
Received November 18, 2018, accepted December 6, 2018, date of publication January 1, 2019, date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889194

A Novel Approach to Rule Placement
in Software-Defined Networks Based
on OPTree
WENJIE LI 1, ZHENG QIN 1, (Member, IEEE), KEQIN LI 2, (Fellow, IEEE),
HUI YIN 3, AND LU OU 1, (Member, IEEE)
1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
3College of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410022, China

Corresponding author: Zheng Qin (zqin@hnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grants 61472131, 61772191, and 61472132;
in part by the Science and Technology Key Projects of Hunan Province under Grants 2015TP1004, 2016JC2012; in part by the Hunan
Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone; and in part by
the Science and Technology Projects of ChangSha City under Grants kq1804008, kq1801008.

ABSTRACT Software-defined networks (SDNs) are a trend of research in networks. Rule placement,
a common SDN operation, becomes a challenging problem due to the capacity limitation of devices in which
a large number of rules need to be deployed. Prior works mostly consider rule placement in a single device.
However, the position relationships between neighbor devices also have influences on rule placement and
should be considered. Our basic idea is to classify the devices position relationships into two categories: the
serial relationship and the parallel relationship, and we present novel strategies for rule placement based
on the two different position relationships. There are two challenges of implementing our strategies: to
check whether a rule is contained by a rule set or not and to check whether a rule can be merged with
other rules or not. To handle the challenges, we propose a novel data structure called OPTree to represent
the rules, which is convenient to check whether a rule is covered by other rules. We design an insertion
algorithm and a search algorithm for OPTree. Extensive experiments show that our approach can effectively
reduce the number of rules while ensuring placed rules work. On the other hand, the experimental results
also demonstrate that it is necessary to consider the position relationships between neighbor devices when
placing rules.

INDEX TERMS Position relationship, rule placement, SDN.

I. INTRODUCTION
A. MOTIVATION AND PROBLEM STATEMENT
In Software-Defined Networks, there are a lot of devices to
control the flow of data packets. e.g., firewalls, switches, and
routers. In these devices, there are many rules to control their
functions. The network administrator changes the flowof data
packets bymodifying the rules in these devices. If the network
administrator wants to prohibit/permit some data packets to
go through the network, he creates a new rule, and places the
rule into a suitable device. rule placement is an operation that
chooses a suitable device and places a rule into it.

In general, network administrator simply places a rule
into the first position of the rule set in the chosen device.
However, the operation is constrained by the limited capacity
of devices, especially when more and more devices use the
Ternary Content Addressable Memories(TCAMs) to store the
rules [1]–[3]. TCAMs have good performances at the cost of

hight prices [4]. We cannot unlimitedly insert rules into a
device. As the matter of fact, we can reduce the number of
rules in a device when placing rules to improve the device
performance. When a rule is placed into a device, if it’s
a redundant/conflicting one with other rules in the device,
it could be removed. In addition, two rules might be merged
into a new one to reduce the number of rules in the device.
Therefore, reducing the number of rules as many as possible
is a critical requirement when ensure the placed rule working
for rule placement.
In this paper, we focus on the rule placement of access

control list (ACL) in firewalls. We try to minimize the total
number of rules in the SDN without altering the total effects
of the rules.

The position relationship between neighbor devices is
ignored in the existing researches. Obviously, the position
relationships between neighbor devices have influences on

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8689

https://orcid.org/0000-0001-5354-5088
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-8960-887X
https://orcid.org/0000-0002-8441-781X

W. Li et al.: Novel Approach to Rule Placement in SDNs

rule placement. For example, if a rule has been placed into
a device, the rule may change the set of data packets which
arrive at the next device according to the position relationship.
The next device may have rules that are not applicable to the
new set of packets. In this paper, we consider the influence of
the position relationships between neighbor devices on rule
placement.

B. TECHNICAL CHALLENGES
There are two key challenges for proposing an effective
approach to rule placement. First, there are many complex
relationships between the rules in a device [5], such as con-
flicts and redundances. When we place a rule, it is easy that
the rule become a redundant/conflicting one for other rules
and cannot work. Rule placement should ensure the placed
rules can work in a device. It is hard to check whether a rule
can work in a device or not. As a result, Applegate et al. [6]
proved that the 2-D range-ACL compression problem is
NP-hard and Kogan et al. [7] proved that the problem of the
prefix-ACL rules compression with an arbitrary number of
dimensions is an NP-hard problem. Second, there may be
some rules that can be merged, so we can reduce the size of
rules in devices by merging them. However, it is hard to find
which rules can be merged, efficiently.

C. LIMITATION OF PRIOR WORK
Recently, there are some effective works on rule placement.
Casado et al. [8] proposed an approach for distributing a
centralized firewall policy by placing rules for packets at
their ingress switches. Yuan et al. [9] presented a method
that the edge switch configurations realize the firewall policy.
However, these approaches, which do not enforce rule-table
constraints on the edge switches or place rules on the internal
switches, may make the load on ingress switches very heavy.
DIFANE [10] and vCRIB [11] leveraged all switches in the
network to enforce an endpoint policy. Specifically, DIFANE
proposed a ‘‘rule split and caching’’ approach that increases
the path length for the first packet of a flow. Kanizo et al. [12]
presented the Palette distribution framework for decomposing
large SDN tables into small ones and then distributing them
across the network. Kang et al. [13] viewed the network as
‘‘one big switch’’ and proposed a heuristic rule placement
algorithms that distribute forwarding policies across gen-
eral SDN networks while managing rule space constraints.
Nguyen et al. [14] proposed a novel approach for rule place-
ment using trading routing. All these works focus on the
rule placement of forwarding policies, which are deployed in
router or switch. Li et al. [15] proposed a heuristic algorithm
for rule placement which focused on the wired networks with
dynamic topologies. Ashraf [16] presented the minimum rule
application (MIRA), a mixed integer linear programming-
based model, which re-calculates flow distribution dynami-
cally while minimizing the number of rule installations, but
the main concern is the rule minimization problem in a single
device. Kannan et al. [17] proposed Raptor, a scalable rule
placement scheme that supports multi-path routing as well as

immediate failure-recovery to a backup path without policy
violation. Chen and Lin [18] proposed the rule placement
scheme by considering the tradeoff of TCAM space utiliza-
tion and the bandwidth consumption in SDN networks.

Angelos et al. [19] proposed a novel placement algorithm,
which dynamically decides whether a new flow rule should
be placed in a hardware (expensive) or a software (cheap)
table. The goal of the algorithm is to increase the utilization
of the software-based table, without introducing performance
degradation in the network in terms of significant delay and
packet loss.

Similar to our solution, Zhang et al. [20] proposed an
Integer Linear Programming (ILP) based solution for plac-
ing rules on switches for a given firewall policy. However,
the work does not consider the influence of position relation-
ship between neighbor devices on rule placement.

D. OUR APPROACH
In this paper, we propose a novel approach for rule placement.
In our approach, we first take the relationships of neighbor
devices into considerationwhen placing rules.We classify the
relationship of neighbor devices into two categories: the serial
relationship and the parallel relationship, and propose the rule
placement strategies for both categories. To overcome the
challenges of implementing our placement strategies, we pro-
pose a novel data structure called OPTree and also design the
insertion algorithm and query algorithm for OPTree.

