
Efficient Influential Community Search
in Large Uncertain Graphs
Wensheng Luo , Xu Zhou , Kenli Li ,Member, IEEE,

Yunjun Gao ,Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Influential community search aims to find cohesive subgraphs (communities) with considerable influence. It is a

fundamental graph management operator that can play a crucial role in biological network analysis, activity organization, and other

real-life applications. Existing research on influential community search is mainly focused on deterministic graphs with the assumption

that influences between entities are certain. This assumption is invalid in many cases because it ignores the uncertainty which is an

inherent property of influence. Against this backdrop, in this paper, we introduce an uncertain influential community model, namely

ðk; hÞ-influential community, based on which the influential community search problem over uncertain graphs is formulated.

Furthermore, we propose an online approach by integrating a peeling-pruning strategy that can progressively refine the given uncertain

graph to find the ðk; hÞ-influential communities. To further improve the search performance, two novel indexes, ICU-Index and FICU-

Index, are developed to organize the ðk; hÞ-influential communities at different probabilistic intervals. The indexes decompose the

probabilistic interval into multiple subintervals and based on this, the ðk; hÞ-influential communities are divided into different groups in

turn. Compared with ICU-Index, FICU-Index requires considerably less space with the introduction of two optimization strategies.

These indexes help obtain results of an influential community search problem more efficiently. Extensive experiments on large real

and synthetic datasets demonstrate the efficiency and effectiveness of our proposed algorithms.

Index Terms—Graph queries, influential community search, network analysis, uncertain graphs

Ç

1 INTRODUCTION

COMMUNITY search, a fundamental problem in network
analytics, has received extensive research interest. At

present, studies on the community search problem fall
broadly into two categories. The first category focuses on
cohesion of the community structure including k-core [1],
[2], [3], k-truss [4], [5], and k-clique [6], to name just a few.
The second category looks into different attributes of verti-
ces. Through examining the influence of vertices, influential
community search is presented in [7]. The influential com-
munity search has been found to be instrumental in biologi-
cal networks [8], protein-protein interaction networks [9],
social networks [10], paper citation networks [7], activity
organization [11], and other real-life applications.

There have been a number of studies on influential com-
munity search [7], [10], [11], [12], which, however, are primar-
ily centered on deterministic graphs with the assumption that
the influences between entities are fixed. This assumption is
invalid in many cases as it overlooks the uncertainty which is
an inherent property of the influences. In many applications,
such asmeasuring social contagion of structural diversity [13],
[14], describing biological functions of proteins [15], [16], [17],
analyzing properties of a network structure [18], and selecting
sentences in text summarization [19], data can be uncertain
due to the possible influence of noise, precision of measure-
ment, accuracy of prediction, protection of privacy, and other
reasons [20]. Uncertain graphs are widely used to describe
these data, inwhich vertices represent entities, and the proba-
bilities of edges indicate the closeness of relations between
entities. For example, in social networks, the probability
represents the trust between users [21]; in protein interaction
networks, the reaction between two substances is marked
with confidence probability due to the accuracy of experi-
ments [22]; likewise, the herd behavior among people can
also be expressed by probability [23]. Therefore, calculating
influential communities in uncertain graphs helps organize
activities in a social network, identify research groups that are
closely related in co-authorship networks, and discover the
most critical structures of the receptor in PPI networks, to
name a few.

In this paper, we attempt to investigate the issue of influ-
ential community search over uncertain graphs based on a
new influential community model, namely ðk; hÞ-influential
community, for the first time. Specifically, for a given uncer-
tain graph, a ðk; hÞ-influential community is a connected
subgraph of G such that for each vertex in the subgraph, its

� Wensheng Luo, Xu Zhou, and Kenli Li are with the College of Computer
Science and Electronic Engineering, Hunan University, Changsha, Hunan
410000, China. E-mail: {luowensheng, zhxu, lkl}@hnu.edu.cn.

� Yunjun Gao is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail: gaoyj@zju.
edu.cn.

� Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12651 USA. E-mail: lik@newpaltz.edu.

Manuscript received 1 Nov. 2020; revised 6 Oct. 2021; accepted 21 Nov. 2021.
Date of publication 30 Nov. 2021; date of current version 7 Mar. 2023.
This work was supported in part by the NSFC under Grants 61772182,
61802032, 62172146, and 62172157, in part by the Key Area Research
Program of Hunan under Grant 2019GK2091, in part by the Open Research
Projects of Zhejiang Lab under Grant 2021KD0AB02, and in part by the
Project of Hunan Science and Technology Innovation Plan under Grant
2020RC2032.
(Corresponding author: Xu Zhou.)
Recommended for acceptance by A. Khan.
Digital Object Identifier no. 10.1109/TKDE.2021.3131611

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023 3779

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1463-814X
https://orcid.org/0000-0002-1463-814X
https://orcid.org/0000-0002-1463-814X
https://orcid.org/0000-0002-1463-814X
https://orcid.org/0000-0002-1463-814X
https://orcid.org/0000-0002-1400-8375
https://orcid.org/0000-0002-1400-8375
https://orcid.org/0000-0002-1400-8375
https://orcid.org/0000-0002-1400-8375
https://orcid.org/0000-0002-1400-8375
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0003-3816-8450
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:luowensheng@hnu.edu.cn
mailto:zhxu@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:gaoyj@zju.edu.cn
mailto:gaoyj@zju.edu.cn
mailto:lik@newpaltz.edu

probability of owning at least k neighbors (k-probability) is
no less than a specified threshold h. Moreover, a subgraph
C is not a ðk; hÞ-influential community if there exists a sub-
graph C0 containing C and has the same influence with C.
The influence of a community is the minimum weight of all
the vertices in it. This is because using the minimum weight
of all vertices as the influence of the community guarantees
that all community members have significant influence.
Note that we follow the assumption that each vertex in G
has a distinct weight [7].

Example 1. Fig. 1 shows an uncertain graph G from a co-
authorship network. It consists of ten vertices that represent
different authors. The influence (weights) of the vertices is
the h-index of authors, and the probabilities of edges denote
co-authorship relationships between different authors.
Without loss of generality, a large probability means close
collaboration between authors. The ðk; hÞ-influential com-
munities investigated in this paper are helpful to identify
research groups where authors have strong co-authorship
relationships.

With k ¼ 1 and h ¼ 0:8, the ð1; 0:8Þ-influential commu-
nities of G are C1 ¼ fv7; v9; v10g, C2 ¼ fv2; v3; v5g, and
C3 ¼ fv7; v8; v9; v10g, in which the probability of each ver-
tex owning at least 1 neighbor is no less than 0.8. The
influence of these communities are vðv10Þ ¼ 8, vðv3Þ ¼ 1,
and vðv8Þ ¼ 6, respectively. Given k ¼ 1 and h ¼ 0:92,
there is only one ð1; 0:92Þ-influential community of G,
which is C2 ¼ fv2; v3; v5g whose influence is vðv3Þ ¼ 1.
Compared to C2, C1 ¼ fv7; v9; v10g has a higher influence,
which means that the authors in C1 have higher h-
indexes. The community C2 has a larger value of h, which
indicates that the authors in C2 have a closer cooperative
relationship. It is noted that C2 is both a ð1; 0:8Þ-influential
community and a ð1; 0:92Þ-influential community. This
can be suggestive of an inclusion relationship between
communities with different probability thresholds h

under a specified k.

Why ðk; hÞ-core? There are mainly two models, ðk; hÞ-core
and ðk; uÞ-core, proposed to assess the cohesion of uncertain
graphs. The ðk; hÞ-core [24] is proposed based on the probabi-
listic degree. It focuses on the local degree distribution and
the support among k-core members. In contrast, ðk; uÞ-core in
[25] is more concerned with the k-core probability of each
individual vertex, i.e., the probability of each vertex appear-
ing in all possible k-cores. Compared with ðk; uÞ-core,
ðk; hÞ-core is more in line with the influential community
model over uncertain graphs. This is because ðk; uÞ-core is
more appropriate for applications where k-core members are

used individually, while ðk; hÞ-core concentrates on the rela-
tionship of community members, which could integrate the
influence between them.

In this paper, the influential community search problem
is formulated over uncertain graphs. The smallest weight in
the community is regarded as the influence of the commu-
nity. Due to this property, an online algorithm obtaining all
the ðk; hÞ-influential communities is devised using a peeling
strategy where the smallest weight vertex of the maximal
ðk; hÞ-core is iteratively deleted. Although this online algo-
rithm can process the proposed problem effectively, it still
faces several challenges.

Challenges. The online algorithm is time-consuming,
especially for large-scale graphs. The time complexity of the
online algorithm depends on the calculation of k-probabili-
ties for vertices in a given graph. Even with the state-of-the-
art dynamic programming (DP) in [24], it still costs
OðPv2V k�dvÞ time to compute all the k-probabilities where
dv is the maximum number of neighbors of vertex v in the
graph. Accordingly, for large-scale graphs, the method is
inefficient. For instance, our experiments in Section 8 show
that for LiveJournal, a dataset with 108 edges, the query
time of the online approach reaches 105 seconds.

