
Sustainable Computing: Informatics and Systems 42 (2024) 100989

A
2

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

A systematic review of green-aware management techniques for sustainable
data center
Weiwei Lin a,b, Jianpeng Lin a,∗, Zhiping Peng c,d, Huikang Huang a, Wenjun Lin a, Keqin Li e

a Department of Computer Science and Engineering, South China University of Technology, GuangZhou, 510000, China
b Peng Cheng Laboratory, Shenzhen, 518066, China
c Guangdong University of Petrochemical Technology, Maoming, 525000, China
d Jiangmen Polytechnic, Jiangmen, 529000, China
e Department of Computer Science, State University of New York, NY, 12561, New Paltz, United States of America

A R T I C L E I N F O

Keywords:
Sustainable data center
Workload management
Virtual resource management
Renewable energy
Thermal management
Waste heat recovery
Real-world datasets

A B S T R A C T

Cloud computing is one of the powerful engines driving global industrial upgrading and the booming digital
economy. However, the explosive growth of cloud data centers (DCs) has resulted in inevitable energy
consumption and carbon emission problems. Therefore, constructing energy-efficient and sustainable DCs will
be essential for green cloud computing. This review makes several efforts to thoroughly investigate and track
the research progress and routes to sustainable DCs. Firstly, we construct a new conceptual model of sustainable
DCs to cover cutting-edge research results and indicate future evolutionary directions. Secondly, this review
provides a comprehensive survey of five topics from a technical perspective: workload management, virtual
resource management, energy management, thermal management, and waste heat recovery. Subsequently,
some real-world datasets relevant to the topics, including workload traces, renewable energy data, and
electricity price traces, have been specifically collected to support researchers in conducting further research.
Finally, based on observations of existing works, we highlight some salient technical challenges and promising
solutions to provide sensible energy and carbon reduction suggestions in sustainable DCs.
1. Introduction

Cloud computing is a concentrated expression of digital technology
advancement and service model innovation. According to Gartner,1 the
growth rate of the cloud computing market declined significantly in
2022 due to the double impact of inflationary pressure and macroe-
conomic downturn. However, compared with the global economy’s
growth of only 3.4%, cloud computing is still a powerful engine to drive
the development of new technologies and business models. With the
demand stimulated by large models and arithmetic power, the global
cloud market will maintain steady growth and exceed one trillion
dollars by 2026 (Fig. 1). Due to its computing power, cloud data centers
have become an integral part of the modern computing infrastructure.
More enterprises increasingly turn to DCs for hosted services and cloud
solutions. Meanwhile, the issue of energy consumption and carbon
emissions has emerged as a significant challenge for the construction
of DCs worldwide. In early 2020 Science reported that the total energy
consumption of global DCs reached about 205 TWh in 2018, about
1% of global power usage, an increase of 6% compared to 2010 and
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a steady growth trend [1]. Consequently, the energy consumption,
sustainability, and low-carbon footprint of DCs are a growing concern
for society. In general, DCs will play a more significant role in achieving
the global dual-carbon goal while being the new engine of future digital
economic growth.

With the influence of sustainability concepts, promoting energy
efficiency and cost reduction has become an essential evolutionary di-
rection for cloud computing [2]. To gradually achieve carbon neutrality
and reduce power usage effectiveness (PUE) in DCs, common inter-
national practices include purchasing carbon emission reductions or
green energy (including green certificates) and investing in renewable
energy [3]. Furthermore, some major global economies have set related
emission reduction targets and policies. For example, several European
cloud operators have promised a European Green Deal to achieve
climate neutrality by 2030, with measurable goals for buying non-
carbon energy, water savings, and thermal recycling [4]. The Chinese
administration has also declared peak emissions by 2030, adopting
more effective policies and measures to achieve carbon neutrality by
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Fig. 1. Global cloud computing market size and growth rate.

2060 [5]. Additionally, California introduced a carbon-neutral law in
2018 to reduce greenhouse gas emissions mainly from power gener-
ation facilities. There is no doubt that these green goals and policies
are forcing data center owners to urgently promote overall energy
efficiency in DCs.

Furthermore, worldwide leading major cloud service providers (CSPs
such as Google, Microsoft, Facebook, and Alibaba have been striving to
find new solutions to make cloud computing eco-friendly [6]. For exam-
ple, Google’s 2022 environmental report [7] claims that it operates DCs
with an average annual PUE of 1.10, compared to the industry average
of 1.573, and has matched 100% of electricity use with renewable
energy purchases in its global operations for the fifth year in a row. As
another green pioneer, Microsoft established a series of actions, such
as increasing renewable energy penetration and charging an internal
carbon fee to ensure carbon negativity by 2030 and eliminating its
historical carbon emissions by 2050 [8]. Additionally, Facebook is
actively pursuing carbon reduction measures such as reforestation and
regenerative agriculture. An IT load-balancing scheduler, Autoscale [9],
is also being deployed for server consolidation to boost the energy
efficiency of IT devices. Simultaneously, Chinese high-tech companies
promote their carbon neutrality plans and implement solutions. For
example, Alibaba Group, a pioneer in cloud computing in China, adopts
advanced AI technology to control cooling systems, immersed liquid
cooling technology, power supply systems that integrate green energy
and natural cooling sources, etc.[10]. Additionally, Huawei’s intelligent
cooling solution iCooling [11] has been launched in several large-scale
DCs on a commercial scale, realizing intelligent cooling. The solution
has been measured to reduce PUE by about 8%–15%, achieving an
energy-saving green goal.

Observing previous efforts on sustainable DCs reveals that different
entities have put forward different approaches and solutions to enhance
DC sustainability. Still, the following five areas are broadly used and
accepted: workload management, virtual resource management, energy
management, cooling management, and waste heat recovery. In conclu-
sion, driving the shift towards green, low-energy, and sustainable DCs
requires multi-dimensional optimization.

So far, related reviews have analyzed and discussed cutting-edge re-
search advances in sustainable DCs. For instance, Junaid et al. [6] pro-
vide multiple case studies from academia and industry to demonstrate
that three sustainability technologies – renewable energy integration
and utilization, waste heat recycling, and migration of modular DCs –
bring promising results. Sukhpal et al. [12] proposed a comprehensive
taxonomy of sustainable cloud computing to compare and classify exist-
ing technologies. Huang et al. [13] focused on the upstream integration
of renewable energy and the downstream use of waste heat in DCs. This
work analyzed DC performance and future directions in terms of tech-
nology, policy, and economics. Avita et al. [14] investigated software
solutions for establishing green DCs, including virtualization, operating
2

system, and application levels. Study cases for integrating and utilizing
green energy to reduce brown energy and carbon footprints are also
discussed. Table 1 exhibits the comparison between our work and
other related reviews. Overall, existing reviews have discussed specific
themes of sustainable DCs with their focus and insights, but they
are incomplete or have limitations. Additionally, they have not given
a blueprint for constructing a sustainable DC. More importantly, as
theories and technologies evolve, exploring the path forward for critical
topics from historical and cutting-edge work is essential.

Therefore, this review first gives a new conceptual model for sus-
tainable DCs. Then, we present a comprehensive review of green-aware
management technologies in the five most promising topics: workload
scheduling, virtualization technologies, energy management, thermal
management, and waste heat recovery. In addition, considering the
positive impact of real-world datasets on simulation performance, we
collected real datasets relevant to the topic to drive the research.
Finally, we suggest some critical scientific issues and practical solutions
for sustainable DCs.

The review method is briefly introduced as follows. We have col-
lected papers from several authoritative electronic libraries (IEEE
Xplore,2 ScienceDirect,3 SpringerLink,4 ACM Digital Library,5 and
arXiv6). A multi-keyword combined search was conducted based on
the following two or more keywords: cloud computing, data center,
renewable energy, sustainability, green, energy-aware, cooling system,
and waste heat recovery. Additionally, to cover the research progress
in energy-saving management technologies for sustainable data cen-
ters, we not only focus on the latest published work but also track
some long-standing and seminal work. After relevance screening, this
review collected 183 papers and industry reports, including 157 journal
papers, 16 conference papers, and 10 reports.

The remaining content is structured as follows. Section 2 presents
the conceptual model of sustainable DCs. Section 3 is a comprehensive
classification and analysis of green-aware management techniques.
Section 4 is a collection of real-world datasets related to the topic,
with available links. Section 5 presents existing open issues and future
research directions. Finally, a conclusion of the review is provided. An
overview of this review is shown in Fig. 2.