E. KEY CONTRIBUTIONS
In this paper, we extend and reinforce our work in [21] to
expatiate our approach in more detail and further improve our
approach. The main contributions of this paper are as follows:

(1) To the best of our knowledge, we first consider the
influences of the position relationship between neighbor
devices on rule placement. According to the real condition
in network, we classify the position relationship between
neighbor devices into the serial relationship and the parallel
relationship.

(2) We propose the rule placement strategies for different
position relationships, respectively.

(3) To overcome the challenges of implementing our strate-
gies, we propose a novel data structure called OPTree to rep-
resent the rules in devices and design the insertion algorithm
and the search algorithm for OPTree.

(4) We analyze the time complexity and conduct experi-
ments to examine our approach.

Compare with our prior work, we have some changes in
this paper as follows.

1)We define the problem of the rule placement and provide
a formal definition of the problem of the rule placement.

2) We introduce the prefixes of rules and propose some
operations of prefixes.

3) We analyze the factors influencing rule placement.
4) We propose the pseudo-code of the insertion algorithm

of OPTree and search algorithm of OPTree, respectively.

8690 VOLUME 7, 2019

W. Li et al.: Novel Approach to Rule Placement in SDNs

F. PAPER ORGANIZATION
This paper is organized as follows: in Section II, we present
the background and notations. We propose the principles of
rule placement and define the problem of rule placement
In Section III. In Section IV, we propose our approach
in detail. To overcome the challenges of implementing our
strategies, we propose a novel data structure called OPTree in
Section V. In Section VI, to evaluate our approach, we per-
form experiments and discuss experimental results. We con-
clude our paper in Section VII.

II. BACKGROUND
A. SOFTWARE-DEFINED NETWORK
Software-Defined Network (SDN) is a novel network archi-
tecture that proposed by CleanSlate research group of
Stanford University [22], [23]. Its goal is to achieve control
of the hardware forwarding rules through software program-
ming and finally achieve the purpose of a flow of free control.
The architecture of SDN contains three layers: the device
layer, the control layer, and the application layer. The rule
placement is related with the control layer and the device
layer.

Figure 1 shows a sketch of the device layer and control
layer in SDN. There is at least one controller in the control
layer, and there are many devices in the device layer. The
rules in devices match every data packet arrives at the devices.
If a rule matches a data packet in a device, the device will
execute the action of the rule for the data packet, the data
flow is composed of a set of data packets that go through
the devices. The controller manages the rules in devices by
the control flow. When the network administrator wants to
change the flow of data packets, he can create or modify a
rule in the controller and place it into a device in the device
layer by control flow.

FIGURE 1. A sketch of the device layer and control layer in SDN.

B. RULES IN SOFTWARE-DEFINED NETWORK
The SDN controls the flow of data packets by rules. The
rules are represented as a matching table which is created by
controller and placed into devices. Figure 2 shows the archi-
tecture of the matching table. The matching table denotes a

FIGURE 2. The architecture of matching table.

rule set, in which a rule is composed of three kinds of fields:
one priority field, some matching fields, and one action field.
The priority field specifies the order of matching rule. The
higher priority rule will be matched before the lower priority
rule. The matching fields specify how the packet header will
be matched with this rule. The action field specifies the
action to be enforced on the matched data packets. There are
many kinds of actions, such as permitting or prohibiting data
packets to go through the device, forwarding data packets
to other devices, or modifying the head content of data
packets, etc.

Since an important function of the network is access con-
trol, there are many devices in SDN for access control, e.g.,
firewall. In this paper, we focus on the rule placement of ACL
rules in firewalls. ACL is a kind of matching table which is
deployed into the firewall. In general, the values of priority
fields are same in ACL rules. There are five matching fields
in ACL rules, and the value of ACL rules’ action field is
accept or drop, we use the following shorthand: a (Accept),
d (Drop).

C. PREFIXES OF RULES
It is a trend to use TCAMs to perform high-speed packet
classification. So the matching fields’ values of rules are
consisting of an array of ternary elements, such as {0, 1, ∗},
in which ∗ is a wildcard character that matches both 0 and 1.
For example, a matching field’s value is [4, 7], then we use
1∗∗ to denote it. we call the array of ternary elements as
prefix. A prefix can denote a range, but a range might not
use a prefix to denote it. For example, if a range is [2, 8], then
wemust use three prefixes to denote it: 0010, 01∗∗, and 1000.
Prefix has the following two important properties.

1). Any prefix can denote a range, but a range might not be
denoted by a prefix.

2). Given two prefixes pi and pj, the relationship between
pi and pj is any of the following two cases:
a. pi ∩ pj = φ
b. pi ∩ pj = pi or pi ∩ pj = pj
In other words, if the intersection of p1 and p2 is not empty,

then p1 is a subset of p2 or vice versa.

D. SOME IMPORTANT NOTATIONS AND OPERATIONS
OF PREFIXES
In this paper, we use p to denote a prefix value of rule’s
matching field and useP(r, k) to denote the prefix value of the
kth matching field in r , in which r is a rule. In this subsection,
we present some notations and operations of prefixes as
follows.

VOLUME 7, 2019 8691

W. Li et al.: Novel Approach to Rule Placement in SDNs

1) COVERAGE OF PREFIXES
Each prefix denotes a range, we use R(p) to denote the range
represented by prefix p. If R(pi) ∈ R(pj), we say pj covers pi.
Given two prefixes pi and pj, if pi does not cover pj and pj
does not cover pi, then R(pi) ∩ R(pj) = φ.

2) DIFFERENCE SET OF PREFIXES
Given two prefixes pi and pj, if pi covers pj, we use
the M(pi, pj) to denote the difference set between
pi and pj. M (pi, pj) is the minimum prefix set that satisfies
R(M (pi, pj)) ∪ R(pj) = R(pi), where R(M (pi, pj)) denotes
the range union of all ranges denoted by the prefixes in
M (pi, pj). For example, p1 = 1 ∗ ∗ ∗ ∗, p2 = 100 ∗ ∗,
M (p1, p2) = {11 ∗ ∗∗, 101∗∗}. Obviously, the equation
R(p2) ∪ R(M (p1, p2)) = R(p1) holds.

3) COMPARISON OF PREFIXES
Each prefix p denotes a range, the upper bound of a prefix p
is the value computed by replacing all ∗ of p with 1 and the
lower bound of a prefix is the value computed by replacing
all ∗ of p with 0. We use pu to denote the upper bound of
p, and use pl to denote the lower bound of p. For example,
p = 10 ∗ ∗, pu = 1011, pl = 1000, the range denoted by p
is [pl , pu]. Given two prefixes pi and pj, if pui ≥ puj , we say
pi ≥ pj; otherwise, we say pi ≤ pj.

4) MINIMUM COMMON PREFIX
Given two prefixes pi and pj, theMinimumCommon Prefix
of pi and pj is a prefix p thatR(p) is theminimum range among
the ranges denoted by prefixes that satisfy the condition:
R(pi) ∈ R(p) and R(pj) ∈ R(p), we use MCP(pi, pj) to
denote it. For example, p1 = 100 ∗ ∗, p2 = 11 ∗ ∗∗,
MCP(p1, p2) = 1 ∗ ∗ ∗ ∗.