This prompts us to propose an index, namely ICU-Index,
to organize ðk; hÞ-influential communities at different proba-
bilistic intervals. Specifically, we first compute the range of k
based on the topological structure of the given uncertain
graph, that is, k 2 ð0; kmax�, and then save all the communi-
ties corresponding to h under each k. It is difficult to build an
index for all possible communities corresponding to h

because the probability threshold h is a real number between
0 and 1, which means there are infinite possible communi-
ties. To fix this problem, we decompose the probabilistic
interval into multiple sub-intervals, and further divide the
ðk; hÞ-influential communities into different groups in turn.
This is based on the observation that the corresponding com-
munities of any h in a certain interval are consistent. The
space complexity of ICU-Index is Oðkmax�t�mÞ, where m is
the number of edges in G, and t is the number of intervals of
the index. Moreover, we devise two optimization strategies
and present an advanced forest-based index, namely FICU-
Index, to further boost the query performance and reduce
the space overhead of ICU-Index. It is proven that the space
complexity of FICU-Index is Oðkmax�t�nÞ. Based on these
indexes, we can obtain influential communities efficiently.

Contributions.Our contributions are summarized as follows.

� We investigate the ðk; hÞ-influential community
search problem over uncertain graphs for the first
time.

� We propose an online algorithm based on a peeling
pruning strategy to compute the ðk; hÞ-influential
communities.

� We devise an index called ICU-Index to improve
query efficiency by dividing the range of h into sev-
eral intervals and storing the corresponding commu-
nities of each interval.

� We present two optimization strategies and devise
an advanced index, namely FICU-Index, to optimize
the query efficiency and lower the space overhead of
the ICU-Index.

Fig. 1. A vertex-weighted uncertain graph.

3780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is summarized as follows. Section 2
offers an overview of related research on the influential
community search problem. We provide the background
information and definition of the problem in Section 3. Our
proposed online search algorithm is described in Section 4.
Section 5 presents the index-based algorithm for searching
the influential communities in uncertain graphs. In Section 6,
two optimizations of the index are proposed and discussed,
while Section 7 introduces the maintenance of the index.
Our extensive experiment results are detailed in Section 8,
before Section 9 concludes the paper.

2 RELATED WORK

In this section, we review related work of the ðk; hÞ-core in
uncertain graphs and influential community search over
deterministic graphs.

2.1 ðk; hÞ-Core in Uncertain Graphs

k-core proposed in [1] is recognized as one of themost popular
cohesive subgraphs, and there have been a significant number
of studies on k-core over deterministic graphs [26], [27], [28],
[29], [30]. Hence, representative studies of the k-core computa-
tion problem over uncertain graphs, which are closely related
to our research in this paper, are reviewed.

Bonchi et al. [24] first identified the k-core problem in
uncertain graphs, namely ðk; hÞ-core. They also presented an
h-core decomposition algorithm that can calculate the
ðk; hÞ-core effectively. Recently, Esfahani et al. [31] introduced
the Lyapulov’s central limit theorem to compute h-degrees. In
this way, approximate results of the h-degree can be gained.
A peeling algorithm and a sequential algorithm were further
proposed for computing the ðk; hÞ-cores. Besides, Yang et al.
[32] developed an index-based solution which achieves better
performancewhen computing the ðk; hÞ-cores.

All the algorithms as mentioned above tend to focus on
the cohesion of vertices while ignoring the attributes, such
as influence, of vertices. Consequently, they cannot be
directly adapted to obtain the influential communities in
uncertain graphs.

2.2 Influential Community Search

For a given graph, an influential community is a cohe-
sive subgraph with an influence. There are a varied defi-
nitions of cohesive subgraphs, e.g., k-core [1], k-truss [4],
edge density [33], [34], [35], and edge connectivity [36],
[37]. Among these studies, k-core-based community is
widely used because it is easy to represent and calculate.
Li et al. first defined the k-influential community based
on the notion of k-core, and designed an index-based
method to effectively retrieve influential communities in
a graph [7]; Chen et al. [28] presented two global algo-
rithms, forward and backward, to search the top-r influ-
ential communities in web-scale networks. Bi et al. [11]
improved the influential community search performance
by refining the original graph.

Admittedly, these approaches are very effective in the
influential community search over deterministic graphs. It
has to be pointed out that they cannot be directly utilized to
process the influential community search over uncertain
graphs investigated in this paper.

3 PROBLEM STATEMENT

In this section, we formulate the influential community
search problem over uncertain graphs. Table 1 summarizes
the notations and their meanings in this paper.

Let G ¼ ðV;E;vÞ be an undirected graph, where V and E
denote a vertex set and an edge set, respectively, and v is a
function that assigns a weight to each vertex in V . In other
words, vðvÞ represents the weight of vertex v. For each ver-
tex v 2 V , the degree of v is denoted as degðvÞ.

For an induced subgraph H ¼ ðVH;EH;vÞ of G where
VH�V;EH ¼ fðu; vÞju; v 2 VH; ðu; vÞ 2 Eg, the influence of H
is defined as the minimum weight of vertices in VH , i.e.,
fðHÞ ¼ minv2VHfvðvÞg. Specifically, the k-influential com-
munity over deterministic graphs is defined as follows.

Definition 1 (k-influential community [7]). Given a graph
G and k 2 N,H � G is a k-influential community if it satisfies
all the following constraints.

� Connection:H is a connected graph;
� Cohesion: 8v 2 VH , degðvÞ � k;
� Maximality: There is no other induced subgraph H 0

containing H that satisfies the two conditions above
and fðH 0Þ ¼ fðHÞ.

Given an uncertain graph G ¼ ðV;E; p;vÞ, where p is a
function that assigns an existence probability to each edge
in G. The existence probability of an edge e 2 E is pe. With-
out loss of generality, the existence probability of each edge
is assumed to be independent.

The concept of possible world semantics [24] is adopted
here, wherein a possible world represents a deterministic
instance of an uncertain graph. Thus, there are 2jEj instances
of anuncertain graph. In this paper, an instance ofG is denoted
byGðV;EGÞvG, whereEG�E. The probability ofGðV;EGÞ is

PrðGÞ ¼
Y
e2EG

pe
Y

e2EnEG

ð1�peÞ: (1)

TABLE 1
Frequently-Used Notations

Notation Definition

G¼ðV;E;vÞ A deterministic graph with a vertex set V , an
edge set E, and a function v assigns a weight

to each vertex
G¼ðV;E; p;vÞ An uncertain graph with a vertex set V , an

edge set E, a function p that assigns a
probability to each edge, and a function v

assigns a weight to each vertex
n;m The number of vertices and edges,

respectively
degðvÞ The degree of v in G
dv The maximum number of neighbors of v in G
fðHÞ The influence of subgraphH
FðHÞ The influence of subgraphH
pe The existence probability of the edge e2E
h-degðv) The maximum k that satisfies the probability

that v has at least k neighbors is not less than
h

H¼ðVH;EH;vÞ An induced subgraph of Gwhere
VH2V;EH¼fðu; vÞju; v2VH; ðu; vÞ2Eg

H¼ðVH;EH; p;vÞ An induced subgraph of G

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3781

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

According to Eq. (1), the probability of v 2 G owning at
least k neighbors is

Pr½degðv;GÞ � k� ¼
X
GvG

PrðGÞ; (2)

where each G has degðv;GÞ � k.

Definition 2 (ðk; hÞ-core [24]). Given an uncertain graph G
and two parameters k 2 N and h 2 ½0; 1�, a maximal induced
subgraph H ¼ ðVH;EH; p;vÞ of G is a ðk; hÞ-core if 8v 2
VH; Pr½degðv;HÞ � k� � h.

Based on ðk; hÞ-core, the ðk; hÞ-influential community
search over uncertain graphs is formulated as follows.

Definition 3 (ðk; hÞ-influential community). Given an
uncertain graph G, two parameters k and h, a ðk; hÞ-influential
community of G is a maximal connected subgraph H satisfying
all the following constraints.

� Connection:H is a connected graph;
� Cohesion: 8v 2 VH, h-degðvÞ � k;
� Maximality: There is no other induced subgraph H0

containing H which satisfies the two conditions above
and FðH0Þ ¼ FðHÞ.

Problem Statement. Given an uncertain graph GðV;E; p;vÞ
and two parameters k 2 N and h 2 ½0; 1�, the problem of
influential community search aims to find all the ðk; hÞ-influ-
ential communities of G.

4 AN ONLINE SEARCH ALGORITHM

In this section, we propose an online search approach for
calculating the ðk; hÞ-influential community. According to
Definition 3, the maximal connected ðk; hÞ-core of G is also a
ðk; hÞ-influential community for a given weighted uncertain
graph G. Therefore, our proposed online search approach
consists of two stages: calculating the connected compo-
nents of ðk; hÞ-core of G and computing ðk; hÞ-influential
communities. In what follows, we will discuss the two
stages in depth.

4.1 ðk; hÞ-Core Calculation

Let GðV;E; p;vÞ be an uncertain graph, and the maximum
degree of each vertex v 2 V be denoted as dv, the number of
all the neighbors of the vertex v in G. For a vertex v, its prob-
ability of owning at least k neighbors is computed as

Pr½degðvÞ � k� ¼
Xdv
i¼k

Pr½degðvÞ ¼ i�

¼ 1�
Xk�1
i¼0

Pr½degðvÞ ¼ i�:
(3)

In the following, Pr½degðvÞ � k� is denoted as k-probðvÞ for
simplicity. In case degðvÞ<k, it holds that k-probðvÞ ¼ 0. For
each vertex in a (k, h)-core, its k-prob is not less than h.