2. Conceptual model of sustainable data center

As research on sustainable DCs continues to make breakthroughs,
new conceptual models must be developed to cover cutting-edge re-
search findings. The early models developed by Gill et al. [12] and
Jordi et al. [15] are innovative and cover the critical topics of the data
center. However, the conceptual model proposed in [12] describes the
composition of the DC from a macro-perspective. In addition, the model
presented in the review [15] focuses more on cooling infrastructure
and workload management. Therefore, we introduce a new conceptual
model that combines the characteristics of existing models to provide a
more comprehensive description of sustainable DCs. As shown in Fig. 3,
the proposed conceptual model includes essential parts such as the
IT system, cooling system, power supply system, waste heat recovery
system, and lighting.

The IT system is the core system of the data center, which receives
and executes the various requests and workloads from individual users,
research institutions, and enterprises. The system identifies the quality
of service (QoS) requirements of each workload and subsequently
configures physical or virtual machine (VM) resources to execute the
workload. The cooling system regulates the temperature and humidity

2 http://ieeexplore.ieee.org/Xplore/home.jsp
3 http://www.sciencedirect.com
4 http://link.springer.com
5 http://dl.acm.org
6 https://arxiv.org/
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Fig. 2. Overview of the review.
Table 1
Comparison with related reviews.

Ref. Year Workload
management

Virtual
resource
management

Thermal
management

Energy
management

Waste
heat
recovery

Real-world
datasets

Characteristics

[6] 2016
√ √ √

Modular data centers, case studies
from both academia and industry

[12] 2019
√ √ √ √ √

A comprehensive taxonomy of
sustainable cloud computing

[13] 2020
√ √ √

Renewable energy integration and waste
heat reuse in district heating

[14] 2022
√ √ √

Virtualization, operating system and
application level software solutions

our
work

–
√ √ √ √ √ √

A conceptual model, green-aware
management techniques
in the computer room, with the second highest energy consumption
after the IT system. The heat released by the IT facilities in the com-
puter room is discharged to the outdoor environment through a twofold
thermal cycle consisting of cooling devices such as computer room air
conditioning (CRAC), cooling towers, pumps, and chillers. The power
supply system is designed to provide stable and secure electrical
power to the DC infrastructure. The system can adopt multiple energy
sources, such as the commercial grid, renewable energy (solar and
wind), and energy storage devices (ESDs), to power the data center.
Moreover, an automatic transfer switch (ATS) is employed to manage
energy sources and redirect power to the uninterruptible power supply
(UPS). Distributed UPS power architectures are adopted to avoid single
points of failure and to maximize the reliability and availability of
the power supply system. Additionally, ESDs are an energy buffer
that smooths out intermittent renewable energy sources (RESs). Power
distribution units (PDUs) regulate voltage and transmit power to IT
equipment, cooling, and lighting systems. The waste heat recovery
system reuses low-quality waste heat from cooling systems for district
heating, absorption cooling, and thermal power plants. Efficient reuse
of waste heat significantly reduces carbon emissions and can offset part
of the carbon credits.
3

3. Green-aware management techniques

3.1. Workload management

Effective workload management in DCs is critical to reducing oper-
ating costs, energy consumption, and carbon emissions while ensuring
QoS. To provide users with low-latency and high-reliability cloud com-
puting services worldwide, large CSPs such as Google, Facebook, and
Alibaba usually build distributed DCs in different locations and connect
each node through high-speed fiber-optic networks [16]. With the
explosive evolution of the mobile Internet, the cloud has become the
primary centralized data storage, searching, and management method.
A large number of mobile terminals have evolved information destina-
tions and display platforms. Edge computing is a significant extension
of cloud computing. As the base station between the cloud and the user,
the edge node effectively shortens the physical distance between the
user and the cloud. This computing model reduces the communication
burden of data transmission and the response delay [17]. Therefore,
with the continuous innovation of the cloud computing paradigm, it
is challenging to carry out effective workload management among
massive heterogeneous computing nodes to ensure the greenness and
sustainability of the cloud. Some significant related work is summarized
in Table 2.
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Fig. 3. A Conceptual Model for Sustainable Data Center.
Table 2
Comparison of workload management techniques.

Ref. Workload Cluster Methods and strategies Optimization objective and effect

[18] HPC workload HPC DCs DVFS, Spatio-temporal thermal model Minimize the makespan of workloads
subjected to temperature constraints

[19] Communication-intensive
workload

HPC DCs The binary quadratic programming method. Communication cost and cooling
energy consumption

[20] High-priority job HPC DCs A thermal-aware resource allocation
optimizer; an economic model predictive
controller;

power consumption, equipment life, and QoS

[21] Request DC Karush–Kuhn–Tucker optimality conditions Minimize the power consumption
[22] Soft real-time

task
DC A novel smart green energy-efficient

scheduling strategy
Utilization of renewable energy,
system running cost and task satisfaction rate

[23] Delay-tolerant
workload

DC Lyapunov optimization framework Reduce the electricity cost,
while guaranteeing the performance constraint

[24] Batch workload DC A new algorithm with several variants
for scheduling batch tasks with awareness of
renewable energy and electricity cost.

Reduce brown energy consumption and cost

[25] Mixed workload DC A self-adaptive approach for
managing applications and harnessing
renewable energy

Reduce the usage of brown energy
and maximizing the usage of renewable energy

[26] Service and batch
job

DC A three-step algorithm is proposed
to schedule heterogeneous workloads

Green energy production, cooling power,
and distributed UPS power supply

[27] Web application Geo-distributed DCs A reactive load balancing algorithm Reduce costs and brown energy
[28] Transactional and batch

workload
Geo-distributed DCs a heterogeneity-aware cloud workload

placement and migration approach
Green energy availability and QoS

[29] Interactive and batch
workload

Geo-distributed DCs A Receding Horizon Control
based online algorithm

Trade-off cost benefits
and scheduling penalties

[30] Interactive request Geo-distributed DCs An online algorithm for
interactive workload distribution

Minimize the energy cost

[31] Application or VM Geo-distributed DCs A hierarchical framework Reduce the energy costs,
load balancing, and carbon emission

[32] computation-intensive and
latency-sensitive task

Edge-cloud DCs Intelligent learning classifier systems
(LCS) and evolutionary algorithms

Reduce the workload’s processing delay
and energy consumption

[33] Mobile applications Edge-cloud DCs Then the long short-term memory model
(LSTM) and RL technology

Reduce the execution time and
energy consumption

[34] computation-intensive and
latency-sensitive task

Edge-cloud DCs Multi-agent RL method Minimize the average completion
time of tasks under migration energy budget
4
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3.1.1. Within a data center
Workload management significantly influences the QoS and oper-

ating costs of DCs. Following a comprehensive survey, cutting-edge
work focuses on thermal-aware, renewable-aware, and hybrid-aware
workload scheduling.

Thermal-aware workload scheduling is to minimize the heat
mitted by active servers to reduce thermal gradient and cooling
oad [35]. Thermal-aware scheduling differs from efficiency-aware
cheduling, which reduces the number of active hosts. The efficiency-
ware scheduling strategy is to consolidate the workload on as few
ctive servers as possible and shut down the idle servers. In this case,
ost active servers are overloaded and prone to high regional temper-

tures or hot spots. As a result, the cooling devices will consume more
nergy to push colder air to cool the hot spots [36]. In addition, servers
verloaded for a long time are more prone to hardware failures, which
an degrade service performance. Nevertheless, the thermal-aware
trategy fully considers IT and cooling energy consumption, looking for
omputing resources with minor energy consumption to execute work-
oads. This scheduling strategy can reduce the frequency of hot spots
nd the cooling load [37]. Thermal-aware management has been well
cknowledged as an essential technology to optimize system perfor-
ance and energy efficiency in modern DCs [18]. After investigation,

he thermal sensing workload scheduling is divided into three cate-
ories: QoS-based, optimization-based, and thermal constraint-based
cheduling.

