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Abstract—Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including

phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological

sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes

of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing

units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to

accelerate the MAFFT algorithm. To fully exploit the GPU’s capabilities for accelerating MAFFT, we have optimized the sequence

data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make

full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption,

and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves

speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.

Index Terms—CUDA, graphics hardware, GPGPU, MAFFT, sequence alignment

Ç

1 INTRODUCTION

MSA is a fundamental tool for phylogeny inference, pro-
tein structure and function prediction, and other com-

mon tasks in sequence analysis [1]. The typical MSA task
consists of seeking an alignment that maximizes the sum of
similarities for all pairs of sequences. Since the computa-
tional cost increases exponentially with the number of
sequences, the dynamic programming (DP)-based algo-
rithm is commonly used for pairwise optimal alignment.
With respect to large alignment targets, the progressive
method is widely used. Several progressive alignment tools
have been introduced, e.g., [2], [3], [4]. Among them,
MAFFT is one of the most popular software package with
citation of over 1,400 in the web of science. The huge popu-
larity of the MAFFT program comes from the continuing
efforts by offering new functions and the excellent service
with about seven MAFFT Web servers including European
Molecular Biology Laboratory-European Bioinformatics
Institute (EMBL-EBI), DNA Data Bank of Japan (DDBJ), and
the MPI Bioinformatics Toolkit.

Although MAFFT is a fast alignment program and
already has a multi-thread version for some options, there

are still great demands for faster solutions. This is due to
both the increasing amount of sequence data and the limi-
tations for some options on the maximum number of
input sequences for the infeasible runtimes.

In this paper, we present a new approach to accelerat-
ing MAFFT on GPUs using the CUDA programming
model. Compared with the implementations of other
MSA algorithms on GPUs, parallelization of MAFFT is
more challenging since the space complexity of most
MAFFT options is proportional to L2, where L is the aver-
age length of sequences, significantly conflicting with the
limited memory size of GPUs. To gain efficiency, we have
optimized the sequence data organization to eliminate the
bandwidth bottleneck of memory access, designed a
memory allocation and reuse strategy to make full use of
limited memory of GPUs, and proposed a new MRLE
scheme to compress the scoring matrix, the key space bot-
tleneck of MAFFT. The performance of our implementa-
tion is tested in terms of accuracy and runtime for
aligning large amount of sequences with various length.
Our implementation achieves speedup up to 11.28 on an
NVIDIA Tesla K20m GPU while delivering accuracy
identical to MAFFT.

The rest of this paper is organized as follows. In Section 2,
the features of CUDA and the MAFFT algorithm are
reviewed. Section 3 is devoted to the presentation of our
CUDA-basedMAFFT algorithm. Performance is evaluated in
Section 4. Finally, Section 5 outlines themain conclusions.

2 PRELIMINARIES AND RELATED WORK

2.1 Parallel Programming with CUDA

In the CUDA programming model, a program consists of
two parts: a host program running on a host CPU, and one or
more kernels executing parallel programs on a parallel device.
A kernel is written in a C-like programming language,

� X. Zhu is with the College of Information Science and Engineering, Hunan
University, Changsha, Hunan 410082, China and the School of Computer
Science, Zhaoqing University, Zhaoqing, Guangdong 526061, China.
E-mail: hnzxy@hnu.edu.cn.

� K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha, Hunan 410082, China and the Department of Com-
puter Science, State University of New York, New York, NY 12561.
E-mail: lkl@hnu.edu.cn.

� A. Salah, L. Shi, and K. Li are with the College of Information Science and
Engineering, Hunan University, Changsha, Hunan 410082, China.
E-mail: ahmad@hnu.edu.cn, shilin@aimlab.org, lik@newpaltz.edu.

Manuscript received 26 Jan. 2014; revised 9 July 2014; accepted 18 Aug. 2014.
Date of publication 25 Aug. 2014; date of current version 30 Jan. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2014.2351801

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2015 205

1545-5963� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



which performs the computation by a single thread and is
invoked as a set of concurrently executing threads. These
threads are organized in thread blocks and many thread
blocks may run in a grid hierarchically.

A modern NVIDIA GPU is built on a scalable processor
array, organized into a number of streaming multiproces-
sors (SMs). All threads of a thread block are executed con-
currently on a single SM. The SM executes threads in small
groups of 32 threads, called warps, in a single-instruction
multiple-thread (SIMT) fashion.

In CUDA, the host CPU and devices have separate mem-
ory spaces. Device memory can be categorized in six
groups: per-thread registers, per-thread private local mem-
ory, per-block shared memory, global memory for data
shared by all threads, texture memory, and constant mem-
ory. Texture memory and constant memory can be regarded
as fast read-only caches. Only threads within a thread block
can communicate through shared memory and may directly
synchronize using barriers.

Global memory is accessed via 32-, 64-, or 128-byte mem-
ory transactions. To maximize memory throughput, the
memory accesses of threads within a half-warp (i.e., a group
of 16 threads) are coalesced into one or more memory trans-
actions. Taking Fig. 1 as an example, in Fig. 1a, each thread
of a half-warp of 16 threads accesses a 8-byte value which
stores at unorder address in global memory. In this case,
each thread touches a separate address segment, resulting

in an uncoalesced access. In Fig. 1b, since the memory
requests performed by a half-warp accesses precisely one
segment, a fully coalesced access takes place. Compared
with the uncoalesced access, the GPU issues a single 128-
byte load, thus no bandwidth is wasted and only a single
memory transaction is needed.

2.2 Multiple Sequence Alignment and MAFFT
Algorithm

MSA is to put protein or DNA residues in the same column
according to some selected criteria, being an NP-hard opti-
mization problem. There are many MSA heuristics and the
progressive alignment method is one of the most widely
used. For a generic MSA approach, a guide tree is created
based on all-to-all pairwise comparisons, and an MSA is
constructed using a profile-profile alignment algorithm at
each node of the guide tree. To improve the alignment accu-
racy, various iterative refinement methods are usually
incorporated in the later stages.

MAFFT is a popular MSA program package for unix-like
operating systems. Two novel techniques, i.e., homologous
regions identification by the fast Fourier transform (FFT)
and a simplified scoring system for improving both accu-
racy and speed, are incorporated in MAFFT. MAFFT has
several options and covers various types of MSA problems
including a small alignment consisting of distantly related
sequences, large-scale alignment and ncRNA structural
alignment. Table 1 shows the major options of MAFFT.
More details can be found in [5], [6], [7], [8], [9].

2.3 Previous Work of Sequence Alignment
with CUDA

Due to the massively parallel processing power and avail-
ability in PC desktops, GPUs have been widely applied to a
large number of applications in bioinformatics. Recent
efforts on accelerating sequence alignment applications
using CUDA includes MUMmerGPU, Smith-Waterman
(SW), CUDA-BLAST, and CUDA-BLASTP.

Michael et al. [10] proposed MUMmerGPU 1.0, a paral-
lel pairwise local sequence alignment program that runs
on GPUs in common workstations, achieving more than
10-fold speedup over a serial CPU version of the sequence
alignment kernel. By featuring a new stackless depth-first-
search print kernel, MUMmerGPU 2.0 [11] is 13-fold and
4-fold faster than the serial CPU version and

Fig. 1. The effect of coalescing on memory reads.

