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ABSTRACT The booms of big data and graphic processing unit technologies have allowed us to explore
more appropriate data structures and algorithms with smaller time complexity. However, the application of
machine learning as a potential alternative for the traditional data structures, especially using deep learning,
is a relatively new and largely uncharted territory. In this paper, we propose a novel recurrent neural network-
based learned inverted index, called Pavo, to efficiently and flexibly organize inverted data. The basic hash
function in the traditional inverted index is replaced by a hierarchical neural network, which makes Pavo
be able to well adapt for various data distributions while showing lower collision rate as well as higher
space utilization rate. A particular feature of our approach is that a novel unsupervised learning strategy to
construct the hash function is proposed. To the best of our knowledge, there are no similar results, in which
the unsupervised learning strategy is employed to design hash functions, in the existing literature. Extensive
experimental results show that the unsupervised model owns some advantages than the supervised one. Our
approaches not only demonstrate the feasibility of deep learning-based data structures for index purpose but
also provide benefits for developers to make more accurate decisions on both the design and the configuration
of data organization, operation, and parameters tuning of neural network so as to improve the performance
of information searching.

INDEX TERMS Learning index, RNN, hash function, LSTM.

I. INTRODUCTION

The rapid developments of GPU (Graphic Processing Unit)
have allowed us to explore newer data structure and faster
algorithm so as to extremely improve our capacity for orga-
nizing and searching data. In the meantime, some AI (Arti-
ficial Intelligence) technologies, such as the deep learning,
have already shown their advantages in intelligent informa-
tion processing. However, as fundamental parts of computer
systems, the traditional data structures are designed more
specifically to adapt for the CPU, where the data is orga-
nized according to a fixed pattern, regardless of various data
distributions. Therefore, an intuitive question raises, could
we design more appropriate data structures based on deep
learning and GPU? Fortunately, one latest paper has provided
some interesting results about using deep learning to build
index structures, see [1]. This work inspires us to explore
more possibilities.

It is well known that the inverted index is widely used as
a form of data organization. The basic principle of inverted
index is to aggregate and index according to the attributes of
items such that similar items can be quickly found for the
recommendation. Generally, companies construct hundreds
of inverted indexes using the same hash function, regardless
of various data distributions. However, with the advent of
the era of big data, how to design an efficient and flexible
data organization method to improve the space utilization
rate of the inverted list has become a significant problem that
needs to be solved urgently. Hence, this constructs the main
motivation of us to explore a more intelligent inverted index
which can adapt for different data distributions.

As a personalized reading product of Tencent, Daily
Express relies on the powerful content output capabilities of
Tencent News and Tencent Video, backed by QQ, WeChat
and other large social networks, and quickly grows up to the
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FIGURE 1. The framework of recommend systems in Daily Express of Tencent.

third largest information reading application in China within
just a few years. As a real-time content recommendation sys-
tem, how to find the content that users are interested in among
tens of millions of resources is the main tasks of the system.
In order to improve the accuracy of the recommendation,
current Daily Express use commodity-based and interest-
based collaborative filtering strategies shown as below.

As shown in Fig. 1, in the current developing group
of Daily Express, many recommendation algorithms work
together which leads to consume huge computing resources,
especially there exists many trivial calculations in the process
of computing similarity. Therefore, a large number of inverted
indexes are built up to speed up similarity computing. And the
number of these inverted index tables is roughly around 350.

Based on our long period of implementation and a large
number of different business applications, we obtain some
interesting observations as follows.

(1) The inverted index generally uses the hash function
to construct the index where the hash function can find the
location of the random key with O(1) time complexity. Taking
the popular in-memory database Redis as an example, Redis
uses the Murmur hash function is used. When the maximum
load factor is 1.0, a hash table with length 2" is created for
a data set with N pieces of data (n is a positive integer,
2" > n > N > 2" !, Although Murmur hash is an efficient
hash function with a low collision rate, its average number of
lookups is typically between 1.35 and 1.5 in a data set. While
the ideal situation is that the data can be uniformly mapped
by hash function, and the lowest average search time can be
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reduced to 1.0., which indicates that the method exists some
potential optimization space.

