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Abstract— The development of the complexity and connectivity
of modern automobiles has caused a massive rise in the security
risks of in-vehicle networks (IVNs). Nevertheless, existing IVN
designs (e.g., controller area network) lack cybersecurity consid-
eration. Intrusion detection, an effective method for defending
against cyberattacks on IVNs while providing functional safety
and real-time communication guarantees, aims to address this
issue. Therefore, the necessity of its research has risen. In this
paper, an IVN environment is introduced, and the constraints
and characteristics of an intrusion detection system (IDS) design
for IVNs are presented. A survey of the proposed IDS designs
for the IVNs is conducted, and the corresponding drawbacks are
highlighted. Various optimization objectives are considered and
comprehensively compared. Lastly, the trend, open issues, and
emerging research directions are described.

Index Terms— Controller area network (CAN), cybersecurity,
in-vehicle network (IVN), intrusion detection system (IDS), infor-
mation entropy, machine learning.

I. INTRODUCTION

INCREASING numbers of electronic control units (ECUs)
and external communication interfaces have been assem-

bled inside automobiles to provide intelligent services and
safety to users [1]. For example, more than 100 ECUs have
been installed in luxury vehicles [2]. By 2020, 75% of vehicles
will have the capability to connect to the Internet [3]. How-
ever, the security risks of automobiles have become prominent
along with the increasing complexity and connectivity of
modern vehicles.
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The cybersecurity problem is emerging as a major concern
for IVN systems given the increasing number of security
researchers demonstrating their ability to implement attacks
to actual automobiles [4]–[8]. Millions of automobiles face
various security risks [9]–[11]. Miller et al. for instance, used
a Wi-Fi open port to intrude an in-vehicle network (IVN)
system of Jeep Cherokee and reprogram the firmware of
ECUs [11]. They successfully controlled a wide range of auto-
motive functions (e.g., disabling brakes and stopping engines),
triggering a recall of 1.4 million vehicles. These examples
of automotive attacks have greatly stimulated researchers’
enthusiasm for IVN’s cybersecurity research. Moreover, IVN’s
intrusion detection capabilities should be improved to prevent
serious damage caused by hacking.

The following categorizes have been proposed as counter-
measures that provide IVN protection against various types of
malicious attacks [12]–[14]: (1) ensuring the confidentiality
and integrity of IVN message frames through encryption and
authentication technologies [15]–[17], (2) separating potential
attacking interfaces from IVNs (firewall policy) [18]–[20],
and (3) developing intrusion detection systems (IDSs) for
IVNs (IVN IDSs).

Different IVN security enhancement methods bear some
advantages and disadvantages. Encryption and authentication
methods are effective ways of guaranteeing consumer network
security. IVN environments require of real-time reliability
and is constrained by cost, computing capacity, bandwidth,
and storage resources [21], [22]. Consequently, these methods
are often inapplicable to IVN environments. For example,
providing message authentication for a controller area net-
work (CAN) bus is difficult because of the limited space
available (8 bytes for CAN and 64 bytes for CAN with flexible
data-rate [CAN-FD]) for appending a message authentication
code [23]. Moreover, completely isolating threats and various
attack sources through firewalls is impractical, given the long
life cycle of automotive and multiple attack entrances to IVNs.
Designing and implementing an entirely secure IVN system
is difficult. Moreover, the conversion and upgrade of exist-
ing automotive electronic systems for security enhancement
require a long period of time.

IVN IDSs aspire to provide (1) the capability to identify
abnormal intrusions with a time guarantee, (2) accurate refer-
ence information for intrusion prevention systems (IPSs) [24],
and (3) the capability to prevent further damage to IVN attacks
(Early alert can reduce the risks from malicious adversaries.).

1524-9050 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 01,2020 at 03:27:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8209-1756
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0002-9439-9563
https://orcid.org/0000-0001-6292-3730
https://orcid.org/0000-0002-7193-8050
https://orcid.org/0000-0001-5224-4048


920 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 3, MARCH 2020

Fig. 1. Overview of automotive CPS (ACPS).

IVN IDS is an effective and backward-compatible method for
protecting IVNs from attacks and can be applied to computing
and bandwidth resource-constrained IVN environments in con-
sideration of the deficiencies of the aforementioned methods.
Therefore, a literature review based on recent IVN IDS studies
is necessary and timely.

Some state-of-the-art surveys about IVN cybersecurity and
cyber-physical systems (CPSs) are available [25]–[27]. Never-
theless, to the best of our knowledge, this study is the first to
investigate the use of intrusion detection technology for IVNs.

The remaining parts of this study are structured as follows.
In Section II, we provide an overview of the environment,
common attack scenarios, and constraints and challenges of
intrusion detection for IVNs. In Section III, we introduce
the current research status of intrusion detection for IVNs.
In Section IV, we discuss the evaluation methods of intru-
sion detection for in-vehicle networks and comparatively ana-
lyze existing technologies. Section V summarizes the current
trend and describes the future outlook of intrusion detection
for IVNs. In Section VI, we present our conclusion.

II. PRELIMINARIES

A. Background on IVNs

According to Figure 1, an automotive electronic system is
a heterogeneous distributed real-time system that consists of
multiple ECUs interconnected with an IVN (e.g., CAN [34],
local interconnect network (LIN) [35], FlexRay [36], and
media-oriented system transport [37]). These networks com-
municate through a central gateway. The IVN holds hetero-
geneous, real-time, and cost-sensitive features described as
follows.

• Heterogeneous distributed real-time system environ-
ment: An automotive electronics system is a typical
CPS system (ACPS). The heterogeneity of the ACPS
system is reflected not only in that of the ECU node
processor (FPGA, DSP, and MCU, etc.) but also in that
of the internal network. An automobile’s internal network
environment often consists of multiple protocols used to
achieve cost and performance balance. Data among the
different networks interact through the gateway. Means
of balancing cost and performance is also one of the key
issues in the design of IVN IDSs.