TABLE 1
Description of the Major Options of MAFFT

Option name Command Description

Progressive methods. For a medium-scale alignment (�200<N<�10,000).
FFT-NS-1 mafft ��retree 1 input Approximately two times faster than the default
FFT-NS-2 mafft ��retree 2 input Default
Iterative refinement methods. For a small-scale alignment (N<�200, L<�10,000).
FFT-NS-i mafft ��retree 2 ��maxiterate 16 input Fastest of the four in this category. Use the weighted sum-of-

pairs (WSP) score only
G-INS-i mafft ��globalpair ��maxiterate 16 input Uses WSP score and consistency score from global alignments
L-INS-i mafft ��localpair ��maxiterate 16 input Uses WSP score and consistency score from local alignments

with the affine gap cost
E-INS-i mafft ��genafpair ��maxiterate 16 input Uses WSP score and consistency score from local alignments

with a generalized affine gap cost
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MUMmerGPU 1.0, respectively. Both MUMmerGPU 1.0
and MUMmerGPU 2.0 were tested in the machine which
has a 3.0 GHz dual-core Intel Xeon 5160 with 2 GB of
RAM, and a NVIDIA GeForce 8800 GTX.

Many CUDA implementations of SW have been pro-
posed [12], [13], [14], [15], [16], [17], [18], [19]. Table 2 sum-
marizes the main characteristics of them. Column 5 lists the
best performance presented in these papers. These works
tackle the problem of finding similarities between a query
sequence of unknown functionality and a database of
known sequences. Except the method in [13] providing the
alignment as output, most of the approaches retrieve only
the highest score as a measure of the similarity between the
sequences. Note that the sequences used in [12], [13], [14],
[15], [16], [17] are protein sequences. Only CUDAlign 1.0
[18] and CUDAlign 2.1 [19] compare real DNA sequences
that range from 162 KBP (Thousand Base Pairs) to 59 MBP
(Million Base Pairs).

Vouzis et al. [20] developed GPU-BLAST to accelerate the
Basic Local Alignment Search Tool (BLAST) based on the
source code of NCBI-BLAST, maintaining the same input
and output interface while producing identical results.

Liu et al. [21] presented a method called CUDA-BLASTP
to accelerate BLASTP by using a compressed deterministic
finite state automaton as well as a hybrid parallelization
scheme with CUDA. CUDA-BLASTP achieves speedup up
to 10.0 on a GeForce GTX 295 GPU compared with the
sequential NCBI BLASTP 2.2.22.

3 PARALLELIZING THE MAFFT ALGORITHM

WITH CUDA

There are many options in the MAFFT package. Different
options focus on handling different alignment problems. In

order to design an efficient MAFFT algorithm for GPUs,
profiling should be done to identify the most time-consum-
ing parts of MAFFT, the severe performance bottleneck of
the system. It is also a general method and skill to achieve
the best performance in parallel programming.

3.1 Profiling of MAFFT

We constructed nine testsets by using PSI-BLAST to
search the NCBI non-redundant protein sequence data-
base for hits on nine sequences P02232, P14942, P07327,
P01008, P03435, P42357, P21177, Q38941, and P27895
respectively, selecting the highest-scoring 500 sequences.
As Table 3 shown, the rows 2 and 3 are the average
length and the average distance of these testsets. The
remaining rows depict the runtimes of MAFFT options
on the testset. From Table 3 we can see that FFT-NS-1 is
the fastest option while L-INS-i (abbreviated as LINSi) is
the most time-consuming one. It must be noted that the
runtimes of MAFFT options increase when the average
lengthes of testsets increase.

After continuing profiling LINSi on the testset, we
found that the most time-consuming parts of LINSi are
pairwise alignment and iterative refinement. In the pair-
wise alignment stage, a scoring matrix between two
amino acid sequences is constructed from the similarity
matrix. While in the iterative refinement stage, the LINSi
alignment is repeated until the alignment score can no
longer be improved. These result in high time complex-
ity and space complexity, which are OðN2L2Þ and at least

OðN2Þ þOðL2Þ þOðNLÞ respectively, where N and L are
the number of sequences and the average length of
sequences respectively. As the most accurate option of
MAFFT, LINSi is recommended for alignment of less
than 200 sequences with the maximum length 5,000 resi-
dues because of high computation cost. Hence, it is
imperative to accelerate LINSi to handle more sequences
in feasible time. In this paper, we design an algorithm to
accelerate LINSi with CUDA (named as CUDA-LINSi). It
should be noted that this algorithm is suitable for accel-
erating the other two time-consuming options G-INS-i
and E-INS-i, which also improve alignment accuracy by
introducing pairwise alignment information and iterative
refinement.

3.2 The Flow of LINSi

In order to design an efficient CUDA-LINSi algorithm, we
analyze the flow of LINSi firstly. The procedure of LINSi

TABLE 2
Description of Smith-Waterman Implementations with CUDA

Paper Implementation Align Max.
Query

GCUPS* GPU

[12] SW-CUDA no 567 3.4 8800 GTX
[13] CUDA-SSCA#1 yes 1,024 1.0 GTX 295
[14] GSM no 1,024 N/A C870
[15] CUDASW++ 1.0 no 5,478 9.7 GTX 295
[16] CUDASW++ 2.0 no 5,478 17 GTX 295
[17] DOPA no 5,478 21.4 GTX 275
[18] CUDAlign 1.0 no 32,799,110 20.3 GTX 285
[19] CUDAlign 2.1 no 59,373,566 30.2 GTX 560 Ti

�GCUPS means Billions of Cells Updated per Second.

TABLE 3
Running Time of Different MAFFT Options

Option P02232 P14942 P07327 P01008 P03435 P42357 P21177 Q38941 P27895

average length 156 224 375 423 563 563 726 1319 1083
average distance 57% 64% 75% 54% 96% 64% 99% 38% 36%

L-INS-i 31 39 105 240 140 222 237 13,557 27,777
E-INS-i 26 29 77 197 83 168 143 10,223 18,803
G-INS-i 32 30 57 155 37 151 56 9,116 12,476
FFT-NS-i 9 8 9 31 6 24 10 1,450 2,050
FFT-NS-2 1 0 1 3 2 2 2 122 242
FFT-NS-1 0 1 1 1 1 2 1 121 181
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consists of four stages, as shown in Fig. 2. We briefly
describe each step in the following. More details can be
found in [5], [6], [7].

Stage 1. This stage makes a distance matrix by calculating
all-pairwise alignment. For pairwise alignment, LINSi uses
a local pairwise alignment with the affine gap cost.

Stage 2. This stage constructs a guide tree from the dis-
tance matrix generated in Stage 1, using the UPGMA
method with modified linkage.

Stage 3. This stage outputs an MSA which aligns the
sequences according to the branching order of the guide
tree constructed in Stage 2.

Stage 4. The initial alignment constructed in Stage 3 is
divided into two groups based on a tree-dependent par-
titioning method, which are then realigned using an
approximate group-to-group alignment algorithm. The
new alignment replaces the old one if it has a higher
score. This process is repeated until no more improve-
ments are made.

