns
are progressively refined and the accuracy is improved in
subsequent stages. But users cannot obtain an appropriate
answering with satisfied accuracy in the early stages.

The sampling and histogram approaches have been uti-
lized in database environments to support approximate
answering or selectivity estimation. However, it can not
acquire acceptable approximations of the underlying data
sets, when data frequency distributions in different dimen-
sions vary significantly.

1.2 Our Contributions

In this paper, we propose FastRAQ—a new approximate
answering approach that acquires accurate estimations
quickly for range-aggregate queries in big data environments.
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FastRAQ first divides big data into independent partitions
with a balanced partitioning algorithm, and then generates a
local estimation sketch for each partition. When a range-
aggregate query request arrives, FastRAQ obtains the result
directly by summarizing local estimates from all partitions.

The balanced partitioning algorithm works with a strati-
fied sampling model. It divides all data into different groups
with regard to their attribute values of interest, and further
separates each group into multiple partitions according to
the current data distributions and the number of available
servers. The algorithm can bound the sample errors in each
partition, and can balance the number of records adaptively
among servers when the data distribution and/or the num-
ber of servers changes.

The estimation sketch is a new type of multi-dimensional
histogram that is built according to learned data distribu-
tions. Our multi-dimensional histogram can measure the
quality of tuples distributions more accurately and can sup-
port accurate multi-dimensional cardinality queries. It can
maintain nearly equivalent frequencies for different values
within each histogram bucket, even if the frequency distri-
butions in different dimensions vary significantly.

FastRAQ has Oð1Þ time complexity for data updates and

Oð N
P�BÞ time complexity for ad-hoc range-aggregate queries,

where N is the number of distinct tuples in all dimensions,
P is the number of partitions, and B is the number of buck-
ets in a histogram. Furthermore, it produces negligible vol-
ume of index data in big data environments.

We implement the FastRAQ approach on the Linux plat-
form, and evaluate its performance with about 10 billions
data records. Experimental results demonstrate that Fas-
tRAQ provides range-aggregate query results within a time
period two orders of magnitude lower than that of Hive,
while the relative error is less than 3 percent within the
given confidence interval.

2 OVERVIEW OF THE FASTRAQ APPROACH

2.1 Problem Statement

We consider the range-aggregate problem in big data envi-
ronments, where data sets are stored in distributed servers.
An aggregate function operates on selected ranges, which
are contiguous on multiple domains of the attribute values.
In FastRAQ, the attribute values can be numeric or alpha-
betic. One example of the range-aggregate problem is
shown as follows:

Select exp(AggColumn), other ColName where
li1 < ColNamei < li2 opr
lj1 < ColNamej < lj2 opr
. . . ;
In the above query, exp is an aggregate function such as

SUM or COUNT; AggColumn is the dimension of the aggre-
gate operation; li1 < ColNamei < li2 and lj1 < ColNamej <
lj2 are the dimensions of ranges queries; opr is a logical oper-
ator including AND and OR logical operations. In the fol-
lowing discussion, AggColumn is called Aggregation-Column,
ColNamei and ColNamej are called Index-Columns.

The cost of distributed range-aggregate queries primarily
includes two parts. i.e., the cost of network communication
and the cost of local files scanning. The first cost is produced
by data transmission and synchronization for aggregate
operations when the selected files are stored in different
servers. The second cost is produced by scanning local files
to search the selected tuples. When the size of a data set
increases continuously, the two types of cost will also
increase dramatically. Only when the two types of cost are
minimized, can we obtain faster final range-aggregate
queries results in big data environments.

2.2 Key Idea

To generate a local request result, we design a balanced par-
tition algorithm which works with stratified sampling
model. In each partition, we maintain a sample for values of
the aggregation-column and a multi-dimensional histogram
for values of the index-columns. When a range-aggregate
query request arrives, the local result is the product of the
sample and an estimated cardinality from the histogram.
This reduces the two types of cost simultaneously. It is for-
mulated as

PM
i¼1 Counti � Samplei, where M is the number

of partitions, Counti is the estimated cardinality of the que-
ried ranges, and Samplei is the sample for values of aggre-
gation-column in each partition.

Column-family schema for FastRAQ, which includes
three types of column-families related to range-aggregate
queries. They are aggregation column-family, index column-fam-
ily, and default column-family. The aggregation column-family
includes an aggregation-column, the index column-family
includes multiple index-columns, and the default column-
family includes other columns for further extensions. A
SQL-like DDL and DML can be defined easily from the
schema. An example of column-family schema and SQL-like
range-aggregate query statement is shown in Fig. 1.

In FastRAQ, we divide numerical value space of an
aggregation-column into different groups, and maintain an
estimation sketch in each group to limit relative estimated
errors of range-aggregate paradigm. When a new record is
coming, it is first sent onto a partition in the light of current
data distributions and the number of available servers. In
each partition, the sample and the histogram are updated
respectively by the attribute values of the incoming record.

When a query request arrives, it is delivered into each
partition. We first build cardinality estimator (CE) for the
queried range from the histogram in each partition. Then
we calculate the estimate value in each partition, which is
the product of the sample and the estimated cardinality
from the estimator. The final return for the request is the
sum of all the local estimates. A brief FastRAQ framework

Fig. 1. An example of the column-family schema.
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is shown in Fig. 2, and a multi-dimensional range-aggregate
query process is presented in Algorithm 1.

Algorithm 1. FastRAQuering(Q)

Input: Q;
Q: select sum(AggColumn) otherColname where

li1<ColNamei<li2 opr lj1<ColNamej<lj2.
Output: S;
S: range-aggregate query result.