(2) The distribution of data has also a very significant
impact on the outputs of the hash. In the english word list,
the number of words, which start with “s” and the second
place is “h”, is far more than the ones which start with
“s” and the second place is “v”. It is well known that this
kind of data is unevenly distributed in most of the data.
However, the existing hash functions, such as Murmur hash,
BKDRHash, etc., treat each character in the string separately,
without considering the links between the characters. It will
be helpful for us to evenly map the data to the hash table if we
can previously learn the distribution of data in advance, and
increase the distances between these similar data in the hash
table.

(3) In most inverted indexes constructed by current recom-
mendation systems, each index table has its own unique data
distribution. Moreover, traditional indexing schemes often
adopt the same hashing function (even if they can have
different random number seeds). Such an indexing scheme
may result in a lower collision rate in partial inverted tables,
but is not universally applicable due to.... Therefore, cus-
tomized inverted indexes are highly appreciated and can
greatly reduce the possibility of conflict.

Based on the above discussions, we propose a hierarchical
neural network based inverted index named as Pavo. The
main contributions of this paper are reflected as follows:

» A novel RNN-based learned inverted index “Pavo” is
proposed. To the best of our knowledge, it is the first
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work to design an intelligent inverted index by means of
RNN, which is used to split the data set into sub-data
sets. In this way, the complexity of each model can be
reduced while the index accuracy can be improved.

» Supervised and unsupervised learning strategies, in the
learned inverted index, are constructed, respectively.
Based on our experiments, it is found that unsupervised
learning strategy can find a more uniform distribution
and reduce the data collision rate in most data sets
compared with the supervised inverted index. This is a
new reveal after the seminal work [1].

» The framework and algorithms of Pavo are designed in
detail, while the extensive experiments are conducted to
evaluate the performance of Pavo. With different param-
eters and configurations, the efficiency and flexibility of
Pavo are demonstrated.

The rest of the paper is organized as follows: The related
works are introduced in Section II. Section III discusses the
supervised and unsupervised model. The experimental results
are shown and analyzed in Section IV. Finally, the paper is
concluded in Section V.

Il. RELATED WORK

Although using data structures in machine learning is not a
new idea, the application of machine learning as a potential
replacement for traditional data structures, especially using
deep learning, is a relatively new and largely uncharted
territory. Our work builds upon a wide range of previous
outstanding research. In the following, we intend to outline
several important interactions between machine learning and
indexes. An inverted index is an index data structure con-
sisting of a list of words or numbers, which is a mapping
from documents [2]. The purpose of an inverted index is
to efficiently generate a list of keyword vectors, in which
hash functions are widely used. Afterwards, texts are stored
in the data structure that allows for very efficient and fast
full-text searches. For the moment, inverted index has been
intensively studied and used in many different fields, such as
search engine [3], information retrieval systems [4], bioin-
formatics [5], etc.. However, as far as we know there is
no attempts to build an inverted index by using neural net-
work instead of the hash functions in it. The explosion of
workload complexity and the development of Al call for
new approaches to achieve more efficient and intelligent
computing. Machine learning has emerged as a powerful
technique to address computer optimization. Most recently,
researchers have been beginning to employ machine learning
techniques for the optimization of indexes and hash functions.
There has existed a lot of research on emulating locality-
sensitive hash (LSH) functions, to build Approximate Near-
est Neighborhood (ANN) indexes, ranging from supervised
[6]-[11] and unsupervised [12]-[16] to semi-supervised set-
tings [17]. These kinds of methods incorporate data-driven
learning methods in the development of advanced hash func-
tions. The principle of these works is a kind of ‘“learn to
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hash’’, which means to learn the information of data distri-
butions or class labels in order to guide the design of hash
function. However, the basic construction of the hash function
itself is not been changed. Therefore, those methods cannot
be directly used to construct the fundamental data structures.
As far as we know, paper [1] is the seminal work to develop
a “learned index” which explores how neural networks, can
be used to enhance, or even replace, traditional index struc-
tures. It provides a neural network based learned index to
replace the B-Tree index and further discusses the differences
between learned hash-map index and the traditional hash-
map index. Moreover, experimental results show that the
learned index owns significant advantages over traditional
indexes. Inspired by the paper [1], we propose an RNN-based
learned inverted index. Further, different with the supervised
approach in the paper [1], an unsupervised scheme is studied.
In addition, experiments are conducted and the results show
that our unsupervised solution can find a more uniform dis-
tribution and reduce the data collision rate in most data sets.