Based on the characteristics of the LINSi processing
pipeline, we have designed parallel algorithms for Stages 1
and 4. Fig. 3 shows our streaming algorithm framework
for CUDA-LINSi. There are two kernels in this framework.
In the first kernel, the input sequences are divided into
sequence sets according to a sequence data transformation
method. All threads then process pairwise alignment of
Stage 1 in a coarse-grained parallel fashion. In the second
kernel, tree-dependent partitioning by Stage 4 are distrib-
uted evenly to all thread blocks. Threads in the same
thread block then process individual group-to-group align-
ment in a fine-grained parallel fashion.

3.3 Sequence Data Transformation

Instead of directly loading sequences, our GPU implemen-
tation transforms them to a format to better match the
device capabilities. As shown in Fig. 4, the transformation
process consists of the following steps.

3.3.1 Sorting

In the CUDA Architecture, a warp refers to a collection of
32 threads that execute in locksteps. It means that the
threads in a half-warp will have to wait for each other to
finish their workload instead of continuing on indepen-
dently. To reduce this waiting time, the sequences are
sorted by length to minimize length differences between
neighboring threads, as shown in Fig. 4b.

3.3.2 Concatenation

After sorting, groups of 16 sequences are taken and man-
aged in sequence sets that will be handled by a half-warp of
threads, as shown in Fig. 4c. Even though sorting by length
has somewhat balanced workload within each sequence set,
various sequence sets still have different sizes. To overcome
this, sequences within a sequence set are concatenated with
leftover sequences to form sequence groups. The lengthes
of sequence groups within a sequence set are nearly equal
or equivalent to the length of the longest sequence in that
set. This results in a workload balancing for each thread in a
half-warp processing of a sequence set. Sequence termina-
tors are inserted between the concatenated sequences. They
are labels to initiate a new pairwise alignment.

3.3.3 Interleaving

Once all sequences have been managed into 16-wide sets of
sequence groups, they are ready to store in a character
matrix. The sequence sets are stored in an interleaved fash-
ion, as shown in Fig. 5. Each interleaved subset consists of
eight bytes of characters from each sequence group. Eight
characters of the set’s first sequence group are stored, then
eight characters of the set’s second group, and so on. As
there are 16 sequence groups in each sequence set, each
thread in a half-warp is now able to load 8 bytes of sequence

Fig. 2. The LINSi processing procedure.

Fig. 3. Our CUDA-LINSi framework.

Fig. 4. The sequence data transformation.
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characters from neighboring addresses. As a result, 128-byte
coalesced loading takes place.

The pipeline of sequence transformation consists of three
steps: sorting by sequence length, whose time complexity is

OðN2Þ, concatenation and interleaving, whose time com-

plexity is OðN3Þ, where N is the number of sequences. Then
the time complexity of sequence data transformation is

OðN3Þ. The performance of sequence data transformation
will be discussed in Section 4.1.

3.4 Coarse-Grained Parallel Algorithm for Pairwise
Alignment

The first stage of LINSi conducts a local pairwise alignment
with the affine gap cost. We take advantage of the inherent
parallelism of pairwise alignment and design a coarse-
grained algorithm to accelerate it. In the CUDA kernel 1
shown in Fig. 3, a thread processes the pairwise alignment
on a sequence set pair, i.e., greater than or equal to 16� 16
sequence pairs with concatenation, instead of a sequence
pair. The main reason we choose this method is to reuse
memory between threads. The memory allocation and reuse
strategy will be detailed in Section 3.5.

After sequence data transformation, m sequences are
managed to l sequence sets. The sequence set pairwise
alignment can be represented as the following l� l lower-
left triangular matrix:

ðl� 1; l� 1Þ
ðl� 2; l� 2Þ ðl� 2; l� 1Þ
ðl� 3; l� 3Þ ðl� 3; l� 2Þ ðl� 3; l� 1Þ

� � � � � � � � �
ð0; 0Þ ð0; 1Þ ð0; 2Þ � � � ð0; l� 1Þ

2
66664

3
77775
:

(1)

In order to guarantee that a thread only handles a
sequence set pair at any time, it is natural that the sequence
set pairs in matrix (1) can be represented as threadIDs, as
shown in matrix (2) below:

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � lþ lðl�1Þ

2

2
666666664

3
777777775
: (2)

Theorems 1, 2, and 3 characterize the relation between
sequence set pairs and threadIDs.

Theorem 1. Let n be a positive integer, i.e., n 2 Nþ. The positive
integer root of equation x2 þ x ¼ 2sn is n, where sn ¼Pn

k¼1 k.

Proof. As sn ¼
Pn

k¼1 k ¼ nðnþ1Þ
2 , we have

x2 þ x ¼ 2sn ¼ 2� nðnþ 1Þ
2

¼ nðnþ 1Þ: (3)

The solutions to equation (3) are

x ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nðnþ 1Þp
2

i.e.,

x1 ¼ n; x2 ¼ �ðnþ 1Þ:

Hence, the positive integer root of equation x2 þ x ¼ 2sn
is n. tu

Theorem 2. Let S ¼ fsi ¼
Pi

k¼1 k j i 2 Nþg. The positive roots
of all equations represented as x2 þ x ¼ 2si are the consecutive
positive integer values, i.e.,X ¼ fi j i 2 Nþg for set S.

Proof. By Theorem 1, for i 2 Nþ, the positive root of

equation x2 þ x ¼ 2si is i, where si ¼
Pi

k¼1 k. Then, for
all si, where si 2 S, the positive roots of all equations rep-

resented as x2 þ x ¼ 2si are the consecutive positive inte-
ger values, i.e.,X ¼ fi j i 2 Nþg for set S. tu

Theorem 3. For each positive integer y which does not belong to

S ¼ fsi ¼
Pi

k¼1 k ji 2 Nþg, the positive root of equation

x2 þ x ¼ 2y is a real number in the range ðj; jþ 1Þ, wherePj
k¼1 k < y <

Pjþ1
k¼1 k.

Proof. Since
Pjþ1

k¼1 k�
Pj

k¼1 k ¼ jþ 1, set S contains non-
consecutive integer values. By Theorem 2, the root solu-
tions for set S are consecutive integer values. Then, forPj

k¼1 k < y <
Pjþ1

k¼1 k, the root should be a real number in

the range ðj; jþ 1Þ. tu
To get the one-to-one relationship between the

thread threadID and the sequence set pair (Seqset1ID;
Seqset2ID), it is natural to get the row number RowID
and column number ColID, where the Seqset1 and
Seqset2 locate in matrix (1). With the help of Theorems 1,
2, and 3, we design a constant time algorithm Algorithm
1 for sequence set pair retrieval. As shown in steps 12-13,

when threadID 2 S ¼ fP1
k¼1 k;

P2
k¼1 k; . . . ;

Pi
k¼1 kg ¼

f1; 3; 6; 10; . . . ; lþ lðl�1Þ
2 g (i.e., the bold elements in matrix

(2)), according to Theorem 2, the RowID and ColID both

equal to the positive integer root of x2 þ x ¼ 2 threadID.
As listed in steps 7-9, when threadID =2 S, using Theorem
3, the RowID is the ceil of the obtained non-integer root

of x2 þ x ¼ 2 threadID. The fraction of the root and the
RowID are used to get the ColID. As shown in steps 16
and 17, after transforming by the intermediate variables
RowID and ColID, the corresponding sequence set pair
(Seqset1ID; Seqset2ID) is achieved and assigned to thread
threadID.