QoS-based workload scheduling ensures QoS while controlling tem-
erature and reducing the cooling load. The conflicts between QoS
nd thermal scheduling may be caused by the constraints such as task
ompletion deadline, task priority, and server resource availability.
herefore, some novel solutions have been proposed to solve this issue.
or example, for the trade-off problem of cooling efficiency and per-
ormance during workload scheduling in high-performance computing
HPC) DCs, Meng et al. [19] formulated and solved a joint optimization
hermal-aware workload scheduling problem that took into account the
atency of communication-intensive parallelized applications and the
ooling capacity of the DC. Additionally, Sun et al. [18] designed a
hermal-aware online scheduling heuristic to minimize the makespan
f HPC workloads subjected to temperature constraints. The innovation
f this work is that a concept of the thermal-aware load is introduced
nto the scheduling decision, which can more accurately capture the
erver’s load under thermal constraints to achieve load balancing in
he sense of thermal-aware. Fang et al. [20] developed a thermal-aware
ptimal control framework to solve high-priority job scheduling in the
PC data center. The framework aims to save energy for idle servers
nd cooling systems while maintaining job scheduling and execution
fficiency, thus balancing power consumption, equipment life, and QoS.

The optimization goals of workload scheduling vary, as do the
olutions adopted. For example, the server-based approach aims to
inimize the increase in peak inlet temperature due to thermal distur-

ances [38]. Some commonly used methods to reduce thermal cycling
re reducing the workload on the underlying servers or migrating
he IT load from hot servers to cold servers [39]. Furthermore, it
s worth noting that most previous works focused on promoting the
nergy efficiency of either the IT or the cooling subsystem, ignor-
ng the relationship between the power consumption of these two
ystems [40]. Consequently, the cold supply of the cooling system
oes not match the cold demand of the IT equipment. Therefore, it
s necessary to consider joint optimization of cooling operating pa-
ameters and workload distribution when performing energy-saving
ptimization. Damme et al. [21] developed an optimized thermal-
ware job scheduling and control model to explore the optimal set
oint of workload distribution and cooling parameters to minimize
ower consumption. This model assumes that the servers on the rack
re all homogeneous. Thus, the complex general energy minimization
ptimization problem is transformed into a simple equivalent problem
5

or homogeneous DCs. Subsequently, the authors demonstrate that an
optimal air-conditioning supply temperature and workload distribu-
tion can be uniquely determined to obtain a minimum total energy
consumption in a DC.

Thermal constrain-based scheduling methods are broadly divided
into proactive and reactive scheduling. Proactive scheduling is to plan
workload scheduling in advance to avoid thermal anomalies, while
reactive scheduling takes dynamic thermal management measures after
thermal anomalies occur. Although the energy-saving effect of reac-
tive scheduling is less than that of proactive scheduling, it has the
advantages of low complexity and rapid response. Therefore, there is
a trade-off when choosing a scheduling type. Zhao et al. [41] intro-
duced a scheduling strategy based on model predictive control called
ThermoRing to reduce the cooling costs of DCs. ThermoRing adopted
an online feedback control mechanism to improve the thermal manage-
ment of the server cluster. The advantages of this method are that, on
the one hand, the maximum inlet temperature of nodes can be adjusted
in real-time under the red line temperature limit. On the other hand, it
can handle the thermal emergency by dynamically balancing the load
between the nodes to ensure the high performance and stability of the
DC. Yao et al. [42] formulated a joint optimization problem for the
total power consumption of the server and air-conditioning equipment
under unknown thermodynamic conditions. An adaptive power control
method is proposed to minimize the gap between the inlet and the
required temperature of the server rack.

Renewable energy-aware workload scheduling is also another
promising solution to solve the DC carbon footprint. Lei et al. [22]
proposed an intelligent green energy-saving scheduling method, which
considers the generation of renewable energy, time-varying power
prices, and the task satisfaction rate of DC. The model inputs the
forecast generation of RESs and power price and then outputs the task
scheduling strategy. Dynamic matching of task load and renewable
energy generation can maximize renewable energy utilization and save
total energy costs. Given the performance constraints of delay-tolerant
workloads and the limited future information (time-dependent power
prices, carbon footprint, and on-site RESs generation), Dou et al. [23]
designed an online workload scheduling algorithm to reduce over-
all power bills and carbon taxes. The algorithm can make trade-offs
between electricity charges and workload performance without consid-
ering future information. Grange et al. [24] developed a method for
scheduling batch workloads under deadline constraints, considering us-
ing green energy to reduce the demand for grid energy. Compared with
a traditional scheduler without considering green energy, this scheduler
can reduce brown energy consumption by 49% and cost by 51%. To
minimize the carbon footprint generated by executing workloads in
DCs, Bahreini et al. [43] designed an LP-based approximation algorithm
to determine the execution order of workloads to accommodate carbon
intensity uncertainty.

Hybrid-aware workload scheduling (thermal and renewable
energy-aware) is a novel perspective energy-saving approach for sus-
tainable DCs. This approach aims to fully use non-carbon energy by
configuring and shifting workloads while considering IT and cooling
power consumption. Xu et al. [44] proposed an adaptive scheduling
model for mixed workloads in a hybrid-powered DC, which considers
a variety of devices’ energy consumption affected by the workload.
Moreover, the work [45] designed a low-complexity heterogeneous
workload scheduling algorithm considering green energy production,
cooling power, and distributed UPS power supply. The work also
investigated the impact of weather on the efficiency of the proposed
method.

3.1.2. For geo-distributed data centers
Dynamically allocating and migrating workloads among

geo-distributed DCs are opportunities to reduce costs. CSPs follow the
‘‘follow the moon’’ paradigm, deploying or shifting workloads to places
with more abundant renewable energy, cheaper electricity prices, and

lower cooling costs than the original location. In addition, with the
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enhancement of logical functions of communication technology (for
example, the adoption of software-defined network, SDN [25]), high
network capacity can ensure the timeliness of workload migration
between distributed sites.

Guo et al. [16] considered the load-balancing mechanism of geo-
distributed DCs, the opportunistic scheduling of delay-insensitive work-
loads, and thermal energy storage (TES) to promote the integration
and utilization of RES. Subsequently, the author formulated a stochas-
tic optimization model and then applied the Lyapunov optimization
technique to solve it. Extensive numerical evaluations prove that the
designed online control algorithm balances energy costs and QoS of
workload. Considering the availability of RESs for each node, Toosi
et al. [26] proposed a reactive load-balancing framework for interactive
workloads between multiple clouds. Note that the work was validated
on a realistic testbed with real-world workload traces and a real-time
monitoring system. Numerical experiments prove that the method can
effectively use green energy without knowing the incoming workloads,
the generation of RES, and the market power price in advance, thereby
reducing costs and reducing the use of brown energy. To address
the challenge of using green energy with intermittency in distributed
DCs, Cheng et al. [46] developed a holistic heterogeneity-aware cloud
workload deployment and migration method, sCloud, while consider-
ing the green energy availability and QoS. An adaptive optimization
algorithm adaptively assigns transactional workloads in geo-distributed
DCs according to its on-site green energy production. Furthermore, an
additional online algorithm is integrated to migrate batch workloads
over multiple clouds to extend the system throughput. In addition, for
the carbon emission problem, Xu et al. [27] developed a workload shift
method that considered the shift of workload between multiple remote
clouds to minimize the average response time and greenhouse gas
emissions. Compared with relevant benchmarks, the proposed method
meets the average response time of microservices and reduces carbon
emissions by about 40%. Similarly, the work [47] considers carbon-
aware workload scheduling in geo-distributed DCs. The authors exploit
the temporal and spatial flexibility of batch workload scheduling to
maximize the computational resource usage when the power supply
carbon intensity is low, effectively reducing the total carbon footprint.

Moreover, considering the revenue loss due to power load fluc-
tuations in DCs, the work [28] proposed a collaborative workload
scheduling and smart grid approach for geo-distributed DCs to trade
off cost benefits and scheduling penalties. Precisely, the power loads
of various DCs are effectively smoothed by allocating interactive work-
loads and deferring the execution of batch workloads. Khalil et al. [48]
modeled the energy cost minimization problem in DCs as a two-stage
optimization problem. Firstly, the Black–Scholes model determines the
call option’s value and whether to purchase the power call option. In
the second phase, an online algorithm for interactive request allocation
is proposed, called OptionGLB, which considers the battery power, op-
tion pricing, and time-varying electricity price. OptionGLB dramatically
diminishes the overall expense of the DC but ignores the origin of clean
energy and bandwidth costs.