1: Deliver the request Q to all partitions;
2: for each partitioni in partitions do
3: Compute the cardinality estimator of range li1 <

ColNamei < li2 from the local histogram, and let
CEi be the estimator of the ith dimensions;

4: Compute the cardinality estimator of range lj1 <
ColNamej < lj2 from the local histogram, and let
CEj be the estimator of the jth dimensions;

5: Merge the estimators CEi and CEj by the logical
operator Opr, and compute the merged cardinality
estimator CEmerged;

6: Counti  �hðCEmergedÞ;
==�h is a function of cardinality estimation.

7: Compute the sample for AggColumn, and let
Samplei be the sample;

8: SUMi  Counti � Samplei;
==SUMi is a local range-aggregate query result;

9: end for
10: Set the approximate answering of FastRAQ as S. Let

S  PM
i¼1 SUMi, where M is the number of

partitions;
11: return S.

3 DISTRIBUTED PARTITIONING ALGORITHM

Partitioning is a process of assigning each record in a large
table to a smaller table based on the value of a particular field
in a record. It has been used in data center networks to
improve manageability and availability of big data [13].
The partitioning step has become a key determinant in data
analysis to boost the query processing performance [14].
All of these works enable each partition to be processed

independently and more efficiently. Stratified sampling is a
method of sampling from independent groups of a popula-
tion, and selecting sample in each group to improve the rep-
resentativeness of the sample by reducing sampling error.
We build our partitioning algorithm based on the idea of
stratified sampling to make the maximum relative error
under a threshold in each partition. At the same time, the
sum of the local result from each partition can also achieve
satisfied accuracy for any ad-hoc range-aggregate queries.
We first divide the value of numerical space into different
groups and subdivide each group into different partitions
according to the number of available servers. The partition
algorithm can be expressed as follows for data setsR:

PartitioningðRÞ ¼ ðg; pÞ ¼ ðVe; random½1; Vr�Þ; (1)

where the number of a partition p in a group g, is a random
number in ½1; Vr�, and Ve is a group identifier (GID) for the
group g.

The stratified sampling is a method to subdivide the
numerical value space into independent intervals with a
batch of logarithm functions, and each interval stands for a
group. When the number of logarithm functions is fixed, an
arbitrary natural integer N can be mapped into a unique
group g. The grouping model of stratified sampling is
shown in Algorithm 2.

Algorithm 2. Grouping(N)

Input: N ;
N : an arbitrary numerical value (N > 0).

Output: Ve;
Ve: the group Identifier (GID).

1: k logN ;
2: if ðk ¼¼ 0Þ then
3: Ve  < 0; 0; 0> ;
4: Set the interval length of group Ve as [0,1];
5: return Ve;
6: else
7: if ðN � 2k ¼¼ 0Þ then
8: Ve  <k; 0; 0>;
9: Set the interval length of group Ve as ½2k; 2k þ 1�;

10: return Ve;
11: else
12: l log N � 2k;
13: if ðl ¼¼ 0 k N � 2k � 2l ¼¼ 0Þ then
14: Ve  <k; l; 0>;
15: Set the interval length of group Ve as

½2k þ 2l; 2k þ 2l þ 1�;
16: return Ve;
17: else
18: m log N � 2k � 2l;
19: Set the interval length of group Ve as ½2k þ 2l

þ2m; 2k þ 2l þ 2mþ1 � 1�;
20: return Ve.
21: end if
22: end if
23: end if

Fig. 2. The FastRAQ framework.
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Algorithm 2 also presents the calculations for lengths of
the grouping model. For example, when GID equals to
< 0; 0; 0> the length of the group is [0,1]. When GID equals
to < k; l;m > , k 6¼ 0, l 6¼ 0,m 6¼ 0, the length of the group is

½2k þ 2l þ 2m; 2k þ 2l þ 2mþ1 � 1�. Other processes of cal-
culations are shown in Steps 5 and 15 of Algorithm 2. In
Algorithm 2, it uses triple logarithmic functions to divide
numerical space into independent groups. This can achieve
better tradeoff between sampling errors (see Section 5) and
the number of groups. The instances for the number of
groups in different value spaces are listed in Table 1. For
instance, it will produce 8;190 groups at most in the value

space ½1; 230 � 1�, and it is acceptable in many applications.
Of course, one can increase the number of logarithm func-
tions to reduce the sample error in each group, but it will pro-
duce a greater number of groups.

To make data balanced on each server, the partition
algorithm subdivides each group into a number of parti-
tions according to the current data distributions and sends
each partition onto one server. Let Vr represent the maxi-
mum number of partitions in each group. The value of Vr

is related to the current data distributions and the number
of available servers at the same time. We design Algo-
rithm 3 to compute the value of Vr for the current system.
The key idea of Algorithm 3 is to calculate an average
ratio of records b0 for all groups, and then set the value of
Vr according to b0 and the current number of records in
each group.

Algorithm 3.Numbering(G, dr)

Input: G;
G ¼ f< GIDi; nri >; 1 � i �M};
dr: the maximum number of partitions for a group;
GIDi: the group identifier of group gi;
nri: the number of records in gi;
M: the number of groups.

Output: VP ;
VP : the partition vectors set, and
VP  fVpjj1 � j �Mg.

1: Compute an average ratio of record for all groups,
i.e., b0  

PM
i¼1 nri=M;

2: VrMax  number of servers� dr, and VrMin  1;
3: for all ðgi 2 GÞ do
4: if ðgi:nri < b0Þ then
5: Vpi  < gi:GID; VrMin >;
6: else
7: Vpi  < gi:GID;MINfnrib0

; VrMaxg > ;
8: end if
9: VP  VP þ Vpi;

10: end for
11: return VP .