Fig. 5. The sequence data interlacing.
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For example, if there are six sequence set (i.e., l ¼ 6), it

means 21 sequence set pairs (i.e., lþ lðl�1Þ
2 ) need to be han-

dled. For thread 15 which belongs to set S, the RowID and

ColID both equal to the positive integer root of x2 þ x ¼ 2�
15 minus 1, i.e., 4, and then the Seqset1ID and Seqset2ID
are 1 and 5 respectively. It should be noted that since both
Seqset1ID and Seqset2ID begin with 0, both RowID and
ColID begin with 0. For thread 17 which does not belong to
set S, according to Theorem 3, its RowID equals to that of
thread 21, i.e., 5, and then ColID, Seqset1ID, and Seqset2ID
are 1, 0, and 1 respectively. The following matrix (4) shows
the mapping of a threadID onto a sequence set pair
(Seqset1ID; Seqset2ID):

1
ð5; 5Þ
2 3
ð4; 4Þ ð4; 5Þ
4 5 6
ð3; 3Þ ð3; 4Þ ð3; 5Þ
7 8 9 10
ð2; 2Þ ð2; 3Þ ð2; 4Þ ð2; 5Þ
11 12 13 14 15
ð1; 1Þ ð1; 2Þ ð1; 3Þ ð1; 4Þ ð1; 5Þ
16 17 18 19 20 21
ð0; 0Þ ð0; 1Þ ð0; 2Þ ð0; 3Þ ð0; 4Þ ð0; 5Þ

2
6666666666666666664

3
7777777777777777775

: (4)

Algorithm 1. Constant Time Algorithm for Sequence Set
Pair Retrieving

Input: The number of sequence sets l and thread index
threadID.

Output: Sequence set pair (Seqset1ID, Seqset2ID) aligned on
thread threadID.

1: int a, b, c, RowID, ColID
2: doubleX1
3: a 1, b 1, c threadID
4: c �2c
5: X1 �bþ

ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac
p
2a

6: =� For threadID 62 S, using Theorem 3 to get RowID and
ColIDwhere Seqset1 and Seqset2 locate �=

7: ifX1mod 1 > 0 then
8: RowID bX1þ 1c � 1
9: ColID bðX1mod 1Þ=ð1=bX1þ 1cÞc � 1
10: =� For threadID 2 S, using Theorem 2 to get RowID

and ColIDwhere Seqset1 and Seqset2 locate �=
11: else
12: RowID bX1c � 1
13: ColID bX1c � 1
14: end if
15: =� Get Seqset1ID and Seqset2ID by using RowID and

ColID �=
16: Seqset1ID l�RowID� 1
17: Seqset2ID Seqset1IDþ ColID
18: Output threadID (Seqset1ID; Seqset2ID)

3.5 Similarity Matrix Stores and Accesses

Protein alignment requires the use of a similarity matrix,
which is accessed every time two amino acids are aligned,
making its access time critical to the alignment perfor-
mance. In order to increase the efficiency of alignment,

MAFFT adopted a normalized similarity matrix that has
both positive and negative values. Instead of a 20� 20 regu-
lar matrix, MAFFT stored the similarity matrix as a
128� 128 spare matrix which uses ASCII values of the capi-
tal characters to index rows and columns. Although it dra-
matically simplifies the access, the sparse matrix consumes
more than 40 times memory space. Taking the limited mem-
ory size of GPU into consideration, we compressed the
spare similarity matrix to three vectors using the traditional
compressed sparse row (CSR) algorithm. In addition to a
constant data access time, our compressed matrix saves
94.7 percent memory space compared with the sparse simi-
larity matrix.

Similarity matrix accesses are random and are
completely dependent on the sequences, complicating the
choice of memory used. Global memory is not a good
choice for such a frequent usage due to its high access
time. Also the random nature of similarity matrix accesses
makes coalescing very difficult. As an alternative, texture
memory and constant memory are the good choice for
their unique features. Texture memory is a cached window
into global memory that offers lower latency and does not
require coalescing for best performance. Like texture mem-
ory, constant memory is another variation of read-only
memory and also cached. It is capable of broadcasting a
single read to a half-warp threads, effectively saving up to
15 reads. Both of them are thus well suited for random
access. We store the compressed similarity matrix in tex-
ture memory and constant memory respectively. The Tesla
C2050 GPU used for our implementation has 8 KB of con-
stant cache per multiprocessor and 12KB of texture cache
per multiprocessor, respectively. Compared with constant
memory implementation in Tesla C2050, aligning 800
sequences with average length 430 residues resulted in
3.5 percent performance improvement with texture mem-
ory implementation.

3.6 Scoring Matrix Computes and Compressed
Stores

In order to increase the efficiency of alignment, MAFFT
adopted a modified scoring system (similarity matrix and
gap penalties). The optimal alignment between two groups
of sequences is given by Equation (5):

P ði; jÞ ¼ Hði; jÞ

þmax

P ði� 1; j� 1Þ
P ðx; j� 1Þ �G1ði; xÞ 1 	 x < i� 1

P ði� 1; yÞ �G2ðj; yÞ 1 	 y < j� 1:

8><
>:

(5)

P ði; jÞ is the accumulated score for the optimal path from
ð1; 1Þ to ði; jÞ, G1ði; xÞ and G2ðj; yÞ are gap penalties, and
Hði; jÞ is the homology matrix constructed from the similar-
ity matrix. More details about the scoring system can be
found in [5].

To get the maximum score of a sequence pair, it involves
reading and writing four temporary values (homology dis-
tance and gap penalties), for eight accesses in total. In LINSi,
all these values are stored in vectors which are allocated
dynamically according to the lengths of the sequence pair.
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However, there is a severe performance bottleneck to allo-
cate and deallocate memory in runtime in CUDA because of
a requirement of a form of global synchronization when sys-
tems become more and more parallel [22]. We allocated a
100� 100 integer matrix. As depicts in Fig. 6, the runtimes
of allocation at runtime (using malloc() function) increases
exponentially with the number of blocks per grid and the
number of threads per block. However, per-allocation an
equivalent matrix (using cudamalloc() function) saves 24.38
percent runtime. In order to increase the efficiency of
CUDA-LINSi, we propose a memory pre-allocation and
reuse strategy.

A sequence set pair is assigned to a thread explicitly by
using Algorithm 1. We pre-allocate a global memory pool to
all sequence set pairs according to the length of their two
longest sequences. Each thread uses a segment of the mem-
ory pool. It means that all sequence pairs of the sequence set
pair share the same memory segment whose size is enough
to reuse. In addition to the efficiency improved by memory
pre-allocation instead of allocation at runtime in CUDA,
this strategy improves more than 256-fold memory use rate
because more than 16� 16 sequence pairs share the same
memory segment.