Due to the time-varying of electricity prices, intermittency of renew-
able energy, heterogeneity of infrastructure, diversity of workload, and
other elements, the workload scheduling decision of geo-distributed
DCs becomes particularly complex [29]. The multi-cloud node work-
load management is typically modeled as a constrained multi-objective
optimization problem, and a centralized method is adopted to solve it.
The advantages of centralized management are affordability, reliability,
and efficiency. However, centralized management also has some limi-
tations, including (1) Large system scale and many parameters leading
to poor scalability. (2) Risk of a single point of failure. (3) Unified
management policies to limit the autonomy of child nodes [30]. There-
fore, decentralized management will be another potential solution for
multi-datacenter workload management. Forestiero et al. [29] proposed
a hierarchical framework, EcoMultiCloud, for efficiently distributing
6

workloads among multiple computing nodes. The framework allows
centralized management of heterogeneous platforms but also gives suf-
ficient autonomy to individual compute nodes. On the one hand, each
node adopts its unique strategy to distribute and consolidate workloads.
On the other hand, a set of centralized management algorithms is
adopted to assess the state of the individual nodes and allocate and
migrate workloads between them based on global optimization goals.

3.1.3. For edge data centers
Edge data centers provide localized interaction and low-latency IoT

services. Further, the central cloud provides centralized services that
integrate transactional applications that require large-scale computing.
Nevertheless, the limitations of edge computing nodes in computing
power, memory, storage, communication, and energy make it challeng-
ing to handle computing-intensive tasks locally. Thus, delay-tolerant
requests can be forwarded to a more capable cloud for centralized
processing, thus achieving edge-cloud collaborative scheduling. Signif-
icant differences exist between the edge nodes and the cloud regarding
infrastructure structure and service goals, increasing the workload
distribution complexity in the edge-cloud DC.

In recent years, much research has been carried out on this unre-
solved problem and achieved good results. Deng et al. [17] studied
the conflict between the edge-cloud system’s operating costs and ser-
vice quality. The original issue of workload distribution is roughly
decomposed into three sub-problems, which are solved in correspond-
ing subsystems. Extensive numerical simulations show that fog-cloud
computing can reduce bandwidth costs and transmission delays by
sacrificing appropriate computing resources. Borylo et al. [31] explored
the possibility of processing fog-related traffic in a delayed sensing
method. To this end, a wide-area software-defined network (WA-SDN)
was introduced to support the energy-aware interaction between fog
and cloud. Wu et al. [49] developed a novel framework for edge
computing, called GLOBE, to optimize the distribution of computing
workload between distributed base stations and the performance of mo-
bile edge computing (MEC). In addition, GLOBE works in a distributed
manner, so it has good scalability and is suitable for large networks.

The MEC network includes three computing nodes with different
computing and communication capabilities: local mobile terminals,
edge nodes, and the central cloud. Additionally, the available resources
of the computing nodes in the running state constantly change, so
optimizing the task offload in the heterogeneous and changeable MEC
network is a considerable challenge. Abbasi et al. [50] took the lead
in using intelligent learning classifier systems (LCS) to achieve the
optimal workloads configuration in fog computing. LCS, a particular
reinforcement learning (RL) model, learns by continuously interacting
with the environment to obtain rewards to select the best action accord-
ing to the current state. The LCS-based method reduces the workload’s
processing delay and saves energy consumption by 18% compared
with the most advanced method. Shahidinejad et al. [51] developed
a joint task offloading and resource provisioning approach for edge-
cloud DCs. First, the learning automaton (LA) technology provides
an efficient computing offloading mechanism to offload the incoming
dynamic workload to the edge server or cloud server. Then the long
short-term memory model (LSTM) is adopted to predict the incoming
workload. Finally, RL technology was adopted to make an appropriate
scaling decision to deal with fluctuations in dynamic workloads.

Most of the above works solve the problem of computing offloading
in quasi-static scenarios, and a few works [32,33] focus on migration
management issues related to user mobility. All of them are based on
perfectly predicted user movement trajectory information to carry out
offloading migration. Nevertheless, in a realistic scenario, predicting
the user’s movement information accurately is not practical. There-
fore, Liu et al. [52] designed a distributed task migration algorithm
based on the counterfactual multi-agent (COMA) reinforcement learn-
ing method to solve the energy-aware task migration problem. The
innovation of this method is that multi-agent RL is adopted to realize
multi-user collaborative decisions, and the computational complexity
is low. The framework includes a centralized critic and multiple actors

corresponding to multiple users.
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3.2. Virtual resource management

The advancement of virtualization technology has brought more
diversified service models to cloud computing while also increasing
the complexity of resource management issues. Therefore, how to
conduct efficient resource management to save energy in the DCs while
ensuring QoS is one of the significant challenges cloud computing
faces. Virtual resource management consists of two parts: resource
allocation and resource consolidation. The goal of resource allocation
is to achieve a high level of matching between workload and system
resources, in other words, to implement high-quality services to clients
based on the available resources of the cloud system. Consolidat-
ing and migrating virtual resources allows the system to shift from
a specific state to a more optimized state and avoid underloading
and overloading resources while ensuring performance and minimizing
operating costs [53]. VMs and containers are the most commonly
used virtual resource instances to provide services to users. Containers
are lightweight VMs that make consolidating and migrating virtual
resources more flexible and efficient [34]. The overall idea of virtual
resource management is to map VMs/Containers to servers or DC nodes
based on resource matching and performance metrics. This section
presents existing solutions and works for virtual resource management,
listed in Table 3.

3.2.1. VM resource
VM Allocation. Multi-dimensional VM allocation problem can be

epresented as a vector bin-packing problem. The energy-aware VM
llocation strategy reduces energy consumption by minimizing the
umber of active PMs while considering resource requirements and
oS. For example, Mishra et al. [71] focus on the problem of adaptively
llocating VMs to PMs under unpredictable dynamic workloads. The
roposed VM allocation scheme first searches for suitable VMs for tasks
ith different resource requirements, then deploy the selected VMs to
s few PMs as possible. The proposed method can start the least PMs
o meet VM resource requirements while reducing task completion time
nd rejection rate. Similarly, Saxena et al. [54] proposed a highly effi-
ient resource supply and allocation framework, which adopted a novel
nline multi-resource feed-forward neural network predictor model to
valuate the demand for multiple resources. Accurate resource demand
orecasting provides a solid basis for resource management operations
uch as VM consolidation and cluster scaling to solve excessive power
onsumption, resource waste, and performance loss due to frequent
hanges in user resource requirements.

For VM allocation in heterogeneous DCs, Peng et al. [55] developed
n evolutionary energy-saving VM allocation method, which relies
n the energy optimization model of sustainable DC with renewable
nergy. First, the genetic algorithm (GA) is used to explore a nearly
ptimal solution for VM allocation while considering the cost of re-
ewable energy and traditional grids. Subsequently, a new metric,
owerMark, was proposed, which quantified the power efficiency by
easuring the server’s power consumption at each resource utilization

evel and then determined the allocation priority of each cloud data
enter. Similarly, Mergenci et al. [72] proposed two parameterized
etrics to measure the current state of VM allocation and proposed
multi-dimensional resource allocation heuristic algorithm based on

he new metrics. Numerical simulation shows that the proposed metrics
an accurately measure the resource utilization state to place the VM
ore effectively. Peng et al. [56] modeled the dynamic VM placement
roblem as a markov decision process (MDP) and proposed a multi-
bjective trade-off cloud resource scheduling framework based on deep
einforcement learning (DRL) technology, considering the makespan
nd energy consumption. This method can capture the dynamic varia-
ions of the task requirements and resource status of the cloud system
nd make the VM placement strategy in real-time, reducing the long-
erm energy overhead of the system while ensuring the task deadline.
7

ot coincidentally, Zeng et al. [57] introduced an impact factor to
measure the VM impact on host overload and to select VMs to be
migrated. Subsequently, DRL with a prediction mechanism was used
to learn the optimal policy for VM placement. The experimental results
validate that DRL is an effective method for solving the VM dynamic
consolidation problem.

VM Consolidation and Migration. Many VM instances are de-
ployed on PMs serving various applications, and they have different
life cycles and resource requirements. System resources constantly
change dynamically as the VM’s life cycle begins and ends. Dynamic
VM consolidation and migration facilitate improved system resource
utilization. The VM consolidation and migration is divided into four
sub-problems, including (1) detecting overloaded hosts and determin-
ing the number of VMs to be migrated, (2) detecting underloaded
hosts and then migrating all VMs on it, subsequently shutting down or
hibernating the host. (3) determine which VMs in the overloaded host
need to be migrated, and (4) select a target host for those migrated
VMs. Additionally, virtualization technology supports VM migration
between geo-distributed DCs, and more consideration is given to green
energy and grid power prices.