Ill. THE FRAMEWORK OF RNN-BASED LEARNED INDEX
The index structure and the machine learning model are
traditionally thought to be different approaches. The index
structure is constructed in a fixed manner, and the machine
learning model is established on the probability forecasting.
However, the principles of these two methods both con-
cern some kinds of spatial position locating or searching.
The hash index can approximately be seen as a regression,
because it works based on where the key prediction data is
located, or a classification in which box the prediction data
can be placed based on the key. Therefore, essentially hash
indexes and neural networks possess some potential relation-
ship. In this section, we present our RNN-based indexing
framework, mainly focusing on analyzing the proposed Dis-
perse Stage, Mapping stage, and comparing the differences
between supervised and unsupervised learning strategies.

A. THE FRAMEWORK OF RNN-BASED LEARNED INDEX
The ideal hash table requires to have efficient query efficien-
cies and space utilizations. Intuitively, it is worth to adopt an
end-to-end neural network approach to simulate the whole
hash function. In this kind of approach, for any arbitrarily
complex data set distribution, the key values in theory can
be sorted and inputted into a neural network with appropriate
parameters. After a sufficient number of iterations, a very
good space utilization rate can be obtained. However, with
increasing parameters it is not only difficult for training,
but also greatly reduces the efficiency of the search speed.
As an index structure, finding data quickly and accurately is
the most important issue, so we intend to use a hierarchical
framework instead of a single large-scale neural network to
build the index.

As Fig. 2 shows, we propose a hierarchical neural network
to build the index. It firstly uses a RNN neural network to split
the data set into sub-data sets. In this way, the complexity
of each model is reduced and the index accuracy is also
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FIGURE 2. The framework of RNN-based learned index.

improved. Then, in the last step as shown in Join Stage,
the data in the sub-data set is mapped from the smallest to
the largest in the dictionary sequence to the hash table to
complete the function of the entire hash model. Each RNN
sub-model in each layer of the model randomly initializes
parameters, so that the cyclic neural network learns different
relationships between characters, splits the data set from
multiple angles, and achieves a lower conflict rate.

As Fig. 2 shown above, the entire framework is divided into
four stages: Input Stage, Disperse Stage, Mapping Stage and
Join Stage. The supervised strategy is used in both Disperse
Stage and Mapping Stage. And the unsupervised strategy can
only be used in Mapping Stage.

1) INPUT STAGE

The input data is the key values (mainly string type) in the
existing inverted list of Tencent Daily Express. We introduce
the n-gram split method to preprocess the input data. One
input data I = K8V kS, kS s defined as a string
fragments set from the same key-value string, where s is the
window size and there is overlap between every two input
fragments (i.e. k5 N kST £ (). Therefore the entire input
dataare I* = Iy, I, - - - , I,,, where m is the size of the data
set. In our approach, n is selected as 2, which means that it is
processed in bigram mode.

2) DISPERSE STAGE

In this stage the split layer is composed of one or more
RNN models. Our purpose is to encode preprocessed input
strings and evenly distribute the codes in the vector space.
The function of each model of the Disperse stage is to split the
data set into multiple sub-data sets so that it is benefit for the
smaller subsequent models to learn the mapping relationship.
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For example, suppose we need to split the total spatial space ¢
into r sub-space, where there are c/r sub-data sets. Two-tier
Disperse stages are used in Fig. 2. The first layer splits the
data set into [/ sub-data sets. Then there will be a / number
of models in the second layer. Each model is responsible to a
separate data set. Each model in the second layer then splits
the respective data set into j sub-data sets, where [*j = r

3) MAPPING STAGE

The mapping layer is also implemented by multiple RNN
models. The purpose of this layer is to map the sub-data
sets output from the splitting stage into the local hash space,
and find local hash location for each data in the output data
set. We provide an unsupervised strategy in this mapping
stage which makes our practice quite different from the first
work [1].