The number of partitions should be kept under some
threshold in an applicable system. Some groups may hold
the majority of input records, and it will make nri

b0
be a very

large number. We use the factor dr to bound the maximum
number of partitions in each group. As shown in step 7 of
Algorithm 3, the Vr locates in the interval [VrMin, VrMax],
where the VrMax and VrMin are the maximum and minimum
number of partitions for each group.

In big data environments, a partition is a unit for load
balancing and local range-aggregate queries. FastRAQ uses
the vectors set VP ¼ fVpi :< Ve; Vr > j1 � i �Mg to build
partitions for all the incoming records, where M indicates
the number of groups. In each partition, a dynamic sample
is calculated from the current loaded records. Currently,
FastRAQ uses a mean value of aggregation-column as the
sample, which is Sample ¼ SUM=Counter, where SUM is
sum of values from aggregation-column, and Counter is
the number of records in the current partition. A detailed
balanced partition algorithm is shown in Algorithm 4.

Algorithm 4. Partitioning(R,VP )

Input: (R,VP );
R: an input record;
VP : the partition vector set.

Output: PID;
PID: a partition identifier for partition p.

1: Parse the input record R into different column-fami-
lies by the defined schema;

2: Compute the GID with its value from aggregation-
column by algorithm 2;

3: Get the partition vector Vpi from VP with theGID, and
let Vpi ¼< GID; Vr >;

4: Set target partition identifier,
PID < GID; random½1; Vpi:Vr� >;

5: Build the sample in partition PID, such as:
counterPID  counterPID þ 1;
==counterPID is the number of record;
sumPID  sumPID þN ;
//N is value of aggregation attribute from R;
SamplePID  sumk;l;m;r=counterPID;

6: RID HashðPID; counterPIDÞ;
//RID is the unique record identifier for R;

7: Send R to partition PID;
8: return PID.

The input record R is sent to a partition represented by
PID. The PID is generated from its value of aggregation-
column. When the data distribution or the number of avail-
able severs changes, it just needs to modify the Vr in corre-
sponding partition vector Vp, and the newly incoming

records will be adaptively mapped into a partition in [1,Vr]
randomly.

4 RANGE CARDINALITY ESTIMATION

4.1 Clustering Based Histogram

We measure the data distributions by clustering values of
all index-columns and use the learned knowledge to build

TABLE 1
The Maximum Number of Groups in Different Value Spaces

numeric value space ½1; 210 � 1� ½1; 220 � 1� ½1; 230 � 1�
interval number 145 1775 8190
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our histogram. A feature vector of clustering is expressed as
ftag; vectorg, where tag is the attribute value, and vector is
the frequency for the tag occurring in each dimension. For
example, the feature {tag=ad, vector=<10,2>} indicates that
the value of ad occurs in the first index column 10 times and
the second index column 2 times. After extracting the fea-
ture vectors from learned data set, it will produce vectors
set. Let it be f<tagi; vectori > j0 < i < Ng. We use the
common K-Means clustering method to analyze the vectors
set and produce K clusters. A unique ClusterID is assigned
to each cluster. We construct a list of key-value pairs from
the result of K clusters. The key-value pairs are in the
format of < tag; ClusterID >. We sort the key-value pairs
by tag in alphabetical order. The buckets in the histogram
are built from the sorted pairs. The key idea is to merge the
pairs with the same ClusterIDs into the same bucket.
If some tag occurring frequency is significantly different
from others, its ClassID is different after the K-Means clus-
tering, and it will be put into an independent bucket in the
histogram.

Algorithm 5. Building(F )

Input: F ;
F : learning data set.

Output: P ;
P : a bucket boundary list.

1: Scan the learning data source F , and generate the fre-
quency features set f< tagi; vectori > j0 < i < Ng,
where tag is the attributes value, vector is the fre-
quency occurring on each dimension;

2: Cluster the features set
f< tagi; vectori > j0 < i <Ng by K-Means
clustering method and produceK clusters
fClusterij1 � i � Kg;

3: Assign a unique ClusterID to each cluster, and scan
the K clusters to generate key-value pairs list
f< tagq;ClusterID > j1 � ClusterID � Kg;

4: Sort the key-value pairs list by tag in alphabetical
order, and the sorted sequence is S ¼ fSi :< tagi;
clusterID > j1 � i � Ng;

5: for all Si in S do
6: if ðCureent ClusterID ¼¼ Si:ClusterIDÞ then
7: iþþ; continue;
8: else
9: Add Si:tagi into P ;

10: CureentClusterID Si:clusterID;
11: iþþ;
12: end if
13: end for
14: AddMIN VALUE,MAX VALUE into P ;
15: return P .

Algorithm 5 produces buckets boundary P for the histo-
gram, and P ¼fpij0 � i � ng, where pi is the value of tag
from the feature vector. The values spreads for buckets in the
histogram are ½p0; p1Þ; ½p1; p2Þ; . . . ; ½pn�1; pnÞ respectively, and
p0 ¼ �1, pn ¼ þ1. In Algorithm 5, we let MIN VALUE
be�1, andMAX VALUE beþ1.