• Multiple external interfaces: Vehicles rapidly integrate
with the external network to provide intelligent and

Fig. 2. Three-layer structure of the IVN structure from the perspective of
external interface.

convenient services. Consequently, the external commu-
nication interface of vehicles and security threats to
the IVN system are increased. These external interfaces
are integrated with the IVN, including wireless and
wired interfaces. Figure 2 shows the summary of IVNs
three-layer structure from the perspective of the external
interface to elucidate the external interfaces of the IVN.
The main part of the automotive electronic system is the
IVN layer, which includes power, body and high-speed
information services, and other functional domains. The
computing power of the ECU is varied because of cost,
and most of their external communication needs to pass
through the automotive gateway, including physical and
wireless interfaces.

• Multi-function safety critical level system: ACPS is
a highly functional safety-critical system that needs to
comply with corresponding functional safety standards
(e.g., ISO26262 [38]). In an automotive environ-
ment, different functional domains have correspond-
ing safety and security requirements [39]. For example,
an entertainment system has high bandwidth demand,
and a powertrain-domain is a safety-critical system.
ISO26262 standard divides automotive electronic systems
into four automotive safety integrity levels, namely, A,
B, C, and D. Initially guaranteeing the functional safety
of automobile electronic systems and complying with
relevant safety standards are necessary for the problem
of IVN security. Notably, automobile electronic systems
are safety-critical systems. Therefore, the security prob-
lem of IVNs is not only an information security or
privacy issue but also a functional safety-related concern.
Cybersecurity threat can directly affect the safety of
drivers and surrounding individuals.

• Lack of cybersecurity design: The previous vehicle
in the Figure 1 is a relatively independent individual
and does not consider changes in the access network
environment (e.g., the existing network protocols lack
basic security mechanisms). Moreover, IVNs do not
have authentication and encryption mechanisms and thus
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TABLE I

EXPERIMENTAL ATTACKS TO AUTOMOBILES

urgently need a responsive security authentication mecha-
nism and intrusion detection design for security, given the
increasing number of external communication interfaces
for automobiles.

As a de-facto standard in-vehicle communication network,
CAN (ISO 11898) has been widely used in automobiles
and other industry environment over 30 years, often for
safety-critical system connections. Nevertheless, studies in [9]
and [6] mentioned that the CAN protocol does not provide
security mechanisms, such as message authentication or data
encryption, during the design phase. Particularly, in [16],
the CAN was reported to lack security guarantee and that
it is vulnerable to attack. Therefore, the CAN bus is the
main research object of IVN intrusion detection for IVN
security researchers. The present work focuses on the intrusion
detection technologies suitable for the CAN.

B. Attacks to IVNs

Malicious adversaries can implement attacks to IVNs easily
due to the intrinsic vulnerabilities of such networks and the
increasingly rich interfaces that provide connectivity between
in-vehicle and outside networks. Attacks to IVNs can be
generally divided into three steps. First, malicious adversaries
need to access the target IVN through a physical or wireless
interface. Second, the firmware of the compromised ECU
is replaced, and the network is sniffed and parsed. Third,
different levels of attacks against the vehicle are conducted,
which includes specific functional (e.g., controlling the start
and stop of the vehicle) and network failures (e.g., DoS).

To describe the attacks of the IVN system clearly, this
study divides the influence of attacks on different network
layers into three categories, namely, physical, data-link, and
application layers. Experimental attacks to automobiles are
described in Table I. The characteristics of attacks on the three
layers of IVNs are as follows.

1) Attacks From Sensing Layer (Physical Layer): On
the basis of the prediction in [40], an array of sensors
(e.g., LiDAR, RaDAR, cameras, and GPS) will be equipped to
collect information in a future automobile. They will provide
an autonomous vehicle the capability to sense the environment
and make driving decisions without human intervention. This
type of attack scenario mainly occurs in the maintenance
of the vehicle. Malicious adversaries can launch sniffer and
bus failure attacks after loading the malicious node to the
bus. Consequently, the attack on the automobile through the
physical layer will become a new threat to the automobile’s
security. Rouf et al. realized the reorganization of the message
by the TPMS [28]. Petit et al. presented remote cyberattacks
on a camera-based system and LiDAR using commodity
hardware [29]. They also proposed software and hardware
countermeasures to improve sensor resilience against these
attacks.

2) Illegal Access (Data-Link Layer): Current vehicle attacks
can be classified in different ways. In [9], Checkoway et al.
suggested a classification method for vehicle attacks based
on attack distance, which can be classified into direct phys-
ical, short-range wireless, and long-distance wireless. They
discovered that malicious attacks are feasible via a broad
range of attack surfaces. In addition, a series of experiments
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was conducted for a comprehensively analysis of the security
threats faced by various external attack surfaces of a modern
automobile. Malicious adversaries can perform attacks easily
once they gain access to network devices, given the lack of
security and authentication mechanisms of IVNs. For example,
in [30], the network availability of an IVN was threatened
by DoS attack. The attack portal mainly has OBD II at
the physical layer. Once the data link layer access attack is
implemented, the attack behaviors including frame injection,
frame falsifying, frame sniffing, fabrication, suspension, and
DoS attack. The characteristics of the attack behavior on the
network mainly include bus voltage fluctuation and equivalent
resistance change. These parameter characteristics are used as
the input parameters of the IVN IDS.