4) JOIN STAGE
Finally, after the entire framework is setup, each RNN model
in the mapping stage is serially connected from low to high,
and the local hash space is connected to form the final hash
table. Suppose we totally have i sub-data sets in the last layer
of mapping stage, which means we have i mapping models in
the mapping stage. Each sub-data set has d; number of data,
then the p —th position in the i — th local space will be mapped
into the global hash table space:

i—1

Pos = Z di+p
Jj=1

As a whole, the entire framework consists of multiple RNN
models. Each RNN model consists of a single-layer LSTM
layer and one or two full-connection layers. The entire frame-
work is trained stage by stage from left to right, and multiple
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models in each stage can be parallel trained. The first level
in Disperse Stage uses the entire data set as training data, and
the latter layer uses the sub-data set splitted from the previous
layer. In the end, the data locates the position in the last layer
of the Mapping Stage. During training, parameters are initial-
ized randomly for each separate RNN model. Therefore, each
RNN can extract different features from key values and split
data sets from multiple dimensions.

The red line in the Fig. 2 above describes a complete
prediction process of the proposed framework: (1) The word,
shown as ‘“Documentaries”, is splitted into do, oc, cu,...,
es using bigram, and are sent to the input layer RNN1.1 in
the Disperse stage. The output of RNNI1.1 is a number,
which indicates the next model. In this case the calculated
result is referring to RNN2.1 (2) The “Documentaries” word
is transferred to RNN2.1 and recalculated using bigram.
(3) Afterwards, the ‘“Documentaries” word is transferred to
RNN3.2 and the key Posl in the local hash space is located.
(4) Posl is mapped to the global space in the entire hash table
at last. Although the entire framework has a large number of
parameters, in a key value prediction process, only one sub-
model will be selected for calculation in each layer. There-
fore, compared to a single model, the calculation amount
of hierarchical model in the process of prediction is greatly
reduced.

B. MODELS IN DISPERSE STAGE
In this subsection we describe the details of the supervised
learning strategy in the Disperse Stage

The purpose of Disperse Stage is to encode preprocessed
input strings, evenly separate the codes in the vector space,
and then evenly split them into sub-data sets. Due to the fact
that the key distribution in each sub-data set may be different.
Therefore, we adopt multiple neural network modules to learn
the key distribution. As shown in Fig. 2, we have RNN2.1,
RNN2.2,... etc. Since each sub-model in Disperse Stage is
randomly initialized, the neural network learns different rela-
tionships between characters, splits the data set from multiple
angles, and achieves a lower conflict rate.

In the traditional hash index, the specific location of each
data is determined by a hash function. Therefore, after the key
has undergone operations such as multiplication and shifting,
the hash functions modulo the length of the hash table to
obtain the final position value. Generally speaking, only one
fixed hash function can be used for an inverted index. How-
ever, no matter what kinds of hash functions are selected, it is
impossible to give full consideration for all data distribution,
so as to avoid conflicts. In the recommended applications
field, in order to quickly read the inverted data, it often
stores the inverted tables in the Redis, which uses a high-
performance, low-impact Murmur hash to create indexes.

The neural networks in the Disperse Stage are applied
supervised learning strategy. We need to give a standard
position value for each key as a learning target, and use the
gradient descent optimization parameter to reduce the gap
between the standard position and the output position until the
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model converges. For the convenience of comparison, we use
the Murmur hash to construct standard values for training
during the Disperse Stage.
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FIGURE 3. The supervised learning strategy in Disperse Stage.

As shown in the Fig. 3, we need to first determine the
number M of models in the next layer according to actual
requirements, that is, we need to split the data set into M
copies. Each model contains a layer of LSTM and a layer
of full connections, which can also be set to 2 layers. After
inputting the key value sequences, LSTM first encodes the
input string to obtain the feature vector F, then fits feature F
through the first layer full-connection and finally output an
integer value i € [0, M), which means that the piece of data
is assigned to the i — th model in the next layer for processing.
The training process uses Murmur hash to generate the target
value and calculates the gap between the target value and the
predicted value to optimize the network model.