Many works have proposed solutions to various sub-problems of
VM consolidation and migration. For example, Arianyan et al. [58]
developed a novel comprehensive cloud resource management method
that considers power consumption, the number of VM migrations,
and SLA violations. Additionally, a new heuristic approach based on
multi-criteria decision-making is proposed to solve two sub-problems,
including (1) underloaded host detection and (2) VMs allocation. To
solve the trade-off between reliability and energy efficiency during the
dynamic VM consolidation process, Sayadnavard et al. [59] developed
an innovative method for dynamic VM consolidation. The technique
first adopts a Markov model to evaluate the reliability of PM and then
classifies PM according to the load rate of the CPU. Finally, this method
considers utilization and reliability when selecting the source and target
PMs for VM migration.

In response to VM migration leading to the extra power and perfor-
mance loss, Jiang et al. [60] designed an adaptive resource allocation
method to boost energy efficiency and decrease SLA violations in DCs.
All servers in the DC are clustered according to the path length of
the given DCN topology. After that, the VMs are preferably placed on
servers with large capacity and substantial computing power to mini-
mize the number of activated servers. If some servers are overloaded,
the proposed scheme will preferentially select servers in the same
cluster as the target host of VM migration, thus shortening the length
of the migration path. Simulation experiments show that the proposed
method effectively reduces dynamic power consumption, migration
times, and path length. Moreover, Dulaimy et al. [73] developed a dis-
tributed dynamic VM integration method. This method first determines
which VMs need to be migrated and then models the selected VMs
allocation problem as a multi-choice knapsack problem to minimize
energy consumption. Extensive data analysis shows that the dynamic
threshold technique proposed in underload/overload host detection
is better than static threshold technology, especially for those cloud
scenarios that lack future workload information. Meanwhile, placing
VMs with different resource requirements on the same PM can avoid the
overuse and underuse of a particular resource, thus improving resource
utilization.

In addition, the integration and utilization of renewable energy [61],
the temperature distribution of the machine room, and the cooling sup-
ply [62] have become significant considerations for VMs consolidation
and migration. Wang et al. [61] developed a green-aware VM migration
method for DCs that takes into account both server and air conditioning
power consumption. The goal is to take full advantage of non-carbon
energy by migrating VMs to reduce brown energy consumption while
ensuring service level agreement (SLA) violations. In addition, Esfan-
diarpoor et al. [63] also proposed a novel VM consolidation method,
taking into account the data center’s network topology, server racks,

and cooling equipment to reduce energy consumption without affecting
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Table 3
Comparison of resource management techniques.

Ref. Resource management Methods and strategies Optimization objective Characteristics or limitation

[54] VM Allocation A proactive autoscaling and
energy-efficient VM allocation framework

Power consumption, resource waste,
and performance loss

Using online multi-resource
feed-forward neural network
to forecast the
multiple resource demands

[55] VM Allocation Genetic algorithm Energy efficiency and performance A novel metric
which diagnoses the power
efficiency of each DC

[56] VM Allocation DQN algorithm Energy consumption and task makespan Make a trade-off of the
energy and task makespan

[57] VM Allocation A Prediction aware DRL-based
VM placement method

Energy consumption and SLA violation VM selection and placement

[58,59] VM Allocation A novel multi criteria resource
allocation method

Power consumption,
the number of VM migrations,
and SLA violations.

Multiple resource criteria

[60] VM Consolidation
and Migration

An online self-adaptive resource
allocation algorithm

Energy efficiency
and SLA violations

Consider the network-side
migration cost

[61] VM Consolidation
and Migration

Joint optimal planning strategy Reduce brown energy consumption
while ensuring SLA violation

hybrid energy supplies for DCs

[62] VM Consolidation
and Migration

A power and thermal-aware VM
consolidation algorithm

Minimizing energy consumption Jointly considers the VM
consolidation and cooling system

[59] VM Consolidation
and Migration

A VM placement algorithm that
improves the MBFD algorithm

Reduce energy consumption
without affecting SLA

considers the cooling and
network structure

[63] VM Consolidation
and Migration

A communication efficient framework
and a suboptimal algorithm

Minimize the application deployment
cost and the operation cost

Docker, good expansibility

[64] Container Allocation A new container-aware application
scheduling strategy with an auto-scaling
policy

A new container-aware application
scheduling strategy with an auto-scaling
policy

Evaluated the performance
of the proposed algorithm
using real-time datasets

[65] Container Allocation A Cooperative Coevolution Genetic
Programming
hyper-heuristic approach

Energy consumption CCGP is based on a cooperative
coevolution framework

[66] Container Allocation Accelerated particle swarm optimization
technique

Minimize the overall energy consumptions
and computational time of the tasks

Multi-objective optimization

[67] Container Allocation Whale optimization algorithm Power consumption and
resources utilization

The two placement problems
are framed as
a single optimization problem

[68] Container Allocation A renewable energy-aware
multi-indexed job classification
and scheduling scheme using
Container as-a-Service

Renewable Energy Sources,
energy consumption

Container as-a-Service,
two types of controllers global
and local are used

[69] Container Consolidation
and Migration

A new cloud resource management
procedure based on a multi-criteria
decision-making method

Energy consumption,
SLA violation, and number of migrations

The joint management of VM
and containers solution performs
better than a single VM
or container in energy-efficient

[70] VM and Container
Resource Management

An energy-performance efficient
consolidation algorithm.

Energy consumption and performance VM migration has higher
performance efficiency, but
container migration is more
energy-saving than VM
SLA. This method is a two-stage VM placement technology considering
racks, cooling devices, and network topology. This method aims to
migrate selected VMs in overloaded servers and all VMs in under-
utilized rack servers to other suitable servers. Subsequently, those
idle servers, racks, cooling systems, and network components will
be turned off to save energy. Considering the undesirable effects of
thermal recirculation patterns, Chen et al. [62] proposed a power and
thermal-aware dynamic VM integration scheme. The authors designed a
history-based host overload monitoring algorithm and a particle swarm
optimization (ACO) algorithm-based VM placement method to reduce
holistic energy consumption while ensuring thermal constraints.

3.2.2. Container resource
As lightweight VMs, Containers make deploying microservices/

applications easier while also making it harder to manage fine-grained
applications. Online resource allocation is a widely used operation in
the cloud, but it is new and challenging in a container-based cloud.
As shown in Fig. 4 below, container-based resource allocation is a task
responsible for allocating a set of containers to a group of VMs with
different types and then allocating the created VMs to a set of PMs.
8

Fig. 4. Schematic diagram of container-based resource allocation [65].
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Container Allocation. Existing container resource allocation meth-
ods mainly rely on mathematical approaches [64,74,75], heuristic al-
gorithms [65,76], and meta-heuristic algorithms [66,67,77] classified
as follows.

Mathematical approaches: Wan et al. [64] proposed a practical com-
munication framework and sub-optimal approach to execute container
allocation and task scheduling. Distributed and incremental manner is
one of the most notable features of the method. Precisely, it adaptively
adjusts the resources allocated to each application in a distributed
manner. In addition, the proposed framework divides the source prob-
lem into multiple sub-problems and solves these sub-problems inde-
pendently. Similarly, Srirama et al. [74] proposed a novel container
placement method with an automatic expansion function. The pro-
posed method deploys the requested application on the most suitable
container with the shortest deployment time according to resource
requirements. Then, a dynamic container boxing strategy was designed
to efficiently deploy the application to a minimum number of PMs
using computing resources. Finally, a heuristic-based automatic scaling
strategy is adopted to minimize the waste of computing resources.
Kaur et al. [75] proposed a scalable and comprehensive container
management controller, KEIDS, based on the Kubernetes platform.
The author modeled the container placement problem with carbon
emissions, performance interference, and energy consumption into a
multi-objective optimization problem and adopted the integer linear
programming method to solve it. In detail, KEIDS minimizes edge
nodes’ brown energy utilization rate to achieve the best green energy
utilization rate.