5) MERGENCE OF PREFIXES
Given two prefixes pi, pj, if pi and pj have same number of *
and only the last bits before ∗ of pi and pj are different, then
pi ∪ pj can be represented by one prefix, we say pi and pj can
be Merged. For example, p1 = 10 ∗ ∗ and p2 = 11 ∗ ∗ can
be merged because p1 ∪ p2 =1∗ ∗ ∗. i.e., R(p1) ∩ R(p2) = φ,
M (MCP(p1, p2), p1) = p2.

E. SOME OPERATIONS OF RULES
In this subsection, we state some operations of rules, these
operations will be used in the following sections.

1) COVER
Given two rules ri,k , rj,k , and assume that i ≤ j and the
numbers of the matching fields of the two rules both are n.
If ri,k and rj,k satisfy the following condition,

∀m,F(ri,k ,m) ∩ F(rj,k ,m) = F(rj,k ,m) (1 ≤ m ≤ n)

then we say ri,k covers rj,k , and use ri,k ⊇ rj,k to
denote it.

2) CONTAIN
Given a rule r and a rule set R, if any data packet can match r ,
and the data packet can match a rule ri at least in R, then
we say R contains r , use r ∈ R to denote it. Note that if
A(ri) 6= A(r), we use r ∈ R to denote it. Furthermore, Given
two rule sets R′, R, if for each rule r ′ in R′, r ′ ∈ R holds, then
we say R′ is a subset of R, and use R′ ⊆ R to denote it.

3) MERGE
Given two rules ri, rj and a rule set R, and assume that
the numbers of the matching fields of the two devices both
are n, and A(ri) = A(rj). If M (M (MCP(ri, rj), ri), rj) = ∅
or M (M (MCP(ri, rj), ri), rj) ⊆ R holds, we say ri and rj can
be merged, we use ri ⊕ rj to denote the rule merged by ri
with rj.

III. PROBLEM DEFINITION
In this section, we define the problem of rule placement.
Table 1 shows the relevant notations used in the problem
formulation.

TABLE 1. Some definition of notation.

A. THE PRINCIPLES OF RULE PLACEMENT
The network N is composed of a set of devices, and Di
denotes the ith device of the device layer in N . Every device
has a rule set denoted as R(Di). L(R(Di)) denotes the number
of R(Di). In this paper, rules can perform a high-speed data
packets classification by using TCAMs. However, it is very
expensive and the capacity is limited (the size of the TCAM
is usually 1k ∼ 2k [4]). The first principle of rule placement
is L(R(Di)) cannot exceed the capacity of Di, i.e., L(R(Di)) ≤
C(Di), and we choose the device D where L(R(D)) is the
minimal.

In this paper, we assume that the rules are optimized in
given devices, which means all rules in devices are working.
If there is a rule r which cannot work in the device, r should
be removed from the device as a redundant rule. The second
principle of rule placement is that all rules can work after
rule placement.

8692 VOLUME 7, 2019

W. Li et al.: Novel Approach to Rule Placement in SDNs

B. THE PROBLEM DEFINITION OF RULE PLACEMENT
In this paper, we focus on the rule placement in SDNs. The
rule placement problem can be defined as follows: given a
network N , there are k devices (D1,D2, . . . ,Dk) in N . The
rule placement is a problem in finding a suitable device Di
(1 ≤ i ≤ k) and place r ′ into it. Figure 3 shows an exam-
ple of rule placement. Given four devices (D1,D2,D3,D4),
D1 denotes a router, and the others denote firewalls, r ′ denotes
the rule which will be placed. The process of rule place-
ment is to choose a suitable device from the three devices
(D2, D3, D4) and place r ′ into it.

FIGURE 3. An example of rule placement.

In this example, we check each device to find a suitable
device that satisfies the above principles of rule placement.
Obviously,D2 is not a suitable device because r ′ cannot work
when r ′ is placed into D2. The reason is that the data packets
arriving at D2 do not match r ′. As the matter of fact, r ′ can
work in bothD3 andD4, and r ′ can merge with r1,3 into a rule
in D3, so we finally choose D3 to place the rule r ′. We use
Pr(Di, r ′) to denote the profit that r ′ is placed into Di, and
we transform the rule placement problem into the problem
of computing Pr(Di, r ′) for each device and choosing the
device Di which Pr(Di, r ′) is maximal. The computational
formula is as follows:

Pr(Di, r ′) =

{
−∞ when r ′ cannot work in Di
L(R(Di))+ 1− L(R(Di, r ′))

IV. SOLUTION APPROACH
In this section, First we classify the rule set in devices. In this
paper, our key idea is to consider the position relationship
of neighbor devices when placing rules. Second, we classify
the position relationship between neighbor devices into two
categories: the serial relationship and the parallel relation-
ship. Finally, we propose the rule placement strategy for each
category of position relationships respectively.

A. THE CLASSIFICATION OF RULE SET
Given a device D and a flow of the data packets F , and we
use Dir(F) to denote the direction of F , we use Dprev to
denote the device where placed in front of D according to
Dir(F) and use Dnext to denote the device placed in behind
of D according to Dir(F), so the Dir(F) indicates that data
packets are passed through Dprev, D and Dnext , successively.

When data packets arrive at D, and some of them are allowed
to go through D, and others are prohibited to go through D.
We use Pin(D) to denote the set of data packets that arrive
at D and use Pout (D) to denote the set of data packets that
are allowed to go through D. In this paper, we pay close
attention to the placement of the ACL rule, since the value
of action field is either accept or drop, We use R(D) to
denote the ACL rules in D, and we use Ra(D) and Rd (D)
to denote the rules in which the value of action field are
accept and drop, respectively. There are some properties as
follows.

1) R(D) = Ra(D) ∪ Rd (D).
2) Pin(D) =

⋃
Pout (Dprev).

3) Each data packet in Pout (D) can match a rule at least
in Ra(D).
4) Each data packet in Pin(D)-Pout (D) can match a rule at

least in Rd (D).
According to the principles of rule placement in III-A, we

should check whether r ′ can work in Di or not when we
would place r ′ into Di. If r ′ satisfies one of the following two
conditions, then r ′ cannot work in Di.
1) There does not exist data packet which can match r ′ in

Pin(Di), we use r ′ /∈ Pin(Di) to denote it.
2) There does exist a rule r in R(Di) that r ⊇ r ′ and

A(r) = A(r ′).

B. THE POSITION RELATIONSHIP BETWEEN
NEIGHBOR DEVICES
In this subsection, we propose a formal definition of the
position relationship between neighbor devices.

Given two devices Di and Dj, we assume that the flow
direction of the data packets is from Di to Dj. In other word,
if Pout (Di) ⊇ Pin(Dj), then we call the position relationship
betweenDi andDj is a Serial Relationship, i.e.,Re(Di,Dj) =
Res. There is a serial relationship between D1 and D2 have as
shown in Figure 4(a).

FIGURE 4. Two categories of the position relationships between devices.
(a) The serial relationship. (b) The parallel relationship.

If there is no data packet that from Di to Dj, then we call
the position relationship between Di and Dj is a parallel
relationship, i.e., Re(Di,Dj) = Rep. There is a parallel
relationship between D1 and D2 as shown in Figure 4(b).

C. THE FACTORS INFLUENCING RULE PLACEMENT
According to the above principles of rule placement, there are
three factors influencing rule placement as follows.

