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a b s t r a c t 

As an important component of trains, rolling bearing is always faced with the defection of shed oil, 

which inevitably threatens the train safety. Therefore, it is of great significance to conduct defection in- 

spection on bearing shed oil. Due to the complex structure of rolling bearings, traditional signal anal- 

ysis approaches cannot detect the defections of bearing shed oil with high-efficiency and low cost. In 

recent years, deep learning has achieved remarkable growth and been successfully applied to various 

computer-vision tasks. Motivated by this fact, we propose a two-stage attention aware method to rec- 

ognize defections of bearing shed oil. The proposed method is based on convolutional neural networks, 

can automatically learn bearing defect features, and does not need manual feature design and extraction 

like traditional methods. The two-stage method cascades a bearing localization stage and a defection seg- 

mentation stage, to recognize the defect areas in a coarse-to-fine manner. The localization stage extracts 

the foremost bearing region and removes the useless part of images, so as to focus the attention of seg- 

mentation stage only on the target region. In segmentation stage, we propose a novel attention aware 

network APP-UNet16, to segment defect areas from extracted bearing region. APP-UNet16 stacks atten- 

tion gates to enable the attention-aware features change adaptively, and thus can learn to focus on target 

defect areas automatically. We also utilize transfer learning in constructing the encoder of APP-UNet16, 

and introduce spatial pyramid pooling to connect the encoder and decoder, to improve traditional UNet. 

A series of comparative experiments are conducted, to compare our two-stage method with one-stage 

method which directly perform segmentation on original train images. The results indicate that the pro- 

posed two-stage inspection method achieves higher robustness and accuracy in recognizing defect areas 

with small oil spot. And the experimental results on proposed APP-UNet16 also demonstrate that a better 

segmentation performance is achieved, compared to traditional UNet and related state-of-art approaches. 

We will release the source code as well as the trained models to facilitate more research work. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. Background and motivation 

Rail transport remains the mainstream transportation modality

of modern times, hence train operation safety continuous to attract

substantial attention. If hidden faults for an operating train cannot

be discovered in a timely manner, such faults may cause immea-

surable losses to life and property. Usually, train fault defection has
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elied on manual inspection by technicians in factories or around

he train when it stops temporally at a station, this is extremely

nefficient and is strongly affected by bad weather. To improve the

fficiency and reduce unnecessary labour costs, research on auto-

atic train fault detection for moving vehicles is of great interest. 

Many studies have made advances in auto diagnosis for train

aults in last decades. Yao et al. proposed a wavelet envelope

ethod to diagnose railway bearing faults [40] . Raveendran et al.

roposed a method based on dynamic models to evaluate the de-

ree of damage of mechanical equipment [30] . Li proposed a fault

etection model for rolling bearings based on the SOM neural net-

ork [21] . In addition, in [28] , the characteristics of fault signals

re represented by wavelet entropy values, then SVM is used as

he fault recognition model. However, traditional signal processing
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Fig. 1. The original images of train bearings captured by high-speed cameras. The yellow boxed area in the first picture denotes a region of the train bearing covered with 

oil stains, and the red curve depicts the area covered with spots of oil shed by the train bearing. Moreover, there are many other train components, such as the wheelset, 

labelled with the green box, and the locking plate, labelled with the red box, in the pictures. 
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ethods are not effective enough, and depend too much on tech-

icians’ rich experience of fault detection as well as knowledge of

ailway systems. 

A few years ago, Trouble of Moving Freight Car Detection Sys-

ems (TFDS) [35] and similar systems came into the use of the Chi-

ese railway system, which use high-speed line scan cameras to

apture images of critical components of moving trains. These im-

ges are then transmitted to centralized monitoring offices for fur-

her technical analysis. Although productivity has been increased

n this manner, technicians remain faced with thousands of im-

ges to check every workday, which consumes excessive human

esources and is likely to miss many faults. Therefore, automated

rain fault inspection based on computer vision is becoming a

ritical area of development. Recently, given their rapid develop-

ent, deep learning methods are especially successfully applied in

 large variety of imaging tasks, such as face recognition [9] , ob-

ect detection and semantic segmentation. And applying deep neu-

al networks in industrial surface defection inspection is becoming

ore widespread as well. Deep learning methods can learn de-

ection features automatically, while traditional signal processing

ethods rely on manual feature design and extraction. Based on

hese factors, we propose an automatic inspection method for train

earing shed oil based on convolutional neural networks, which

ims to improve inspection efficiency. 

.2. Challenges 

As the main component of a train, rolling bearings are con-

tantly faced with hazards resulting from shed oil. And this de-

ection can lead to overheated or cut axles and can seriously affect
he safety of train operations. The major characteristic of this type

f fault is the numerous small dark oil spots distributed on and

round the bearing, as shown in Fig. 1 . Obviously, train bearing in-

pection requires precise segmentation of defect areas for deeper

iagnosis of the extent of the defect. Nevertheless, the inspection

f bearing shed oil via deep learning methods of image segmenta-

ion must overcome many challenges. 

The defect images are grayscale, and captured by high-speed

ameras from different angles and different lighting conditions.

herefore, it is easy to confuse oil spots with shadow and difficult

o identify defect areas. Moreover, there are two main challenges

hat must be overcome. First, there are many other components

f a train in addition to the bearings, such as wheelsets, locking

lates, and angle cocks, in each picture of our dataset, as shown in

ig. 1 . Therefore, the train bearing only occupies around 10% of the

mage, while the oil spots are much smaller than the train bear-

ng. Undoubtedly, it is a typical small object recognition problem.

t is hard to directly obtain defection information on bearings from

 full image, as there is an excessive amount of useless informa-

ion that hinders the extraction and analysis of features. Second,

here are few defect pictures available to train a CNN. Collecting

ata from real-world applications is expensive, because of the low

robability of fault occurrence and time-consuming nature of la-

elling ground-truth data. And achieving high performance with

imited data is extremely difficult. 