To track the path of the optimal score for recording the
number of gaps that start or end at each site of the sequence
pair results in high space complexity, which brings huge
challenges to CUDA-LINSi implementation for GPU’s lim-
ited memory. The scoring matrix has three features: 1) all
elements are initialized to zeros; 2) there are many consecu-
tively identical values called as characteristic value localstop
here which is an indicator used to stop inserting gaps to the
sequences of a sequence pair; and 3) there are many consec-
utively decreasing values to indicate the number of gaps
that start or end at each site. To save memory consumption,
we propose a new scheme that combines compressed row
storage (CRS) with run-length encoding (RLE), namely
MRLE, to compress the scoring matrix, the most space-con-
suming part of LINSi.

CRS is a popular algorithm for compressing a sparse
matrix. Instead of storing as a two dimensional array,
CRS format uses three vectors val, col ind, and row ptr to
store nonzero elements. val stores the values of the non-
zero elements in a row-wise fashion, col ind stores the
corresponding column indices of the elements in the val,
and row ptr stores the locations in the val and col ind
that start a row. RLE is a well-known method for com-
pressing strings. It simply represents the consecutive,

identical symbols of a string with a run, usually denoted

by si, where s is an alphabet symbol and i is its repeti-
tion times. For example, a string aaaddbbbbbbcccc is

encoded as a3d2b6c4 in the RLE format.
The data compression and decompression processes of

MRLE are depicted in Algorithms 2 and 3. The objective
of MRLE is to reduce (or compact) the number of conse-
cutive, identical or decreasing values into a smaller num-
ber. MRLE scheme first considers the type of runs of
consecutively identical values (i.e., zeros and characteris-
tic values), so the total number of runs will decrease,
which results in better compression effect. Then, it fur-
ther explores the consecutively decreasing values which
decreases by one in each run, and further improves the
compression effect.

Algorithm 2. Modified Run Length Encoding Algorithm
for Scoring Matrix Compression

Input: A scoring matrixM withm rows and n columns.
Output: Two vectors Av and Ar.
1: index 0
2: Ar½0
  0
3: =� CompressM to Av and Ar row by row �=
4: for i 0 tom do
5: =� Calculate countwhich is the times of consecutively

identical values or consecutive, decreasing values �=
6: count 0
7: for j 1 to n do
8: Read the valueM½i
½j

9: whileM½i
½j
 is a consecutively identical values or

consecutive, decreasing values do
10: j jþ 1
11: =� At the end of the row �=
12: if j5n then
13: break;
14: end if
15: count countþ 1
16: end while
17: =� For count > 0, storeM½i
½j
 in Av½index
, and then store

its identical/decreasing times count plus 2� localstop in
Av½indexþ 1
 �=

18: if count > 0 then
19: Av½index
  M½i
½j

20: index indexþ 1
21: Av½index
  countþ 2� localstop
22: index indexþ 1
23: else
24: =� For count ¼ 0, only storeM½i
½j
 in Av½index
 �=
25: Av½index
  M½i
½j

26: index indexþ 1
27: end if
28: end for
29: =� Complete the compression of the ith row ofM. Store

the current index of Av in Ar½iþ 1
 to indicate the
position which the first element of the ðiþ 1Þth row of
M locates in Av �=

30: Ar½iþ 1
  index
31: end for

As shown in Algorithm 2, MRLE compresses the scor-
ing matrix M to two vectors Av and Ar. Av stores the
first values of consecutively identical or decreasing

Fig. 6. Comparison of runtimes of allocation memory at runtime.
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elements of M and the times of them (called as count) in
an interleaved fashion. Ar points to beginning of each
row in Av. In order to distinguish the value of consecu-
tively identical or decreasing elements of M from its con-
secutively repeating or decreasing times in the process of
decompression, when storing count to Av in the process
of compression, Av stores the times of consecutively
identical or decreasing elements of M with an extra
value 2localstop, where localstop is the value of consecu-
tively identical value in M. In Av, those whose values
are greater than 2localstop are the times of consecutively
identical or decreasing elements of M. Because the con-
secutively identical elements and the first value of
decreasing elements of M are less than 2localstop abso-
lutely. As shown in Algorithm 3, with the help of Ar, it
is convenient to retrieve an element from Av correspond-
ing to the location of matrix M.

Algorithm 3. Data Retrieve Algorithm from Compressed
Vectors

Input: Av and Ar are the vectors compressed by Algorithm 2,
localstop is the characteristic value.

Output: The valueM½i
½j
, where i and j is the row and
column index of scoring matrixM.

1: =� value is the current element of Av*/
2: value 0
3: =� col value is the column position where value locates

in M �=
4: col value 0
5: =� k is the range of Ar corresponding to the ith row of

M �=
6: for k Ar½i
 to Ar½iþ 1
 do
7: if col value ¼¼ j then
8: M½i
½j
  value; break
9: end if
10: =� The current element of Av is a value ofM �=
11: if Av½k
4localstop then
12: value Av½j

13: col value col valueþ 1
14: else
15: =�The current element of Av is the times of value, i.e.,

there are Av½k
 � 2� localstop consecutively identical
or decreasing values. Judge whetherM½i
½j
 belongs to
these consecutive values �=

16: if ðcol valueþAv½k
 � 2� localstopÞ > j then
17: =�M½i
½j
 is a consecutively decreasing value �=
18: if ((value 6¼ 0Þ and ðvalue 6¼ localstopÞÞ then
19: M½i
½j
 ¼ value� ðj� col valueÞ; break;
20: else
21: =�M½i
½j
 is a consecutively identical value �=
22: M½i
½j
  value; break
23: end if
24: else
25: =� Calculate the column range of value �=
26: col value col valueþAv½k
 � 2� localstop� 1
27: end if
28: end if
29: end for

The following is an example to demonstrate the MRLE
algorithm. Matrix (6) below has 10 rows and 10 columns:

21 21 21 21 21 21 21 21 21 21
21 21 0 21 21 0 21 21 0 21
21 0 21 21 0 21 0 0 21 21
0 21 21 21 21 21 0 �2 �3 0
21 0 0 0 21 0 0 2 0 �2
0 0 0 21 0 21 21 0 3 2
0 0 21 0 0 21 21 21 21 0
0 0 0 0 0 21 0 21 21 21
21 0 0 0 21 0 0 21 21 21
21 0 0 0 0 21 0 0 0 21

2
666666666666664

3
777777777777775

: (6)

The value of localstop is 21. After using MRLE, Ar and Av
are matrixes (7) and (8) respectively:

0 2 12 22 29 38 47 55 61 69 76½ 
 (7)

21 52
21 44 0 21 44 0 21 44 0 21
21 0 21 44 0 21 0 44 21 44
0 21 47 0 �2 44 0
21 0 45 21 0 44 2 0 �2
0 45 21 0 21 44 0 3 44
0 44 21 0 44 21 46 0
0 47 21 0 21 45
21 0 45 21 0 44 21 45
21 0 46 21 0 45 21

2
666666666666664

3
777777777777775

: (8)

To clarify the MRLE more clearly, elements of Av are
listed in matrix fashion rather than vector fashion. In the
first row of matrix (6), there are 10 consecutively identical
values 21. So Av½0
 stores 21. Av½1
 stores 52 which equals to
the repeated times 10 plus 2� localstop. These 10 elements
are compressed to two elements which are stored in Av½0

and Av½1
. The compression processes of other rows of
matrix (6) are omitted because of the same method used.
Ar ¼ ½0; 2; 12; 22; 29; 38; 47; 55; 61; 69; 76
. It means that from
Av½0
 to Av½1
, the two elements are the compressed values
of the first row of matrix (6). From Av½2
 to Av½11
, the 10 ele-
ments are the compressed values of the second row of
matrix (6), and so on. Ar points to beginning of each row in
Av. Using MRLE, the compression rate of matrix (6) is
14 percent. The compression effect of MRLE will be shown
in Section 4.4.