3) Attacks From Interfaces (Application Layer): Cyberat-
tacks against vulnerabilities or protocol weaknesses of exter-
nal networks and equipment have been covered by [4]. The
available intrusion interfaces include but are not limited to:
Bluetooth, OBD_II, and Wi-Fi. Malicious adversaries can
perform several targeted attacks (e.g., remote control or vehicle
braking [32]). Hoppe et al. proposed a type of attacks against
automotive CAN, which can control the window lift, warning
lights, and ABS [31]. Short-term countermeasures are also
selected to respond such an attack. Woo et al. used an actual
vehicle and a malicious smartphone app in a connected-vehicle
environment to demonstrate a long-range wireless attack [32].
A secure protocol mechanism for handling such attack was
also proposed. Nevertheless, detecting attacks from the appli-
cation layer is difficult due to the lack of illegal access nodes
and evident message frame anomalies. In [33], researchers
from Keen Security Lab achieved remote wireless access
to, and gained complete control over, Tesla electric cars,
thereby prompting Tesla to issue an emergency system update
via OTA.

C. Constraints, Challenges, and Characteristics of IVN IDS

The concept of IVN IDS was introduced in [31], in which
the characteristics of IVN IDS were first presented. The design
and implementation of IDS for IVNs have some characteristics
that can be used to optimize IDS design while facing various
challenges and constraints from the IVN environment in con-
sideration of the investigation of IVNs and the technical review
of IVN IDSs. This section tackles the potential challenges
and constraints during the implementation of an IVN IDS and
introduces two of its characteristics.

1) Constraints of Intrusion Detection for IVNs: Designing
and implementing IVN IDS will face various challenges and
limitations. This section discusses the potential challenges and
constraints during the implementation of an IVN IDS.

• Hardware constraints. Presently, ECUs in automotive
are mainly powered by a 32-bit embedded processor
(e.g., NXP_Freescale, Infine, and Renesas processors),
and computational performance and memory resources
are tight. Therefore, intrusion detection for IVN design
is also constrained by computing power, memory size,
and communication capability.

Fig. 3. Example of domain-aware intrusion detection for IVNs.

• Cost constraints. An automotive electronic system is a
type of industrial embedded system. Reducing hardware
costs can provide companies with additional profits given
that automobiles are mass-produced. The cost of auto-
motive manufacturing will increase once the IVN IDS
design methodology requires hardware modifications to
all ECUs. Therefore, IVN IDS design is subject to cost
constraints.

• Detection accuracy and response time. An automotive
network system is a safety-critical system where IVN is
responsible for communication; thus, automotive network
attacks can cause serious safety problems. Therefore,
intrusion detection for IVNs should fulfill the real-time
and high-precision requirements of vehicles [41]. The
detection accuracy must be analyzed from four aspects,
namely, true-positive, false-positive, true-negative, and
false-negative.

• Standardized construction. IVN IDS aims to provide
automotive electronic systems with security defense capa-
bilities. IVN IDS is part of an automotive electronic
system, which needs to provide functional security guar-
antee and follow the ISO26262 standard [38]. The SAE
J3061 guidebook [42] for cyber-physical vehicle systems
focuses on designing security-aware systems in close rela-
tion to the automotive safety standard ISO 26262. SAE
J3061 describes a set of high-level guiding principles
for automobile security and defines a process frame-
work of security for the lifecycle of cyber-physical vehi-
cle systems. Software specifications in the AUTOSAR
(secure onboard communication module) [43] have also
been developed to create resource-efficient and practica-
ble authentication mechanisms for critical data transport
among ECUs, and such mechanisms have been used by
vehicle manufacturers [44].

2) Characteristics of Intrusion Detection for IVNs: This
section mainly to introduce the characteristics of IVNs that
can be used to improve the performance of IVN IDS design.

• Domain-aware. As shown in Figure 3, the automotive
electronic system is divided into several parts accord-
ing to different functional domains, such as power-train
domain, entertainment domain, and body domain. Differ-
ent domains are independent and interconnected through
an in-vehicle gateway. The characteristics of traffic mes-
sages in different domains also vary. Some of them are
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Fig. 4. Example of context-aware intrusion detection for IVNs.

information intensive, and some others are safety-critical.
Therefore, different security monitoring schemes can be
designed on the basis of the characteristics of different
domains to improve detection accuracy. For instance,
a domain-aware anomaly detection system for CAN bus
network traffic is described in [45] by Markovitz and
Wool. Through inspection of real CAN bus commu-
nication, they discovered the presence of semantically
meaningful constant fields, multi-Value fields and counter
or sensor fields.

• Context-aware. Context-aware computing has been
extensively investigated [46]. A renewed interest in this
area has emerged because of ubiquitous technologies that
expand the idea of context to the physical world [47].
Meanwhile, with the development of intelligent tech-
nology, intelligent vehicle systems will have numerous
intelligent sensors, a combination of the data and mode of
the perception layer, and an integration of this layer with
a security monitoring system can effectively reduce the
probability of miscalculation. For instance, as shown in
Figure 4, by using the vehicle speed sensor, we can obtain
the current state and behavior of the vehicle through
a machine learning algorithm, and simulate the normal
driving state of the vehicle to determine the attack state.

As shown in Figure 5, in order to more clearly describe the
characteristics of IVN IDS design, we creatively draw an IVN
IDS design summary map based on the correlation between
attack access sources, vulnerabilities of IVNs, attack threats,
extractable feature parameters and IDS countermeasures from
the perspective of IDS design.

III. STATE-OF-THE-ART INTRUSION DETECTION

TECHNOLOGY FOR IVNS

Recent years have noted increased number of automotive
malicious attacks. Therefore, the issue of IVN security has
received increasing attention [48]. Intrusion detection technol-
ogy, as a network security enhancement method, is low cost
and offers convenient deployment. A large number of studies
have been conducted in recent years about intrusion detection
technologies for IVN [45], [49], [50]. In this section, these
different methods will be explained in greater detail. From
the perspective of IVN IDS design, IVN IDSs can be divided
into the following categories.