.3. Our contributions 

To address the aforementioned challenges and improve the lim-

tations of traditional methods, we propose a two-stage attention
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aware method based on convolutional neural networks, to solve

the particular problem of bearing shed oil detection. And to the

best of our knowledge, this is the first work that utilizing attention

mechanism in rolling bearing shed oil inspection. According to our

experiments, the hierarchical approach we proposed achieves Dice

similarity metric of 0.85 and Jaccard of 0.76. It represents that our

method significantly improving the recognition ability of shed train

bearing oil and the segmentation performance over related meth-

ods. The main contributions of our work are summarized as fol-

lows: 

• We propose a two-stage attention aware method based on con-

volutional networks for bearing shed oil inspection, which is

composed of a bearing localization stage and a segmentation

stage. In localization stage, we reference the attention mech-

anism of human visual system, extracting the foremost bear-

ing region from a large train image. Thus segmentation stage

can be guided to concentrate attention on target regions di-

rectly and disregard overmuch background noise. Our two-stage

method can better facilitate the recognition of small defect ar-

eas with oil spots, compared with one-stage method which

simply segmenting original large image. And in the segmenta-

tion stage, we propose an attention aware segmentation net-

work to segment defect areas, named APP-UNet16, achieving a

better segmentation performance over traditional UNet. 

• We design our attention aware segmentation network

APP-UNet16 based on a symmetrical architecture of U-Net

[33] which is known for working well on small dataset. More-

over, we initialize the encoder of APP-UNet16 with weights

from the VGG16 model which is pre-trained on ImageNet

[6] by transfer learning, therefore improving the problem that

limited training samples cannot satisfy the need of training a

deep convolutional neural network. 

• We stack attention gates in APP-UNet16 to concatenate the

downsampling features and corresponding upsampling features

in multi-scales. Attention-aware features are able to change

adaptively, so that network can focus on target defect areas au-

tomatically without additional supervision. 

• We creatively utilize spatial pyramid pooling to connect the en-

coder and decoder of APP-UNet16, improving the aggregation of

global features and the capture of contextual information, thus

achieving a better shape prediction of target defection areas. 

The rest of our work is organized as follows: In Section 2 , we

review the related works of object detection and image segmenta-

tion methods, etc. Then we present our proposed two-stage atten-

tion method in Section 3 . And in Section 4 , we describe the detail

training details of our proposed method. Section 5 discusses the

results of experiments we conducted. Lastly, the conclusion of our

contributions and the discussion of future work are presented in

Section 6 . 

2. Related work 

2.1. Object detection 

Object detection is one of the most important research areas

in the computer vision field. In recent years, significant advances

have been achieved on object detection tasks, based on the im-

portant improvements in convolutional neural networks. Compared

with traditional feature extraction algorithms based on hand-

crafted features, such as Histogram of Oriented Gradients (HOG),

Local Binary Pattern (LBP) and Scale-Invariant Feature Transform

(SIFT), deep learning methods achieve substantially better perfor-

mances. And due to the rapid developments of graphics process-

ing units (GPUs) in recent years, many researches [4,5,20] pro-

posed novel computing architectures based on GPUs, to promote
achine learning and deep learning methods to be accelerated

y GPUs, like the studies of [23,24,26,29,32] . Based on high per-

ormance and effective computing speed, deep learning methods

ecome an inevitable trend in various fields. For example, deep

earning methods have achieved successes in time series fore-

asting like [3] , and medical diagnosis like [27] which pro-

oses a diagnosis model based on SVM for Alzheimer’s disease.

nd the computer vision is most widely applied field of deep

earning. 

The R-CNN [12] is a foundational aspect of object detection al-

orithms based on region proposal. As a heuristic search algorithm,

elective Search [39] is used to generate candidate regions, which

ay contain target objects. Region proposals are sent to a CNN

odel to extract features and predict the classification score of

ach proposal by SVM classifier. Then, the bounding box is fine-

uned by regression. The R-CNN achieves a very high performance

n the VOC2007 dataset [8] , but it takes too long to extract fea-

ures and requires substantial amounts of hard disk space to store

he features. SPPNet [14] , which creatively combines a Spatial Pyra-

id Pooling layer between a convolutional layer and a fully con-

ected layer, effectively solves the problem of redundant compu-

ation in region proposals, was proposed in 2014. However, it is

 multistage process, and fine tuning has a significant effect on

ccuracy. Girshick et al. proposed a Fast R-CNN [10] based on R-

NN and SPPNet, therein reducing the time consumed for extract-

ng feature vectors from region proposals. Their method combines

oI (Region of Interest) Pooling and Selective Search to extract fea-

ures and also achieves the synchronous training of object classifi-

ation and bounding box regression. However, this mehod is not an

nd-to-end framework. Faster R-CNN [31] , proposed in 2017, con-

tructs an RPN (Region Proposal Network) to generate region pro-

osals directly. RPN in Faster R-CNN shares convolutional features

ith the detector network, thereby achieving end-to-end and real-

ime object detection, as well as greatly increasing the detection

ccuracy and speed. 

.2. Image segmentation 

Image segmentation is an important aspect of machine vision

lgorithms for understanding images at the pixel level. With the

apid development of deep learning, image segmentation has en-

ered a new stage of development. Convolutional Neural Networks

CNNs) have become the main trend in this field. 

Traditionally, thresholding methods, clustering-based segmenta-

ion methods and graph partitioning segmentation methods are

tilized for image segmentation broadly. The most popular seg-

entation methods based on Graph partitioning are Normalized

ut [37] which was proposed by Jianbo Shi et al, and Grab Cut

34] which was proposed by Microsoft Research Cambridge in

004. 

However, concerning deep learning networks in image segmen-

ation, Krizhevsky et al. [19] proposed AlexNet based on CNNs

nd won the ImageNet 2012 competition for image segmentation

nd classification tasks. In [11] , deep belief network (DBN) is first

tilized for analysis of GICS, to segment the control lines. And

helhamer et al. [36] from Berkeley introduced fully convolutional

etworks (FCNs) in 2014. This pioneering work in image segmen-

ation, is an end-to-end segmentation work at the pixel level and

eplaces fully connected layers with convolutional layers. However,

he pooling operations result in a loss of significant amounts of

nformation such that the precision of the segmentation masks

enerated by the FCN is far from satisfactory. To solve this

roblem, the encoder-decoder network architecture evolves and

uilds connections between the downsampling and upsampling

aths. U-Net [33] for biomedical image segmentation, proposed

y Ronneberger et al. in 2015, is a very popular encoder-decoder
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Fig. 2. A sample demonstration of employing the proposed two-stage method on an original train image, for the inspection of shed train bearing oil. The bearing localization 

stage locates the bearing region and extracts the region. The extracted region is then cropped and resized to 512 × 512 as input of the segmentation stage. The segmentation 

models are trained by our proposed APP-UNet16 to learn attention-aware features in segmentation stage, to recognize the oil spot areas from extracted region. Finally, a 

white-and-black mask obtained as the output. 
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etwork and is widely used in many applications of various fields.

t is suitable for small training datasets and requires only a short

raining time and also achieving robust segmentation performance.