Given the properties of (k, h)-core, the calculation of
(k, h)-core is depicted in Algorithm 1. The main idea of our
algorithm is consistent with the (k, h)-core decomposition
proposed in [24]. A major difference lies in that (k, h)-core
does not require all vertices to be connected, while

(k, h)-influential community is a connected subgraph of G.
Therefore, we calculated all the connected components in (k,
h)-core.

Algorithm. Algorithm 1 takes an uncertain graph G, two
parameters k and h as inputs. Given an uncertain graph G,
for each (k, h)-core C, there exists a k-core C0 that contains
C. Accordingly, G is first refined by calculating the k-core in
the deterministic graph of G (Line 1). Line 2 initializes a core
set CoreS including all the ðk; hÞ-cores of the given uncertain
graph G. Then we compute k-probðvÞ of each vertex v 2 G
(Line 3). After that, ðk; hÞ-cores are computed by iteratively
deleting the vertices whose k-probabilities are less than h

(Lines 4-6). Moreover, k-probabilities of all the vertices that
are neighbors of the vertex v need to be updated. The for-
loop (Lines 4-6) cannot be stopped until the k-probability of
every vertex left is larger than the probabilistic threshold h.
This means that after the for-loop, the vertices in the given
graph G are retained if their k-probabilities are no less than
h. Based on this refined graph G, Lines 7 and 8 are executed
to find all the connected subgraphs C of G, which will be
further added to the result set CoreS.

Algorithm 1. ðk; hÞ-Core Calculation
Input: An uncertain graph G, two parameters k and h

Output: Connected components of ðk; hÞ-core
1 G the k-core of G;
2 Initialize a ðk; hÞ-core set CoreS ? ;
3 Calculate k-probðvÞ for all the vertices v 2 G;
4 foreach v in G with k-probðvÞ< h do
5 Update G by removing the vertex v ;
6 Recompute the k-probs for all the neighbors of v;
7 foreach Connected subgraph G0 in G do
8 Add G0 toCoreS as a connected component of

ðk;hÞ-core;
9 return CoreS

As shown in Algorithm 1, the processing time largely
depends on the calculation and update cost of the k-proba-
bilities of the vertices. A direct way to calculate k-probðvÞ is
to compute Pr½degðvÞ ¼ i� with i increasing from 0 to k�1.
However, the recalculation of k-probðvÞ is inefficient in this
way, especially when the edges related to v are removed.

To address this concern, we adopted a dynamic pro-
gramming approach to compute the k-probability of each
vertex [24]. Let Pr½degðvjfe1; . . . ; ehgÞ ¼ j� be Dðh; jÞ, where
h 2 ½1; dv� and j 2 ½0; h�. If the vertex v has k neighbors, then
there will be two situations, (1) the addition of eh makes the
degree of v equal to k; (2) prior to the addition of eh, the
degree of v is already k, that is

Dðh; jÞ ¼ peh �Dðh�1; j�1Þþð1�pehÞ �Dðh�1; jÞ; (4)

where peh is the existence probability of the edge eh. The
base case of Eq. (4) is

Dð0; 0Þ ¼ 1;
Dðh;�1Þ ¼ 0; h 2 ½0; dv�;
Dðh; jÞ ¼ 0; h 2 ½0; dv�; j > h:

8<
: (5)

3782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

Similarly, k-prob can be updated by

Pr½degðvjEðvÞ n fegÞ ¼ i� ¼
1

1�pe �
�
Pr½degðvÞ ¼ i��pe � Pr½degðvjEðvÞ n fegÞ ¼ i� 1�

�
;

(6)

where i 2 ½1; k�, pe 6¼ 1, and if i ¼ 0

Pr½degðvjEðvÞnfegÞ ¼ 0� ¼ 1

1�pe �Pr½degðvÞ ¼ 0�: (7)

Theorem 1. The time complexity of Algorithm 1 is Oðk�mÞ.
Proof. The ðk; hÞ-core calculation algorithm first calculates

the k-core of G, and then calculates k-prob of each vertex.
It needs OðnþmÞ time to calculate the k-core and requires
Oðk�dvÞ time to compute k-prob of a vertex v [32]. As a
result, it costs OðPv2V k�dvÞ time to initialize k-probabili-
ties of all the vertices.

For a vertex, the time complexity of updating the
k-prob based on Eq. (4.1) is OðkÞ, and then it requires
Oðk�dvÞ time to update the k-probabilities of its neigh-
bors. Accordingly, for all the vertices in G, this updating
operator (Lines 3 to 5) costs OðPv2V k�dvÞ time.

To summarise, the total time cost of the ðk; hÞ-core cal-
culation algorithm is

O

 X
v2V k�dv

!
þO

 X
v2V k�dv

!
þOðmþ nÞ

¼ O

 X
v2V k�dv

!
¼ Oðk�mÞ:

Therefore, the theorem holds. tu

4.2 ðk; hÞ-Influential Community Search

This subsection detailed our ðk; hÞ-influential community
search algorithm.

On the basis of Definition 3, we have the following
observation.

Observation 1. Given a (k, h)-influential community of G, there
may exist (k, h)-influential communities in it with higher
influence.

Example 2. As shown in Fig. 1, given k ¼ 1 and h ¼ 0:8,
fv7; v8; v9; v10g is a (1, 0.8)-influential community whose
influence is vðv8Þ ¼ 6. Note that fv7; v9; v10g � fv7; v8;
v9; v10g is equally a (1, 0.8)-influential community whose
influence is vðv10Þ ¼ 8. That is, the influential community
fv7; v9; v10g with influence 8 is contained in fv7; v8; v9; v10g
with a lower influence of 6.

Based on Observation 1, given k and h, to calculate all the
corresponding (k; h)-influential communities of G, we can
first obtain all the connected components of (k; h)-core and
then decompose them by iteratively removing the vertex
with the smallest weight.

Algorithm. The pseudo-code of the ðk; hÞ-influential com-
munity search algorithm is depicted in Algorithm 2. In Algo-
rithm 1, the ðk; hÞ-core of G needs to be obtained initially.
Then, all the connected components of ðk; hÞ-core (i.e., Ĝ) are

added to the result set Res (Lines 2-3). A key component of
the ðk; hÞ-influential community search algorithm is a while
loop that computes the ðk; hÞ-influential communities with a
peeling strategy. Specifically, for each Ĝ � G, the vertex with
the smallest weight is removed and the k-probabilities of the
remaining vertices are updated accordingly. Subsequently,
the ðk; hÞ-core of Ĝ is computed and utilized to refresh Ĝ. All
the previous steps are repeated until G is empty (Lines 4-8).
Finally, all the communities inRes are returned (Line 9).

Algorithm 2. ðk; hÞ-Influential Community Search

Input: An uncertain graph G, an integer k, and a probability
threshold h

Output: ðk; hÞ-influential communities of G
1 Initialize an influential community set Res ? ;
2 G the ðk; hÞ-core of G;
3 Add the connected components of G to Res;
4 while G is not empty do
5 for connected component Ĝ � G do
6 Remove the vertex with the smallest weight from Ĝ;
7 Ĝ the ðk; hÞ-core of Ĝ;
8 Add the newly generated connected components of

Ĝ to Res;
9 return Res

Example 3. Take Fig. 1 as an example. To gain all the
ð1; 0:7Þ-influential communities, the ð1; 0:7Þ-cores of G are
calculated as initial communities, that is, COM1 ¼
fv2; v3; v4; v5g with influence 1, COM2 ¼ fv7; v8; v9; v10g
with influence 6. Then the ð1; 0:7Þ-cores get decomposed.
Note that COM1 cannot be decomposed because if any ver-
tex in COM1 is removed, then the k-probabilities of remain-
ing vertices will be less than 0.7. Consider the community
COM2 where the vertex v8 has the smallestweight. By remo-
ving the vertex v8 fromCOM2 and updating the k-probabili-
ties of its neighbors, we can gain a new community
COM3 ¼ fv7; v9; v10gwhich cannot be further decomposed.
Finally, we gain three ð1; 0:7Þ-influential communities of
Gwhich are fv2; v3; v4; v5g, fv7; v8; v9; v10g, and fv7; v9; v10g.

Theorem 2. The time complexity of the ðk; hÞ-influential com-
munity search algorithm is Oðk�mÞ.

Proof. Algorithm 2 can be divided into two stages: calculat-
ing ðk; hÞ-core and decomposing ðk; hÞ-core. The while
loop in Algorithm 2 decomposes the ðk; hÞ-core by itera-
tively removing vertices with the smallest weight and
updating the k-probabilities of its neighbors. Therefore, in
the worst case, the time complexity of the decomposition
is OðPv2V k�dvÞ. Since the time complexity of Algorithm 1
isOðPv2V k�dvÞ, the time complexity of Algorithm 2 is

O

 X
v2V

k�dv
!
þO

 X
v2V

k�dv
!
¼ O

 X
v2V

k�dv
!
¼ Oðk�mÞ:

tu

5 AN INDEX-BASED ALGORITHM

Although the online approach proposed can effectively cal-
culate the ðk; hÞ-influential community, it is not suitable for
processing large-scale graphs.

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3783

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

In this section, we attempt to propose an index to
improve query efficiency. That said, building an index for
all possible communities is challenging. This is because the
parameter h is a real number between 0 and 1, which means
there are infinite possible values of h.