A. Fingerprints-Based Methods (Bus Level)

Due to the physical properties of ECUs, different ECU
on the in-vehicle networks usually have unique hardware
fingerprint information, IVN security researchers attempt to
extract fingerprint information of ECUs in various ways

(e.g., clock-based intrusion detection design [51] and volt-
age measurements-based [52]). According to the unique-
ness electrical characteristics of ECUs (i.e., the dominant,
positive-slope and negative-slope parts), fingerprint infor-
mation can be established for legal and illegal access to
ECUs. Cho and Shin, for instance, presented a method
named Viden which fingerprinted ECUs based on voltage
measurements [52]. Via the ACK learning phase, Viden
obtained correct measurements of voltages only from the
message transmitters, and exploited them for constructing and
updating correct voltage profiles or fingerprints. This method
can detect the illegal access nodes quickly and accurately.
However, this method is not effective for detecting network
attacks at the application layer, because this method is only
applicable to the physical layer.

In [53], Choi et al. proposed a novel IVN IDS (Volt-
ageIDS), which is based on the inimitable characteristics of
electrical CAN signals. Evaluation experiments on moving and
idling vehicles show this method’s ability to detect bus-off
attack [30].

Brief Discussion: The next step for the IVN IDS after
obtaining the network fingerprint characteristics will be a
classification problem. Therefore, fingerprint-based IVN IDS
is a comprehensive strategy, and the technology used will
also combine machine learning methods. For example, many
machine learning methods have their own unique advantages
for the stage of feature extraction and classification.

B. Parameters Monitoring-Based Methods (Message Level)

Some attacks can be discovered on the basis of the obser-
vation and comparison of network parameters. These parame-
ter monitoring-based intrusion detection methods include the
following.

1) Frequency-Based Techniques: As shown in Figure 6,
message frames transmitted over an IVN usually have a
fixed period. For example, transmission intervals of CAN
messages can be detected and compared against the estab-
lished baseline, which is similar to a statistics-based anomaly
detection method [54]. IVN security researchers have shown
that the frequencies will increase when malicious adversaries
perform a spoofing or DoS attack by injecting legitimate
messages [11], [55]. Such detection methods are possible with
good accuracy and low false-positive rate, but only works
for periodic traffic. Adrian et al. evaluated the effectiveness
of frequency-based anomaly detection for packet injection
attacks [56]. When the period exceeds the threshold, the sys-
tem will issue an abnormal status alarm and store the log.

2) Remote Frame: As shown in Figure 7, when a node on
CAN bus receives a remote frame, it needs to respond with a
message to the sender. The offset ratio of the response frame
can reflect the suspicious activity. Furthermore, Lee et al.
proposed an intrusion detection method on the basis of the
remote frame of CAN messages by measuring the response
performance of the existing nodes which based on the offset
ratio and time interval between request message and response
message [57].

Figure 8 shows how time/frequency features can be
processed independently of IVN data sequences. From the
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Fig. 5. A summary view of the IDS design for IVN.

Fig. 6. Frequency-based IDS. When an attack occurs, the fixed period of
the message will be changed, and this feature is used for intrusion detection.

Fig. 7. Remote frame-based IDS. In a CAN bus, when the target node
receives a remote frame, a data frame is returned to the sending node, and
the measurement of the return time can be used to determine whether the
network is in an attack state.

figure, IVN IDS technologies can be divided into the obser-
vation of data flow [58] and sequences [59]. In response to
attacks from the data flow level of IVN; the intrusion detection
methods based on parameter detection have good detection
accuracy and low performance overhead.

Brief Discussion: Parameter monitoring-based methods
may be ineffective for unknown security threats, and parame-
ters might vary in different vehicle networks. Attacks against
automobiles will show increasing uncertainty and complex-
ity as IVNs continue to integrate into external networks.

IVN security researchers have proposed many IVN IDS
designs based on information theory and machine learning to
address these issues, which will be introduced in the following
chapters.

C. Information-Theoretic-Based IVN IDSs (Data-Flow Level)

Using information-theoretical-based measures is another
approach for unsupervised anomaly detection design in the
IVN environment. Specifically, the internal communication
of each ECU is often in order; thus, systematic information
entropy should be relatively stable. Numerous malicious mes-
sages injected into the normal communication will affect the
network stability, and the information entropy can reflect the
anomaly. Wang et al. collected 6.673 million CAN messages
from various automobiles and conducted entropy and pattern
analysis of the messages. CAN messages are identified to have
low entropy, with an average of 11.436 bits [15].

Establishing a model of information entropy analysis based
on the characteristics of CAN network is necessary for
detecting the information entropy of automobile networks.
We calculate message ID’s entropy using Shannon entropy
definition. Assume system X’s limited set of possible states is
{x1, x2, . . . , xN }. Then the information entropy of system X is

H (X) = −
N∑

i=0

p(xi ) log p(xi ), (1)

where p(xi) is the probability of system X in state xi .
Entropy Analysis Model of CAN IDs: For the eval-

uation of the information entropy of CAN IDs, a CAN
system model can be represented by � = (I, C, T ), where
I = {ι1, ι2, ι3, . . . , ιn} is a set of different IDs appearing within
time T , and C = {c1, c2, c3, . . . , cn} is the set of periods or
the minimum intervals of n different IDs that appear within
time T . Subsequently, the entropy function of CAN IDs in
period T can be expressed as

H (I ) = −
∑
ι∈I

pι log pι. (2)

Assuming that the system is schedulable, all CAN mes-
sages can meet their deadlines [60], and the total number of
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Fig. 8. Time/frequency features are processed independently from data sequences.