The researches in image segmentation mainly direct at two

spects. One direction is multi-scale feature ensembling, like

36] and [50] , which acquire deeper semantic information from

igh-level features in deep networks. The other is based on the

ost-processing with structure prediction [51] . utilized conditional

andom field (CRF) to refine the edges of prediction results, thus

mproves the accuracy. Both directions benefits the prediction abil-

ty of image segmentation, however there is still much space to

xploit significant information. 

.3. Transfer learning 

Though deep convolutional neural networks is proven show

igh performance on various computer vision tasks, training deep

NNs from scratch is not efficient, due to the demand of large

mount of training data while in general there are no sufficient

ata in real world tasks. In that case, the theory of Transfer Learn-

ng was proved can achieve faster and more accurate training of

NNs [25] . Such as training network using ImageNet dataset firstly,

nd then re-train network using the pre-trained weights as ini-

ialization weights. As introduced in [1] , transfer learning is able

o share and transfer knowledge among different tasks. Therefore,

ransfer learning can improve performance to some extent and re-

uce the great demand for training data. 

. Proposed two-stage method 

.1. Overall architecture 

In this study, we propose a two-stage attention aware method,

o address the challenges that train bearing defection inspection

aces, especially the problems of small oil spots recognition and

imited training samples. Fig. 2 shows an example of the inspection

ow on an original train image. In the rolling bearing localization

tage, we use the detector trained based on Faster R-CNN to ex-

ract the bearing region where may cover oil stains from an orig-

nal input image, and remove the useless areas where not occur

il stains. Thus the attention of segmentation network is attached

n extracted bearing region where may cover oil spots. The ex-

racted region from the first stage is resized to 512 × 512 uniformly
s input of the segmentation stage. And then in the segmentation

tage, via the proposed attention aware network APP-UNet, we can

btain the final segmentation result, in the form of a white-and-

lack mask where white pixels represent oil spot areas and black

ixels represent background. 

.2. Train bearing localization 

The inspection of shed train bearing oil is a typical problem of

ecognizing small objects in a large resolution image. The size of

he original image is 1024 × 1400, the image contains various train

omponents, while the train bearing region only accounts for ap-

roximately 10% of the image area, and the oil spots are even much

maller. Therefore, given the demand for segmenting oil spot ar-

as for train bearing defection inspection, it is necessary to guide

odel to suppress the irrelevant regions of the input image which

inder the information processing, and pay more attention to the

egion useful for our task. 

From this point, we fully utilize the Faster RCNN’s advantages

o construct a detector and locate train bearing regions that may

over oil stains, and then crop the located region for the next seg-

entation stage. There are two modules in Faster R-CNN [31] : a

eep fully convolutional network, called the RPN (Region Proposal

etwork) which generates the regions, and the Fast R-CNN detec-

or. As a fully convolutional network, the RPN uses sliding windows

o generate multiple rectangular region proposals for each position,

hich may contain train bearings. Each position is then parameter-

zed to an anchor centred at each sliding window and is related to

 scale and aspect ratio. The RPN provides two different outputs

or each anchor: the first output is objective scores generated in

he cls layer as the probability of an anchor being a target train

earing, and the second output is the bounding box generated in

he reg layer to adjust the anchor for better fitting the predicted

arget. For the Fast R-CNN detector, proposals as RoIs (Regions Of

nterest) predicted by the RPN are fed as input of this module. In

ddition, the final location of the bearing is generated through the

ounding-box regressor layer, and the probability of classification

s generated through the softmax layer. 

After detecting the train bearing region from the input image

y Faster R-CNN model, we only obtain four vertex coordinates

f the bounding box. As the bounding boxes are irregular in size,

nd same-size images are required for the subsequent segmenta-

ion part, we crop the localized area according to these coordinates

nd then resize it to 512 × 512 pixels uniformly. 
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Fig. 3. The architecture of our proposed attention aware segmentation network APP-UNet16, a symmetrical structure based on U-Net and is composed of an encoder and 

a decoder. The changes in the blue rectangular blocks’ height show the transformation of the size of the feature maps, while the width is proportional to the number of 

channels (the number is given under the corresponding block). The black arrows on top indicate the information transfer from each encoding layer and concatenation to a 

corresponding decoding layer via an attention gate (AG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

s

 

d  

m  

i  

d  

U  

u

 

w  

[  

c  

t  

m  

t  

e  

2  

1  

t  

6  

i  

p  

n  

t  

c  

p  

l  

l  

n  

t  

p  

o  
3.3. Proposed attention aware segmentation network: APP-UNet16 

Train bearing defection inspection requires precise recognition

of oil spots area distributed on the train bearing and around it,

thus demanding a class label can be assigned to each pixel of an

input image. With train bearing region already focused and ex-

tracted, we propose a novel attention aware network APP-UNet16

to perform reliable segmentation on this area. Inspired by U-Net

[33] which has demonstrated excellent performance on many im-

age segmentation tasks, especially in tasks with limited training

samples, we adopt the symmetrical encoder-decoder architecture

of UNet and achieve an improved segmentation network APP-

UNet16. And the utilization of transfer learning in constructing the

encoder of APP-UNet16 also helps to improve the robustness with

limited training images and shorten training time. The proposed

APP-UNet16 is capable of automatically learning to pay more at-

tention to the relevant features which are useful for target areas,

by stacking attention gates (AGs) in multi-scales. And the spatial

pyramid pooling module allows our network to aggregate global

contextual information. The full architecture of our attention aware

segmentation network APP-UNet16 is illustrated in Fig. 3 . 

3.3.1. The basic structure based on UNet 

U-Net is composed of a contracting path (left part) and an ex-

pansive path (right part) in a symmetrical form. The contracting

path is built with a typical convolutional network structure, suc-

cessively performing four times operations of sequential convolu-

tion and max pooling, for downsampling and simultaneously in-

creasing the number of feature maps. In the expansive path, an

up-convolution operation is used to halve the feature maps coming

from the contracting path for upsampling, and increase the resolu-

tion of feature maps. Moreover, the skip connections as concate-

nation operations are performed between the contracting path and
he expansive path to combine high-resolution features with up-

ample features. 