To tackle this problem,an index-based approach called
influential community over uncertain graphs index (ICU-
Index) is proposed. This partly result from a key observa-
tion that the corresponding communities of h in a certain
interval are consistent. Specifically, communities are
divided and organized as groups under different probabil-
ity intervals.

5.1 The Structure of ICU-Index

The ICU-Index is utilized to organize communities under
different k and h. To build the ICU-Index, we first fix the
parameter k and then calculate the influential communities
of all h under k. The range of k is ½1; kmax�, where kmax is the
largest k that enables the k-core of G to be non-empty.

As mentioned previously, different from k, h is a real
number between 0 and 1, and thus there can be infinite pos-
sible values of h. This renders it is impractical to enumerate
all the communities under different h. Besides, the commu-
nities are distinct under different h, so Algorithm 2 cannot
be adapted to calculate the influential communities without
specifying h.

To alleviate this problem, we make a key observation
based on h-threshold [32]. The h-threshold of vertex u is the
maximum value of h that enables u to be contained in the
ðk; hÞ-core.
Observation 2. For a given G and k, ðk; hÞ-cores of G have a

nested property, that is, ðk; hjÞ-core � ðk; hiÞ-core if hj > hi.

Example 4. Consider the uncertain graph G in Fig. 1. With
k ¼ 1, Fig. 2shows the h-threshold of all the vertices in G.
Then, we have ð1; 0:92Þ-core � ð1; 0:9Þ-core � ð1; 0:8Þ-core
� ð1; 0:76Þ-core � ð1; 0:6Þ-core.
Let Nt be the h-threshold set of all vertices in G, hi 2 Nt,

and hmax is the maximum value of Nt. Due to the nested
property of the ðk; hÞ-cores, in the ICU-Index, the probabil-
ity interval ½0; hmax� is divided into multiple subintervals so
that under each subinterval it has the same ðk; hÞ-influential
communities. In this way, all the ðk; hÞ-influential communi-
ties can be organized into different groups.

The ICU-Index is a data structure with different parts,
each of which contains keys representing probability subin-
tervals and values representing communities corresponding
to probability intervals. Specifically, for any h belonging to a
certain subinterval, the ðk; hÞ-influential community search
always returns the same communities associated with the
subinterval in the ICU-Index. In this way, for a

ðk; hÞ-influential community search, we can readily get the
final results by searching the subinterval where h belongs to.

Note that, for each interval, the connected component of
(k, h)-core corresponding to the largest h is taken as its initial
influential community. Then, we iteratively peel the vertex
with the smallest weight in the initial community to get
influential communities. Doing so can guarantee that most
of the generated communities are located in the current
interval. Therefore, each interval adopts the form of left
open and right closed to get the largest h of the interval and
cover all possible h. That is, ð0; h1�; ðh1; h2�; . . . ; and ðhi�1; hi�.
It is worth to notice that the first subinterval ð0; h1� needs to
be further subdivided. This subdivision operator is crucial
to make sure for a certain interval, corresponding communi-
ties are always the same, which can ensure accurate results
for users.

Example 5. Fig. 3 shows the ICU-Index of the graph in Fig. 1
with k ¼ 1. The probability threshold ½0; 0:92� is divided
into five subintervals ð0; 0:6�; ð0:6; 0:76�, ð0:76; 0:8�;
ð0:8; 0:9�, and ð0:9; 0:92�. Each interval is associated with
one or more communities. For instance, the probability
interval ð0:9; 0:92� is associated with a community
fv2; v3; v5g. This indicates that for all the ðk; hÞ-influential

Fig. 2. h-threshold of all vertices in G ðk ¼ 1Þ.

Fig. 3. ICU-Index of G ðk ¼ 1Þ.

3784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

community search with h 2 ð0:9; 0:92�, the community
fv2; v3; v5g could be directly returned as final results
directly.

5.2 Index Construction

To construct ICU-Index, we need to divide the interval
ð0; hmax� into several subintervals and then calculate the
communities corresponding to the left boundary value of
each subinterval. Since each interval is left open, in order to
calculate the communities corresponding to these intervals,
we present ðk; tÞ-core as follows.

Definition 4 (ðk; tÞ-core). Given an uncertain graph G and two
parameters k and t, H is a ðk; tÞ-core of G if the probability of
each vertex in VH owning at least k neighbors is greater than t,
i.e., 8v 2 VH; Pr½degðv;HÞ � k�> t.

The definition of ðk; tÞ-core is similar to that of ðk; hÞ-core
(Definition 2). Differently, it holds that the probability of
each vertex in ðk; tÞ-core owning at least k neighbors
exceeds the threshold t.

In index construction, interval ð0; hmax� is first divided
into i subintervals ð0; h1�, ðh1; h2�; . . . ; ðhi�1; hi� for a specified
k, where hi ¼ hmax. Any h in the same subinterval corre-
sponds to the same influential communities. Note that, the
initial community under subinterval ðhj; hjþ1� (0�j< i) can
be obtained by computing ðk; tÞ-core with the probability
threshold hj. After that, all the influential communities
under the subinterval ðhj; hjþ1� are computed by the peel-
ing-pruning strategy to progressively decompose the initial
influential communities.

Different from Algorithm 2, after removing the vertices
with the smallest weight, we need to calculate the ðk; tÞ-core
of the subgraph consisting of the remaining vertices. Note
that the decomposition of the current communities under a
subinterval may incur subdivision of the current interval.
This subdivision is necessary to ensure that under each
probability subinterval the corresponding communities
remain the same. In particular, the subdivision rule could
be described as follows.

Subdivision Rule. Consider an interval ðhj; hjþ1� for
0�j< i. After removing the vertices with the smallest
weight in the current communities under this interval, it
first updates k-probabilities of vertices contained in the
refined communities. The refreshed k-probabilities in the
interval ðhj; hjþ1� are selected as boundaries of new subin-
tervals. For example, assume there are i vertices with
k-probabilities pi 2 ðhj; hjþ1�. The interval ðhj; hjþ1� can then
be divided into iþ 1 subintervals, i.e., ðhj; p0�, ðp0; p1�; . . . ;
ðpi; hjþ1�. This subdivision procedure is executed recursively
until it cannot get any ðk; hÞ-influential community under
the new subinterval.

Algorithm. The ICU-Index construction algorithm is
depicted in Algorithm 3. Let Indk be the ICU-Index of G
under k; for each Indk, the h-thresholds of all vertices are
calculated, and then (0, hmax] is divided into subintervals in
non-descending order of these h-thresholds. That is, ð0; h1�;
ðh1; h2�; . . . ; ðhi�1; hi�, where hi ¼ hmax (Lines 3-4). Each inter-
val is further divided in accordance with the aforemen-
tioned subdivision rule. For the new intervals, the
corresponding communities are computed (Lines 5-7).

When decomposing the current communities, we first store
each community under the current interval (Line 18),
remove the vertex with the smallest weight and calculate
the ðk; tÞ-core consisting of the remaining vertices (Lines 19-
20). For the vertex whose k-prob is in the interval during the
decomposition, its k-prob is used as a new boundary value
to segment the current interval (Lines 21-24). The above
steps will be repeated until all communities cannot be
decomposed.

Algorithm 3. ICU-Index Construction

Input: An uncertain graph GðV;E; p;vÞ.
Output: An index of all ðk; hÞ-influential communities of G.

1 for k ¼ 1 to kmax do
2 Initialize Indk ? and Res ? // Indk is ICU-

Index of G under k
3 ht h-threshold of all vertices in ascending order ;
4 subInt intervals from ð0; h1� to ðhmax�1; hmax� //Divide

ð0; hmax� into subintervals

5 foreach Invl in subInt do
6 Res SegmentðInvl;G; ResÞ;
7 Append Res to Indk;
8 return Indk;
9 return all Indk from 1 to kmax

10
11 Procedure Segment(Invl, g, res)
12 hi the left boundary of Invl;
13 hj the right boundary of Invl;
14 t hi;
15 C ðk; tÞ-core of g;
16 foreach connected component Cn � C do
17 while Cn is not empty do
18 Append Cn to res:Invl;
19 u argminv2CnvðvÞ;
20 Cn ðk; tÞ-core of Cn n fug;
21 foreach v 2 Cn do
22 if k-probðvÞ 2 ðhi; hjÞ then
23 Segmentððhi; k-probðvÞ�; Cn; resÞ;
24 Segmentððk-probðvÞ; hj�; Cn; resÞ;
25 return res

Example 6. For G in Fig. 1 with k ¼ 1, we have a h-threshold
set f0:92; 0:9; 0:8; 0:76; 0:6g, and the initial interval is
ð0; 0:92�, which is divided into subintervals ð0:9; 0:92�,
ð0:8; 0:9�, ð0:76; 0:8�, ð0:6; 0:76�, and ð0; 0:6�. Among these
intervals, only ð0; 0:6� can be further decomposed.
According to the subdivision rule, the k-probs of all verti-
ces in the subgraph corresponding to ð0; 0:6� is calculated,
and we obtain 0.5 and 0.52 located in ð0; 0:6�. After that,
the interval ð0; 0:6� can be divided into three sub-intervals
ð0; 0:5�, ð0:5; 0:52�, and ð0:52; 0:6�. Likewise, the subinter-
val ð0; 0:5� can be further divided, and three new subin-
tervals, ð0; 0:2�, ð0:2; 0:4�, and ð0:4; 0:5�, are obtained.
Time Complexity. The construction of ICU-Index involves

two parts, partition of intervals and calculation of the corre-
sponding communities of the intervals. For a given k, the
upper bound of the number of intervals is Oð2nÞ, where n
refers to the number of vertices in G. The time complexity of
calculating the corresponding communities of each interval
is the same as that of Algorithm 2. In the worst case, it costs

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3785

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

Oðk�mÞ time. Therefore, the time complexity of index con-
struction is Oðk2max � n �mÞ, where kmax is the largest k that
enables the k-core of G not to be empty.