messages Ntotal in time T can be obtained by the period
of messages appearing within time T and the length of T ,
as shown as follows:

Ntotal =
(

T

c1
+ T

c2
+ · · · + T

cn

)
= T

n∑
i=1

1

ci
. (3)

The number of ιi in T is ni = T/ci . Then the probability
of ιi appearing in T can be presented as P (ιi ), as shown as
follows:

P (ιi ) = ni

Ntotal
= T

ci
× 1

T
n∑

i=1

1

ci

= 1

ci

n∑
i=1

1

ci

. (4)

Evidently,
∑n

i=1 P(ιi ) = 1, P(ιi ) > 0 (i = 1, 2, . . . , n).
The self-information of i is:

Ui = log
1

P(ιi )
= log ci

n∑
i=1

1

ci
. (5)

Then, in the sampling period T , the entropy of IDs in CAN
bus is:

Hi = P(ιi )U(ιi ) =
log ci

n∑
i=1

1

ci

ci

n∑
i=1

1

ci

. (6)

The average entropy of IDs in sampling period T is:

H (I ) = E[U(ιi )] =
n∑

i=1

Hi . (7)

Some entropy-based methods have been established and
tested in practice to detect attacks. Muter et al. first introduced
the concept of entropy-based attack detection for in-vehicle
networks, which is efcient for detecting DoS attacks; however,
a small number of malicious messages injected by malicious
adversaries are difficult to recognize [61]. Similarly, in [62],
Marchetti et al. proved through experiments that the intrusion
detection method based on information entropy requires attack
intensity (high volume attacks).

In [63], we proposed a novel sliding window strategy based
on a fixed message number for information entropy, which
effectively solves the problem of IDS performance based
on information entropy for aperiodic CAN messages. Dario
et al. proposed a Hamming distance measurement method
for monitoring the status of IVNs and obtained good results
for detecting attacks to the CAN [64]. The main feature of
this method is the small computational overhead, and the
disadvantage is that the attack model is limited (not for replay
attacks).

Brief Discussion: Notably, the intrusion detection method
based on information entropy is ineffective in attacks that
modify the content of the CAN data field. To improve the
accuracy of the information entropy-based intrusion detection
mechanism, the two characteristics of IVN (i.e., context and
domain awareness) mentioned in Section II-C.2 could be used
to optimize IVN IDS design.

D. Machine Learning-Based IVN IDSs (Functional Level)

Machine learning algorithms have been used extensively
as a powerful mathematical tool in computer and artificial
intelligence and have a good effect on classification, regres-
sion, and clustering; thus, they can develop security solutions
on different levels of IVNs. They are especially suitable for
defense against future unknown attacks. In this section, we will
review machine learning-based IVN IDSs. Further details will
be introduced from the following three aspects.

1) Classification-Based Techniques: Classification algo-
rithms have been used extensively as a powerful method
for security solutions. Intrusion detection for IVNs can be
designed along with a classification algorithm to learn the
normal behavior of network traffic, and any deviation from
that will be identified as an abnormal behavior of CAN
bus. As shown in Figure 9, the scheme mainly includes two
phases, namely, offline training and online detection. In the
training phase, selecting and labeling the training data set
are important. In the automotive environment, Theissler et al.
proposed a one-class SVM with the radial basis function kernel
to learn the baseline normal behavior and classify deviations
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Fig. 9. Machine learning approach for IVN IDS.

Fig. 10. Architecture of deep neural network (DNN) for intrusion detection
for IVNs.

as anomalies [65]. The resulting classifier is applicable to
sequences of events but does not detect point anomalies.

2) Deep Learning Techniques: For developing
anomaly-based IVN IDS, deep learning and neural networks
are adopted and deployed for IVNs. Kang and Kang proposed
an intrusion detection technique using a DNN [50]. In the
proposed technique, IVN packets exchanged between ECUs
are trained to extract low-dimensional features and used
for discriminating normal and hacking packets. According
to [50], the proposed technique can provide a real-time
response to the attack with a considerably high detection
ratio (99.8%). Taylor et al. suggested an anomaly detector
based on a long short-term memory (LSTM) recurrent
neural network (RNN) to detect attacks with low false alarm
rates [66]. The prediction of the next packet data based on
neural network is used for intrusion detection; thus knowledge
of the specific protocol is not required.

Figure 10 shows the three layers of the neural network
applied to intrusion detection for IVNs. Among them, the dif-
ference between the normal neural network models is mainly
the input and output layers, where the input features can
be bits of CAN data field or signal features extracted from
the physical layer of the CAN bus. The output layer outputs
normal and abnormal results. The DNN model of intrusion
detection for IVNs environment can be described as follows.

DNN Model of Intrusion Detection for IVNs: The training
set can be represented as (b(1), y(1), . . . , b(k), y(k)) of k sam-
ples, where b = {b0, b1, . . . ., bB} = RB is the set of feature
including B parameters, and y is the binary result of intrusion
detection. Therefore, the cost function C can be defined as,

C(W ; b, y) = 1

2
||hW (b) − y||2, (8)

where two nodes in the DNN are connected by W (adaptation
weight), and hW (b) is an assumption that provides an esti-
mated output. For the convenience of batch training, the overall
cost function can be defined as

C(W ) = 1

K

K∑
k=1

C(W, bk, yk) + γ

2

N∑
n=1

Ml∑
i=1

Ml+1∑
j=1

(wn
j i)

2, (9)

where N is the depth of the neural network, Ml is the number
of nodes in the lth layer, and wn

j i = W is the weight of the
connection between a node i in the (n − 1)th layer and a
node j in the nth layer. In each node of a layer, the output is
computed with the sigmoid function of the linear combination
of input values and the weights.