VOLUME 7, 2019 8693

W. Li et al.: Novel Approach to Rule Placement in SDNs

1) INTERNAL FACTOR OF DEVICE
The factor refers to the rules which are in a device. Figure 5
shows an example of rules in a device. In this example, every
data packet which can match r ′ can also match r1,3, r ′ is the
redundant rule for r1,3, r ′ cannot work in D3, so we cannot
place r ′1 into D3. r ′ can be merged with r1,1 into a new rule
in D1, as a result, one rule is reduced when r ′1 is placed
into D1. This example shows that the rules in a device have
direct influences on rule placement.

FIGURE 5. An example of rules in devices.

2) EXTERNAL FACTOR OF DEVICE
This factor refers to the data packets which arrive at the
device. If there does not exist a data packet that can match r ′,
then r ′ cannot work in the device. For example, in figure 3,
r ′ cannot be placed into D2 because there does not exist data
packet that can match r ′ which arrives at D2.

3) THE POSITION RELATIONSHIP OF THE
NEIGHBOR DEVICES
According to the flow of data packets, we assume that two
devicesDi andDj, whereDi is in front ofDj. When a rule r is
placed into Di, r may change the flow of data packets which
go throughDi, and these data packets are parts of which arrive
atDj. Thus it might make some rules inDj cannot work when
r is placed intoDi. So the position relationship of the neighbor
devices has influences on rule placement.
For example, in figure 5, r ′ can be placed into D1 because

r ′ can be merged with r1,1 in D1, and r ′ can also be placed
into D2 because r ′ can be merged with r1,2 in D2. Obviously,
the position relationship between D1 and D3 is a serial rela-
tionship. If we place r ′ into D1, Pin(D3) may change because
Pout (D1) has been changed, then r1,3 cannot work in D3, and
we can remove r1,3 from D3. Therefore, we can reduce two
rules after r ′ has been placed into D1.

D. THE RULE PLACEMENT STRATEGY FOR THE
PARALLEL RELATIONSHIP
In this section, we propose the rule placement strategy for
the parallel relationship. According to the problem definition
of rule placement in section III, the key of our strategy is to
computing Pr(D, r) for each device and place the rule into
the device which has the larger Pr(D, r).

Given two device Di and Dj, and there is a parallel rela-
tionship between Di and Dj, i.e., Re(Di,Dj) = Rep. The rule
placement strategy for the parallel relationship contains the
following two steps.

Step 1, we check the data packets D(r ′) which match with
r ′ are contained by Pin(Di) or not. There are two cases as
follows.

Case 1. D(r ′) /∈ Pin(Di): In this case, r ′ cannot work in Di
because any packet which arrives at Di cannot match with r ′,
and we cannot place r ′ to Di, i.e., Pr(Di, r ′) = −∞.
Case 2. D(r ′) ∈ Pin(Di): In this case, r ′ can work in Di

because there exists packets which arrive at Di can match
with r ′.We put r ′ into a rule setR′, and go to step 2 to compute
Pr(Di, r ′′) further for each rule r ′′ in R′.
Step 2, we check each rule r ′′ in R′ is contained by

R(Di) or not. There are tree cases as follows.
Case 1. r ′′ ∈ R(Di): In this case, r ′′ can not work in

Di because that r ′′ is a redundance rule for R(Di), i.e.,
Pr(Di, r ′′) = −∞, and we remove r ′′ from R′.
Case 2. r ′′ ∈ R(Di): In this case, r ′′ is a conflict rule

for R(Di) because that there exists a rule r which cover r ′′

and A(r ′′ 6= A(r), note that r maybe a rule or a union set
of some rules. We should make a choice by our network
security requirements. If we choice r ′′ and r is a rule, we set
Pr(Di, r ′′) = 1, and if we choice r ′′ and r is a union set
of some rules, we set Pr(Di, r ′′) = n, n is the number of
rules. If we choice r , it means that r ′′ is not satisfied with our
network security requirements, we setPr(Di, r ′′) = −∞, and
we remove r ′′ from R′.

Case 3. r ′′ /∈ R(Di): In this case, r ′ can be placed into Di,
assume that there exists a rule r in Di can merge with r ′′ and
use rmerge to denote the merged rule, i.e., rmerge = r ⊕ r ′′ and
use rmerge to replace the r and r ′′. Note that rmerge maybe also
merge with other rules, so this is a constant cyclic process
until no rules can be merged. We make Pr(Di, r ′′) = n, and
n is the number of the merged rules.

We make Pr(Di, r ′) = max(Pr(Di, r ′′)), r ′′ ∈ R′.
We use the same strategy to compute Pr(Dj, r ′) for Dj and

compare Pr(Di, r ′) with Pr(Dj, r ′). There are three cases as
follows.

Case 1. Pr(Di, r ′) = Pr(Dj, r ′) = −∞: In this case, r ′ can
not place into Di and Dj, we skip it.
Case 2. Pr(Di, r ′) = Pr(Dj, r ′) 6=-∞: In this case,

we compare L(R(Di) with L(R(Dj), and place r ′ into the the
device D when L(R(D)) is minimal.
Case 3. Pr(Di, r ′) 6= Pr(Dj, r ′): In the case, we place r ′

into the device D when Pr(D, r ′) is maximum.

E. THE RULE PLACEMENT STRATEGY FOR THE
SERIAL RELATIONSHIP
Given two device Di and Dj, and there is a serial rela-
tionship between Di and Dj, and Di is a Dprev for Dj. i.e.,
Re(Di,Dj) = Rep. The rule placement strategy for the
serial relationship is similar to that of the rule placement
strategy for the parallel relationship. The difference between
the rule placement strategy for the serial relationship and

8694 VOLUME 7, 2019

W. Li et al.: Novel Approach to Rule Placement in SDNs

the rule placement strategy for the parallel relationship as
follows.

We use the rule placement strategy for the parallel rela-
tionship to compute Pr(Di, r ′) and Pr(Dj, r ′), if Pr(Dj, r ′) ≤
P(Di, r ′). According to the rule placement strategy for the
parallel relationship, we should place r ′ into Di. However,
if r ′ has been placed into Di, Pout (Di) maybe change, so we
should recompute Pin(Dj), and use the same strategy to
compute Pr(Dj, r ′) for Dj, and compare Pr(Di, r ′) with
Pr(Dj, r ′). The process of comparison is the same with the
process of comparison in the rule placement strategy for the
parallel relationship.

V. OPTree
In this paper, we propose the strategies of rule placement
in section IV. The key of the strategies is checking the rule
which would be placed can work or not in a device. However,
It is hard to implement to the strategies, there are some
challenges in implementing the strategies are as follows.

1) How to check whether the rule is a redundancy rule for
a rule set or not.

2) How to check whether the rule can be merged by other
rules or not.

FDD is a good data structure to denote the ACL rule that
was proposed by Liu and Gouda [24] and widely used in rule
compression [25]–[27]. However, the rule needs to be split
according to the paths of FDD when checking whether a rule
is contained by a rule set or not, and the split operation is a
time-consuming operation. In this paper, we propose a novel
data structure called OPTree to overcome the challenges.

A. THE PROPERTIES OF OPTree
OPTree is a minimal ordered predicate tree which satisfies
the following properties. We use T to denote the OPTree.

1). OPTree is a multi-way tree, it has a root vertex, several
leaf vertices, and several non-leaf vertices. We use V to
denote the vertex of OPTree.