Space Complexity. For a given k, suppose the probability
threshold range (0, hmax] is divided into t intervals. And the
size of the communities in each interval is linear to the size
of its corresponding (k, h)-core. In the worst case, for each
node v in an interval, it can be stored at most dv times,
where dv is the degree of v. Therefore, the size of communi-
ties in each interval is at most OðPv2V dvÞ ¼ OðmÞ, where m
is the number of edges. Therefore, the space complexity of
the ICU-Index is O(kmax � t �m).

The size of t depends on the probability distribution of
edges and the weight distribution of vertices. Generally, we
have t and kmax 	 n. In the worst case, the number of inter-
vals (i.e., t) is related to the accuracy of h. That is, if h takes d
decimal place, there can be at most 10d intervals. For exam-
ple, given a graph G, suppose that the value of h is accurate
up to 3 decimal places, then there will be at most 103 inter-
vals for G. Note that even for small-scale graphs (e.g., Flickr
in Section 8), the number of nodes is much greater than that
of intervals (e.g., 105
 103).

5.3 The Query Algorithm

In this subsection, we present the ICU-Index query algo-
rithm for the ðk; hÞ-influential community search.

Algorithm 4. ICU-Index Query

Input: An integer k, a probability threshold h, and the ICU-
Index of G.

Output: ðk; hÞ-influential communities of G.
1 Indk the ICU-Index of G under k;
2 Initialize an influential community set Res ? ;
3 foreach interval Invl in Indk do
4 if h 2 Invl then
5 Append the communities of Invl to Res;
6 return Res

As depicted in Algorithm 4, it takes an uncertain graph G,
the ICU-Index of G, two parameters k and h as inputs. It first
initializes Indk as the ICU-Index of G under k (Line 1). Then,
Algorithm 4 initializes an influential community set Res to
store all the final results (Line 2). For each interval Invl of
Indk, we verify whether it contains h (Lines 3-5). If h is
located in the interval, all the corresponding communities
will be added to Res as final results (Lines 4-5).

Theorem 3. Given arbitrary k and h, Algorithm 4 correctly
retrieves all the (k, h)-influential communities of G according
to ICU-Index.

Proof. To prove the correctness of Algorithm 4, we first
prove that the ICU-Index generated by Algorithm 3 cov-
ers all the influential communities of G. Note that Algo-
rithm 3 generates the ICU-Index for all possible k, i.e.,
k 2 ½1; kmax�. For a given k, due to the nested property of
(k, h)-core, all possible h can be divided into several inter-
vals, and h in the same interval corresponds to the same
communities. Therefore, decomposing the value range of
h under each k into intervals can cover all possible h

and obtain corresponding communities. This means the

ICU-Index generated by Algorithm 3 covers all possible
influential communities.

For the specified k and h, Algorithm 4 retrieves all
intervals containing h under k to obtain all the corre-
sponding (k, h)-influential communities. Therefore, the
theorem holds. tu
Time Complexity. As long as h is located at the right inter-

vals, it takes Oð1Þ time to obtain all the corresponding com-
munities. Thus, the time complexity of the ICU-based query
processing is OðtÞ, where t is the number of all the intervals.

6 OPTIMIZATION

The proposed ICU-Index is efficient in improving the query
performance of the ðk; hÞ-influential community. This is
because it avoids numerous repeated calculation of the
k-probabilities for all the vertices in the given graph. On the
contrary, the ICU-Index stores all the intervals and their cor-
responding communities, which takes up a large amount of
space. Besides, due to the inclusion relationship between
intervals, it is inefficient to traverse all the intervals to obtain
the results. As a consequence, it is not appropriate to utilize
the ICU-Index for processing large-scale graphs.

To alleviate this issue, two kinds of optimization strate-
gies are proposed to further improve the ICU-Index. We uti-
lize a forest-based index structure which helps boost query
performance. In order to decrease the space cost of the ICU-
Index, two strategies are proposed to avoid redundant stor-
age of communities and vertices, respectively.

6.1 Forest-Based Index Structure

Based on the ICU-Index, for a ðk; hÞ-influential community
search, it needs to traverse all the keys in the index and
return the intervals which the probability threshold h

belongs to. To further reduce the search space, we develop
a new forest-based index, namely forest-based influential
community over uncertain graphs index (FICU-Index). All
the intervals and their corresponding communities are orga-
nized as a tree structure and all the trees corresponding to k
constitute a forest.

Fig. 4 shows the FICU-Index of G in Fig. 1 with k ¼ 1. The
root node of the index contains the initial interval ð0; hmax�,
and all the subintervals gained through decomposition are
contained in its child nodes. Specifically, in Algorithm 3, the
intervals obtained in the ith round are stored in the nodes
of layer i of the tree, in which the decomposed intervals
are in the parent nodes, and the decomposed subintervals
are in the child nodes. The final intervals that cannot be
decomposed are in the leaf nodes of the tree. Thus, for a

Fig. 4. Forest-based Index of G ðk ¼ 1Þ.

3786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

ðk; hÞ-influential community search, we can identify leaf
nodes whose intervals contain the probability threshold h,
and the communities under this interval can be returned as
final results. Furthermore, all the ancestor nodes of these
leaf nodes are computed in turn and the communities
stored in these ancestor nodes are the final results of the
ðk; hÞ-influential community search.

The construction of FICU-Index is similar to Algorithm 3,
except for the difference that the original interval is stored
in the root node. In the segmentation procedure of Algo-
rithm 3, the segmented interval is stored in the parent node,
and the sub-intervals are stored in its child nodes.

It is noted that the main difference between ICU-Index
and FICU-Index is the way of organizing intervals, which
will not affect the accuracy of query results. Therefore, we
can retrieve all communities given arbitrary k and h through
FICU-Index according to Theorem 3. Based on FICU-Index,
given a probability threshold h, a straightforward query
approach is first used to search an interval containing h

from the root node and then traverse the entire tree. Its time
complexity is OðtÞ, where t is the number of intervals.
To improve query efficiency, we adopt a bottom-up query
technique. Particularly, for a ðk; hÞ-influential community
search, this approach stores all the leaf nodes of the tree in
an array. The leaf node whose interval contains h is found
by the binary search technique. The communities stored in
this leaf node are added to the result set. Meanwhile, all the
ancestors of the leaf node are selected and the communities
stored in them are added to the final result.

Time Complexity. Regarding the FICU-Index query algo-
rithm, the query time is linear to the depth of a given inter-
val in the tree. In the worst case, i.e., FICU-Index is totally
unbalanced, and the query based on FICU-Index degener-
ates to sequential search. In this scenario, the time complex-
ity of FICU-Index query is O(t), where t is the total number
of all the intervals. And if FICU-Index is balanced, it costs O
(log ðtÞ) time to query influential communities.

Example 7. Given k ¼ 1, Fig. 4 shows the forest-based index
of G. This index organizes all the intervals and their associ-
ated communities in Fig. 3 as a tree structure. That is, each
node stores an interval and its associated corresponding
communities. For instance, the node of interval ð0:8; 0:9�
stores communities COM1 ¼ fv2; v3; v5g and COM2 ¼
fv7; v9; v10g. Given a probability h 2 ð0:8; 0:9�, the two

communities COM1 and COM2 can be returned as final
results directly. Besides, given k ¼ 1 and h ¼ 0:53, we first
find the interval of leaf nodes that containing 0.53 in the
ICU-Index, that is, (0.52,0.6], and return its communities.
We continue to search the parent node of (0.52,0.6] up to the
root node and return the corresponding communities.
Finally, fv7; v9; v10g, fv7; v8; v9; v10g, fv2; v5; v6; v7; v8; v9;
v10g, and fv1; v2; v3; v4; v5; v6; v7; v8; v9; v10g are returned as
final results.

6.2 Space Occupancy Optimization

FICU-Index still bears much redundant space cost. In this
subsection, we thus optimize the index by reducing redun-
dant communities and vertices.

6.2.1 Community Combination

As shown in Fig. 5a, a community may be stored in different
intervals of the index for many times. For instance, under
the intervals ð0; 0:2�, ð0:2; 0:4�, and ð0:4; 0:5�, there are three
identical communities that are fv7; v8; v9; v10g; fv7; v9; v10g,
and fv7; v9g. To this end, we propose a community combina-
tion strategy to reduce the redundant space costs.

The main idea of the strategy is to merge the same com-
munities under each interval and try to avoid storing these
communities repeatedly. For an interval, we merge the com-
munities that appear in all of its subintervals. Each subinter-
val is processed in sequence during the index construction.
This means that we cannot identify duplicated communities
of subintervals before the whole index is constructed.
Therefore, we merge the duplicated communities in a bot-
tom-up manner after the construction of FICU-Index. First,
leaf nodes are taken into account. The communities con-
tained in the leaf nodes with the same parent are moved to
the parent node. For non-leaf nodes with the same parent,
the same communities in these nodes are also moved to
their parent node. Through this merging operator, it signifi-
cantly reduces the size of the index, and decreases the space
cost accordingly. It is worth noting that for an interval with-
out a unique community, the vertex of this interval is kept
and marked as empty to ensure the integrity of leaf nodes
so that for any h there is a leaf node containing it.