The aim is to minimize the cost function in Function 9 to
obtain the weighting parameters. A stochastic gradient method
can be used to train the network given the efficiency of
back propagation algorithm with predefined parameters in this
problem. Specifically, the partial derivative of the cost function
Ck(W ) can be used for the adaptation in each iteration,
as shown as follows:

wn
j i = wn−1

j i + η
ϑ

ϑw
(n−1)
j i

C(W ), (10)

where η is an adaptation parameter.
3) Sequential Techniques: The order of message transmitted

from an ECU can be used for anomaly detection. CAN
message from the ECU should seen as a specific order. They
will be transmitted one after the other based on the priorities
of messages, and any deviation from this order can be flagged.
Narayanan et al. developed a hidden Markov model (HMM)
to detect anomalous states from actual data collected from
vehicles [67]. Marchetti and Stabili proposed an algorithm
of building a model of the normal behavior of a CAN bus
based on particular features and recurring patterns within the
sequence of message IDs observed in the CAN bus, which is
the first algorithm based on the analysis of the sequences of
messages on the CAN bus [68].

Features should be selected and acquired at the design
stage following the implementation of machine learning-based
intrusion detection for IVNs. Choi et al. proposed a new
method, which can extract suitable statistical features from
the sampled signal S(k) [69] based on the method proposed
by Dey et al. [70]. This method can quickly identify certified
ECUs by using inimitable characteristics of signals in CAN.
Fourty scalar features in time and frequency domains are
extracted using LibXtract [71] for the sampled signal S(k),
which is a well-known feature extraction library. Anomaly
detection methods based on verifying the message contents
have also been proposed in addition to using message ID bits
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as input features [50]. Muter et al. for instance, used in-vehicle
sensors to verify message range and correlation [72].

Brief Discussion: IVN IDSs require more reliability and
certainty than do IDSs of consumer networks. Therefore, IVN
IDS prefers supervised machine learning methods. Attacks
by malicious adversaries will generate anomalous features at
different layers of the IVN, and most of them can be used for
machine learning-based IDS.

E. Other Methods

Notably, IVN IDS technologies can be classified from
several other perspectives, such as IDS deployment (i.e., host-
and network-based), and attack type (i.e., anomaly- and
signification-based). In this study, we classify IVN IDS tech-
nology from the perspective of technical implementation and
introduce several detailed major directions. Other notable
research methods are as follows.

Domain-Aware IVN IDS: Markovitz and Wool [45],
described a domain-aware anomaly detection system for CAN
bus network traffic. The CAN bus message format is pro-
prietary and nonpublicly documented. However, the authors
developed a classifier that automatically identifies the bound-
aries and types of these fields. The anomaly detection system
built a model for normal messages on the basis of field
classification. In [59], Markovitz and Wool described a novel
domain-aware anomaly detection system for in-vehicle CAN
bus traffic. A greedy algorithm was developed to split the
messages into fields and classify the fields into the types they
observed. In addition, a semantically aware anomaly detection
system was designed for CAN bus traffic. Experiments on
actual CAN bus traffic showed that the IDS achieved a median
false-positive rate of 0% with an average of 252 ternary
content-addressable memory.

Context-Aware IVN IDS: Wasicek et al. [73], described a
context-aware intrusion detection system (CAID) and frame-
work to detect manipulations in automotive control systems.
In this study, CAID uses sensor information to establish
reference models of the physical system and then checks the
correctness of the current sensor data against the reference
models. Muter et al. [72] developed a sensor-based detection
method that could recognize a malicious intrusion by using
several sensors designed for cyber attack scenarios. In [74],
Cho et al. used CarSim to obtain realistic sensor readings
for the slip ratio and the normalized traction force. CarSim
is a high-fidelity commercial software that predicts vehicle
performance in response to control from the driver. Abnormal
measurements in brake-related sensors can be detected using
the tire friction model.

Brief Discussion: Many design studies have shown that
IVN IDSs need to be combined with the characteristics of
an automotive electronic system. Designing an IVN IDS from
a system perspective (with domain and context awareness)
can effectively improve not only the effect of IDS (detection
accuracy and response time) but also its market compatibility.

F. IDS Design for Other IVNs

High-bandwidth IVNs (e.g., CAN-FD [75], FlexRay, and
automotive Ethernet [76]) have been rapidly developed and

valued by automotive electronics researchers because of the
increasing demand for IVN bandwidth in the new generation
of automotive electronic systems. Similar to CAN protocol,
such IVNs lack cybersecurity mechanisms at the beginning
of the design process. The most common intrusion detection
methods for IVN design are for the CAN. Therefore, IDS
design for the current research status has also become a
research hotspot.

The difference between CAN-FD and CAN mainly lies in
two aspects. First, the maximum data field length of CAN-FD
can be 64 bytes. Second, the transmission rate of CAN-FD can
be variable. Therefore, the existing CAN-based IDS design is
basically applicable to CAN-FD.

Specific cyberattacks against FlexRay networks
exist [4], [77]. Therefore, research on FlexRay network
security is becoming increasingly important. Some studies on
FlexRay network security enhancements are available. In [78],
Han et al. proposed a novel architecture and communication
middleware design for FlexRay static segment scheduling
to address the new challenge on security that is synthesized
to satisfy security requirements, on top of extensibility,
costs, and end-to-end latencies. In [79], Gu et al. suggested
a security-aware mapping and scheduling mechanism
with hardware co-processors for FlexRay-based distributed
embedded systems. Nevertheless, no research has been
published on FlexRay IDS design.

The LIN network communicates in master slave mode
mainly in the body control domain (e.g., glass and wiper
control) in an IVN environment. Meanwhile, the LIN master
node is often a node of CAN. The LIN intrusion detec-
tion technology problem is generally classified into CAN
IDS, in consideration of the small size of the LIN net-
work and the small number of external communication
interfaces.