Heuristic Approaches: Tan et al. [65] developed a novel online re-
source allocation in container-based clouds (RAC) model, considering
VM overhead, VM type, and similarity constraints. Then, the author
designed a collaborative co-evolutionary genetic programming super-
heuristic method to solve the RAC problem. This method automatically
generates allocation rules for Container-VM and VM-PM to minimize
overall energy consumption. Additionally, Menouer et al. [76] in-
troduced a novel container scheduling policy for Kubernetes, KCSS,
intending to reduce makespan and global power consumption. KCSS
adopts a multi-criteria-based scheduler to sort the containers submitted
by users first. Subsequently, an optimal computing node is selected for
each incoming container, considering user requirements and the state
of the cloud system.

Meta-heuristics approach: Imdoukh et al. [77] proposed a multi-
bjective genetic algorithm container scheduler considering availabil-
ty, task allocation, power consumption, resource balancing, and the
umber of tasks allocated. Adhikari et al. [66] designed a novel energy-
fficient scheduling strategy for a container-based cloud that can han-
le various types of IoT and batch tasks. The proposed method adopts
n accelerated particle swarm optimization technique to find a suit-
ble container for each task with minimal delay. The EECS strategy
inimizes the overall energy consumption and task calculation time

hrough effective resource utilization and further reduces the com-
uting server’s total carbon emissions and temperature. In addition,
t is noteworthy that Moalmi et al. [67] formulated the two-stage
lacement problem (container-VM and VM-PM) framework as a sin-
le optimization problem and, for the first time, proposed a whale
ptimization algorithm to deal with this optimization problem. The
roposed method solves the problem of placing containers and VMs in
aaS while optimizing power consumption and resource utilization.
Container Consolidation and Migration. Compared with VMs,

ontainers occupy fewer resources and have lower deployment costs,
hich provide more flexible ways to integrate and migrate resources [34
8]. Kumar et al. [68] designed a CaaS-based green energy-aware
ulti-index work classification and a scheduling method to save en-

rgy. The suggested solution distributes the incoming workload to DCs
ith enough green energy for execution. The proposed scheme is di-
ided into three key steps: (1) Multi-indexed Classification and Schedul-
9

ng Scheme, (2) Renewable Energy-Aware Host Selection Scheme,
and (3) Container Consolidation and Migration Scheme. The proposed
multi-controller architecture includes a global controller and multiple
local controllers. The global controller is responsible for selecting the
DC for the workload to raise the proportion of green energy in the
power supply system. The local controller plays the role of deploying
the container to the server. The container consolidation is usually mod-
eled as a multi-objective optimization problem. The heuristic algorithm
is ideal for solving this problem because it can explore multi-Pareto
optimal solutions in one round of exploration. Shi et al. [79] developed
a two-stage multi-particle swarm optimization algorithm to optimize
the additional energy cost of container resource integration operations.
The seamless combination of greed and heuristic algorithm effectively
balances system service performance and operating cost. Similarly,
Hussein et al. [80] designed an ant colony optimization algorithm based
on the best fit to solve container placement on VMs. Although placing
as many containers as possible on a VM or PM can reduce the number of
instantiated VMs or activated PMs, it is difficult to guarantee the service
performance of an overloaded VM or PM, and it will even shorten the
hardware life cycle.

3.2.3. Joint VM and container resource
Most previous works have focused on either VM consolidation or

container consolidation to achieve energy saving in DCs. In addition,
work [81] confirmed that container consolidation is more energy ef-
ficient than VM consolidation. Therefore, the joint consolidation of
VMs and containers is a promising solution, which aligns more with
the actual resource management requirements in the new generation
of DCs. Gholipour et al. [69] proposed a novel framework and flow
chart for the joint management of VM and containers. The framework
classifies the virtual resource management into seven sub-problems,
including (1) overloaded host detection, (2) underloaded host de-
tection, (3) identifying the VMs/containers, (4) selecting the VM to
be migrated from candidate VM lists, (5) VM placement, (6) select
the containers to be migrated from candidate container lists, and (7)
container placement. Additionally, to address the third subproblem
above, the author proposed a new strategy of joint VM and container
multi-standard migration decision technology, focusing on power con-
sumption, SLA violations, and the cost of VM/container migrations.
An extensive evaluation of the proposed solution using the Contain-
erCloudSim simulator concluded that this combined solution performs
better than a single VM or container consolidation in energy-efficient.
Similarly, Khan et al. [70] studied how to consolidate and migrate
VM, container, and containerized applications to reduce data center
power consumption while ensuring no negative impact on workload
performance. Subsequently, the author proposed a resource consolida-
tion method to manage resources in heterogeneous containerized DCs.
This work uses an energy prediction module to estimate the energy
consumption of each migratable entity to find the target platform with
the best performance for each entity. Numerical simulation shows mi-
gration VM has higher performance efficiency, but migration container
is more energy-saving than VM. In addition, migrating containerized
applications inside a VM can reduce power consumption and improve
system performance.

3.3. Thermal management

Fig. 5 illustrates the thermal management framework of a data
center with infrastructures including a typical chilled water system and
a raised floor rack room. The key components of the chilled water
system are CRACs, pumps, chillers, plate heat exchangers, and cooling
towers. The chillers and cooling towers provide chilled water and con-
densed water, respectively. The pumps offer pressure and water flow
to drive the chilled and condensed water cycles. Note that the water-
side economizer is generally used as a plate heat exchanger to reduce
the cooling load. Rack rooms with raised floor cooling usually have

enclosed cold/hot aisles to avoid mixing hot and cold air. The cold air
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Fig. 5. Thermal management frame of a typical chilled-water air-cooled data center.
blown by the CRACs enters the cold aisle from the raised floor through
the ventilated floor. Subsequently, the fans inside the server pull the
cold air into the server removing the internal heat. Finally, most hot
air is exhausted to the outside and partially reused. Importantly, to take
full advantage of free air cooling, an air-side economizer is adopted to
pump fresh cool air from outside into the room, mix it with hot air and
return it to the CRAC.

Managers often adopt over-cooling strategies for data center cooling
management to avoid thermal risks, leading to inefficient cooling and
energy wastage. Conversely, if the cooling set-point is too high, the
temperature of IT devices exceeds the red-line temperature forming
local hot spots in case of unexpectedly high power loads. Therefore,
accurately evaluating the temperature distribution and evolution of the
data center is essential for controlling the cooling knobs. Moreover,
the cloud central manager makes real-time IT scheduling and cool-
ing management decisions based on system resource status, workload
service demands, energy costs, and thermal constraints. This section
will discuss and analyze the existing data center thermal modeling and
management techniques.

3.3.1. Thermal modeling
Robust thermal modeling solutions allow data center managers

to recognize potentially local hotspots and rapidly estimate cooling
alternatives. However, owing to various factors such as building lay-
out, thermal characteristics, and airflow recirculation, the thermal
field of the server room presents a non-equilibrium and dynamically
changing state. Following an investigation, existing thermal models
for DCs are broadly classified into the following three types based
on modeling principles and techniques, (1) computational fluid dy-
namics/heat transfer-based (CFD/HT) models, (2) simplified models,
and (3) reduced-order/data-driven models. A comparison of the infor-
mation density, accuracy, and execution time of these three thermal
models is shown in Fig. 6.

CFD/HT models. The CFD/HT-based numerical modeling method
uses a computer to solve non-linear partial differential fluid flow equa-
tions to describe the fluid state. CFD/HT-based thermal models provide
10
Fig. 6. Comparison of thermal models.

complete and accurate predictions of the thermal field but require mas-
sive numerical calculations and specific geometrical parameters [82].
Therefore, the model is only suitable for evaluating solutions in the
design phase but not for the fast simulation of thermal distributions in
the operational phase.

Simplified Models. Compared with CFD/HT-based thermal mod-
eling methods, simplified models based on thermodynamics perform
poorly in accuracy. Nevertheless, due to its short execution time, it
can be used for parameter research and rapid temperature and airflow
distribution prediction. For example, Zhang et al. [83] proposed an
RC Thermal model to represent the thermal profile of a semiconductor
chip. The model predicts the chip temperature after time 𝑡 based on the
initial state, real-time power, and ambient temperature, which can be
expressed as,

𝑇 = 𝑃𝑅 + 𝑇𝑎𝑚𝑏 +
(

𝑇initial − 𝑃𝑅 − 𝑇𝑎𝑚𝑏
)

× 𝑒−
𝑡

𝑅𝐶 (1)

where 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (unit ◦C) is the initial temperature of the chip, 𝑃 (unit
W) is the chip power and 𝑇𝑎𝑚𝑏 (unit ◦C) represents the ambient tem-
perature. In addition, 𝑅 (unit ◦C/W), 𝐶 (unit J/◦C) represent the
thermal resistance and specific heat capacity of the chip, respectively.
Some follow-up works [84,85] modified the RC model to represent
the thermal evolution of the chip, taking into account fan speed, and
convective resistance.
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Fig. 7. Heat recirculation.