Example 8. Fig. 5 shows the compression process of the ICU-
Index in Fig. 2. Three communities COM1 ¼ fv7; v8; v9;

Fig. 5. An example of community combination of ICU-Index of G ðk ¼ 1Þ.

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3787

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

v10g,COM2 ¼ fv7; v9; v10g, andCOM3 ¼ fv7; v9g are stored
in all the nodes corresponding to the intervals ð0; 0:2�,
ð0:2; 0:4�, and ð0:4; 0:5�. As shown in Fig. 5, these intervals
are subintervals of the interval ð0; 0:5�. Accordingly, it only
needs to store these communities COM1, COM2, and
COM3 in the node of the interval ð0; 0:5�. With this space
compression strategy, the space overhead of the ICU-Index
can be drastically reduced.

6.2.2 Community Compression

In FICU-index, each interval stores all the corresponding
communities. As shown in Fig. 5b, the communities under
interval (0,0.5] have inclusion relationships. That is, vertices
of one community are proper subsets of another commu-
nity, which means that many vertices are repeatedly stored
in these subgraphs. This results in excessive space redun-
dancy. Considering this, we propose a method to compress
communities and alleviate the issue. Specifically, instead of
storing all the communities corresponding to each interval
of FICU-Index, we reorganize the communities with inclu-
sion relationships as a tree. That is, for two communities C1

and C2, if C2 contains C1, C1 is taken as the child of C2, and
C2 retains the vertices that do not exist in C1. In this way,
the vertices of communities with inclusion relationships are
stored only once, which can significantly reduce the space
consumption of the index.

Example 9. Consider the ICU-Index in Fig. 5. Given k ¼ 1,
the communities of interval (0, 0.5] after community com-
bination are fv1; v2; v4; v5; v6; v7; v8; v9; v10g, fv7; v8; v9; v10g,
fv7; v9; v10g, and fv8; v9g, as shown in Fig. 6a. Note that
there is a containment relationship between these com-
munities, so these communities can be reorganized as a
tree. As shown in Fig. 6b, the root node of the tree is
fv1; v2; v4; v5; v6g and fv7; v9g is a leaf node. In this way,
we can reduce the space occupancy of the communities
stored in each interval.

In Algorithm 5, for each interval, all the corresponding
communities in the non-decreasing order of influence are
organized as contained trees according to their inclusion
relationships (Lines 3–4). This operation can be effectively
implemented by using union-find, and each tree node only
stores the community vertices that do not exist in its

descendant nodes. In these contained trees, any two trees
are merged if they have the same root (Line 5).

Algorithm 5. Community Compression

Input: The FICU-Index of the graph G after community
combination and an interge k.

Output: The compressed FICU-Index.
1 Indk the FICU-Index of G under k;
2 foreach Indk:Invl do
3 foreach communities in non-descending order of influence do
4 Construct contained trees // each tree node

retains its unique community vertices

5 Merge two trees if they have the same root;

Therefore, for each contained tree, the communities
stored in leaf nodes are non-contained influential communi-
ties [7]. To query communities with significant influence,
we only need to traverse the tree from leaf nodes in a bot-
tom-up manner until achieving desired results. The time
complexity of querying all communities from the contained
tree is linear to the result size [7]. In the worst case, the time
complexity is OðnÞ.

Space Complexity. For a given k, there is at most t inter-
vals. In the worst case, the size of the communities in each
interval is OðnÞ. Hence, the space complexity of the FICU-
Index is Oðkmax � t � nÞ.

7 INDEX MAINTENANCE

Maintaining the FICU-index is a very challenging problem.
Due to the influence of edge probability, it is quite different
from maintaining k-influential community. Specifically, if
edges change in k-core, the existing information can be used
to determine whether the core number of the affected verti-
ces needs to be updated. However, the situation may be dif-
ferent in uncertain graphs. Because of the edge probability,
the insertion or deletion of an edge affects the k-prob of the
vertex and further affects the calculation of the influential
community. This is because inserted or deleted edges may
change the removal order of vertices during decomposition,
thereby influencing the final results. As a result, edge
updates tend to incur a prohibitively large number of verti-
ces in FICU-Index needing to be updated in turn, which is
time-consuming.

In this section, we develop a heuristic approach that
avoids recalculating the entire index, which helps to
enhance the performance of index maintenance. The mecha-
nism of this method is to update the communities where the
inserted or deleted edges are located instead of the entire
graph.

Generally, there are two update operators, including the
insertion and deletion of edges. Consider the edge insertion
operator. To find the affected subgraph, we update the
h-thresholds of the vertices on both sides of the insert edge
and calculate the ðk; hÞ-core containing the affected vertices
with the largest h-threshold. Then we decompose it into
ðk; hÞ-influential communities. Specifically, after inserting
an edge ðu; vÞ, the h-thresholds of u and v are refreshed as
hu and hv, respectively, and we have hm ¼ maxfhu; hvg. In
the original index, those communities under the intervals
whose low bounds are greater than hm cannot be affected

Fig. 6. An example of community compression of interval ð0; 0:5� of
ICU-Index in Fig. 5.

3788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

by this update operator. Therefore, only a part of the origi-
nal FICU-Index requires to be recalculated. Moreover, in
these affected parts of the FICU-Index, it is unnecessary to
update the communities that are disconnected with u and v.
That is to say, the insertion of the edge ðu; vÞ can only affect
the connected subgraphs containing u or v.

From the above analysis, to update an edge ðu; vÞ, the
heuristic approach primarily contains three steps, including
calculating initial communities containing vertices u; v and
their corresponding intervals according to the updated
h-threshold of u and v, decomposing these initial communi-
ties, as well as finding and updating corresponding parts of
the FICU-Index affected by the edge update. Similarly, the
edge deletion operator can be processed in the same way.

8 EXPERIMENTS

This section offers a detailed analysis of the extensive
experiments we have conducted to evaluate our proposed
solutions. Section 8.1 introduces the setup of the experi-
ment, while Section 8.2 presents experimental results.

8.1 Setup

We evaluate the following five algorithms.

� Online: the online algorithm depicted in Section 4
without an index;

� ICU-based Query: the ICU-Index query algorithm
depicted in Section 5;

� FICU-based Query: the FICU-Index query algorithm
depicted in Section 6.

� ICU-construct: the ICU-Index construct algorithm
depicted in Section 5;

� FICU-construct: the FICU-index construct algorithm
with optimizations in Section 6.

Existing methods of influential community search are all
for deterministic graphs, which are not suitable for calculat-
ing and updating k-probs. Therefore, Online is used as the
baseline to compare with index-based algorithms. The
experimental results show that the index-based methods
are at least two orders of magnitude faster than the baseline.
At the same time, we have also compared the construction
time and space consumption of the two indexes. The con-
struction time of the two indexes is similar, but the space
consumption of the FICU-Index is less than half of that of
the ICU-Index. Furthermore, we have compared the influ-
ential community model over deterministic graphs with the
model proposed in this paper and analyzed the differences
between the two.

Data Sets. Six data sets including Flickr, Human, DBLP,
YouTube, WikiTalk, and LiveJournal are utilized to evaluate
the above algorithms. Flickr1 is a platform offered by Yahoo
for providing photo storage, solution sharing and online
community services. The probabilities of edges represent
the jacquard coefficient of the groups of two users [38].
Human is a biological interactive network of BioMine
organism set which is a database of the project BioMine2.
The probability of an edge represents the confidence of the

interaction between vertices [16], [39]. DBLP is a database
system that provides open bibliographic information for
major computer science journals and papers. In this dataset,
vertices represent different authors, and edges between ver-
tices represent the co-relationship between two authors.
The probability of each edge is calculated by 1�e�x=2, where
x is the number of collaborative two-authored papers [38],
[40]. YouTube is a video website that users can download,
watch and share videos or short films. Wiki-Talk is a net-
work that includes all users and discussions from the time
when Wikipedia was founded until January of 2008. Live-
Journal is a comprehensive SNS dating website integrating
functions of forum, blog, etc. These networks are chosen
from the Stanford Network Analysis Platform3. For these
datasets we have generated probability values uniformly
distributed in (0, 1]. And the probabilities of all the edges
take three significant digits.

Table 2 shows the details of the data sets. Some other sta-
tistical information is presented except for the total number
of vertices and edges in data sets, where dmax is the maxi-
mum degree of all vertices in a graph, and kmax is the largest
k that enables the k-core to be non-empty in a graph.
Besides, the PageRank of each vertex is used as its weight,
and the damping factor of PageRank is set to 0.85.

All the graphs are stored in memory before the algo-
rithms are implemented in Python, version 3.8 (64 bit). The
experiments are conducted on a computer with 2.8GHz
Intel Core i5 CPU and 32 GB memory.

8.2 Evaluation

Experimental Parameters. The ðk; hÞ-influential community
query has two parameters k and h. The probability thresh-
old h is varies from 0.1 to 0.9 with a step size of 0.2; k is an
integer obtained from f5; 10; 15; 20; 25g. As shown in Table 3,
the default of k and h are 15 and 0.5, respectively.