Automotive Ethernet is currently used primarily in body
imaging and active safety. The large-scale application of
automotive Ethernet in IVN systems remains to have problems
that warrant solution (e.g., time determination) [80]–[82].
Similarly, no research on the automotive Ethernet IDS design
is available. Great advantages of on-board Ethernet in band-
width and cost make it a potential candidate to become the
backbone network of IVNs in the future [83]. Therefore,
the security mechanism should be considered in combination
with IVN background in the design and theoretical analysis
stage of automotive Ethernet.

IV. EVALUATION AND COMPARISON OF

INTRUSION DETECTION FOR IVNS

The evaluation of IVN IDS technology is a challeng-
ing issue, given the different malicious adversary scenarios
and attack and threat models. Here, an attempt to make
a general assessment was conducted by combining IVN
design constraints from the perspective of security objec-
tives. This section introduces the tools and data sets used
in the IVN IDS evaluation and presents a comprehen-
sive comparison and analysis of the IVN IDSs mentioned
in Section III.
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A. Data Sets and Tools Used in Previous Works

Obtaining the data set is very important in evaluating
the performance of an IVN IDS design. Presently, the data
set commonly used in CAN message’s functional safety
verification and analysis simulation experiments is the SAE
benchmark message set [87]. However, a standard data set for
IVN IDS design evaluation is currently unavailable. In state-
of-the-art studies, many researchers have provided methods for
generating data sets for IVN IDS design evaluation. Marchetti
et al. [62] obtained CAN traffic data from the main CAN bus
of a 2011 Ford Fiesta and designed and instrumented a custom
CAN bus logger, which was realized with a Genuino UNO
prototyping board that writes CAN messages to an SD memory
card. Furthermore, Levi et al. [88] built a small simulation
for connected vehicles on the basis of the well-known traffic
simulator Simulation of Urban Mobility [89]. In [50], Kang
and Kang used a CAN packet generator to generate a test
data set named Open Car Test bed and Network Experiments
OCTANE [90].

Lee et al. [57] released the data set collected during
their experiment through the URL (http://ocslab.hksecurity.
net/Dataset/CAN-intrusion-dataset), which includes DoS,
fuzzy, and impersonation attack and attack-free states. More-
over, some effective IVN simulation software tools can be
used for IVN IDS verification experiments. Noras et al. used
CANoe to provide a complete set of development, simulation,
and testing frameworks for IVN [49].

Experimental data sets can generally be divided into two
parts: data under normal operation condition and data with
attack signals under various attack modes. The more data are
monitored and evaluated, the better the overall understanding
of the system state.

B. Comparison of Intrusion Detection for IVNs

As regards the evaluation of intrusion detection methods for
IVNs, false-negative cases are considered an important metric
because these methods cannot detect an actual intrusion on a
network, thereby causing poor user experiences.

The confidentiality, integrity, and availability (CIA)
triad [91] have established frameworks, which are used in
security domain to explain the most important goals of provid-
ing in-vehicle cybersecurity. Detection rate and effectiveness
of IVN IDS mainly include the occurrence probability of
true-positive, false-positive, true-negative and false-negative
results. IVN IDS design problem can be transformed into
multi-objective constraint optimization problem after classifi-
cation function is completed. As we mentioned in our previous
work [63], during the design of an IVN IDS, the RA (detection
accuracy rate) should be as high as possible, whereas the RN

(false-positive rate) should be as low as possible. The problem
can be described as minimizing the following energy function
when evaluating IVN IDS:

E() = C1 × RA(%) − C2 × RN (%) − C3 × Rt , (11)

where E() is the energy function representing the detection
accuracy and efficiency of the proposed model. And, three
weighted parameters C1, C2, and C3 are used to assess

the characteristics of the proposed IDS; these parameters
are obtained in the training phase. Additional parameters
(e.g., expected cost, intrusion detection capability, and detec-
tion latency) are necessary for analyzing intrusion detection for
IVNs [92]. For example, an IDS that consumes excessive time
to detect intruders may give malicious adversaries sufficient
time to damage the vehicle. Thus, detection latency should be
a key intrusion detection metric.

Table II presents that some representative IVN IDSs for
comprehensive comparison are selected to more clearly show
the current status of IVN IDS researches. Figure 11 presents
the four categories of IVN IDS designs from the perspective
of implementation technology. A comprehensive comparison
of the IVN IDSs mentioned in Section III was presented, and
the following observations are drawn.

Observations: The following observations are known by
comparing the different schemes in Table II:

(1) Different IVN IDSs can be used against diverse cyber-
attacks from various IVN layers (e.g., external physical or
wireless interface layer). Meanwhile, the IVN features that
can be used for IDS are mainly from the following four levels:
physical bus, message, data-flow, and functional interpretation.
For eaxmple, machine learning methods are in good standing
in defending against attacks from the application layer, and
fingerprint based methods can be effect tools against attacks
from the physical layer. The latter methods are more efficient
and have shorter response time than the former. However,
the defending system which can against all types and various
sources attack is not yet be developed.

(2) The machine learning-based intrusion detection methods
have a good effect against unknown IVN attacks, but they
require considerable for computing and storage resources and
are thus not suitable for the automotive network environment.
Levi et al. [88], proposed a cloud-based method to address
this issue.

(3) Table II shows that most of the current security
researchers’ methods have lower false-positive rate (except
for some papers that failed to provide relevant information).
Most of the methods have high detection accuracy. However,
dealing with all existing attacks by one method is difficult
because some cyberattacks come from the physical layer, while
others come from the application layer. Nevertheless, existing
methods only monitor on a single layer of the IVN. Therefore,
features that are distributed across different IVN layers can be
used to enhance future IVN IDSs design, rather than being
limited to one IVN layer’s features.