However, the traditional U-Net method is trained with ran-

omly initialized weights and cannot achieve the same perfor-

ance as utilizing transfer learning, especially with limited train-

ng samples, as proved by Iglovikov and Shvets [16] . Therefore, we

esign a novel attention aware segmentation network, named APP-

Net16, based on the encoder-decoder structure of [33] , and fully

tilize transfer learning. 

As shown in Fig. 3 , we achieve a symmetrical segmentation net-

ork APP-UNet16 based on traditional UNet. In our work, VGG16

38] is used to construct the encoder of our APP-UNet16, which

onsists of 13 convolutional layers, each followed by an ReLU ac-

ivation operation, and 3 fully connected layers. However, we re-

ove all fully connected layers when building the encoder, as our

ask is a pixel-wise classification problem. All convolutional lay-

rs in the encoder use 3 × 3 filters, and all max pooling layers use

 × 2 kernels. Moreover, the strides of the convolutions are fixed to

 pixel, while the strides of the max pooling operations are fixed

o 2 pixels. The first convolutional layer of our encoder produces

4 channels, and the images are halved in size with network go-

ng deeper, while the number of channels doubles after each max

ooling layer. Ultimately, we obtain 512 channels, and then the

umber of channels does not change in the subsequent layers of

he encoder. For the decoder, the structure is with a stack of de-

oder blocks, and fully symmetric with the encoder to guarantee

recise localization. Each decoder block consists of a single convo-

utional layer with 3 × 3 kernels, and a transposed convolutional

ayer for doubling the size of the feature maps and halving the

umber of channels. Moreover, we utilize a skip connection similar

o that in U-Net between the contracting path and the expanding

ath in multi-scales. The skip connections concatenate the outputs

f the transposed convolutional layers in the decoder, with the



X. Fu, K. Li and J. Liu et al. / Neurocomputing 380 (2020) 212–224 217 

Fig. 4. The process of transfer learning in APP-UNet16. The parameters obtained by 

training VGG16 network on ImageNet are transferred to the encoder of APP-UNet16 

when training on our bearing dataset. 
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utputs of the corresponding convolutional layer in the encoder,

hereby keeping the number of channels same as in the symmetric

art of the encoder. In addition, after 5-times upsampling proce-

ures, we obtain 64 channels, and then, one convolutional layer

s used to reduce the number of channels. Finally, a convolutional

ayer is employed to transform the results into a two-class classifi-

ation problem to judge the classification of each pixel. And white-

nd-black masks with the size same as input images are obtained

t last, of which white pixels present the predicted label of corre-

ponding pixels is oil spots and black pixels present the predicted

abel of corresponding pixels is background. 

In addition, because our training samples are limited, to guaran-

ee the robustness of our segmentation, we utilize transfer learn-

ng when constructing our encoder. We first train the VGG16 net-

ork on ImageNet dataset for image classification as the source

ask to obtain the training weights. We do this because the cur-

ent largest dataset, ImageNet [6] , contains more than 14 million

mages categorized by more than 10 0 0 object classes with approx-

mately 1 million artificial bounding box annotations. Such a large-

cale annotated image dataset is beneficial for training a pervasive

odel. Thus, the CNN model trained on ImageNet can be seen as

 good feature extractor of low- and mid-level features such as

dges and corners, while also being suitable for other vision tasks,

s proven by Donahue et al. [7] and [22] . To adapt the trained

NN to new tasks in our train bearing dataset, we retain the same

tructure of the trained VGG-16 as our encoder for segmentation.

ut we remove all fully connected layers and the final classifica-

ion layer, because our work is pixel-wise classification which does

ot require a vector of classification probabilities. We initialize our

ncoder with the weights trained on ImageNet and initialize the

eights of our decoder randomly. Then, we finetune the network

ith an original learning rate of 0.0 0 01. The transfer procedure is

llustrated in Fig. 4 . 

.3.2. Attention gates in APP-UNet16 

In order to help our attention aware segmentation network

PP-UNet16 to concentrate on the target defect areas and sup-

ress the irrelevant areas of background, inspired by Oktay et al.

4 8] and [4 9] , we stack soft attention gates (AGs) in skip con-

ections at each scale. Via AGs to concatenate the downsampling
ig. 5. The structure of attention gate (AG) in our proposed APP-UNet16. Input feature m

ap x l and gating vector g l 
′ 

are utilized together for computing attention coefficients. The
eatures in the contracting path and the corresponding upsampling

eatures in the expanding path, thereby highlighting the features

hich pass through skip connections. The structure of AGs utilized

n our APP-UNet16 is illustrated in Fig 5 . 

The whole structure of an AG is used for generating attention

oefficients αi ∈ [0, 1] for each pixel i , by referencing the attention

pproach of [42] . Following the default setting of attention mech-

nisms, AGs learn a single attention value for each pixel vector x l 

f layer l which comes from the encoder. Besides, to learn to focus

n a subset of targets, an additional attention branch is added for

ating vector g . The extracted coarse features g l 
′ 

obtained from the

orresponding layer l ′ of the decoder are used for gating operation,

o disambiguate the effect of uncorrelated and noisy information.

he gating vector g l 
′ 

can provide contextual information, and 

he feature map x l can provide local information. Both of them

re fused for computing attention coefficients, enables higher

ccuracy, as suggested in [45] . 

Firstly, the convolution operation with kernel size of 2 × 2 and

tride of 2 is performed on the input feature map x l of layer

 , while the convolution operation with kernel size of 1 × 1 and

tride of 1 is performed on the gating vector g l 
′ 
, parameterized

y W 

T 
x and W 

T 
g respectively. By doing these, achieving linear trans-

ormations to reduce computation amount. Then the processed x l ,

nd g l 
′ 

which is upsampled to the same size as x l , are added in

lement-wise to obtain the intermediate feature maps. Next, the

eLU activation function σ1 (x ) = max { 0 , x } is performed to non-

inear transform the intermediate feature maps. The subsequent

 × 1 × 1 convolution performs linear transformation. And the sig-

oid activation function σ2 (x ) = 

1 
1+ exp(−x ) 

normalizes the atten-

ion coefficients by reflecting them to (0,1) range. 

l 
i = σ2 (�

T (σ1 (W 

T 
x x 

l 
i + W 

T 
g g 

l ′ 
i + b g l ′ )) + b �) (1)

here � denotes the linear tranformations, and b denotes the bias.