Exp-1: Evaluation of the Query Time With Different k. In this
testing, we have evaluated the efficiency of the Online
search, ICU-based query and FICU-based query algorithms
with k varying. Fig. 7 shows the running time of the three

TABLE 2
Real Data Sets

Graph vertices Edges dmax kmax

Flickr 24,125 300,836 546 225
Human 27,762 1,570,472 62,580 145
DBLP 636,751 2,366,461 446 118
YouTube 1,134,890 2,987,624 28,754 51
WikiTalk 2,394,385 4,659,565 10,029 131
LiveJournal 3,997,962 34,681,189 14,815 360

TABLE 3
Experimental Parameters

Parameter Values Default Value

k 5, 10, 15, 20, 25 15
h 0.1, 0.3, 0.5, 0.7, 0.9 0.5

1. https://www.flickr.com/
2. https://www.cs.helsinki.fi/group/biomine/ 3. http://snap.stanford.edu/

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3789

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

algorithms on six datasets. Over all data sets and different k
values, FICU-Index runs much faster than Online, while
ICU-Index spends more time between them. It is noted that
the gap between Online and index-based approaches
increases with the decrease of k. This is because the smaller
the k is, the more vertices satisfy the ðk; hÞ-core constraint,
which generates more time on the part of the Online method
for calculating and updating k-probs of vertices.

Exp-2: Evaluation of the Query Time With Different h. In this
testing, we have evaluated the efficiency of Online search,
ICU-based query and FICU-based query algorithms with h

varying. The running time of three algorithms on six data-
sets is shown in Fig. 8. With the increase of h, the running
time of all algorithms decreases. The reason is that the
increase of h makes the fewer nodes satisfy the constraint
that k-prob is not less than h, and the calculation time
amount of the Online search will be smaller. However, the
trend of index-based methods is not so obvious, and the
FICU-Index has the highest efficiency. Meanwhile, the
query time of the FICU-Index is less than that of the ICU-
Index, and the difference of query time between FICU-Index
and ICU-Index with different h is larger than that with dif-
ferent k values. This indicates that the index-based method
is more sensitive to h because, for FICU-Index, different val-
ues of h corresponding to vertices with different depths.

Exp-3: Evaluation of the Construction Time and Space Cost on
Different Data Sets. In this testing, we have evaluated the
index construction time and space cost of the two proposed
indexes on different datasets. Here, ICU-construct denotes

the algorithm for constructing ICU-Index and FICU-con-
struct denotes the algorithm for constructing FICU-Index
with the optimizations proposed in Section 6.

Fig. 9a shows the running time of two construction algo-
rithms on six datasets. Compared to ICU-construct, FICU-
construct spends more time constructing index because
FICU-Index has extra forest structure. However, since the
search tree is built during the decomposition of ðk; hÞ-influ-
ential communities, the construction time difference
between ICU-Index and FICU-Index is less than 10%.

Fig. 9b shows the index size on six datasets. The scale of
the index increases with the growth of data scale, especially
the number of edges in networks. Because the more edges
there are, the more new k-probs will be newly generated in
the process of community decomposition, which results in
many new intervals and communities. Therefore, the space
occupation of the index increases significantly. On the six
datasets, the size of FICU-Index is smaller than that of ICU-

Fig. 7. Query time with varying k (h ¼ 0:5).
Fig. 8. Query time with varying h (k ¼ 15).

Fig. 9. Index construction time and space cost on different data sets.

3790 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

Index. For example, in the worst case (LiveJournal), ICU-
Index takes up about 1.41GB memory, while FICU-Index
uses roughly 830MB memory. The usage of memory is
reduced by nearly 41%. This is because the proposed opti-
mization strategies refine the communities and vertices that
are repeatedly stored in ICU-Index. Thus, the construction
time of the two indexes is similar, but FICU-Index signifi-
cantly reduces the space consumption of the index.

Exp-4: Influential Community Model Comparison. In this
testing, we have evaluated the difference between the
ðk; hÞ-influential community model and the k-influential
community model on two real datasets, Flickr and DBLP.
We first evaluated the dissimilarity based on the Jaccard
distance of the vertices of the top-10 communities obtained
by the two models. The Jaccard distance between two com-
munities X and Y is defined as 1� X\Y

X[Y . The larger the
value, the greater the difference. We also compared the size
of the top-r communities of two models through the size
ratio of ðk; hÞ-influential community and k-influential com-
munity under different k. The smaller the ratio, the larger
the scale gap between them. Fig. 10 shows there is less over-
lap between them. Meanwhile, the communities obtained
by the ðk; hÞ-influential community model are much smaller
than that of the k-influential community model. The reason
lies in that uncertain graphs introduce the probability con-
straint of the relationship between vertices, and the mem-
bers of ðk; hÞ-influential communities are connected more
closely.

Besides, we have compared the most influential commu-
nities in Flickr to further illustrate the characteristics of the
two influential community models. Fig. 11 shows the most
influential communities in Flickr under different influential
community models with k ¼ 5 and h ¼ 0:5. Among them,
the darker the color of the vertex (edge), the larger the
weight (probability). It can be seen from the results that
compared with the k-influential community, (k, h)-influen-
tial community model has a tighter connection, although
the influence of the community is smaller. The main reason

is that (k, h)-influential community needs to add some verti-
ces with smaller weights to maintain a higher k-prob and
ultimately satisfy the constraint of h.

Exp-5: Index Maintenance. In this testing, we have evalu-
ated the running time of our proposed index maintenance
approaches. Recompute denotes the approach that uses the
FICU-construct algorithm to recompute the entire index
when graphs are updated. Heuristic update is the heu-
ristic index update approach proposed in Section 7. Follow-
ing the work in [7], to simulate the graph update, we
randomly deleted 1000 edges from each dataset and then
inserted them to restore the original dataset. In the process
of deletion and insertion, we ran the index maintenance
algorithms respectively. The running time of the algorithms
is shown in Fig. 12. For all vertices affected by edge inser-
tion/deletion, we need to re-decompose the ðk; hÞ-cores con-
taining them. On LiveJournal, Heuristic update saves
less than 20% of the running time compared with Recom-

pute, while on other data sets, it saves more than 30% of
the running time.

Exp-6: Case Study. In this testing, we have conducted a
case study on the DBLP data set where the weight of each
vertex represents its PageRank. Two famous researchers in
data management and graph computing, Jian Pei and Fran-
cesco Bonchi, are referenced here. Fig. 13 shows the
ðk; hÞ-influential communities containing Jian Pei with k ¼ 5
and the probabilistic threshold h growing from 0.3 to 0.5.
Moreover, Fig. 14 illustrates the ðk; hÞ-influential communi-
ties of Francesco Bonchi with h ¼ 0:5 and k varying from 3
to 5. As shown, the sizes of communities increase with the

Fig. 10. The differences between deterministic and uncertain influential
models under different k (h¼0:5).

Fig. 12. Dynamic update of FICU-Index (k¼5).

Fig. 11. The most influential community in Flickr under different influen-
tial models (k¼5).

Fig. 13. Top-1 ðk; hÞ-influential community of DBLP (k¼5).

Fig. 14. Top-1 ðk; hÞ-influential community of DBLP (h¼0:5).

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3791

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

growth of k, while the influence of communities represented
by the font size of vertices decreases. Again, as h grows, the
sizes of communities increase. This is in line with our expec-
tation, since it requires adding more vertices for the commu-
nities to satisfy the probabilistic threshold constraint. From
the above analysis, in practice, it needs an appropriate value
of k and h for gaining expected communities. For example,
if users want a dense community, then a large k and h are
needed. Meanwhile, choosing a large h when k is small may
result in no community that meets the ðk; hÞ-influential com-
munity conditions.

9 CONCLUSION

In this paper, we have examined the influential community
search problem over uncertain graphs for the first time. We
have formulated the ðk; hÞ-influential community model in
uncertain graphs, and proposed an online algorithm with-
out an index. We have designed an ICU-Index to search
influential community in uncertain graphs, which achieves
improved query efficiency. Moreover, two kinds of optimi-
zation strategies have been proposed for ICU-Index and
FICU-Index, which can speed up query processing and sig-
nificantly reduce space occupation. Through extensive
experiments on real datasets , we have successfully demon-
strated the efficiency and effectiveness of our approaches. It
is also an interesting work of computing top-r influential
communities. Although the proposed algorithms in this
paper can resolve this problem to some extent, it has to be
acknowledged that the performance needs to be improved.
Hence, in our future work, we will seek to explore efficient
pruning strategies and progressive algorithms to boost the
query performance of the top-r influential community
search over uncertain graphs.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their careful guidance of the paper.

REFERENCES

[1] S. B. Seidman, “Network structure and minimum degree,” Social
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[2] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community
search over large spatial graphs,” Proc. VLDB Endowment, vol. 10,
no. 6, pp. 709–720, 2017.

[3] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and
efficient community search over large heterogeneous information
networks,” Proc. VLDB Endowment, vol. 13, no. 6, pp. 854–857,
2020.

[4] J. Cohen, “Trusses: Cohesive subgraphs for social network analy-
sis,” Nat. Secur. Agency, Tech. Rep., Citeseer, vol. 16, no. 3.1, 2008.

[5] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Truss-based com-
munity search over large directed graphs,” in Proc. SIGMOD Int.
Conf. Manage. Data., 2020, pp. 2183–2197.