4.2 Range Cardinality Queries

FastRAQ supports multi-dimensional ranges queries, each
of which may include multiple buckets of the histogram.
FastRAQ uses a unique RecordID (RID, as step 6 in Algo-
rithm 4) to predict whether the cardinalities obtained from
different buckets belonging to the same record. We adopt
the HyperLogLogPlus algorithm to estimate the cardinality
in the queried range [15]. We serialize the hash bits to bytes
array in each bucket as a cardinality estimator. HyperLogLog-
Plus uses 64 bits hash function instead of 32 bits in Hyper-
LogLog to improve the data-scale and estimated accuracy
in big data environments. Readers can further refer to the
references [15], [16] to learn about cardinality estimation
mechanism. We establish a hierarchical tree structure to
implement the histogram. A typical index structure is
shown in Fig. 3. We term it range cardinality tree (RC-Tree).

RC-Tree includes three types of nodes, which are root
node, internal nodes, and leaf nodes. The root node or an
internal node points to its children nodes and keeps their
values of spreads, such as ½pi; pjÞ. A leaf node is for one
bucket in the histogram. The parameters in a leaf node are
values of spreads for each bucket, for example ½pi; piþ1Þ, the
estimator CE of each bucket, and the bucket data file
pointer. The leaf node only keeps these statistical informa-
tion, and tuples values are stored in bucket data files.
Because the buckets are independent of each other, the RC-
Tree structure and its construction process are similar to the
B+ Tree. We do not discuss the details further in this paper.

In order to improve throughput of RC-Tree, a hash table
for newly incoming data is introduced for incremental
updating process. The hash table consists of multiple nodes
which are identical to the RC-Tree’s leaves nodes. If a new
record is coming, it first writes into the hash table, creates
node if it does not exist, and then appends the tuples values
into a temporary data file. When the number of nodes in the
hash table reaches a threshold, the hash table flushes nodes
into the RC-Tree, and appends the temporary files to the for-
mal bucket data files. The incremental updating process will
greatly improve the throughput of RC-Tree in big data envi-
ronments. Algorithm 6 discusses the incremental updating
process in RC-Tree.

The RC-Tree supports to search a leaf node randomly
and sequentially. For example, when we query range
ðli1; li2Þ cardinality, we first locate the first leaf node using
random searching method. Let the first node be Nodei, such
that li1 � Nodei:pi, where ½pi; piþ1Þ 2 Nodei. Then we find
other nodes sequentially from Nodei, until the last node is
found. Let the last node be Nodej, and li2 � Nodej:pjþ1,
where ½pj; pjþ1Þ 2 Nodej. All the CEs from Nodei to Nodej

Fig. 3. A typical RC-Tree structure.
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are merged into a single CE with binary format, and the
cardinality of range ½pi; pjþ1Þ is obtained from the merged
CE. If the two edge nodes Nodei, Nodej do not fully cover
the queried range (li1, li2), that is to say, li1 < pi and/or
li2 > pjþ1. There are two methods to compute the remainder
edge range cardinality. The first is to scan the bucket data
file to build the remainder edge cardinality estimator. The
second is to use the estimators from edge nodes, which are
Nodei�1 and/or Nodejþ1, to directly obtain the remainder
range cardinality. The second method is simpler and does
not need to scan the bucket data files, but it will bring extra
errors into the estimate. It is believed that if the edge bucket
accounts for smaller cardinality ratio in the final queried
results, the second method can quickly produce satisfied
estimation.

Algorithm 6. Updating(R, P )

Input: (R, P );
R: an input record;
P : bucket boundary key set.

Output: T ;
T : the RC-Tree.

1: for all columns in R do
2: Parse value of index-columns into key-value pairs,

in format of < IndexValue; RID >;
3: Search in the buckets spreads P , and get the target

bucket ½pi; pjÞ, such that IndexValue 2 ½pi; pjÞ
4: Search in hash table and get the target nodeNodeH ,

which include bucket range ½pi; pjÞ;
5: NodeH:RC  NodeH:RC þ 1;
6: Set RID into NodeH:CE;
7: Write IndexValue into a temporary bucket data file;
8: if ðhash table node number > thresholdÞ then
9: for all nodes in hash table do

10: Flush the nodes of hash table into T ;
11: Append the temporary data files into the for-

mal bucket data files.
12: end for
13: end if
14: end for
15: return T .

To query cached data in hash table, the process is the
same as Algorithm 7 to obtain cardinality estimator of the
cached data, and then we merge the estimator into CEmerge

to compute the final cardinality estimation. If the request
includes multiple ranges, the queried ranges are connected
by AND or OR logical operators. The logical OR operation
is simple. We obtain estimators for each queried ranges
respectively, and then merge the estimators into a single
estimator to produce the final estimate. The logical AND
operation is relatively complex. Currently, FastRAQ uses
exclusive-inclusive principle for the logical AND operation,
which is jAjT jBj ¼ jAj þ jBj � jAj S jBj. When the size of
jjAjT jBjj=MINjAj; jBj is large enough, the exclusive-inclu-
sive principle can produce a satisfied accuracy estimate.
There are also some discussions about how to get a better
cardinality estimation when the size of jjAjT jBjj=MINjAj;
jBj is small [17].

Algorithm 7. Range cardinality query algorithm

Input: (Q, T , h0);
Q: select distinct count(*) where li1 < ColName < li2;
T : the RC-Tree;
h0: the edge range cardinality ratio.

Output: R;
R: the range cardinality queried result.