The other optimizations to improve the performance are
as follows.

� Smaller, 16-bit data type (short integer) for scoring
matrix values cuts the theoretically required band-
width in half as well as saves memory space in half.

� CudaMallocPitch( ) is used to allocate linear memory
for 2D array as it makes sure that the allocation is
appropriately padded to meet the alignment
requirements.

3.7 Fine-Grained Parallel Algorithm for Iterative
Refinement

In the iterative refinement stage of LINSi, a binary tree is
generated according to the initial alignment constructed
from progressive alignment in Stage 3. All the sequences
are represented as leaf nodes of the binary tree. Using the
tree-dependent restricted partition technique, the binary
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tree is then divided into two groups. An approximate
group-to-group alignment is implemented to get the align-
ment score. The process is repeated until no more alignment
score improvements are made. Fig. 7 gives an illustration of
this stage.

In CDUA-LINSi, we design and implement a CUDA-
based fine-grained parallel algorithm to carry out the itera-
tive refinement stage. Our method takes advantage of the
fact that the tree-dependent partition and group-to-group
alignment can be done independent of each other in paral-
lel. Thus, the basic idea is to spawn enough threads to
implement these operations in parallel. A thread is
assigned to calculate a group-to-group alignment for a cor-
responding tree-dependent partition independently. The
total number of threads needed is the number of branches
of the binary tree. For example, n sequences need to be
aligned. It means that the number of nodes of the corre-
sponding binary tree is 2n� 2. Except the root node, the
number of branches, i.e., the times the binary tree needs to
be partitioned, is 2n� 3.

The goal of the CUDA-LINSi algorithm is to seek the
highest scoring alignment in the given maximum iteration.
To get the highest scoring alignment, we need to get the
highest score of each iteration. For an iteration, the highest
score is obtained from all thread blocks. It is well known
that shared memory is expected to be much faster than
global memory. In order to speed up the I/O operations,
the alignment scores are stored in high-performance shared
memory arrays. We exploit an opportunity to replace global
memory accesses by shared memory accesses.

We have declared a buffer of shared memory named
cache. This buffer is used to store each thread’s running
alignment score. We declare an array of size of the number
of threads per block, so that each thread in the block has a
place to store its temporary result. Each thread computes
the alignment of the corresponding tree-dependent parti-
tion and stores its temporary score into the shared buffer.
One simple way to accomplish the highest score reduction
would be having one thread iterate over the shared mem-
ory and calculate a running score. However, since we
have thousands of threads available to do our work, we do
this comparison reduction in parallel and take time that is
proportional to the logarithm of the length of the array.
Fig. 8 illustrates one step of the comparison reduction. The
size of each shared memory array is the number of threads
per block. In the kernel program there are the number of
branches working in the fine-grained concurrent way to

calculate the group-to-group alignment score, and the num-
ber of such threads is the number of branches.

In the iterative refinement stage of LINSi, there are many
complex data structures such as binary tree and linked list.
To simplify GPU programming and data migration, we use
unified memory which is first introduced in CUDA 6.0. Uni-
fied memory defines a new managed memory space in
which both CPUs and GPUs of any type and architecture
see a single coherent memory image with a common
address space. In CUDA-LINSi, the program allocates man-
aged memory for the topology structure of the binary tree
via the new cudaMallocManaged() routine. The underlying
system manages data access and locality of the binary tree
within the CUDA program without need for explicit mem-
ory copy calls. This benefits CUDA-LINSi in two primary
ways.

� GPU programming is simplified by unifying mem-
ory spaces coherently across all GPUs and CPUs in
the CUDA-LINSi system.

� Data access speed is maximized by transparently
migrating data.

Fig. 9 shows the pseudo-code of our implementation of
the fine-grained parallel algorithm for Stage 4.

4 PERFORMANCE EVALUATION

The process of performance evaluation has been divided
into three parts. The first part deals with traditional HPC
metrics such as speedup and scalability. The second part
deals with the overall performance such as quality assess-
ment and computational complexity. The third part deals
with the efficiency of the proposed compressed algorithm.
CUDA-LINSi was implemented in CUDA 6.0 and tested in
three NVIDIA GPUs, i.e., Tesla C2050, Tesla M2090, and
Tesla K20m. The three boards were connected to three serv-
ers, i.e., 2 AMD Opteron Octa Core Processors 6134 with

Fig. 9. The pseudo-code of Stage 4 of our CUDA implementation for the
fine-grained parallel algorithm.

Fig. 7. Illustration of stage 4 of the LINSi algorithm.

Fig. 8. One step of a comparison reduction.
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8 GB RAM, Intel(R) Xeon(R) CPU E5-2620 with 32 GB RAM,
and Intel(R) Xeon(R) CPU E5-2650 with 32 GB RAM. Table 4
presents detailed information about the GPUs. The operat-
ing system are all Red Hat nash version 5.1.19.6.

4.1 Speedup Assessment

In order to assess the efficiency of CUDA-LINSi, we devel-
oped twenty-eight testsets to evaluate the speedup of
CUDA-LINSi over sequential LINSi7.015. These testsets
were constructed in two ways. One way is that sixteen test-
sets were constructed by randomly searching the NCBI
non-redundant protein sequence database, selecting the
sequences with length ranging from 30 to 1,000, and the
number of sequences ranging from 100 to 800. These testsets
were used to evaluate the speedup of Stage 1 of CUDA-
LINSi, as shown in Fig. 10. The other way is that twelve test-
sets were generated by using PSI-BLAST to search the NCBI
non-redundant protein sequence database for hits on Cad-
herin-related tumor suppressor (NCBI: P33450) and Zinc
finger protein 2 (NCBI: P28167), selecting the highest-scor-
ing 200 sequences, respectively. These sets of sequences
have average length 4,896 and 2,907 residues, maximum
length 5,277 and 3,907 residues, and average pair-wise iden-
tity 47.68 and 37.35 percent, respectively. We aligned ran-
domly chosen subsets with 100 to 200 sequences and noted
the speedup of Stage 4 of CDUA-LINSi, as shown in Fig. 11.

From Fig. 10, we can see that Stage 1 of CUDA-LINSi
achieves speedup up to 56.7 on the testset with the average
length 30. It should be noted that when the average length

of sequences increases, the speedup decreases. This is
because the space complexity of LINSi is at least

OðN2Þ þOðL2Þ þOðNLÞ but greatly depends on the similar-
ity level [5]. When the sequence lengths increase, more
memory are consumed, resulting in a severe performance
bottleneck of CUDA-LINSi implementation.