Reduced-Order/Data-Driven models offer an acceptable trade-
off between modeling accuracy and computational overhead. To be
precise, the model maintains prediction accuracy close to CFD/HT
models while achieving a computational overhead comparable to sim-
plified models. For example, physics-based models evaluate airflow
and thermal fields based on fundamental physical laws, such as mass,
energy and momentum diffusion, and convective transfer. The zonal
method is a commonly used thermal modeling method, which divides
the target region into several coarse grids and applies the relevant con-
servation laws [86]. The method assumes that physical quantities such
as pressure and temperature are homogeneous within each coarse grid,
significantly reducing computation time, but requires a full-scale CFD
model or experimental data to determine the boundaries. Moreover,
Heuristic models focus on sensor data, including chip temperature,
server power, server inlet and outlet temperature, supply cooling tem-
perature, and wind speed. In 2006, Tang et al. [87] presented an
abstract thermal model that used distributed temperature sensor data
to characterize the thermal recirculation patterns of airflow in the
computer room. This model’s most significant feature is considering the
thermal cross-effects between nodes, as shown in Fig. 7.

where the inlet temperature, 𝑇𝑖𝑛𝑙𝑒𝑡, of node 𝑁𝑜𝑑𝑒1 is a mixture of
the supplied cold air, 𝑇𝑠𝑢𝑝, and the re-circulated hot air from the other
nodes. Part of the hot air exhausted from node 𝑁𝑜𝑑𝑒1 will return to
the CRAC, and the remainder will constantly flow to other nodes or to
itself. The coefficient 𝑎𝑖𝑗 represents the percentage of heat flow from
node 𝑖 to 𝑗 called the cross-interference coefficient. Nevertheless, this
method lacks consideration of the time dimension and therefore can
only predict the steady-state thermal distribution. Subsequently, the
work [88] proposed a dynamic thermal model to represent the impact
of CRACs operating conditions and recirculating hot airflow on the inlet
temperature of the rack. The model evaluates the inlet temperature
after a time interval 𝛥𝑡 through a discretized representation of the tem-
perature. Furthermore, work [18] proposed a spatio-temporal thermal
model considering the coupling of temperature profiles in the temporal
and spatial dimensions. The RC model was adopted to characterize the
thermal evolution of nodes in the time dimension.

Data-driven models evaluate output values based on one or more in-
put variables and are regression prediction models. Pioneering work [89
uses sensor network-based measurement and management technologies
to develop novel strategies to improve energy efficiency in DC facilities.
Subsequently, many follow-on studies have been conducted to develop
data-driven thermal models using machine learning models such as
SVR, GPR, XGBoost, and ANN [90]. Compared to CFD simulations,
ANN-based thermal distribution evaluation can stay within an accept-
able error tolerance and has less computational overhead [91]. Recent
work [92] conducted extensive experiments to compare the predictive
performance of multiple data-driven thermal models under different
sample sizes, room layout reconfigurations, and cooling failure scenar-
ios. The findings indicate that ensemble learning models (XGBoost,7

7 https://github.com/dmlc/xgboost
11
LightGBM8) require only limited training samples to achieve acceptable
prediction accuracy and are less susceptible to uncertainties such as
external disturbance or internal parameter perturbation. In general,
data-driven modeling is low in complexity but dependent on the quality
and quantity of training samples.

Consequently, a grey-box thermal modeling approach incorporat-
ing data-driven and physical laws is proposed. Specifically, a data-
driven approach is adopted to evaluate the key variables of the model.
Subsequently, the predicted key variables are substituted into a sim-
plified physical model to output the target temperature distribution.
For example, Fang et al. [93] used an artificial neural network to
characterize the thermodynamics of the server room, that is, the matrix
of cross-interference coefficients of the nodes. Subsequently, a thermal
recirculation model was employed to calculate each node’s inlet and
outlet temperatures. Additionally, for enclosed cooling layouts, the
zonal method is often used to divide the thermal region into several
coarse grids and assume that the physical properties within the grid
are homogeneous. The work [94] used an ANN model to predict the
pressure distribution and input it into a homogeneous grid model to
solve for the target temperature. In short, the grey-box model has
better extrapolation prediction capability than the data-driven model
and higher prediction accuracy than the reduced-order model.

3.3.2. Thermal optimization techniques
Efficient thermal management is fundamental to the safe opera-

tion of data center infrastructure. The heat generated by IT systems
determines the cooling load, while the cooling set point, in turn,
influences the operating environment of the IT facility. The thermal
environment creates a complex coupling of IT and cooling systems [2].
This section gives a comprehensive overview of energy-efficient ther-
mal management from three technical perspectives: thermal-aware IT
system optimization, cooling control optimization, and joint IT and
cooling system optimization.

IT system optimization. The double superposition of unbalanced
IT load distribution and temperature fields exacerbates thermal imbal-
ances and additional cooling supply. Commonly accepted thermal man-
agement strategies are reducing the server room’s temperature gradient
by scheduling or regulating IT loads between compute nodes to mini-
mize the cooling supply and thermal risk. Upon investigation, existing
thermal-aware IT management techniques focus on dynamic voltage
frequency scaling (DVFS), workload scheduling, and VM consolidation.

DVFS technology regulates system power by dynamically tuning the
chip’s voltage and clock frequency setpoints [95]. The dynamic power
of the CPU, 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 , is proportional to 𝑓 3 as the CPU runs at frequency
𝑓 . Therefore, lowering the frequency can significantly reduce power
consumption but also means sacrificing computational performance. In
addition, the node power will affect the inlet and outlet temperatures
of itself and other nodes. Therefore, Zhao et al. [96] dynamically
tuned the CPU frequency of compute nodes in the cluster to suppress
the thermal gradient due to unbalanced node load, thus reducing the
thermal interference between nodes.

Thermal-aware workload scheduling typically adopts server inlet
temperatures as a security metric for thermal environments. Therefore,
Tang et al. [97] simplified the overall energy minimization problem to
a peak inlet temperature minimization problem through workload allo-
cation. Then, two solutions based on genetic algorithms and a heuristic
algorithm were given. Subsequently, various heuristic algorithms [98],
meta-heuristics [99–102], and DRL-based online optimization algo-
rithms [103,104] were designed to address this optimization problem.
Moreover, Khalaj et al. [99] developed a reduced-order thermal model
to evaluate the thermal profile and use a particle swarm algorithm
to find the best energy-efficient workload distribution scheme. Also,
work [100] developed a holistic power consumption model covering

8 https://github.com/Microsoft/LightGBM

https://github.com/dmlc/xgboost
https://github.com/Microsoft/LightGBM
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cooling and IT systems. Subsequently, a genetic simulated annealing
(GSA) algorithm is designed to allocate workloads to reduce peak node
inlet temperatures. Moreover, Gupta et al. [101] suggested a multi-
objective optimization framework combining a thermal model and a
genetic algorithm (GA) to achieve a trade-off between PUE and exergy
efficiency. Notably, considering the impact of node failure on workload
allocation and thermal balancing, work [102] developed a hybrid meta-
heuristic algorithm-based allocation strategy to redistribute workload
from failed nodes to other operational nodes. Unlike heuristic and meta-
heuristic scheduling solutions, DRL-based scheduling agents explore the
optimal scheduling policy through multiple iterations of learning. For
example, Li et al. [103] trained a DRL scheduler for allocating compute-
intensive jobs in a simulated cloud environment, taking into account
the throughput and thermal behavior of the system. Also, to address
the long training time and instability of the DRL scheduler in large-scale
computing systems, work [104] adopted expert experience to guide the
agent to learn the scheduling policy faster.