1: According to the queried range ðli1; li2Þ, locate the
first node by ColName in RC-Tree T randomly, and
let the searched node be Nodei, where li1 < pi and
½pi; piþ1Þ 2 Nodei;

2: m i;
3: while ðli2 > pmþ1Þ do
4: MergeNodem. CE into cardinality estimator

CEmerge;
5: m++;
6: end while

7: if ð�hðNodei�1:CEÞ
�hðCEmergeÞ � h0Þ then

8: Merge Nodei�1.CE into cardinality estimator
CEmerge;

9: else
10: Scan bucket data file of Nodei�1 to compute the

exact cardinality CEi�1;
11: Merge CEi�1 into cardinality estimator CEmerge;
12: end if

13: if ð�hðNodejþ1:CEÞ
�hðCEmergeÞ � h0Þ then

14: Merge Nodejþ1. CE into cardinality estimator
CEmerge;

15: else
16: Scan bucket data file of Nodejþ1 to compute the

exact cardinality CEjþ1;
17: Merge CEjþ1 into cardinality estimator CEmerge;
18: end if
19: R �hðCEmergeÞ;
20: return R.

5 ANALYSIS OF RELATIVE ERRORS

FastRAQ uses approximate answering approaches, such
as sampling, histogram, and cardinality estimation etc., to
improve the performance of range-aggregate queries. We
use relative error as a statistical tool for accuracy analysis.
Relative error is widely used in an approximate answering
system. Also, it is easy to compute the relative errors of
combined estimate variables in a distributed environment
for FastRAQ.

In this section, we analyze the estimated relative error
and the confidence interval of final range-aggregate query
result.

In our work, the relative error is defined as follows:

jvariabletrue � variableestj
variabletrue

; (2)

where variabletrue is the true value of a variable, and
variableest is an estimate of the variable variabletrue. Equa-
tion (3) is usually used as an acceptable substitute for the
analysis of relative error,
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jvariabletrue � variableestj
variableest

: (3)

D is used as a notation to represent relative error of a
given variable. Let Y be the exact range-aggregate result,

and bY be estimated variable of Y . Their relative errors are

DY and D bY respectively. Let S be the local range-aggregate

result in each partition, and bS be estimated variable of S.

Their relative errors are DS and DbS.
First, we discuss expectation and variance of DbS in a par-

tition. We present Theorem 1 to discuss DS in each partition.

Theorem 1. DbS is an unbiased estimation of DS in big data
environments.

Proof: According to Algorithm 3, the range-aggregate query
result bS in each partition is expressed as follows:

bS ¼ Count� Sample; (4)

where Count is estimated range cardinality obtained
from the histogram, Sample is a sample of values of
aggregation-column in the queried partition. The exact
range-aggregate result S is expressed as S ¼Pn

j¼1 Xj,

where X is a selected tuple in the queried partition. If the
estimators of two edge-buckets are produced by scan-
ning bucket data files, they do not lead to extra errors of

the estimate bS. Let Avg ¼ 1
n

Pn
j¼1 Xj, and S ¼n�Avg.

Suppose the selected tuples randomly distribute in the
queried partition, and Avg approaches to Sample when
the number of selected tuples is large enough. According

to Eq. (4), the expectation of D bS can be expressed next:

EðDbSÞ ¼ E jðS � bSÞ=Sj� �
¼ E 1� Count

n

���� ����� �
: (5)

Suppose the buckets of histogram are independent of
each other, then Count is an unbiased estimation of n in

big data environments [16], that is to say, Count
n ¼ 1, thus

EðDbSÞ=0. tu
We use error transformation formula to analyze variance

of D bS and it is expressed as follows:

sðDbSÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðDSampleÞ þ s2ðDCountÞ

p
; (6)

where s2ðDSampleÞ is variance of relative error of sample
for values of aggregation-column in a partition, and

s2ðDCountÞ is variance of relative error for cardinality esti-
mation in a histogram. We suppose that DSample obeys a
uniform distribution, and it can be expressed as Uða; bÞ,
where a and b are the minimum and maximum values of
the distribution. The variance of uniform distribution is
ðb�aÞ2

12 . We omit the minus relative error in the succeeding

discussions. According to Algorithm 2, a and b can be com-
puted in each group within stratified sampling model, and

the standard variances (sðDbSÞ) in different numeric value
spaces are listed in Table 2.

The variance of estimated cardinality has been discussed
in the work of [16], and the sðDCountÞ asymptotically

equals to 1:04ffiffiffi
m
p , where m is the number of register bit array. If

we setm ¼ 212, sðDbSÞ ¼ 0:026.
Next, we discuss the relative error and confidence inter-

val for final range-aggregate query result.
We use Theorem 2 to discuss relationship between DS

and DY .

Theorem 2. DS is an unbiased estimation of DY , that is
EðDY Þ ¼EðDSÞ.

Proof According to Eq. (2), DY can be expressed as follows:

DY ¼
PM

i¼1 DSi � SiPM
i¼1 Si

; (7)

where DSi is relative error of local range-aggregate query
result in the ith partition. According to Algorithm 2,
the partitions are independent from each other, and
fDSij1 � i �Mg are independent and identically distributed
(i.i.d.) variables. The fDSig can be considered as a list of

observations for variable DS. Let
PM

i¼1 Si be a constant C,
and the expectation of DY can be written as follows:

EðDY Þ ¼ E

PM
i¼1 DSi � Si

C

 !
¼ EðDSÞ: (8)

Thus EðDSÞ is an unbiased estimation of EðDY Þ. tu
We further discuss the variance of variable Y , which is

expressed as follows:

Y ¼
XM
i¼1

Xn
j¼1

Xij; (9)

where M is the number of partitions, Xij is the value of
aggregation-column in the queried ranges of the ith parti-
tion. Let Si be the local range-aggregate query result in the
ith partition, thus Y is

Y ¼
XM
i¼1

Si: (10)

In Eq. (10), Y is the sum of i.i.d. variables fDSig. Accord-
ing to Central Limit Theorem, if M is large enough, Y obeys a

normal distribution, that is Y � Nðm; s2Þ, where m and s2 is
the expectation and variance of Si.