[6] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang, “Index-based
densest clique percolation community search in networks,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 5, pp. 922–935, May 2018.

[7] R. H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community
search in large networks,” Proc. VLDB Endowment, vol. 8, no. 5,
pp. 509–520, 2015.

[8] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, 2002.

[9] S. Brohee and J. Van Helden, “Evaluation of clustering algorithms
for protein-protein interaction networks,” BMC Bioinf., vol. 7,
no. 1, 2006, Art. no. 488.

[10] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu, “Most
influential community search over large social networks,” in Proc.
Int. Conf. Data Eng., 2017, pp. 871–882.

[11] F. Bi, L. Chang, X. Lin, and W. Zhang, “An optimal and progres-
sive approach to online search of top-k influential communities,”
Proc. VLDB Endowment, vol. 11, no. 9, pp. 1056–1068, 2018.

[12] W. Luo, X. Zhou, J. Yang, P. Peng, G. Xiao, and Y. Gao, “Efficient
approaches to top-r influential community search,” IEEE Internet
Things J., vol. 8, no. 16, pp. 12 650–12 657, Aug. 2021.

[13] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, “Structural
diversity in social contagion,” Proc. Nat. Acad. Sci. USA, vol. 109,
no. 16, pp. 5962–5966.

[14] R. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved
algorithms for maximal clique search in uncertain networks,” in
Proc. Int. Conf. Data Eng., 2019, pp. 1178–1189.

[15] X. Li, W. Min, C. K. Kwoh, and S. K. Ng, “Computational
approaches for detecting protein complexes fromprotein interaction
networks: a survey,” BMC Genomic., vol. 11, no. Suppl 1,
pp. 1–19, 2010.

[16] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On effi-
ciently finding reverse k-nearest neighbors over uncertain graphs,”
Int. J. Very Large Data Bases, vol. 26, no. 4, pp. 467–492, 2017.

[17] Y. Qiu et al., “Efficient structural clustering on probabilistic graphs,”
IEEE Trans. Knowl. Data Eng., vol. 31, no. 10, pp. 1954–1968,
Oct. 2019.

[18] T. Wolf, A. Schroter, D. Damian, L. Panjer, and T. H. D. Nguyen,
“Mining task-based social networks to explore collaboration in soft-
ware teams,” IEEE Softw., vol. 26, no. 1, pp. 58–66, Jan./Feb. 2009.

[19] L. Antiqueira, O. N. O. Jr, L. da Fontoura Costa, and M. das Gra-
ças Volpe Nunes, “A complex network approach to text summa-
rization,” Inf. Sci., vol. 179, no. 5, pp. 584–599, 2009.

[20] X. Zhou, K. Li, Y. Zhou, and K. Li, “Adaptive processing for dis-
tributed skyline queries over uncertain data,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 2, pp. 371–384, Feb. 2016.

[21] N. Korovaiko and A. Thomo, “Trust prediction from user-item
ratings,” Social Netw. Anal. Mining, vol. 3, no. 3, pp. 749–759, 2013.

[22] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T.
M€uller, “Identifying functional modules in protein–protein inter-
action networks: an integrated exact approach,” Bioinformatics,
vol. 24, no. 13, pp. i223–i231, 2008.

[23] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in Proc. 3rd ACM Int. Conf. Web
Search Data Mining, 2010, pp. 241–250.

[24] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core
decomposition of uncertain graphs,” in Proc. 20th SIGKDD Int.
Conf. Knowl. Discov. Data Mining., 2014, pp. 1316–1325.

[25] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient proba-
bilistic K-core computation on uncertain graphs,” in Proc. IEEE
34th Int. Conf. Data Eng., 2018, pp. 1192–1203.

[26] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and
effective community search,” Data Mining Knowl. Discov., vol. 29,
no. 5, pp. 1406–1433, 2015.

[27] V. Batagelj and M. Zaversnik, “An O (m) algorithm for cores
decomposition of networks,” 2003, arXiv:cs/0310049.

[28] S. Chen, R. Wei, D. Popova, and A. Thomo, “Efficient computation
of importance based communities in web-scale networks using a
single machine,” in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage.,
2016, pp. 1553–1562.

[29] A. E. Sariy€uce and A. Pinar, “Fast hierarchy construction for dense
subgraphs,” Proc. VLDBEndowment, vol. 10, no. 3, pp. 97–108, 2016.

[30] Y. Fang et al., “A survey of community search over big graphs,”
Proc. VLDB Endowment J., vol. 29, no. 1, pp. 353–392, 2020.

[31] F. Esfahani, V. Srinivasan, A. Thomo, and K. Wu, “Efficient com-
putation of probabilistic core decomposition at web-scale,” in
Proc. Int. Conf. Extending Database Technol., 2019, pp. 325–336.

[32] D. Wen, B. Yang, L. Qin, Y. Zhang, L. Chang, and R. Li,
“Computing k-cores in large uncertain graphs: An index-based
optimal approach,” IEEE Trans. Knowl. Data Eng., early access,
Sep. 16, 2020, doi: 10.1109/TKDE.2020.3023925.

[33] M. Charikar, “Greedy approximation algorithms for finding dense
components in a graph,” in Proc. Int. Workshop Approximation Algo-
rithms Combinatorial Optim., 2000, pp. 84–95.

[34] A. V. Goldberg, Finding a Maximum Density Subgraph. Berkeley,
CA, USA: Univ. California, 1984.

[35] C. Ma, Y. Fang, R. Cheng, L. V. Lakshmanan, W. Zhang, and X.
Lin, “Efficient algorithms for densest subgraph discovery on large
directed graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2020, pp. 1051–1066.

3792 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TKDE.2020.3023925

[36] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, andW. Liang, “Efficiently
computing k-edge connected components via graph decom-
position,” in Proc. SIGMOD Int. Conf. Manage. Data., 2013,
pp. 205–216.

[37] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding
maximal K-edge-connected subgraphs from a large graph,” in
Proc. 15th Int. Conf. Extending Database Technol., 2012, pp. 480–491.

[38] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest
neighbors in uncertain graphs,” Proc. VLDB Endowment, vol. 3,
no. 1, pp. 997–1008, 2010.

[39] V. Podpecan, Z. Ramsak, K. Gruden, H. Toivonen, and N. Lavrac,
“Interactive exploration of heterogeneous biological networks with
biomine explorer,” Bioinformatics, vol. 35, no. 24, pp. 5385–5388,
2019.

[40] M. Ceccarello, C. Fantozzi, A. Pietracaprina, G. Pucci, and F. Van-
din, “Clustering uncertain graphs,” Proc. VLDB Endowment,
vol. 11, no. 4, pp. 472–484, 2017.

Wensheng Luo is currently working toward the
PhD degree in computer science and technology
with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha,
China. His research interests include graph anal-
ysis, data management, and parallel computing.

Xu Zhou received the PhD degree in computer
science and technology from Hunan University,
China, in 2016. She is currently an associate pro-
fessor with the College of Computer Science and
Electronic Engineering, Hunan University. She
has authored or coauthored more than 30 papers
in international journals and conferences, includ-
ing, the IEEE Transactions on Knowledge and
Data Engineering, IEEETransaction Parallel Dis-
tributed Systems, and IEEE Transactions on
Computers. Her research interests include paral-

lel and distributed processing and database systems.

Kenli Li (Member, IEEE) received the PhD degree
in computer science from the Huazhong University
of Science and Technology, China, in 2003. He has
authored or coauthored more than 200 research
papers in international conferences and journals,
including the IEEE Transactions on Computers,
IEEE Transactions on Parallel and Distributed.
Systems, and ICPP. His research interests include
parallel computing, high-performance computing,
and grid and cloud computing. He is on the editorial
board of the IEEETransactions onComputers.

Yunjun Gao (Member, IEEE) received the PhD
degree in computer science from Zhejiang
University, China, in 2008. He is currently a pro-
fessor with the College of Computer Science,
Zhejiang University, China. His research interests
include spatial and spatio-temporal databases,
metric and incomplete or uncertain data manage-
ment, and spatio-textual data processing. He is
a member of the ACM and a senior member
of the CCF.

Keqin Li (Fellow, IEEE) is currently a SUNY dis-
tinguished professor of computer science with
the State University, New York and the national
distinguished professor with Hunan University,
China. He has authored or coauthored nearly
800 journal articles, book chapters, and refereed
conference papers. His research interests include
cloud computing, fog computing and mobile edge
computing, energy-efficient computing and com-
munication, embedded systems and cyber-physi-
cal systems, heterogeneous computing systems,

big data computing, high-performance computing, CPU-GPU hybrid and
cooperative computing, computer architectures and systems, computer
networking, machine learning, and intelligent and soft computing. He
holds more than 60 patents announced or authorized by the Chinese
National Intellectual Property Administration. He is among the world’s
top ten most influential scientists in distributed computing based on a
composite indicator of Scopus citation database. He is currently an
associate editor for the ACM Computing Surveys and CCF Transactions
on High Performance Computing. He was on the editorial boards of
IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, IEEE Transactions on Cloud Computing, IEEE
Transactions on Services Computing, and IEEE Transactions on Sus-
tainable Computing. He was the recipient of several best paper awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LUO ETAL.: EFFICIENT INFLUENTIAL COMMUNITY SEARCH IN LARGE UNCERTAIN GRAPHS 3793

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 18,2023 at 01:45:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