As Eq. (1) concludes, AGs figure out attention coefficients αl 
i 
∈

0 , 1] for each pixel i of layer l . And the produced attention coeffi-

ients αl 
i 

is utilized to scale the input feature map x l of layer l , in

he form of point multiplication, as shown in Eq. (2) . 

 

 

l 
i 
= αl 

i · x l i (2) 

Lastly, the output feature maps ̂ x l of AGs are concatenated with

orresponding upsampled feature maps in the expanding path.

hough there are 5 times skip connections in our APP-UNet16, AG

s not utilized in the skip connection of the first scale. Because the

eature maps extracted at the first scale are too low-level to re-

ect the high dimension space, as suggested in [42] . In addition,

he parameters of AGs are also passed through backward propaga-

ion. The update rule for AGs in layer l − 1 can be formulated as

ollows: 

∂( ̂  x l 
i 
) 

∂(�l−1 ) 
= 

∂(αi f (x l−1 
i 

;�l−1 )) 

∂(�l−1 ) 
=αi 

∂( f (x l−1 
i 

;�l−1 )) 

∂(�l−1 ) 
+ 

∂(αi ) 

∂(�l−1 ) 
x l i 

(3) 

here � denotes the convolutional parameters need to be up-

ated. And the first item is scaled with αi . 
ap x l is scaled with the attention coefficient α generated by AGs. The input feature 

 upsample operation of feature maps is achieved by bilinear interpolation. 
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Fig. 6. The structure of the spatial pyramid pooling module in our proposed APP-UNet16. The pyramid pooling helps to capture different sub-region features with size of 

1 × 1, 2 × 2, 3 × 3, 6 × 6, respectively. The following upsample and concatenation layer are used to form the final feature maps which contain both global and local contextual 

information. 
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The backward propagation of AGs allows the suppression of

background regions. Stacking AGs in skip connection at multiple

scales enables the aggregation of contextual information and a bet-

ter segmentation performance, helping attention aware features

change adaptively. 

3.3.3. Spatial pyramid pooling module in APP-UNet16 

In recent years, spatial pyramid pooling has been commonly ap-

plied in various computer vision tasks, such as the excellent object

detection method R-CNN [12] . According to [46] , the actual recep-

tive field of CNN is much small than the theoretical receptive field.

This results in many networks not sufficiently utilizing the global

scene. As [14,17] proved, fusing global receptive fields with differ-

ent sub-region information is a more effective global prior repre-

sentation. Motivated by this, [47] utilizes pyramid pooling and suc-

cessfully improves the performance of scene perception. It captures

different sub-region information from different scales and then

concatenated together to incorporate more global contextual infor-

mation. Inspired by this, we creatively utilize spatial pyramid pool-

ing to connect the encoder and decoder of APP-UNet16, to improve

the segmentation performance. Spatial pyramid pooling helps APP-

UNet16 aggregate global context, thus achieving a better prediction

of the shape and boundary of the defect areas. 

The whole architecture of the pyramid pooling module in our

APP-UNet16 is demonstrated in Fig. 6 . The produced coarse feature

maps with 512 channels which come from the downsampling path

are as input, and then fed into 4 different pyramid scales. As an

excellent global contextual prior, Global Average Pooling has been

widely utilized in image classification tasks such as [15] and [44] ,

it also achieves good results for semantic segmentation in [43] . In

this case, we perform the adaptive average pooling operation on

input feature maps at each pyramid scale, and the size of pooling

kernel varies corresponding to each pyramid scale. In our four-level

pyramid pooling module, the size of the pooling kernels at each

scale are fixed to 1 × 1, 2 × 2, 3 × 3 and 6 × 6 respectively, refers to

the setting in [14] . The varying-size pooling kernels can be bene-

ficial for the abstraction of different sub-regions, thereby capture

global contextual features as much as possible. In order to keep

the original size of global features, we connect a upsample layer

to perform bilinear interpolation after the pyramid pooling layer

at each scale thus to get the same size feature maps as the in-

put features. Lastly, the features from different pyramid scales are

concatenated to the input feature maps, to form the ultimate pyra-

mid pooling global feature. As our task acquires pixel-wise classi-

fication, we perform a 1 × 1 convolution to reduce the amount of
hannels to keep the original dimension, instead of flattening the

nal global features and then feeding into a fully connected layer

ike [14] for image classification. 

.4. Data augmentation 

Because the number of train bearing image samples is very lim-

ted, especially images that contain bearing faults, we want to ad-

ress the challenges posed by the limited number of samples and

mbalanced dataset for image segmentation tasks. In this case, we

se an additional data augmentation process to generate additional

raining data. By data augmentation, to improve the robustness of

he network and to learn the desired invariance, which is essential

n segmentation tasks when there are minimal available training

ata. 

For bearing images, we primarily use operations such as ap-

lying rotation, shift, zoom and shear to generate more samples.

he parameters of these augmentation operations are usually set

o small values, to ensure that there is only a slight difference be-

ween augmented images with original images. We rotate available

mages by a certain angle randomly to change the orientation of

he image contents, and we set the degree range for the random

otations to 0.2. Moreover, we zoom the images in and out by cer-

ain scale factors, and we set the range for the random zooming to

.5. We also shift the images from left to right and from top to bot-

om, the ranges for both the horizontal and vertical shifts are set to

.05. Furthermore, we apply a shear transformation to the training

ata in a certain direction to scale the directed distance from every

oint of an image to a line parallel to that direction, and the shear

ngle in the counter-clockwise direction is set to 0.05 degrees. Af-

er the above operations, the number of bearing image samples is

ncreased to 4664. 

. Training details 

In this section, we introduce the training details of our detec-

ion and segmentation models, including the initialization of all

arameters. All training processes fully utilize the GPU memory on

 system with CentOS Linux release 7.4.1708 (Core) and Tesla P100

CIe 16GB GPUs. 