We can obtain the corresponding formulas to compute
confidence interval of variable Y . Let Y locate in an interval
with probability p, which is expressed as:

P Y � mj j � zð Þ ¼ P

ffiffiffi
n
p ðY � mÞ

s

���� ���� � z
ffiffiffi
n
p
s

� �
¼ p: (11)

TABLE 2
The Standard Variance in Different Numeric Space

numeric value space ½1; 210 � 1� ½1; 220 � 1� ½1; 230 � 1�
maximum relative error(b) 0.07 0.07 0.07
the standard variance(sðDbSÞ) 0.02 0.02 0.02
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Then Y locates in ½z � m; z þ m� with probability p, where

z ¼ zpsffiffi
n
p , and zp is p-quantile in the standard normal distribu-

tion. The final 100p percent confidence interval of range-
aggregate query result is ½z � m; z þ m�.

6 EXPERIMENTAL EVALUATION

In this section, we present a prototype of FastRAQ, and
evaluate its performance in terms of query cost, estimated
relative errors, and storage overhead. We compare FastRAQ
with Hive through range-aggregate query examples with
real-world page traffic files fromWikipedia.

Hive is a typical data analysis tool with OðNÞ time
complexity for any ad-hoc range-aggregate queries. Hive
can compile the task of an ad-hoc range-aggregate query
into optimized mapreduce jobs and execute them on top
of Hadoop. It is widely used to process extremely large
data sets on commodity hardware in Facebook [18]. We
compare against Hive in our experiment to illustrate per-
formance improvement between FastRAQ and the OðNÞ
time complexity methods. We run our software on an
eleven node cluster connected by 1 Gbit Ethernet switch.
Each server has 6� 2:0 GHz processors, 64 GB of RAM,
and 6 SATA disks. We use Cloudera CDH4 in our experi-
ments, which includes the packagings of Hadoop-2.0.0
and Hive-0.10.0. Hive runs with one master node and 10
slaves.

6.1 Evaluation Methodology

The framework of FastRAQ includes four types of servers:
learning server, load server, query server, and storage serv-
ers. The learning server fetches a certain amount of data set

to learn data distributions, builds histogram and partition
vectors for all partitions, and then dispatches them to other
servers. The load servers receive online data sets, and
deliver them to specified storage servers. The query server
receives user’s query request, and sends it to all storage
servers. The storage servers keep RC-Tree for each partition,
and respond the request independently. A typical frame-
work of FastRAQ is shown in Fig. 4.

In the experiments, we analyze the pagecount traffic sta-
tistics files of Wikipedia [19]. We construct a table contain-
ing four columns. We set projectcode and pagename
columns as index columns, bytes field as aggregation-col-
umn. The FastRAQ stores four months of the traffic files
which includes 960 GB of uncompressed data.

We first analyze the relative error in different queried
examples. We use the traffic log files fromWikipedia in eight
days. We set random variables in the queried examples and
calculate the relative errors of different examples. The query
example is “select sumðbytesÞ from pagecounts where

projectcode2 ð0aa0;0 	0Þ ”, where ‘*’ is a randomvariable string
changed from ‘aa’ to ‘zz’. The relative errors in different que-
ried examples are shown in Fig. 5. We just present the values
of ‘*’ on the X axis.When the ‘*’ equals to ‘aa’ and ‘ab’, the rel-
ative errors are equal to zero. The results are calculated by
scanning the log files of the two edge-buckets. When the ‘*’
grows larger, the relative error increases slightly. The rela-
tive errors are nearly constant when the ‘*’ equals to ‘cu’,

‘dd’ and ‘ex’. In our experiment, we use ð0aa0;0 dd0Þ as our
queried examples in following evaluations.

The examples of range-aggregate queries include count
and sum queries, and aggregate functions on union queries.
The queried examples are shown below:

Count query: Select countð	Þ from pagecounts where

projectcode 2 ð0aa0;0 dd0Þ;
Sum query: Select sumðbytesÞ from pagecounts where

projectcode 2 ð0aa0;0 dd0Þ.

Count on union query: Select countð	Þ from pagecounts

where projectcode 2 ð0aa0;0 dd0Þ or pagename 2
ð0aa0;0 dd0Þ;
Sum on union query: Select sumðbytesÞ from pagecounts

where projectcode 2 ð0aa0;0 dd0Þ or pagename 2
ð0aa0;0 dd0Þ;

During processing of the preceding queries, Hive returns
the exact queries results, and FastRAQ returns estimated
results with relative errors.

Fig. 4. System configuration used in experiments.

Fig. 5. The relative errors in different queried ranges.

Fig. 6. Performance comparisons for count queries with eight days log
files.
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6.2 Performance Evaluation

We analyze log files containing eight days of hourly log files
(1.4 billion records, 61.6 GB uncompressed files), and eight
weeks of hourly log files (9.8 billion records, 432 GB uncom-
pressed files) respectively. We examine the query perfor-
mance and corresponding relative errors in the two
systems.

6.2.1 Performance of Range Query

Figs. 6 and 7 illustrate query time comparisons with count
and sum query examples. In the testings of eight days of log
files, Hive costs 114.6 s for count queries, but FastRAQ only
costs 4.3 s for the same request. FastRAQ achieves 26 times
of performance improvement on count queries than Hive.
Figs. 8 and 9 further illustrate the phenomenon of queries
performance comparisons with eight weeks log files. In the
testings of eight weeks of log files, Hive costs 520 s for sum
query, while FastRAQ costs 6.2 s for the same request.
In other words, FastRAQ achieves 84 times of performance
improvement on sum request. It is believe that, when
the size of data sets increases, FastRAQ can achieve better
performance improvement on range-aggregate queries
than Hive.