From Fig. 11, we can see that Stage 4 of CUDA-LINSi
achieves speedup up to 15.96 on the testset with the average
length 4,896. The speedup of Stage 4 of CUDA-LINSi in fact
increases with increasing number of sequences, while Stage
4 of multi-thread LINSi7.015 maintains a stable speedup. It

TABLE 4
GPU Hardware Specifications

Detailed Specifications Tesla
C2050

Tesla
M2090

Tesla
K20m

Double-precision peak performance
(Gflops)

515 665 1,170

Number of stream processors 448 512 2,496
Stream processors clock (GHz) 1.15 1.30 0.71
Memory size (GB) 3 6 5
Memory clock (GHz) 1.50 1.85 2.6
Memory bandwidth (GB/s) 144 177 208
Global memory size (MB) 2,687 5,375 4,800
Constant memory size (MB) 64 64 64
Shared memory size per block (MB) 48 48 48
Registers available per block (MB) 32 32 64
CUDA compute capability 2.0 2.0 3.5

Fig. 10. Comparison of speedups (over the LINSi 7.015) of Stage 1 of
CDUA-LINSi.

Fig. 11. Comparison of speedups (over the LINSi7.015) of Stage 4 of
CDUA-LINSi and multi-thread LINSi7.015.

TABLE 5
Runtime Profiling (in Seconds) of Each Stage Of CUDA-LINSi

Stage 1 Stage 4

The Number
of Sequences

Data
Transformation

Kernel1
Runtime

Kernel1
Overhead

Total Stages 2
and 3

Kernel2
Runtime

Kernel2
Overhead

Total Speedup

100 1.23 58.92 0.56 59.48 19.60 115.96 3.24 119.20 5.53
120 1.41 75.78 0.88 76.66 22.93 140.53 4.46 144.99 6.97
140 1.60 98.06 1.04 99.10 27.76 208.53 5.87 214.40 6.47
160 1.92 132.45 1.39 133.84 32.96 238.07 7.69 245.76 7.18
180 2.11 169.85 1.81 171.66 35.64 256.53 10.02 266.55 7.40
200 2.38 211.25 2.82 214.07 44.02 279.06 13.16 292.22 11.28
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effectively verifies the validity of GPU as an efficient
computational platform to accelerate the MAFFT algorithm.
It must be noted that we show the speedup for up to 200
sequences, because currently LINSi is recommended for
alignment of less than 200 sequences with the maximum
length 5,000.

In practice, data transfer between the CPU and GPU is a
known bottleneck for many GPGPU applications. Data
transfer, together with the kernel program initialization,
kernel launch and release constitute the kernel overhead
[21]. In addition, in CUDA-LINSi sequence data transforma-
tion needs to be done before data transfer from the CPU to
GPU. Table 5 shows the runtime profiling of each stage in
CUDA-LINSi and its overall speedup over sequential
LINSi7.015. From Table 5, we can see that CUDA-LINSi
achieves overall speedup up to 11.28 on the testset with the
average length and the number of sequences 4,896 and 200,
respectively. The runtime of sequence data transformation
and the kernel overhead in CUDA-LINSi are very small and
they are not a bottleneck for our implementation.

Table 6 reports the speedup of multi-thread LINSi7.015
over sequential LINSi7.015 running on the three servers
mentioned above. From this table we can see that the
speedup is nearly independent to the platforms which have
different sizes of CPU and memory. Compared with multi-
thread LINSi7.015, CUDA-LINSi is scalable when the num-
ber of sequences increases.

4.2 Quality Assessment

We used four benchmarks BAliBASE3.0, OXBench1.3, IRM-
BASE2.0, and PREFAB4.0 to assess the alignment accuracy
of CUDA-LINSi in comparison with LINSi7.015, and other
well-known sequential MSA algorithms: MSAProbs0.9.4,
MUSCLE3.8.31, PicXAA with different options(‘-PF’,
‘-PHMM’, and ‘-SPHMM’), ProbCons1.12, ProbAlign1.1,
MUMMALS1.01 with option HMM_1_3_1, T-Coffee6.00,
CLUSTALW 2.0.10 , DIALIGN-TX, and CDAM. The scores
of LINSi7.015, MSAProbs0.9.4, MUSCLE3.8.31, and CDAM
were tested by us, while the scores of the others have been
derived from [23]. Two accuracy measures were used to
score the alignment, i.e., the quality score (Q), which is the
number of correctly aligned residue pairs divided by the
number of residue pairs in the reference alignment, and
total column score (TC), which is the number of correctly
aligned columns divided by the number of columns in the
reference alignment [3].

Tables 7 shows the accuracy of different categories of
BAliBASE3.0. Table 8 depicts the average accuracy of
OXBench1.3, IRMBASE2.0, and PREFAB4.0. From these
data we can see that CUDA-LINSi maintains identical accu-
racy to LINSi7.015, which effectively verifies the validity of
LINISi implementation on GPUs. Further analysis of the
alignment results indicates that MSAProbs yields the high-
est average Q and TC scores on BAliBASE3.0. This is
because the design of MSAProbs is based on a combination
of pair hidden Markov models and partition functions to
calculate posterior probabilities [24]. PicXAA exhibits the
best performance on OXBench1.3 in term of the average Q
and TC scores. This suggests that construction of alignment
from confidently alignable regions with high local similari-
ties leads to more accurate results [25]. MUMMALS

TABLE 6
The Average Speedup of Multi-Thread
LINSi7.015 over Sequential LINSi7.015

Average Lengthes
of Testsets

Tesla
C2050

Tesla
M2090

Tesla
K20m

30 2.25 2.29 2.17
40 2.94 3.10 2.78
50 2.30 2.29 2.17
60 2.67 2.72 2.76
70 3.22 3.30 3.26
80 2.58 2.73 2.73
100 2.61 2.78 3.13
200 2.97 3.12 2.72
300 2.93 2.61 2.50
400 2.87 2.67 2.53
500 2.60 2.32 2.68
600 3.08 2.98 3.02
700 2.49 2.20 2.32
800 2.42 2.73 2.68
900 3.53 3.47 3.90
1,000 3.47 3.51 3.95