Loss Function Selection: The purpose of Disperse Stage is
to learn a series of parameters so as to find the next layer as
best as possible to process the data. After long term explo-
ration, two loss functions are used in our training process.
First of all, we hope that the prediction value of the model
can be as close as possible to the target value generated by
Murmur hash. We measure this in terms of mean squared
error, as shown in Eq. (1):

N
Mﬂ:%;bﬁﬁ2 M)

In Eq. (1), y; is the Murmur hash target value which shows
as label in Fig. 3 and the y; the prediction value.

On the other hand, we hope that the amount of data handled
by each model in the Disperse Stage will be as uniform as
possible. In order to avoid the extremely imbalanced amount
of data processed in the later layer, an additional loss2 is
designed, which we call uniform distribution loss. During the
calculation of the loss2, the data contained in each batch is
firstly counted the amount of data k assigned in each slot
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time, and then is computed to obtain the difference between
k and the theoretical average distribution in each slot. This
difference works as an optimization goal, as shown in Eq. (2):

M N2
loss1 = Z (k,- - M) )
j=1
where N is the training batch size, M is the number of split
slots (or number of next-level models) and &(j) is the amount
of data in the j-th slot for this batch of data.
During the training process, we integrate the above two loss
functions as the overall optimization goal of the model:

L = (wilossy + wploss2) 3)

where wi,wy are used to control the degree of fit hyper-
parameter. As Eq. (3) shows the overall loss is divided into
two parts: the first part is to fit the Murmur hash and the sec-
ond part is to reduce the gap between each slot and the
theoretical average distribution.

C. MODELS IN MAPPING STAGE

In this subsection, we introduce our implementation of two
mapping strategies: supervised mapping and unsupervised
mapping.

The purpose in this stage is to map each piece of data into
the local hash space, and try to avoid the conflict. Note here
we don’t care about the order of the mapped data. This is
different from B-tree, where it is necessary to maintain the
order of data. We also hope the conflict rate can be as small
as possible or not at all perfectly.

D. SUPERVISED MAPPING

In the Mapping Stage, when the loading factor is set to 1,
the number of possible output values is equal to the amount
of data. It is well known that there will be a considerable
part of the hash space without data if we use hash function
mapping, which causes space waste and increases the average
number of searches. Here we choose to arrange the key values
from the smallest to the largest, and place them one by one in
the hash space to ensure that the key values and hash space
locations are in one-to-one correspondence.

In the mapping layer, the dataset is the result of the splitting
of the previous layer. The RNN used here is the same as
the disperse stage. However, the label is different. The loss
function is described as below:

N
1 R
loss = ﬁ iél (yi - yi) “)

where N is the training batch size,y; is the output value of the
recurrent neural network and y; is the sorting result of the key
value. As shows in the right side of Fig. 4, words are sorted
and the labels are generated by the order number of the list.
So the label of “Adventure” is 1, and the label of “Buddy”
is 3, and so on.

Theoretically, if there are enough parameters in the neural
network and after enough iterative optimization, it can ensure
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FIGURE 4. The supervised strategy in mapping stage.

that the neural network can perfectly learn this mapping
relationship. However, in order to speed up the efficiency of
the index, the amount of parameters in the neural network
cannot be too much, so we need to balance the parameters
and the conflict rate in the mapping layer.

E. UNSUPERVISED MAPPING

The previously supervised approach, which tags data accord-
ing to a random hash function or a dictionary sequence of
data key values, is essentially man-made method to specify
the distribution of data. And it does not naturally satisfy the
distribution of the data itself. Therefore, we consider whether
it is possible to specify the location of each key and find the
distribution that best fits the data automatically through the
neural network.

Output
Vectors

Distribution
Results

o
o
o

FIGURE 5. The unsupervised strategy in mapping stage.

As Fig. 5 shown, we propose an unsupervised neural net-
work approach, which consider the process of locating the
position of the key value on the hash table as a classification
problem. The numbers of categories are equal to the length of
the hash table. As shows in Fig. 5, the keys are preprocessed
by bigram and inputted into the RNN networks. Each RNN
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network outputs a vector and we take the position of the
maximum value of the vector as the classification of the key
value. Then it calculates the classification of each key value
on the entire data set and sum the results to get the numbers of
key values in each category. For example as shown in Fig. 5,
after operating the keyO, the first RNN network outputs a
vector, which is the first column in the matrix. Then we select
the maximum value, which is 0.5, in this column and setup
it to 1. Other values in this column are set to 0. And so on
key1 to keyn. After this, we sum the values in each row to get
the final categories distribution.