In our experiment, we generate about 2;000 partitions
and 1,000 buckets in each partition. That is to say, the
amount of each data-log file accounts for less than one mil-
lionth of the input data on average. So the query time
changes slightly for FastRAQ in our daily or weekly step-
ping tests.

6.2.2 Performance of Union of Set Query

Due to the fact that it needs to scan and merge massive
duplicated tuples in union of set queries, we primarily focus
our testings in union of set range-aggregate queries. The
performance comparisons of union query in the two sys-
tems are presented in Figs. 10, 11, 12, and 13 using the pre-
ceding union queries examples.

Hive predicts if the values of the two index-columns sat-
isfy the union statement in memory. It occupies most of
time to fetch tuples from disk files to memory, thus the
query time does not change much from single index-column
statement to union of two index-columns statements. In Fas-
tRAQ, different index-columns of queried ranges can be
searched in parallel in the RC-Tree. The overhead of union
statements is to merge estimators from different index-col-
umns. The merging overhead is negligible. Thus the query
times of the two approaches are nearly the same as shown
in Section 6.2.1.

6.3 Relative Errors

Hive obtains exact query result, and its relative error of que-
ried result is 0. As discussed in Algorithm 7, it does not lead
to extra errors into the estimate when we merge estimators
of different queried dimensions. Thus the estimated relative
errors of the union queries in multiple index-columns are
the same as the errors in single index-column queries. We
discuss the detailed relative errors of the range-aggregate

Fig. 8. Performance comparisons for count queries with eight weeks log
files.

Fig. 7. Performance comparisons for sum queries with eight days log
files.

Fig. 9. Performance comparisons for sum queries with eight weeks log
files.

Fig. 10. Performance comparisons for count on union queries with eight
days log files.

Fig. 11. Performance comparisons for sum on union queries with eight
days log files.
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queries in Section 6.2. Figs. 14, 15, 16, and 17 present the esti-
mated relative errors in the corresponding queries examples.
Because when the volume of data sets is small, the estimator
can achieve better cardinality estimation in each buckets
[16]. Thus FastRAQ achieves more accurate cardinality esti-
mation in small amount of data set environments. When the
size of data increases, the relative error of estimator obeys
standard normal distribution, and its standard variance (s)

equals to 1:04ffiffiffi
m
p [16]. In our experiment, we setm ¼ 212, and the

standard variance of relative error is 0.026, that is to say, the
relative error falls into [�0:026;þ0:026] with given confi-
dence interval. The experimental results are consistent with
the conclusions in Section 5.

Another important factor is the edge-bucket cardinality
ratio (h0), which affects the estimated relative errors. When
h0 is greater than a threshold, the estimators are obtained
directly from leaves nodes of a RC-Tree, and it will add
more errors into the final estimate. We further analyze the
impact of h0 affections on the estimated relative errors. We
design different query examples to make the values of h0

changing from 0.0001 to 2 percent, and examine the relative
errors caused by estimators of the edge-buckets. Figs. 18
and 19 illustrate the impact of h0 on the estimated relative
errors. It comes to the conclusion that when h0 grows
smaller, the errors caused by the estimators of edge-buckets
becomes smaller correspondingly. It is clearly that when h0

approaches to 0.02 percent the errors caused by estimators
of edge-buckets are negligible. Thus for those queries whose
edge-buckets cardinalities are smaller than a threshold, we
can directly use all the estimators from RC-Tree to generate
the final approximate answering results.

6.4 Pros and Cons

In this section, we analyze the theoretical overheads of Fas-
tRAQ in terms of update cost, query cost, and data volume
of the histogram. We first define some parameters for analy-
ses, and the notations are listed in Table 3.

First, we examine the query cost of FastRAQ. According
to Algorithm 4, the records can be loaded to the servers
with balanced load distribution. The queries operations can
be carried out between partitions parallelly. The cost of
transmitting a local result of a partition is negligible. It pre-
dominates the query cost of FastRAQ to search in the histo-
gram. According to Algorithm 7, it costs Oðlog BÞ time to
search a random node in RC-Tree. If the number of buckets
B is almost fixed in the histogram, it takes nearly constant
time to search a random node in the histogram. Let the
constant be C. When the estimators of the edge-buckets are
produced by scanning data files, the query cost can be

expressed as Oð N
P�BÞ þ C. Thus both approaches reduce the

volume of data needed to scanned greatly. Of course, when
the edge cardinality ratio (h0) is small enough, we can get
the estimators from RC-Tree directly, and the query cost
approaches a constant even in big data environments.

Second, we analyze the update cost of FastRAQ, which
is represented by UpdateFastRAQ. The updating process

Fig. 12. Performance comparisons for count on union queries with eight
weeks log files.

Fig. 13. Performance comparisons for sum on union queries with eight
weeks log files.

Fig. 14. Relative errors of count queries with eight days log files.

Fig. 15. Relative errors of sum queries with eight days log files.

Fig. 16. Relative errors of count queries with eight weeks log files.
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includes delivering a record to a specified partition, and
updates the parameters of the histogram in a partition. The
delivering process can be done in constant time as discussed
in Algorithm 4. When the number of nodes is almost fixed
in the RC-Tree, the updating cost of RC-Tree approaches a
constant. The update process can be parallelized among
partitions, and the distributed throughput of FastRAQ can
be expressed as UpdateFastRAQ ¼P �AvgRC�Tree, where
AvgRC�Tree is the average update cost in each RC-Tree. We
have designed a cached hash table for incremental updating
process, and it will improve the performance of throughput
significantly.