TABLE 7
Comparison of Q/TC Scores of LINSi7.015 and CUDA-LINSi on BAliBASE3.0

Method

BAliBASE3.0

RV11
Q/TC

RV12
Q/TC

RV20
Q/TC

RV30
Q/TC

RV40
Q/TC

RV50
Q/TC

average
Q/TC

CUDA-LINSi 0.653/0.431 0.936/0.843 0.925/0.451 0.859/0.585 0.915/0.578 0.901/0.599 0.859/0.579
MAFFT-LINSi 0.653/0.431 0.936/0.843 0.925/0.451 0.859/0.585 0.915/0.578 0.901/0.599 0.859/0.579
MSAProbs 0.682/0.444 0.946/0.870 0.928/0.469 0.865/0.612 0.923/0.610 0.908/0.612 0.878/0.608
PicXAA-PF 0.689/0.462 0.946/0.862 0.925/0.415 0.861/0.578 0.932/0.633 0.892/0.530 0.879/0.593
PicXAA-PHMM 0.663/0.420 0.942/0.858 0.917/0.388 0.850/0.530 0.909/0.562 0.902/0.602 0.866/0.563
PicXAA-SPHMM 0.695/0.447 0.948/0.864 0.917/0.403 0.841/0.530 0.891/0.523 0.898/0.584 0.867/0.561
ProbAlign 0.694/0.445 0.947/0.863 0.926/0.439 0.853/0.566 0.922/0.604 0.890/0.549 0.876/0.588
ProbCons 0.669/0.416 0.941/0.855 0.917/0.406 0.846/0.544 0.906/0.546 0.890/0.559 0.864/0.560
MUMMALS 0.670/0.416 0.943/0.840 0.910/0.428 0.848/0.494 0.872/0.486 0.879/0.529 0.855/0.539
MUSCLE 0.572/0.321 0.915/0.809 0.889/0.353 0.814/0.412 0.863/0.453 0.835/0.464 0.819/0.478
T-Coffee 0.660/0.414 0.941/0.853 0.915/0.387 0.837/0.495 0.897/0.551 0.894/0.581 0.859/0.552
DIALIGN-TX 0.515/0.265 0.892/0.752 0.879/0.305 0.762/0.385 0.836/0.448 0.823/0.466 0.788/0.443
CLUSTALW 0.494/0.240 0.871/0.719 0.862/0.235 0.720/0.269 0.786/0.400 0.734/0.304 0.754/0.380
CDAM 0.497/0.222 0.857/0.654 0.844/0.191 0.693/0.137 0.738/0.337 0.724/0.265 0.732/0.321
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outperforms other methods on PREFAB4.0 because it incor-
porates structural information into the process of alignment
probabilities computation. DIALIGN-TX shows the best
performance on IRMBASE2.0 which was originally devel-
oped to assess the performance on aligning sequences with
local similarities.

4.3 Computational Complexity

To assess the computational complexity, we calculated the
runtimes of CUDA-LINSi in comparison with MUS-
CLE3.8.31, CDAM, MSAProbs0.9.4, PicXAA with ‘-PHMM’
option, Probcons, DIALIGN-TX, and MUMMALS. Using
Rose sequence generator, we constructed ten testsets with
each 200 sequences and the average distance between
sequences ranging from 150 to 1,050. Fig. 12 depicts the run-
times of these algorithms on the ten testsets on the server
the NVDIA Tesla C2050 locates. As demonstrated in the
results, although PicXAA-PHMM, MSAProbs, and DIA-
LIGN-TX achieve high accuracy on OXBench1.3, BAli-
BASE3.0, and IRMBASE2.0 respectively, they consume
more time to calculate probabilities or similarities informa-
tion in the process of alignment. MUMMALS with option

HMM_1_3_1 is the most time-consuming method whose
average runtime is 4281.00 seconds on the ten testsets.
CDAM is the fastest algorithm while losing some accuracy.
CUDA-LINSi achieves better balance between the accuracy
and the runtime.

4.4 Compression Rate of MRLE Assessment

We evaluate the performance of MRLE on the testsets used
in Section 4.3. Table 9 shows the compression rate of MRLE.
Column 2 is the lengthes of the longest two sequences of the
testset. Noted that the compression rate of MRLE is depen-
dent on the lengthes of the aligned sequences. From Table 9
we can see that the average compression rate of MRLE is
around 38.00 percent.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented a parallel CUDA-based
algorithm for accelerating the LINSi option of MAFFT on a
commodity GPU. In order to exploit the GPU’s capabilities
for accelerating the LINSi option, we have optimized the
sequence data organization to eliminate the bandwidth bot-
tlenecks of memory access, designed a memory allocation
and reuse strategy to make full use of limited memory of
GPUs, designed a constant time algorithm to schedule

Fig. 12. Runtime comparison on different alignment algorithms.

TABLE 9
Compression Rate of MRLE

Ave.
Distance

Max.
Lengthes

Compression Rate

maximum minimum average
150 184 � 245 60.71% 28.94% 37.11%
250 198 � 210 55.31% 30.15% 38.05%
350 231 � 250 62.95% 31.42% 38.89%
450 228 � 310 58.44% 32.06% 39.41%
550 240 � 211 53.06% 29.68% 38.60%
650 215 � 277 59.76% 33.75% 36.97%
750 264 � 197 57.65% 28.70% 38.68%
850 311 � 268 50.08% 28.72% 39.83%
950 189 � 234 60.93% 29.55% 38.69%
1050 266 � 187 61.42% 27.59% 38.24%

TABLE 8
Comparison of Q/TC Scores of LINSi7.015 and CUDA-LINSi on IRMBASE2.0, PREFAB4.0 and OXBench1.3

Method OXBench1.3

IRMBASE 2.0
Q/TC

PREFAB4.0
Q

master
Q/TC

full
Q/TC

extended
Q/TC

CUDA-LINSi 0.894/0.460 0.692 0.882/0.827 0.830/0.749 0.928/0.884
MAFFT-LINSi 0.894/0.460 0.692 0.882/0.827 0.830/0.749 0.928/0.884
MSAProbs 0.204/0.088 0.704 0.898/0.849 0.291/0.191 0.931/0.889
PicXAA-PF 0.890/0.501 0.713 0.897/0.847 0.842/0.765 0.924/0.881
PicXAA-PHMM 0.908/0.545 0.712 0.893/0.841 0.832/0.752 0.921/0.877
PicXAA-SPHMM 0.728/0.330 0.724 0.906/0.857 0.838/0.760 0.930/0.889
ProbAlign 0.817/0.367 0.719 0.898/0.849 0.841/0.764 0.926/0.884
ProbCons 0.853/0.425 0.716 0.893/0.841 0.833/0.752 0.924/0.882
MUMMALS 0.684/0.246 0.727 0.902/0.852 0.828/0.751 0.925/0.878
MUSCLE 0.114/0.038 0.650 0.892/0.840 0.288/0.188 0.916/0.865
T-Coffee 0.878/0.463 0.708 0.818/0.750 0.734/0.638 0.913/0.866
DIALIGN-TX 0.929/0.710 0.625 0.860/0.797 0.808/0.723 0.888/0.829
CLUSTALW 0.263/0.024 0.618 0.893/0.838 0.816/0.727 0.894/0.839
CDAM 0.098/0.028 0.584 0.885/0.826 0.287/0.188 0.880/0.816

216 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2015



sequence pairs, proposed a new MRLE scheme to reduce
memory consumption, and used high-performance shared
memory to speed up the I/O operations. Our implementa-
tion tested in three NVIDIA GPUs and achieves speedup up
to 11.28 on a Tesla K20m GPU compared to the sequential
MAFFT 7.015. To the best of our knowledge, this work
embodies the first attempt to accelerate MAFFT application
using GPU. Hence, our results are especially encouraging,
sine performance of many-core architectures grows faster
than the performance of standard multicore CPUs.

As future work, we intend to accelerate the other two
time-consuming options of MAFFT, i.e., G-INS-i and E-INS-
i, and extend tests to multiple graphics processors.
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