The loss function of the unsupervised approach is defined
as:

1
loss:lvax(D—l) (®)]

Among them, N is the data set size, Y is the output value
of the neural network, and D is the numbers of key values in
the category. Gradient descent is used to optimize the sum.
When the number in each category equal 1, the loss value is
0, which means that it finds a hash model that makes the data
set evenly distributed. The training algorithm is described as
below:

Algorithm 1 Unsupervised Hash Function Training Strategy

Input: training sample Keys, iterations I
Output: trained Index

Training:

1 build a network model with one LSTM layer
and one to two fully-connected layers

2 For i =1 to I do

3 logits = network_model (Keys)

4 index = argmax (softmax (logits), axis=1)
5 hash_results = sum(index, axis=0);

9 loss = logits » hash_results;

7 back propogation to minimize loss;

8 return index

As above algorithml shows that it first establishes a
recurrent neural network containing one LSTM layer and
one or two full-connection layers with random parameters ini-
tialization. Keys are inputted during forward propagation, and
the output logits (line 3) of the neural network is calculated,
the output logits is a list of vectors shape of [M,N], where
M stands for the size of the dataset, and N stands for size
of final hash table. For each output vector, finds the position
of the largest value in the vector as the index value of the
Key (line 4). Then accumulates all the vectors, results in the
hash result of these keys in the itk iteration(line 5). After this
the hash results is used to construct the loss function, and the
gradient descent is used to optimize the loss function to get
the final index model.

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENT SETUP
The experiments were setup on a machine with 64GB

main memory and one 2.6GHZ Intel(R) i7 processors. Two
GTX1060 GPU card are installed and each of them has 16G
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GPU memory. RedHat Enterprise Server 6.3 with Linux core
2.6.32 was installed, and we use tensorflow for experiments.
For each experiment, we ran ten cases, where the median of
the ten cases was used as the real performance.

In the experiments, we randomly generated data sets of
three common distributions (uniform distribution, normal dis-
tribution, and long tail distribution) to test the learned index
model and validate our results using a real data set. We hope to
compare the advantages and disadvantages of learned index
models with traditional hash functions when the data size go
up to one million or more.

We compare four kinds of data structures in our
experiments:

1) BKDR HASH

BKDR Hash is an algorithm invented by Brian Kernighan,
Dennis Ritchie, which is widely used for string processing.

2) MURMUR HASH
Murmur Hash is a non-cryptographic hash function suitable
for general hash-based lookup. Redis uses the Murmur hash
function as default.

3) SUPERVISED RNN-BASED INDEX
Our proposed RNN-based index, where the supervised algo-
rithm used in both the mapping stage and the disperse stage.

4) UNSUPERVISED RNN-BASED INDEX

Our proposed RNN-based index, where the unsupervised
algorithm used in the mapping stage, while it is still use super-
vised algorithm in the disperse stage. The Murmur hash and
BKDR Hash are implemented in Python, and the intelligent
indexes are implemented in Tensorflow and called directly in
Python.

B. EXPERIMENT ANALYSIS

During the process of design and evaluation, it is observed
that the size of the mapping layer has significant impact on
the performance of the learned inverted index. To verify the
observations, the average search time and the remaining space
under different mapping size are obtained by experiments,
where the data are generated with four different distributions
(i.e. uniform distribution, normal distribution, long tail distri-
bution and Tencent real inverted index). Here we choose the
common character hash function BKDRHash and Murmur
hash used in Redis as a comparison. Fig. 6(a) and Fig. 6(e)
respectively reflect the average number of lookups and the
remaining space for data sets of different mapping layers.
As shows in fig. 6a, when the mapping size of supervised
index is 100, the average number of search times is 1.0,
which means that one-to-one mapping of data is implemented
without conflict. Accordingly, the remaining space in the
Fig. 6(e) is 0.0. Also, the average number of lookups for
supervised index has risen slowly between size 200 and size
2000 in Fig. 6(a). Howeyver, it grows up sharply after 2000.
But even at 5000, the lookup number is still lower than that
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size is greater than 1000, supervised learning rises rapidly,
while unsupervised learning grows much slower. In the real
data set (Fig. 6(d), Fig. 7(h)) which has more complicated
data distribution, the average search time of supervised and
unsupervised index are slightly higher than these in Fig. 6(a)-
Fig. 6(c), Fig. 6(e)-Fig. 6(g) between 100 and 1000. However,
curve of supervised index rises faster after size 2000, and
it even exceeds BKDRHash and Murmur hash at size 5000,
which mean supervised index get worst performance at size
5000.