Third, we discuss the storage overhead of FastRAQ. The
RC-Tree is built on top of the values of index-columns. The
leaf node contains estimator and values of spreads for each
bucket. The tuples values of index-columns are stored in the
bucket data file. The size of RC-Tree volume is expressed as
StorageFastRAQ ¼P �B�NodeRC�Tree, where NodeRC�Tree is
the size of leaf node in RC-Tree. We further examine the
size of RC-Tree in TB-scale uncompressed data files. The
testing results are shown in Tables 4 and 5. Meanwhile we
present the volume ratio of RC-Tree and the uncompressed
source data. When the size of data files increases, the ratio

becomes significantly small. It is believed that if the volume
of data files is large enough, the storage overhead produced
by RC-Tree is negligible.

7 RELATED WORK

The range-aggregate query problem has been studied by
Sharathkumar and Gupta [20] and Malensek [21] in compu-
tational geometry and geographic information systems (GIS).
Our work is primary focused on the approximated range-
aggregate query for real-time data analysis in OLAP. Ho
et al. was the first to present Prefix-Sum Cube approach to
solving the numeric data cube aggregation [4] problems in
OLAP. The essential idea of PC is to pre-compute prefix
sums of cells in the data cube, which then can be used to
answer range-aggregate queries at run-time. However, the
updates to the prefix sums are proportional to the size of
the data cube. Liang et al. [6] proposed a dynamic data cube
for range-aggregate queries to improve the update cost, and
it still costs OðNd

3Þ time for each update, where d is the
number of dimensions of the data cube and n is the number
of distinct tuples at each dimension. The prefix sum
approaches are suitable for the data which is static or rarely
updated. For big data environments, new data sets arrive
continuously, and the up-to-date information is what the
analysts need. The PC and other heuristic pre-computing
approaches are not applicable in such applications.

An important approximate answering approach called
Online Aggregation was proposed to speed range-aggregate
queries on larger data sets [7]. OLA has been widely studied
in relational databases [8] and the current cloud and stream-
ing systems [9], [10]. Some studies about OLA have also
been conducted on Hadoop and MapReduce [10], [11], [12].
The OLA is a class of methods to provide early returns with
estimated confidence intervals continuously. As more data
is processed, the estimate is progressively refined and the
confidence interval is narrowed until the satisfied accuracy
is obtained. But OLA can not respond with acceptable accu-
racy within desired time period, which is significantly
important on the analysis of trend for ad-hoc queries.

Our work is related to two approximate answering meth-
ods: sampling and histogram. Sampling is an important

TABLE 4
Storage Overhead of RC-Tree Index with 1-4 Weeks Log Files

log files of 1-4 weeks 1 W 2W 3W 4W

RC-Trees data volume (GB) 5.9 6.5 6.8 7.1
the volume ratio 0.11 0.06 0.04 0.03

Fig. 17. Relative errors of sum queries with eight weeks log files.

TABLE 3
The Notations for the Analysis of Complexity

parameters contents

n the number of records
d the number of index-columns
N the number of index tuples, and N ¼ n� d
P the number of partitions
B the number of bucket for histogram

Fig. 19. Relative errors of different edge-bucket cardinality ratio (h0) with
one month log files.

Fig. 18. Relative errors of different edge-bucket cardinality ratio (h0) with
one week log files.
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technique for processing of aggregate queries at run time. The
sampling for massive data sets includes two types: row-level
sampling and block-level sampling [22]. The work in [22]
analyzed the impact of block-level sampling on statistic esti-
mation for histogram, and proposed the corresponding esti-
mators with block-level samplings. Haas and K€€onig [23]
proposed a new sampling scheme, which combines the row-
level and page-level samplings in the field of relational
DBMS. Data sampling is also well used in the field of distrib-
uted and streaming environments [24], [25]. Histogram is
another important technique for selectivity estimation. A
series of alterative techniques were presented in other articles
to provide better selectivity estimation than the original equi-
width method. The multi-dimensional histograms were also
widely studied by researchers. The problem is more challeng-
ing since it was shown that optimal splitting even in two
dimensions is NP-hard [26]. The hTree [27] and mHist [28]
are the typical works to support multi-dimensional selectivity
estimation. While the current works are shown that it is quite
expensive to generate a multi-dimensional histogram. Fas-
tRAQ combines sampling, histogram and data partition
approaches together to generate satisfied estimations in big
data environments. All of the above techniques are designed
for distributed range-aggregate queries paradigm, and it
achieves better performance on both query and update proc-
essing in big data environments.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we propose FastRAQ—a new approximate
answering approach that acquires accurate estimations
quickly for range-aggregate queries in big data environ-
ments. FastRAQ has Oð1Þ time complexity for data updates

and Oð N
P�BÞ time complexity for ad-hoc range-aggregate

queries. If the ratio of edge-bucket cardinality (h0) is small
enough, FastRAQ even has Oð1Þ time complexity for range-
aggregate queries.

We believe that FastRAQ provides a good starting point
for developing real-time answering methods for big data
analysis. There are also some interesting directions for our
future work. First, FastRAQ can solve the 1:n format range-
aggregate queries problem, i.e., there is one aggregation col-
umn and n index columns in a record. We plan to investigate
how our solution can be extended to the case of m:n format
problem, i.e., there are m aggregation columns and n index
columns in a same record. Second, FastRAQ is now running
in homogeneous environments. We will further explore how
FastRAQ can be applied in heterogeneous context or even as
a tool to boost the performance of data analysis in DBaas.
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