2). Each vertex except the leaf vertices has a data field
which match a field of a rule. We use Fi to denote the ith
field in a rule, and use F(Vi) to denote the data field of Vi, and
useD(F(Vi)) to denote the range value of F(Vi). e.g., if F(Vi)
denote the Source Port , then D(F(Vi)) = [0, 216 − 1]. Each
leaf vertex has a data field which match the action field of a
rule. We use L(T) to denote the hight of OPTree, if a rule has
k fields, then L(T) = k + 1 holds.
3). Each vertex except the leaf vertices has one or more

children vertices, and the vertex Vi has an edge ei,j with
its children vertex Vj. We use I (ei,j) to denote the label
of ei,j. If Vi has n children vertices, then I (ei,j) ⊂ D(F(Vi))

(1 ≤ j ≤ n) holds, and D(F(Vi)) =
n⋃
j=1

I (Ei,j) holds.

4). The edges of Vi are arranged in order. e.g., if p ≤ q,
then I (Ei,p) ≤ I (Ei,q) holds, and Ep is on the left side of Eq.

5). We use Path to denote predicate path which contains all
edges of a traversal paths that starts from root vertex and ends
to a leaf vertex. If a rule r whose predicate is contained by

the union of some path predicates, then there must exist a
path that contains the predicate of r in OPTree.
6). Given two predicate paths pi = {I (ei,1), I (ei,2), · · · ,

I (ei,n)} and pj = {I (ej,1), I (ej,2), · · · , I (ej,n)}, if for each
prefix I (ei,k) and I (ej,k), I (ei,k) ∈ I (ej,k) holds, we say pi
is redundant to pj. There is no redundant predicate path in
OPTree.

Given two rules r1 and r2, in which r1 = {F1 = 0 ∗ ∗,
F2 = 0 ∗ ∗ → {accept}} and r2 = {F1 = 1 ∗ ∗, F2 =
∗ ∗ ∗ → {accept}}. Figure 6 shows the three kinds of trees
created by r1 and r2. Figure 6(a) shows a tree Ta that is not an
OPTree, because Ta does not satisfy the 5th property. We use
rq to denote a rule, in which rq = {F1 = ∗ ∗ ∗,F2 = 0 ∗ ∗
→ {accept}}. Obviously, rq’s predicate is contained by the
union of some path predicates, but there is not a predicate
path that contains the predicate of rq in Ta. Figure 6(b) shows
a tree Tb that is not an OPTree, because Tb does not satisfy the
6th property, the rightmost predicate path Pathr contains the
leftmost predicate path Pathl , in other word, Pathr and Pathl
are redundant predicate paths. Figure 6(c) shows an OPTree.

FIGURE 6. Three kinds of tree that created by r1 and r2. (a) Not OPTree.
(b) Not OPTree. (c) An OPTree.

Obviously, it can overcome the challenges of implementing
our strategies by using OPTree to represent the rule set. First,
according to the 5th property, given a rule set R and a rule r ,
if there is a predicate path that contains the predicate of r in
OPTree that represent R, then r is contained by R. Second,
given two rules r1, r2 and a rule set R, r1 has the same value
of the action field with r2. We use rmcp to denote a rule, which
the prefix of each matching field is the Minimum Common
Prefix of r1 and r2 and use R′ to denote the rule set, in which
the predicate of each rule is an element of the union of the
Difference set of rmcp with r1 and the the Difference set of
rmcp with r2. For each rule r in R′, if there is a predicate path
that contains the predicate of r in OPTree that represent R,
then r1 can be merged with r2.

B. THE INSERTION ALGORITHM OF OPTree
The insertion algorithm of OPTree has three steps, and each
step has an algorithm to implement it. The algorithms are
described in detail as follows.

Step 1: Convert the rule to a direct predicate path and insert
the path into the OPTree. The pseudo-code of the algorithm
is shown in Algorithm 1.

VOLUME 7, 2019 8695

W. Li et al.: Novel Approach to Rule Placement in SDNs

Algorithm 1 InsertDirectPath(T ,Vc, rs, i)
Input: T ,Vc, rs, i
Output: T which contains the predicate path of the rule r

if i > rs.length then
return;

else
if Edges(Vc) == 0 then

add a vertex Vnew,and label it as F(i+ 1);
add a edge Enew that from Vc to Vnew;
set I (Enew) = P(rs, i);
InsertDirectPath(T ,Vnew, rs, i+ 1);

else
for j = 1 to Edges(Vc) do

if j + 1 > Edges(Vc)|| (I (Ej) <

P(rs, i)&&I (Ej+1) > P(rs, i)) then
add a vertex Vnew and label it as F(i+ 1);
add a edge Enew that from Vc to Vnew in order;
set I (Enew) = P(rs, i);
InsertDirectPath(T ,Vnew, rs, i+ 1);
Break;

else if I (Ej) == P(rs, i) then
InsertDirectPath(T ,V (Ej), rs, i+ 1);
Break;

Step 2: When a direct predicate path has been inserted into
the OPTree, the path may merged with other paths, so the
main function of step 2 is to find which paths can be merged
and merge them into a merged predicate path and insert the
merged path into the OPTree by using the algorithm 1. The
pseudo-code of the algorithm is shown in Algorithm 2.

Step 3: After the direct predicate path and the merged
predicate path have been inserted into the OPTree, we should
check the OPTree and remove the redundance predicate path
according to the 6th property of OPTree. The pseudo-code of
the algorithm is shown in Algorithm 3.

Figure 7 shows the process of how r2 is inserted into
OPTree, which is constructed by r1, r1 and r2 are the two
rules in Figure 6.

FIGURE 7. An example of Inserting a rule into an OPTree.

C. THE SEARCH ALGORITHM OF OPTree
In this paper, we need to check whether a rule r is contained
by a rule set R in devices or not when implementing our
strategy of rule placement.We use anOPTree T to representR

Algorithm 2 InsertMergePath(T , rs)
Input: T , rs
Output: T that has inserted the merge predicate path

set pathm = getMergedPath (T ,T .root, rs, 1);
if pathm.length==T .levels.size then

create rm that format as {pathm→ {∗}}
InsertDirectPath(T ,T .root, rm, 1)

/* Find the paths which can be merged in
T,and merge them into a path */

Path getMergedPath(T ,Vc, rs, i)
create a empty predicate Path pathm to denote the merged
rule.
if i > n then

return pathm;
for j = 1 to Edges(Vc)

if I (Ej) == P(rs, i) then
Continue;

else if M (I (Ej),P(rs, i)) 6= φ then
pathm.add(I (Ej) ∩ P(rs, i));
getMergedPath (T ,V (Ej), rs, i+ 1);

else if M (I (Ej),P(rs, i) 6=

φ&&M (MCP(I (Ej),P(rs, i)), I (Ej)) ==

P(rs, i)&&existMerged == false then
set existMerged = true;
pathm.add(MCP(I (Ej),P(rs, i));
getMergedPath (T ,V(Ej), rs, i+ 1);

and use a predicate path path to represent r . So we can
use the search process in OPTree to represent the check-
ing process. Obviously, the search operation of OPTree is
extremely efficient according to the 5th and 6th properties of
OPTree. The pseudo-code of the search algorithm of OPTree
is shown in Algorithm 4. Note that we use Binary-Search in
the algorithm according to the 4th property of OPTree.