Training Localization Model. Faster R-CNN consists of an RPN and

he Fast R-CNN, where the loss function of the RPN is defined as

ollows: 

 ({ p i } , { t i } ) = 

1 

N cls 

∑ 

i 

L cls (p i , p 
∗
i ) + λ

1 

N reg 

∑ 

i 

p ∗i L reg (t i , t 
∗
i ) (4)
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here p denotes the probability of the corresponding anchor being

 target object and p ∗ is the true label of a proposal ( p ∗ = 1 when

his proposal is a target; otherwise, p ∗ = 0 ). In addition, t denotes

he coordinates of the predicted bounding box, t ∗ denotes the co-

rdinates of the ground-truth bounding box, i is the index of an

nchor in a mini-batch. L cls is the classification loss, while L reg is

he regression loss. N cls is the number of anchors, and N reg is the

umber of anchor locations. The loss function of the Fast R-CNN is

efined as follows: 

 (p, u, t u , v ) = L cls (p, u ) + λ[ u ≥ 1] L loc (t u , v ) (5)

here p is a probability distribution over outputs, u is the class

ndex of the proposal (we only have two classes: train bearings and

ackground), t u are the coordinates of the bounding box predicted

y the model, and v is the bounding box of the ground truth. And

he value of [ u ≥ 1] is 1 when u ≥ 1 and 0 otherwise. Moreover, L cls 

s the classification loss for the true class u, L loc is the regression

oss for the bounding box, and λ is a hyper-parameter. 

In this paper, instead of training the Faster R-CNN model by 4-

tep alternating training as in [31] , which trained the RPN and Fast

-CNN independently, we train our bearing detection model in an

nd-to-end manner using approximate joint training to achieve a

aster and more convenient training process. We merge the two

etworks, the RPN and Fast R-CNN, into one network when train-

ng, and we fine tune this network by stochastic gradient descent

SGD) [2] to optimize the features for both tasks. Four types of

osses are obtained: the RPN classification loss, the RPN regression

oss, the RoI classification loss and the RoI regression loss. The RPN

oss is combined with the Fast R-CNN loss for the shared layers

uring backward propagation. For the anchors in the RPN, we use

hree scales, 128 2 , 256 2 , and 512 2 pixels, and 3 aspect ratios, 1:

, 1: 2, and 2: 1, with k = 9 anchors at each sliding window, and

btain the same number of proposals, as suggested in [31] . To ad-

ress highly overlapped proposals and reduce redundancy, we use

on-maximum suppression (NMS) on the proposals according to

heir cls scores. And the intersection-over-union (IoU) threshold of

he NMS is set to 0.8, as there is only a target class in our task,

uch setting can prevent missing recognition of target objects. Af-

er NMS, the number of proposals decreases sharply, as there is

nly one target object, i.e., a train bearing, in each picture of our

ataset, thus we choose the top-1 ranked proposal for detection. 

Training segmentation model. The image segmentation task can

e considered as a pixel-wise classification problem, and our task

or segmenting oil stains is a typical binary classification problem.

hus, our attention aware segmentation network APP-UNet16 uses

he common loss function of binary classification, which is defined

s follows: 

 1 = 

1 

n 

n ∑ 

i =1 

(−y i log ˆ y i − (1 − y i ) log (1 − ˆ y i )) (6)

here y i is an annotated binary value of pixel i , while ˆ y i is the pre-

icted probability of the corresponding pixel, and n is the number

f pixels. Moreover, to maximize the probabilities of obtaining the

orrect pixels and the intersection between the predictions and the

orresponding ground-truth mask simultaneously, the loss function

f APP-UNet16 is defined in the following manner: 

 = L 1 − log 

( 

1 

n 

n ∑ 

i =1 

(
y i ̂  y i 

y i + 

ˆ y i − y i ̂  y i 

)) 

(7) 

The model is trained by minimizing the loss function through

he Adam optimizer [18] with the learning rate initialized to

.0 0 01, as small learning rate is more suitable for transfer learn-

ng. We start the training models with a batch size of 16, to obtain

tronger higher extensive ability. 
. Experiments 

.1. Experimental setup 

Data description. We build two datasets for training and evalu-

ting our two-stage attention aware method for bearing shed oil

nspection. All images of the operating train used in our experi-

ents on the localization model are captured by high-speed cam-

ras, with a high resolution of 1400 × 1024, therein containing both

he train bearing and miscellaneous components. To build the train

earing dataset for locating train bearing regions through the ob-

ect detection model we trained, we label the train bearing areas

n each image by drawing a rectangle. Then, we record the four co-

rdinates of the labelled area and annotate the labelled region as a

bearing’. All information about the labelled rectangles and relevant

lassification are organized as XML files and matched with the cor-

esponding image. There are 240 training samples and 120 testing

amples in our train bearing dataset. For building our segmenta-

ion dataset to identify the oil spot regions from the pictures, we

ecord the locations of the oil spots using curved lines and label

hese areas in white. And we label the remaining background in

lack. After data augmentation, our segmentation dataset contains

364 images for training and 1300 images for testing. 

Evaluation metrics. The Faster R-CNN model achieves excel-

ent performance on multi-class object detection and classification

asks. However, in our research, we only trained the model to de-

ect the location of train bearings, which is a single-class classifi-

ation problem. In addition, our purpose is to obtain the location

f the train bearings as precisely as possible, thus building a bet-

er foundation for next stage’s segmentation. Therefore, to evaluate

he object detection model that we trained for locating bearings,

e do not utilize the mAP, which is commonly used in multi-class

lassification tasks, as our evaluation metric. Instead, we use IoU

Intersection over union) to evaluate our object detection model.

oU measures the relevance score of the predicted area generated

y the model that we trained and our labelled ground truth. As-

ume set A as a predicted area and set B as the ground truth. IoU

s a similarity measure can be defined as follows: 

oU(A, B ) = 

| A 

⋂ 

B | 
| A 

⋃ 

B | = 

| A 

⋂ 

B | 
| A | + | B | − | A 

⋃ 

B | (8) 

At the segmentation stage, we obtain a white-and-black mask

redicted by our segmentation method, where white areas denote

he target area, i.e., the area covered by oil stains, and black ar-

as denote background. To evaluate the pixel-wise accuracy, we

se the above-mentioned IoU to measure the similarity between

he predicted results and the labelled ground truth. In addition, we

hoose Dice’s Coefficient as the similarity evaluation metric, which

s defined as follows: 

ice (A, B ) = 

2 | A 

⋂ 

B | 
| A | + | B | (9) 

.2. Experiments of our proposed method 

In this section, we run a series of comparative experiments

o illustrate the performance of our proposed two-stage attention

ware method for bearing shed oil inspection. Our two-stage

nspection method based on convolutional neural networks can

ccomplish the inspection of an image in average 2.432 seconds,

hile the manual image-based train fault detection process may

ost at least 1 minute for each technicians. Undoubtedly, our

ethod improves efficiency and saves artificial, compared with

anual inspection which is labor intensive. Moreover, we compare

ur two-stage method with the one-stage method without the

ocalization stage. To evaluate the performance of the ‘one-stage’

ethod, we remove the procedure of locating the region of the
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Fig. 7. Binary masks, where white pixels represent areas of oil stains and black pixels represent background. Image (a) shows the segmentation results of the original image 

in Fig. 8 predicted by the one-stage model, and (b) shows a ground-truth mask. 