From Fig. 6, we come to know that both the supervised
and unsupervised index have lower search time and higher
space utilization when the mapping size less than 2000.
Specifically, performance of the unsupervised index is better
than the supervised one. It is also observed that the average
search time of learned indexes is almost 1, which closes to the
ideal state, when the mapping layer’s size is less than 1000.
Therefore, we choose 1000 mapping size in our final network.

The average number of lookups is an important indicator
for evaluating the hash function. After selecting the mapping
size 1000, we further test the average search time and give
boxplots. From Fig. 7(a)-Fig. 7(d), we can see that the average
search number of supervised or non-supervised strategies
are significantly lower than the one of traditional BKDR
Hash and Murmur hash. Among them, in the randomly
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FIGURE 7. Comparison of the average number of lookups in different
data distributions.

generated uniform distribution Fig. 7(a), the average number
for supervised and unsupervised strategies is almost 1.0,
while BKDR Hash and Murmur hash are both around 1.5.
And this trend is basically maintained in the normal distri-
bution and long-tail distribution data sets. In the real data
set, BKDR Hash and Murmur hash still remained around
1.5, while the average number of supervised and unsuper-
vised strategies rose slightly up to 1.15. In the three datasets
from Fig. 7(a)-Fig. 7(c), the learning indexes (i.e. super-
vised and unsupervised) fluctuate very light and the results
are extremely stable. In the real inverted index data set on
Fig. 7(d), the fluctuate effect of traditional hash function is
basically the same as the previous three simulated data sets,
however the learning models are more volatile. This shows
that for a regular distribution of Fig. 7(a)-Fig. 7(c), neural
network can learn well, but the distribution of real data is
more complex and the fitting ability of neural network will
decrease. This also suggests that a potential method is to
increase the number of parameters in the neural network to
reduce the average number of search times and free space of
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the model in large data sets, but the cost of increasing the
amount of parameters will increase the training and testing
time of the model. The results of Fig. 7(a)-Fig. 7(d) also show
that unsupervised index has less fluctuation than supervised
index, which means that unsupervised learning strategy has
better abilities to adapt the data distribution. Neural network
parameters are important indicators that affect the speed of
network training and final searching. We further evaluate the
relationship between the network parameter amount and the
average number of lookups. Because in Fig. 6, when the
data is 1000, the average number of lookups under the three
ideal distribution conditions is almost the same, so we only
select the long tail distribution and the real data for testing.
In the ideal long-tail distribution map Fig. 8(a), it can be
seen that when the model parameter is 2000, the average
number of supervised index reaches 1.4, indicating that the
conflict rate is relatively high. While unsupervised index only
has 1.08 at this time. With the increasing of parameters,
the conflict rate of supervised index is significantly reduced.
At 8500 point, supervised learning was slightly higher than
unsupervised index. When the model parameters reached
18,000, supervised index reaches the ideal value of 1.0. The
average search times of unsupervised index is very low at
first. When the parameter reaches 4000, it already get its
ideal value of 1.0. and then remain its curve trend afterwards.
In the real data Fig. 8(b), unsupervised index shows a lower
conflict rate at the beginning, and the average number of
lookups is already close to 1.0 at 2000 point. In supervised
index, when the number of parameters is 2000, the aver-
age number of searches is still about 1.4. At a parameter
of 10,000, both supervised and unsupervised indexes achieve
good results close to 1.0. Although the parameter amount is
18000 in the ideal distribution Fig. 8(a), the average number
of lookup times for supervised index is lower. But when the
parameter is 8500, the model size will be enlarged 2.1 times
(18000/8500=2.1), and the training time of the model is
also increased. Therefore, according to the test results of
Fig. 8, in the subsequent experiments, we choose 10000 of
our parameters in the real dataset as showed in Fig. 8(b), and
we choose 8500 parameters under the ideal distribution as
showed in Fig. 8(a).
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14 —~
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— \ .
—
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¢
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FIGURE 8. Evaluation of neural network parameters in the mapping layer.