D. ANALYSIS OF THE SEARCH ALGORITHM
In this section, we analyze the time complexity of the search
algorithm. Since T is an ordered tree, we can use Binary-
Search to find the edge quickly. Assume that the OPTree T
has m levels and the number of nodes in every level is not
more than n, then the time complexity of search algorithm is
O(m ˙logn).

E. ANALYSIS OF THE INSERTION ALGORITHM
In this section, we analyze the time complexity of the inser-
tion algorithm. Assume that each non-leaf vertex of OPTree T
has n children nodes. When a rule r has m matching fields,
the insertion algorithm needs three steps and we analyze the
time complexity of each step as follows.

For step 1, the best case is that there is not an edge e
that I (e) = p1 in the first level of OPTree, then we only
need to check the edges at the first level. Thus the time
complexity is O(log n). The worst case is that there is an

8696 VOLUME 7, 2019

W. Li et al.: Novel Approach to Rule Placement in SDNs

Algorithm 3 RemoveRedundancePath(T ,Vc, rs, i)
Input: T , Vc, rs, i
Output: T which not exist redundance path
set Ec is the first edge which start from Vc;
set pathr =findRePath (T ,Vc, rs, i,Ec);
if pathr is not null then

removePath (T , Vc, Ec, pathr ,1);

/* Find redundance path in T */
Path findRePath(T ,Vc, rs, i,Ec)

create a empty path pathr
if i > T .levels.size then

return pathr
else

for j = 1 to Edges(Vc)
if M (I (Ej),P(rs, i)) 6= φ then

pathr .add(I (Ej) ∩ P(rs, i));
findRePath (T ,V (Ej), rs, i+ 1,Ej);

/* Remove path from T */
void removePath(T , Vc, Ec, pathr , i)

if i ≥ pathr .size then
return

else if Vc is a terminate node then
remove Vc, Ec from T

else
for j = 1 to Edges(Vc)

if I (Ej) == pi then
removePath (T ,V (Ej),Ej, pathr , i+ 1)
break;

Algorithm 4 OPTreeSearch(T , r)
Input: OPTree T , query rule r = {p1 ∈ F1, p2 ∈

F2, · · · , pn ∈ Fn→ {∗}}
Output: True if r is in T ; otherwise, False
if T .root == NULL then

return False
else

return checkPath (T .root, r, 1)
/* Check query rule path in T */
bool checkPath(Vc, rq, i)

if i ≥ rq.length then
return True

for j = 1 to Edges(Vc)
if P(rq, i) ⊆ I (Ej) then

return checkPath (V (Ej), rq, i+ 1)

return False;

edge e thatM (I (e), p1) 6= p1 in each level of OPTree, then we
need to check edges in each level, thus the time complexity
is O(m ˙logn). Therefore, the time complexity of step 1 is
O(k ˙logn)(1 ≤ k ≤ m).

For step 2, the best case is that the predicate path path
which is inserted by step 1 cannot merge with each edge in

first level, then we need to check whether the left edge and
the right edge can merge with path, thus the time complexity
is O(2). The worst case is that each edge can merge with
path in ith level and there is an edge e that M (I (e), pk) =
pk ||M (I (e), pk) = I (e)(1 ≤ k ≤ m, k 6= i) in other levels,
so the time complexity is O(n)+ O(k ˙logn)(1 ≤ k ≤ m).
For step 3, the best case is that there is not an edge e that

satisfiesM (I (e), p1) = I (e) orM (I (e), p1) = p1 in first level,
then we need to check the left edge and the right edge, so the
time complexity isO(1). On the other hand, if the OPTree has
m levels and each level has n nodes, the worst case that checks
each predicate path is O(mn).

VI. EXPERIMENTAL EVALUATION
In this section, we perform our experiments and evaluate the
performance of our approach. In our approach, we consider
the influence of the position relationship between neighbor
devices on rule placement. Therefore, in our experiment,
we use two devices and change the position relationship
between them to evaluate our approach.

A. DATA SET GENERATION
First, we use the rule generation tool ClassBench proposed
in [28], which is widely used in rule generation to generate
the rule sets of the two devices. The sizes of the generated
rule sets range from 100 to 1000 with the step length is 100.
For each size, we generate 20 rule sets.

Second, we also use ClassBench to generate the rule sets
that would be placed, and the sizes of the generated data sets
range from 10 to 100 with the step length is 10, and for each
size, we generate 10 data sets. We use A to denote the size of
the rule set.

Note that each field of a rule in data set generated by
ClassBench is represented as a range. So we need to trans-
form the range to one or more prefixes. Thus the size of a
transformed set usually is larger than the original one. We use
the sizes of the transformed data sets as the metrics in our
experiments.

B. IMPLEMENTATION DETAILS
We perform our experiments on desktop PC running
Windows 7 Professional with 32GB memory and 4 cores
of Intel(R) Xeon(R) processor(3.3GHz) and implement our
experiments using C++.
In this section, we perform three kinds of experiments that

use the same data set and only change the position relation-
ship between the two devices. The first kind of experiments
is the devices with the parallel relationship, the second kind
of experiment is the devices with the serial relationship, and
the last kind of experiment is a comparison experiment that
compares the results of the first kind of experiments and the
results of the second kind of experiments.

To evaluate the efficiency of our approach, we computer
the two indicators of the experiments: the number of rules
after rule placement and the number of rules that reduced after
rule placement in the three kinds of experiments. Note that the

VOLUME 7, 2019 8697

W. Li et al.: Novel Approach to Rule Placement in SDNs

number of rules after rule placement is that the total number
of rules in the devicewhen placed into a device, so the number
of rules after rule placement may more than the number of
rules in the device before rule placement. It indicates that
our approach is effective when the number of rules after rule
placement less than the number of rules in device before rule
placement plus the number of rules that would be placed.

C. PARALLEL RELATIONSHIP
The experimental results show that our approach can reduce
the size of rules in devices with the parallel relationship. For
this set of experiments, we set A = 10,50,100 respectively.
With A = 10, when the total number of rules in the two
devices is 200, our approach reduces them to 189 on average;
when the total number of rules in the two devices is 1000,our
approach reduces them to 974 on average; when the total
number of rules in the two devices is 2000, our approach
reduces them to 1978 on average. On an average, the number
of reduced rules by our approach is 35. With A = 50,
when the total number of rules in the two devices is 200,
our approach reduces them to 232 on average; when the total
number of rules in the two devices is 1000, our approach
reduces them to 1011 on average; when the total number of
rules in the two devices is 2000, our approach reduces them to
1998 on average.On an average, the number of reduced rules
by our approach is 47. With A = 100, when the total number
of rules in the two devices is 200, our approach reduces them
to 224 on average; when the total number of rules in the
two devices is 1000, our approach reduces them to 1039 on
average; when the total number of rules in the two devices
is 2000, our approach reduces them to 2011 on average. On an
average, the number of reduced rules by our approach is 68.
Figure 8(a) shows the number of rules that reduced after rule
placement, and Figure 8(b) shows the total number of rules
after rule placement.

FIGURE 8. Parallel relationship. (a) Number of rules that reduced.
(b) Total number after rule placement.