C. Intrusion Prevention System (IPS)

It is worth noting that IDS plays a limited role in secu-
rity protection. As the first line of security defense, IDS
is often apart of the IPS. For instance, an IPS for the
automotive CAN was proposed in [24], and Abbott-McCune
and Shay proposed an algorithm to detect replay attacks of
valid and invalid arbitration identifiers through the monitoring
timing of events. Thereafter, they extended the IDS into an
IPS by designing an additional CAN transceiver based on
the FPGA.
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TABLE II

SELECTED COMPARISONS OF INTRUSION DETECTING METHODS FOR IVNS

IVN IDSs have no mechanisms in place to prevent trans-
missions from the malicious node despite being able to flag
malicious cyberattacks. Giannopoulos et al. [93], described
a novel IPS countermeasure for the CAN bus to address
this issue. They first proposed a basic IDS design, which

relies on blacklisted arbitration IDs, and implemented it in
the FPGA. This mechanism only requires a single custom
controller, which has the characteristics of low cost and strong
compatibility. The way to use the characteristics of IVN to
better combine IDS and IPS will be an ideal research direction
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Fig. 11. Taxonomy of IVN IDS. From the perspective of technology implementation.

for our future research to improve the actual ability of IVN to
resist cyberattacks.

V. TRENDS AND PROSPECTS

Vehicles are revolutionized through the integration of mod-
ern computing and communication technologies to improve
user experience and driving safety. With the increasing number
of attacks to actual vehicles, enhanced security precautions
and extended protection mechanisms must be provided for new
automobiles. This section presents trends and upcoming issues
regarding IVN IDS technology for the development of future
automotive electronic systems.

A. Trends

The deployment of sensors and high-precision map tech-
nology brings about the birth of numerous applications and
services for autonomous vehicles. The following predictions
are set for the future development of IDS technology:

(1) Existing IVN protocols for autonomous vehicles
encounter difficulties in meeting bandwidth and design
performance requirements. Therefore, the development of
autonomous vehicles will inevitably accelerate the develop-
ment of IVNs. The security mechanism should be considered
at the beginning of the development of new IVN standards
in order to provide security guarantee for the future IVN
environment. Moreover, the IDS function should be considered
at the same time when determining the next-generation IVN
protocol standard.

(2) In terms of the network security of IVN system,
the development of edge computing technology will address
the bottleneck problem of limited computing and storage
resources of IDS technology in the implementation process.

(3) Automobile manufacturers have a complete set of
design, test, and verification development processes for the
functional security of automotive electronic systems. With the
increasing concern about security problems, the information
security of IVN systems in the future needs the support of the
test and verification platform.

B. Open Issues

Many open issues are identified in the area of IVN IDSs.
Five important research directions are listed as follows.

(1) One of the most urgent issues of IVN IDS design is
to enhance the accuracy and response time of IVN IDSs.
How to distinguish malicious attacks and abnormal situa-
tions (e.g., emergency breaking, crashes, updates) on IVN
environment will be a challenging study. For IDS methods
of the signal layer (e.g., frequency-based IDS), anomalous
and malicious messages cannot be distinguished. Possibly,
the IDS of the functional layer can compensate for this
concern. A future IDS design with integrated features may be
an efficient method to address this issue, given that existing
IDS solutions can target only specific attack scenarios and
types.

(2) ACPS is a highly safety-critical system. Thus, an impor-
tant issue in the automotive domain is to adapt established
functional safety process and methods to security engineering.
Functional safety of vehicles and security of IVNs are different
domains, and a gap exists between them. To ensure the
functional safety of vehicles, Many automotive electronics
researchers focus on this domain and have obtained promising
research results [94]–[96]. Further details about the relation-
ship between security and functional safety of IVN system can
be found in [42] and [97] .

(3) Current automotive electronic components are provided
separately by the different parts of the supply chain, with
different vendors developing different distributed subsystems.
This situation poses a challenge to system security deploy-
ment. All security vulnerabilities appear at the boundaries of
the code provided by different developers. Uniform standards
should be established to effectively coordinate supply chains.

(4) Different steps will inevitably affect different network
layers and then produce some characteristics that can be
used for IDS observation in the process of intruding the
IVN. Nevertheless, how to utilize these network characteristics
across IVN layers comprehensively and use them to improve
the performance of IVN IDS will be an important direction to
study in the future, particularly in the heterogeneous network
environment where multiple networks coexist.
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(5) Machine learning algorithms have unique advantages in
realizing anonymous intrusion detection. Unfortunately, they
experience two challenges, One is how to deploy machine
learning algorithms in an IVN system with limited computing
resources, and the other is how to obtain data sets that can be
effectively trained.

VI. CONCLUSION

The design of security enhancement for vehicles needs
to meet multiple design metrics, such as reliability, safety,
performance, and cost, which are sometimes conflicting given
the cost sensitivity and safety critical of the automobile. IVN
IDS is an effective method of defending against attacks to
automobiles. Thus, the research on it is growing rapidly.
In this study, the external interface for vehicle attacks on
three layers was creatively analyzed, and the vulnerabilities
of each layer were discussed. Furthermore, the characteristic
parameters available for IVN IDS design in the four levels of
the IVN (i.e., bus, message, data-flow, and functional levels)
were analyzed. State-of-the-art intrusion detection methods
for IVNs were categorized into four types on the basis of
implementation techniques. Furthermore, advanced intrusion
detection solutions for IVNs were analyzed and comprehen-
sively compared. Open challenges regarding IVN intrusion
detection methods from future works were presented with
regard to our investigation.
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