The effect of mapping layer will be affected by the size
of the data set, so in the Disperse Stage it is necessary to
split the data as evenly as possible to ensure the learning
ability of mapping layer. Therefore, in this set of experiments,

VOLUME 7, 2019

+ X Learned Index
1060 -H-. + + + MurmurHash
o
. s, . . 4 ® [BORHash
.+ ¢ + . L] *
1040 + e '+ 4 0% +*
+ . L] +* + +
+ + . F . + . .
o
1020 4 . $ ¢ t+ K, . . .
. + . + o 4 * + r
. + % + . + + + .
1000 % . ;XWWX&Q&%WXW
.
e . vty L. -t ot o™ttt .
+
0 L ou e *h " ML *
0 o Hyi o0 T 0L e + +
960 . o B e
+ *& et 4
+ g . + .
o
940 . o .
h
.
920 +
0 2 0 &0 80 100

FIGURE 9. Evaluation of performance of Disperse Stage.

we analyze the performance of Disperse Stage, where one
hundred thousand data are split into 100 parts by differ-
ent methods. In Fig. 9 abscissa represents 1 to 100 data,
and ordinates represent the number of data in each part.
As Fig. 9 shows, the maximum value of Murmur hash is
1070 and the minimum value is 921. And the fluctuation is
very large. The highest value of BKDR hash is 1066 and
the lowest value is 928, which slightly better than Murmur
hash. While if we look at our proposed disperse layer, its
performance is very stable. The highest value is 1004 and the
lowest value is 997. The amount of data split by it is close to
1000. This experiment shows that the learned index structure
can well divide the data evenly.

We conduct a series of experiments for comparing the
RNN-based index with BKDR hash and Murmur hash based
indexes. 1 million randomly generated long tail distributed
data are used to construct different indexes. Table 1 shows
the average search number of learning index is slightly higher
than 1, while the average search number of both Murmur hash
and BKDR hash based indexes are near 1.5. the unsupervised
index gains the smallest spare space with only 0.20%. The
spare space of supervised index is about 4.4%, which is
slight higher than unsupervised index. While Murmur hash
based index is37%. This shows that, comparing to Murmur
hash based index, unsupervised index save space 99.46%
((37-0.2)/37=99.46). Table 1 also shows that the RKDR hash

TABLE 1. Evaluation of performance of RNN-based learned index.

Hash Search Avg Spare
Dataset Model Time(ns) | Search | Space |Reduction
Supervised
mapping
Lo Learned layer 73987 | 1.0483 | 4.41% | 88.08%
N gl Index [Unsupervised
ormal | §¢ryct .
Dataset rueture mapping
layer 72181 1.002 | 0.20% | 99.46%
Murmur hash
based Index 20637 | 1.50646|37.00% | 0.00%
BKDRHash
based Index 8610 |1.50263|36.90% | 0.27%
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based index has the smallest search time with 8610ns, and
the Murmur hash based index is the second small search
time with 20637ns. The search time of unsupervised index
is 72181ns, which is 3.5 (72181/20637) times more than
Murmur hash. The reason is that learned index is com-
posed of multi layers network, which unavoidably spends
more time to locating the data. Comparing to the super-
vised index, the unsupervised index save search time 2.4 %
((73987-72181)/93987).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel RNN-based learned
inverted index, which uses hierarchical neural network to
simulate hash functions. Experimental results show that both
the supervised and unsupervised approaches have lower col-
lision rate as well as higher space utilization, compared with
the traditional hash functions. Although the conflict rates
both in the supervised learning and the unsupervised learning
index model are very low on some data sets, the unsupervised
learning model can better fit the relatively complex data and
is less affected by the outliers. When the data distribution is
unknown, unsupervised learning can train better models with
the same model parameter quantities. Although the search
time of learned index is at least 3-4 times more than the
traditional hash function based index on our python imple-
mentation, considering the quick developed GPU, there is
strong evidence to show that neural network based index is
promising in future.
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