D. SERIAL RELATIONSHIP
The experimental results show that our approach can reduce
the size of rules in devices with the serial relationship. We use
the same data set in the experiments with the experiments of
parallel relationship. With A = 10, when the total number of
rules in the two devices is 200, our approach reduces them
to 173 on average; when the total number of rules in the
two devices is 1000, our approach reduces them to 968 on
average; when the total number of rules in the two devices is

2000, our approach reduces them to 1969 on average. On an
average, the number of reduced rules by our approach is 43.
With A = 50, when the total number of rules in the two
devices is 200, our approach reduces them to 207 on average;
when the total number of rules in the two devices is 1000, our
approach reduces them to 1002 on average; when the total
number of rules in the two devices is 2000, our approach
reduces them to 1989 on average.On an average, the number
of reduced rules by our approach is 56. With A = 100,
when the total number of rules in the two devices is 200,
our approach reduces them to 215 on average; when the total
number of rules in the two devices is 1000, our approach
reduces them to 1027 on average; when the total number of
rules in the two devices is 2000, our approach reduces them to
2003 on average. On an average, the number of reduced rules
by our approach is 77. Figure 9(a) shows the number of rules
that reduced after rule placement, and Figure 9(b) shows the
total number of rules after rule placement.

FIGURE 9. Serial relationship. (a) Number of rules that reduced. (b) Total
number after rule placement.

E. SERIAL RELATIONSHIP VS. PARALLEL RELATIONSHIP
The experimental results show that the size of rule reduction
with serial relationship is more than the size of rule reduction
with parallel relationship, which indicates that considering
the influence of the position relationship of neighbor devices
on rule placement is necessary . In this experiment, we set
A = 50, and the data sets are exactly the same for different
relationships, we use Parallel to denote the experiment with
the parallel relationship, and use Serial to denote the exper-
iment with the serial relationship. When the total number
of rules in the two devices is 200, Parallel reduces them to
212 on average, Serial reduces them to 207 on average; when
the total number of rules in the two devices is 1000, Parallel
reduces them to 1011 on average, Serial reduces them to
1002 on average; when the total number of rules in the two
devices is 2000, Parallel reduces them to 1998 on average,
Serial reduces them to 1989 on average. On an average,
the number of reduce rules by Parallel is 47, the number of
reduce rules by Serial is 56. Figure 10 shows the result of the
experiment.

Note that in our experiments, we only change the position
relationships between devices to prove our approach can
reduce the number of rules in difference position relation-
ships. Because we use the same data, the curves change the
same trend, and there are some subtle differences from one
curve to another in Figure 10.

8698 VOLUME 7, 2019

W. Li et al.: Novel Approach to Rule Placement in SDNs

FIGURE 10. Parallel relationship VS. serial relationship.

VII. CONCLUSIONS
In this work, we propose a novel rule placement strategy for
different position relationships of neighbor devices, respec-
tively. To overcome the challenges of our strategy implemen-
tation, we propose a new data structure called OPTree to
represent the rules in devices, which is convenient to check
whether a rule is covered by the existed rules. We design
two algorithms for OPTree: insertion and search algorithms.
In our experimental results, we have shown that our approach
can reduce the size of rules in the device after rule placement
with different position relationships. Furthermore, the size
of rule reduction with the serial relationship is less than the
size of rule reduction with the parallel relationship, which
indicates that our approach is effective and it is necessary to
consider the influence of the position relationship of neighbor
devices on rule placement.

REFERENCES
[1] K. Pagiamtzis and A. Sheikholeslami, ‘‘Content-addressable mem-

ory (CAM) circuits and architectures: A tutorial and survey,’’ IEEE
J. Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006,
doi: 10.1109/JSSC.2005.864128.

[2] Y. Sun and M. S. Kim, ‘‘Tree-based minimization of TCAM entries
for packet classification,’’ in Proc. 7th IEEE Consum. Commun. Netw.
Conf. (CCNC), Las Vegas, NV, USA, Jan. 2010, pp. 1–5.

[3] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, ‘‘Infinite
cacheflow in software-defined networks,’’ in Proc. ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw., Chicago, IL, USA, 2014,
pp. 175–180.

[4] B. Agrawal and T. Sherwood, ‘‘Modeling TCAMpower for next generation
network devices,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
Austin, TX, USA, Mar. 2006, pp. 120–129.

[5] M. G. Gouda and X.-Y. A. Liu, ‘‘Firewall design: Consistency, complete-
ness, and compactness,’’ in Proc. 24th IEEE Int. Conf. Distrib. Comput.
Syst. (ICDCS), Tokyo, Japan, Mar. 2004, pp. 320–327.

[6] D. L. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett, and
J. Wang, ‘‘Compressing rectilinear pictures and minimizing access control
lists,’’ in Proc. ACM-SIAM Symp. Discrete Algorithms, New Orleans, LA,
USA, 2007, pp. 1066–1075.

[7] K. Kogan, S. Nikolenko, W. Culhane, P. Eugster, and E. Ruan, ‘‘Towards
efficient implementation of packet classifiers in SDN/openflow,’’ in
Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw.,
Hong Kong, 2013, pp. 153–154.

[8] M. Casado et al., ‘‘Rethinking enterprise network control,’’
IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009,
doi: 10.1109/TNET.2009.2026415.

[9] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
‘‘FIREMAN: A toolkit for firewall modeling and analysis,’’ in
Proc. IEEE Symp. Secur. Privacy, Berkeley, CA, USA, May 2006,
p. 213.

[10] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with DIFANE,’’ in Proc. ACM SIGCOMM Conf., New Delhi,
India, 2010, pp. 351–362.

[11] M. Moshref, M. Yu, A. B. Sharma, and R. Govindan, ‘‘vCRIB: Virtualized
rule management in the cloud,’’ in Proc. 4th USENIX Conf. Hot Topics
Cloud Comput., Boston, MA, USA, 2012, pp. 23–29.

[12] Y. Kanizo, D. Hay, and I. Keslassy, ‘‘Palette: Distributing tables in
software-defined networks,’’ in Proc. IEEE INFOCOM, Turin, Italy,
Apr. 2013, pp. 545–549.

[13] N. Kang, Z. Liu, J. Rexford, and D. Walker, ‘‘Optimizing the one big
switch abstraction in software-defined networks,’’ in Proc. ACM Int. Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), Santa Barbara, CA, USA, 2013,
pp. 13–24.

[14] X. N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, ‘‘Optimizing rules
placement in OpenFlow networks: Trading routing for better efficiency,’’
in Proc. ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw.,
Chicago, IL, USA, 2014, pp. 127–132.

[15] H. Li, P. Li, and S. Guo, ‘‘MoRule: Optimized rule placement for mobile
users in SDN-enabled access networks,’’ in Proc. IEEE Global Commun.
Conf., Austin, TX, USA, Dec. 2014, pp. 4953–4958.

[16] U. Ashraf, ‘‘Rule minimization for traffic evolution in software-defined
networks,’’ IEEE Commun. Lett., vol. 21, no. 4, pp. 793–796, Apr. 2017,
doi: 10.1109/LCOMM.2016.2636212.

[17] P. G. Kannan,M. C. Chan, R. T. B.Ma, and E.-C. Chang, ‘‘Raptor: Scalable
rule placement over multiple path in software defined networks,’’ in Proc.
IFIP Netw. Conf. (IFIP Netw.) Workshops, Stockholm, Sweden, Jun. 2017,
pp. 1–9.

[18] Y.-W. Chen and Y.-H. Lin, ‘‘Study of rule placement schemes for min-
imizing TCAM space and effective bandwidth utilization in SDN,’’ in
Proc. 6th Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Barcelona, Spain, Aug. 2018, pp. 21–27.