Fig. 8. The predicted train bearing region by the detection model is indicated by the red rectangle; the over label name and corresponding score denote the probability of 

the region being the target object. The region is cropped for the next stage. 

Table 1 

Accuracy comparison in different conditions of the second stage, between one-stage 

method and our proposed two-stage attention inspection method. 

Method Condition 

Dice 

(mean) 

Dice 

(std) 

IoU 

(mean) 

IoU 

(std) 

one-stage UNet 0.3608 0.1916 0.2370 0.1454 

UNet16 0.5705 0.1917 0.4258 0.2000 

no AGs 0.6204 0.1759 0.4733 0.1869 

no pyramid pooling 0.6283 0.667 0.4798 0.1801 

APP-UNet16 0.6545 0.1496 0.5050 0.1678 

two-stage UNet 0.7143 0.2709 0.6120 0.2717 

UNet16 0.7941 0.1467 0.6799 0.1767 

no AGs 0.8492 0.1222 0.7551 0.1620 

no pyramid pooling 0.8374 0.1221 0.7369 0.1584 

APP-UNet16 0.8581 0.1177 0.7676 0.1580 
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rolling bearing, and we directly use the original images captured

by the high-speed cameras for segmentation. Fig. 7 . illustrates the

binary mask directly predicted from an original image by the ‘one-

stage’ method and its ground truth, while the final segmentation

result of our two-stage method is illustrated in Fig. 10 (E). And

Table 1 demonstrates the segmentation accuracy of our proposed

two-stage method, and the one-stage method in various conditions
f the remaining second stage; such as with standard UNet, UNet16

pretrained on VGG16) without AGs and without pyramid pooling

espectively for segmentation. The results validate the effective-

ess of our proposed two-stage method, which locates the focused

earing region. The proposed two-stage attention aware method

nables the segmentation models to focus on the target area and

hen achieve a refine segmentation. Next, we will discuss the

xperimental results of our localization and segmentation parts

ore detail separately in Sections. 5.3 and 5.4 . 

.3. Localization experiment 

We perform train bearing localization using our trained Faster

-CNN model. In particular, we use the weights of the VGG-16

odel trained on ImageNet to initialize the weights of the network

or training, and a GPU is used to accelerate the training. The train-

ng and testing implementations in our work are from the open-

ource code implemented under TensorFlow 1.3.0 [13] . We obtain

ur Faster R-CNN model after 150,0 0 0 iterations and obtain a to-

al loss of 0.0128, a classification loss of 0.0046, a regression loss

f 0.008, and both RPN classification and RPN regression losses of

.0 0 01. In addition, the inputs of the training and testing in this

hase are of the original size of 1400 × 1024. The testing results



X. Fu, K. Li and J. Liu et al. / Neurocomputing 380 (2020) 212–224 221 

Fig. 9. The Jaccard results of a training epoch for the three segmentation models in Image (A), and the loss results in Image (B). The yellow line presents the UNet model 

trained from scratch, the blue line presents the UNet16 model trained with the weights from the pre-trained VGG16, and the red line presents the model trained by our 

proposed APP-UNet16. 

Table 2 

The comparisons of train bearing localization 

accuracy achieved by the Faster R-CNN models 

with different initialization. 

Method IoU 

Faster R-CNN (ResNet50) 0.9058 

Faster R-CNN (VGG-16) 0.9371 
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Table 3 

Accuracy comparison between UNet model with randomly initialization weights; 

UNet16, which is initialized with the weights from VGG16; and our proposed APP- 

UNet16 (also initialized with the weights from VGG16). 

Method Dice (m) Dice (std) IoU (m) IoU (std) 

UNet 0.7143 0.2709 0.6120 0.2717 

UNet16 0.7941 0.1467 0.6799 0.1767 

APP-UNet16 0.8581 0.1177 0.7676 0.1580 

Table 4 

Accuracy results comparison between methods with different AGs distributions. Our 

method adds attention modules in scale 2, 3, 4 and 5 respectively. 

Method Dice (m) Dice (std) IoU (m) IoU (std) 

APP-UNet (no AGs) 0.8113 0.1685 0.7109 0.2010 

APP-UNet (scale 2) 0.8430 0.1046 0.7421 0.1489 

APP-UNet (scale 2 + 3) 0.8440 0.1338 0.7500 0.1727 

APP-UNet (scale 2 + 3 + 4) 0.8492 0.1222 0.7551 0.1620 

APP-UNet16 (scale 2 + 3 + 4 + 5) 0.8581 0.1177 0.7676 0.1580 

APP-UNet16 (scale 1 + 2 + 3 + 4 + 5) 0.8422 0.0763 0.7344 0.1065 
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btained by the Faster R-CNN models with different initialization

re evaluated by IoU and presented in Table 2 . The results rep-

esent that utilizing pre-trained VGG-16 as the feature extractor

chieves the best performance with IoU of 93.71%, and an example

f the detection results is shown in Fig. 8 . According to our exper-

ment, we can conclude that the automatic extraction of bearing

reas by the Faster R-CNN is effective, and is able to replace the

anual work necessary for extracting the train bearing regions for

urther segmentation. 

.4. Segmentation experiments 

Comparison with traditional UNet. To obtain increased perfor-

ance with limited training samples, we adopt the basic architec-

ure of UNet to construct our attention aware segmentation net-

ork APP-UNet16. And VGG-16 is utilized to construct the encoder

nd the weights of which is initialized by the VGG-16 model pre-

rained on ImageNet, by transfer learning. In order to evaluate the

erformance improvement of our proposed APP-UNet16 over the

tandard UNet, we compare it with traditional UNet and UNet16

initialized with VGG-16 weights), to show the effect of transfer

earning. The comparison results, which consist of the mean value

denotes m ) and standard deviation (denotes std ) of Dice and IoU,

re summarized in Table 3 . 