[19] A.Mimidis-Kentis, A. Pilimon, J. Soler,M. Berger, and S. Ruepp, ‘‘A novel
algorithm for flow-rule placement in SDN switches,’’ in Proc. 4th IEEE
Conf. Netw. Softwarization Workshops (NetSoft), Montreal, QC, Canada,
Jun. 2018, pp. 1–9.

[20] S. Zhang, F. Ivancic, C. Lumezanu, Y. Yuan, A. Gupta, and S. Malik,
‘‘An adaptable rule placement for software-defined networks,’’ in Proc.
44th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Atlanta, GA,
USA, Jun. 2014, pp. 88–99.

[21] W. Li, Z. Qin, H. Yin, R. Li, L. Ou, and H. Li, ‘‘An approach to
rule placement in software-defined networks,’’ in Proc. 19th ACM Int.
Conf. Modeling, Anal. Simulation Wireless Mobile Syst. (MSWiM), 2016,
pp. 115–118.

[22] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-
works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[23] B. A. A. Nunes,M.Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
‘‘A survey of software-defined networking: Past, present, and future of
programmable networks,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1617–1634, 3rd Quart., 2014, doi: 10.1109/SURV.2014.012214.00180.

[24] A. X. Liu and M. G. Gouda, ‘‘Diverse firewall design,’’ in Proc. IEEE Int.
Conf. Dependable Syst. Netw. (DSN), Atlanta, GA, USA, Jun./Jul. 2004,
pp. 595–604.

[25] A. X. Liu, C. R. Meiners, and E. Torng, ‘‘TCAM Razor: A sys-
tematic approach towards minimizing packet classifiers in TCAMs,’’
IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2010,
doi: 10.1109/TNET.2009.2030188.

[26] A. X. Liu, E. Torng, and C. R. Meiners, ‘‘Firewall compressor: An
algorithm for minimizing firewall policies,’’ in Proc. IEEE INFOCOM,
Phoenix, AZ, USA, Apr. 2008, pp. 176–180.

[27] A. X. Liu, E. Torng, and C. R. Meiners, ‘‘Compressing network access
control lists,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 12,
pp. 1969–1977, Dec. 2011, doi: 10.1109/TPDS.2011.114.

[28] D. E. Taylor and J. S. Turner, ‘‘Classbench: A packet classification
benchmark,’’ in Proc. IEEE INFOCOM, Miami, FL, USA, Mar. 2005,
pp. 89–99.

VOLUME 7, 2019 8699

http://dx.doi.org/10.1109/JSSC.2005.864128
http://dx.doi.org/10.1109/TNET.2009.2026415
http://dx.doi.org/10.1109/LCOMM.2016.2636212
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1109/TNET.2009.2030188
http://dx.doi.org/10.1109/TPDS.2011.114

W. Li et al.: Novel Approach to Rule Placement in SDNs

WENJIE LI received the B.S. and M.S. degrees
in software engineering from Hunan University,
China, in 2010 and 2013, respectively, where he
is currently pursuing the Ph.D. degree with the
College of Computer Science and Electronic Engi-
neering. His main interests include network man-
agement, network rules optimization, and NoSQL
database.

ZHENG QIN received the Ph.D. degree in
computer software and theory from Chongqing
University, China, in 2001. He is currently a
Professor of computer science and technology
with Hunan University, China. He has accumu-
lated rich experience in products development
and application services, such as in the area of
financial, medical, military, and education sectors.
His main interests include computer network and
information security, cloud computing, big data

processing, and software engineering. He is amember of the China Computer
Federation and ACM.

KEQIN LI is currently a SUNY Distinguished
Professor of computer science with the State
University of New York. He has published over
600 journal articles, book chapters, and ref-
ereed conference papers. His current research
interests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud comput-
ing, big data computing, CPU–GPU hybrid and

cooperative computing, multicore computing, storage and file systems, wire-
less communication networks, sensor networks, peer-to-peer file sharing
systems, mobile computing, service computing, the Internet of Things, and
cyber-physical systems. He is an IEEE Fellow. He has received several best
paper awards. He is currently serving or has served on the editorial boards
of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING,
the IEEE TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING.

HUI YIN received the B.S. degree in computer
science from Hunan Normal University, China,
in 2002, the M.S. degree in computer software
and theory from Central South University, China,
in 2008, and the Ph.D. degree from the College of
Information Science and Engineering, Hunan Uni-
versity, China, in 2018. He is currently anAssistant
Professor with the College of Applied Mathemat-
ics and Computer Engineering, Changsha Uni-
versity, China. His interests include information

security, privacy protection, and applied cryptography.

LU OU received the B.S. degree in computer sci-
ence from the Changsha University of Science
and Technology, in 2009, and the M.S. and
Ph.D. degrees in software engineering fromHunan
University, in 2012 and 2018, respectively. Her
research focuses on security, privacy, optimization,
and big data. She is a member of the IEEE.

8700 VOLUME 7, 2019

	INTRODUCTION
	MOTIVATION AND PROBLEM STATEMENT
	TECHNICAL CHALLENGES
	LIMITATION OF PRIOR WORK
	OUR APPROACH
	KEY CONTRIBUTIONS
	PAPER ORGANIZATION

	BACKGROUND
	SOFTWARE-DEFINED NETWORK
	RULES IN SOFTWARE-DEFINED NETWORK
	PREFIXES OF RULES
	SOME IMPORTANT NOTATIONS AND OPERATIONS OF PREFIXES
	COVERAGE OF PREFIXES
	DIFFERENCE SET OF PREFIXES
	COMPARISON OF PREFIXES
	MINIMUM COMMON PREFIX
	MERGENCE OF PREFIXES

	SOME OPERATIONS OF RULES
	COVER
	CONTAIN
	MERGE

	PROBLEM DEFINITION
	THE PRINCIPLES OF RULE PLACEMENT
	THE PROBLEM DEFINITION OF RULE PLACEMENT

	SOLUTION APPROACH
	THE CLASSIFICATION OF RULE SET
	THE POSITION RELATIONSHIP BETWEEN NEIGHBOR DEVICES
	THE FACTORS INFLUENCING RULE PLACEMENT
	INTERNAL FACTOR OF DEVICE
	EXTERNAL FACTOR OF DEVICE
	THE POSITION RELATIONSHIP OF THE NEIGHBOR DEVICES

	THE RULE PLACEMENT STRATEGY FOR THE PARALLEL RELATIONSHIP
	THE RULE PLACEMENT STRATEGY FOR THE SERIAL RELATIONSHIP

	OPTree
	THE PROPERTIES OF OPTree
	THE INSERTION ALGORITHM OF OPTree
	THE SEARCH ALGORITHM OF OPTree
	ANALYSIS OF THE SEARCH ALGORITHM
	ANALYSIS OF THE INSERTION ALGORITHM

	EXPERIMENTAL EVALUATION
	DATA SET GENERATION
	IMPLEMENTATION DETAILS
	PARALLEL RELATIONSHIP
	SERIAL RELATIONSHIP
	SERIAL RELATIONSHIP VS. PARALLEL RELATIONSHIP

	CONCLUSIONS
	REFERENCES
	Biographies
	WENJIE LI
	ZHENG QIN
	KEQIN LI
	HUI YIN
	LU OU