The results demonstrate the advantages of transfer learning as

Net16 outperforms than traditional UNet, with Dice improvement

f 0.08 and IoU improvement of 0.06. In this case, our proposed

PP-UNet16 achieves the best performance, with an Dice of 85.81%

nd IoU of 76.76%, markedly improves the segmentation accuracy

ver the traditional UNet. In addition, the learning curves and

he loss curves in Fig. 9 also demonstrate the advantages of our
PP-UNet16 architecture. First, the APP-UNet16 model, rapidly

chieves a higher accuracy after the first epoch. Second, our model

ore quickly converges to a steady value. In addition, the obtained

table value of our model is much higher. Finally, the differences

etween the masks predicted by traditional UNet, UNet16, our

PP-UNet16 are shown in Fig. 10 . 

Attention analysis. In order to enable our proposed attention

ware segmentation network APP-UNet16 to learn the most sig-

ificant regions automatically, we stack attention modules (AGs) at

our-scales. Note there is no AG integrated in the first scale as the

rst scale are too low-level to reflect the high dimension space.

nd to evaluate the efficiency of our practice, we remove one, two,

hree and all AGs respectively, to compare with our method, the

omparison results are shown in Table 4 . Obviously, our method

chieves the best performance with Dice of 0.8581 and IoU of

.7676. And the predicted masks by APP-UNet16 (no AGs) and APP-

Net16 are shown in Fig 10 . 

Moreover, the attention heatmaps from the test image are vi-

ualized in Fig. 11 , respectively from low levels to high levels of
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Fig. 10. Binary masks, where white pixels represent areas containing oil stains and black pixels represent background. Image (A), (B), (C), (D) show the prediction results 

obtained by the segmentation models trained respectively, by UNet, UNet16, APP-UNet (no AGs) and APP-UNet (no pyramid pooling), and (E) by our proposed APP-UNet16. 

(F) shows the ground-truth mask. 

Fig. 11. From left to right: an extracted rolling bearing region; and four heatmaps visualized from the outputs of multiple AGs, from coarser scales to finer scales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Accuracy results comparison between no pyramid pooling method, single pooling 

method with different size; and our multi-level pooling with size 1 × 1, 2 × 2, 3 × 3, 

and 6 × 6. 

Method Dice (m) Dice (std) IoU (m) IoU (std) 

APP-UNet (no pooling) 0.8374 0.1221 0.7369 0.1584 

APP-UNet (single pooling with 1 × 1) 0.7806 0.1080 0.6522 0.1366 

APP-UNet (single pooling with 2 × 2) 0.8263 0.1127 0.7178 0.1431 

APP-UNet (single pooling with 3 × 3) 0.8521 0.0913 0.7523 0.1256 

APP-UNet (single pooling with 6 × 6) 0.8106 0.1380 0.7008 0.1678 

APP-UNet16 (multi-level pooling) 0.8581 0.1177 0.7676 0.1580 

d  

a  

o  

d  

f

AGs. We can observe that AGs in skip connections from coarse

scales only provide a rough outline of defect areas, and sequen-

tially refined in finer scales. It is represented that attention mod-

ules of our proposed APP-UNet16 helps activating target image re-

gions and pruning unrelated feature responses. 

Pyramid pooling analysis. To capture the global contextual infor-

mation, the pyramid pooling is utilized to connect the encoder and

decoder of APP-UNet16. In our central pyramid pooling module,

there are multi-level adaptive average pooling layers to capture the

sub-regions with size of 1 × 1, 2 × 2, 3 × 3 and 6 × 6 respectively.

To prove that multi-level pooling improves segmentation accuracy,

we compare our method with no pyramid pooling and single-level

pooling, the results are shown in Table 5 . The results fully demon-

strate the superiorities of utilizing pyramid pooling. 

Comparison with state-of-art methods. Except for comparing with

standard UNet model, we also conduct a series comparative exper-

iments on baseline segmentation models, such as FCN [36] and

Segnet [41] , the corresponding results are given in Table 6 . It
emonstrates that our proposed APP-UNet16 shows the state-of-

rt segmentation performance than other methods, with an Dice

f 85.81% and IoU of 76.76%, so that has high capacity to segment

efect areas (oil spot areas) thus achieve a high-quality inspection

or rolling bearing shed oil. 
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Table 6 

Accuracy comparison of state-of-are segmentation methods, FCN8s, 

FCN32s, and Segnet, respectively. 

Method IoU (m) IoU (std) Dice (m) Dice (std) 

FCN8s 0.5967 0.1101 0.7413 0.0881 

FCN32s 0.7210 0.1653 0.8246 0.1391 

Segnet 0.6524 0.1717 0.7731 0.1610 

APP-UNet16 0.8581 0.1177 0.7676 0.1580 

6

 

f  

w  

z  

w  

i  

n  

t  

s  

a  

o  

p  

l  

o  

d  

c  

p  

c  

t  

i

D

 

t

A

 

g  

i  

o  

e  

t  

N  

t  

N  

2  

o

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

 

[  

 

 

 

[  

[  

 

 

 

[  

 

[  

 

[  

 

 

 

[  

 

 

 

[  

 

 

[  
. Conclusion and future work 

In this work, we propose a two-stage attention aware method

or bearing shed oil inspection, based on convolutional neural net-

ork. The localization stage guides the segmentation network to

oom in on the train bearing region to see better. In this stage,

e use a detector based on Faster R-CNN to extract the region of

nterest for subsequent segmentation. And to improve the robust-

ess and accuracy of our inspection method, we develop an at-

ention aware U-shaped segmentation method APP-UNet16, in the

egmentation stage. We stack attention modules in multi-scales,

nd introduce pyramid pooling into APP-UNet16. Additionally, in

rder to address the problem of limited training samples, we im-

lement the encoder of APP-UNet16 by transfer learning, and uti-

ize data augmentation to enlarge our dataset. The effectivenesses

f our proposed two-stage inspection method and APP-UNet16 are

emonstrated, by evaluating them on our train bearing dataset and

omparing with related approaches. For future work, we will ex-

lore expanding our inspection method to other similar faults en-

ountered by operating trains. In addition, we will further attempt

o achieve higher segmentation accuracies and faster parallel train-

ng speed like [52] on our segmentation network. 
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