Apart from workload scheduling, VM consolidation is also a prac-
tical approach to handling thermal emergencies or reducing cooling
loads [35]. Considering that temperature gradients increase the cool-
ing load, work [105] evaluated temperature evolution based on the
current state and proactively performed VM allocation and migration
to achieve multi-objective optimization of energy consumption, migra-
tion latency, and overhead. Moreover, Ilager et al. [106] attempted
to construct a data-driven thermal model to guide VM allocation or
migration to the ‘‘coldest’’ active host. Considering the impact of the
thermal behavior of neighboring servers on each other’s performance,
work [107] uses the relative location of servers as a constraint on the
VM allocation solution, thus avoiding local hotspots. Feng et al. [108]
proposed a two-step algorithm for reducing data center overhead in
cooling, computing, and networking. Firstly, a simulated annealing
algorithm minimizes the computation and cooling overheads. Secondly,
VMs with high traffic costs are placed on servers close to that location
to reduce network overhead. Following this, work [109] designed a
novel VM placement strategy based on a simulated annealing algorithm
considering thermal recirculation and multiple physical resources. The
strategy shows two significant features that enable the data center
to achieve an approximate optimal thermal balance and considerable
energy savings by reducing the number of active servers.

Cooling control optimization. The goal of cooling control opti-
mization is to precisely assess the cooling needs of IT facilities and
adjust cooling set points in real-time to achieve supply–demand match-
ing. As seen in Fig. 5, the essential cooling components of an air-cooled
data center are the servers’ built-in fans and a chilled water system
consisting of CRACs, chillers, cooling towers, and pumps. The fan
control strategy determines the performance and power of the server.
The higher the fan speed, the lower the temperature-dependent chip
leakage power. Meanwhile, high fan speed means high fan power. This,
therefore, means that there is a trade-off between fan and CPU power.
The work [110] demonstrated that both CPU leakage power 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒
and fan power 𝑃𝑓𝑎𝑛 are convex functions with respect to the fan speed
𝑓𝑠 for a CPU running continuously at a fixed frequency. Therefore,
𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 + 𝑃𝑓𝑎𝑛 is convex so that the unique optimal fan speed can be
determined. Based on this optimal theory, the work [111] constructed
an empirical model by monitoring and collecting leakage and fan power
from enterprise servers. Later, a model-based fan controller is designed
to determine the optimal fan setpoint for a given CPU utilization. Nev-
ertheless, due to the cooling latency, this reactive control method may
lead to CPU overheating. Therefore, work [112] proposed an active
fan control strategy with a CPU temperature prediction mechanism
to compensate for the cooling latency. Furthermore, some dynamic
thermal management (DTM) work combines fan and system parame-
ters to improve cooling energy efficiency. Work [113] models DVFS,
thread migration, and active cooling as a complex multi-dimensional
constrained optimization problem, proving a unique optimal solution.
12

Work [114] uses RL to dynamically tune the frequency, fan speed, and
active cores to achieve a performance-power trade-off while satisfying
thermal constraints.

CRACs and chillers account for about 75% of the total power con-
sumption of chilled water systems [115]. As a result, existing dynamic
cooling management techniques are biased towards improving cooling
energy efficiency by controlling the blower speed, chilled water tem-
perature, and flow rate of CRACs. For example, work [116] proposed a
multi-setpoint cooling control solution capable of regulating multiple
fan speeds to meet the cooling needs of different zones. This fine-
grained thermal management approach suits DCs with unstable airflow
patterns. In addition, the operator regulates the supply temperature
by regulating the chilled water temperature, and flow rate set points
to ensure that the temperature in the server room is always kept
below the red line [117]. Since the power of a CRAC is negatively
related to the supply temperature, an appropriate increase in the supply
temperature can significantly reduce the cooling power. Similarly,
work [118] controlled the airspeed and chilled water flow rate of
CRACs to regulate the temperature and pressure inside the raised floor.
Additionally regulating the knobs of the fan and chilled water system,
free air cooling is also a potential direction for energy savings. Cool
air from outside is pumped into the server room to cool IT equipment
or used to lower the return air temperature of CRACs to reduce the
load on the chilled water system [119]. However, free air cooling is
limited by the temperature and humidity conditions of the surrounding
environment.

Joint IT and Cooling System Optimization. The lack of collabora-
tion between IT and cooling systems in a DC tends to result in inefficient
cooling [120]. Therefore, joint optimization of IT and cooling systems
to enhance the energy efficiency of DCs is desirable.

The joint optimization problem in steady-state scenarios is often
formulated as a multi-constraint optimization problem. Specifically,
mathematical, heuristic, and meta-heuristic algorithms are used to
solve a global optimal parameter combination for a given IT load,
available computational resources, and adjustable cooling parameters.
For example, Fang et al. [121] designed a two-time scale control
approach to solve the two-system control mismatch problem. Specif-
ically, a steady-state thermal model was designed to determine the
DVFS set point and job allocation solution. A transient thermal model
was proposed to characterize the rack room’s thermal evolution and
guide the cooling knobs. In addition, Li et al. [122] modeled VM
consolidation and CRAC cooling supply as a multi-constraint optimiza-
tion problem. The objective is to find the optimal VM consolidation
solution and cold air supply temperature to minimize the total energy
costs while satisfying the thermal constraints and SLA. Furthermore,
Mirhoseininejad et al. [47] proposed a joint cooling and workload
management framework that considers the thermal interaction between
IT systems and cooling devices. The framework achieves significant
power savings by realizing the collaboration of cooling control and
workload management. Other work has used meta-heuristics such as
simulated annealing [123] and genetic algorithms [124] to determine
optimal or sub-optimal IT load allocation schemes and cooling set
points. In summary, the key to solving this joint optimization problem
is twofold: the solver’s performance determines whether a globally
optimal solution can be explored; the fidelity of the system modeling is
related to the ability to represent the controlled object and the thermal
environment accurately.

The joint IT load scheduling and cooling control optimization prob-
lem in transient scenarios is modeled as a continuous Markov decision
model. Subsequently, the DRL model was used to learn the optimization
policy by interacting directly with the environment without modeling
the system [118]. For example, Ran et al. [125] proposed DeepEE, a
model-free framework based on DRL, to solve the joint control of IT
job scheduling and cold air flow in a dynamic environment. More-
over, to address the inconsistency in the action space representation

of the two systems, the authors used a parameterized action space
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Fig. 8. Energy management optimization framework.
technique [126] to generate continuous cooling control actions and dis-
crete job scheduling actions, respectively. Furthermore, the work [127]
adopted a multi-agent RL joint control approach using two DRL-based
controllers to generate discrete actions for IT load scheduling and
continuous control parameters for CRAC, respectively. Note that the
two control agents jointly optimize the energy-saving goals by sharing
state and action decisions. In addition, Zhou et al. [128] extended
previous work [125] by proposing a unified framework for joint IT and
cooling optimization based on DRL to solve the scalability problem and
obtain an optimal control strategy over a long period. The proposed
multi-agent control approach is well suited to solve the control time
granularity mismatch between IT and the cooling system. Specifi-
cally, DQN and Deep Deterministic Policy Gradient (DDPG) models are
adopted to learn decision policies for IT task scheduling and cooling
control, respectively. This proposed multi-agent control approach is
well suited to solve the control time granularity mismatch between
IT and the cooling system. As observed, considering the operational
security of physical DCs, most DRL-based solutions use a virtual envi-
ronment consisting of multiple high-fidelity theoretical models to train
the control models. The trained controllers are then deployed to the
real data center to ensure operational reliability and security. Overall,
DRL-based model-free controllers offer good prospects for energy effi-
ciency improvements in DCs over traditional model-based optimization
methods.

3.4. Energy management

Data centers are energy-intensive infrastructures whose energy man-
agement efficiency determines operational costs, carbon footprint, and
cloud services’ sustainability. With the evolution of cloud paradigms
and technologies, various novel energy management solutions such as
integrated renewable energy, smart grids, energy storage supply, and
power budget allocation are emerging. Therefore, we formulated a
unified energy management optimization framework (Fig. 8) to cover
energy management scenarios and solutions for single, geographically
distributed, and edge DCs.
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3.4.1. Within a data center
Current research on energy management in DCs is focused on the in-

tegration and utilization of RESs, IT energy efficiency optimization, and
energy storage supply. Specifically, the complete adoption of brown
energy is no longer in line with the green development perspective.
Therefore, integrating RESs will significantly reduce the carbon foot-
print and power costs on the energy supply side [127]. Secondly,
IT technologies like load scheduling, virtual resource consolidation,
and DVFS create more opportunities for green energy utilization and
system energy efficiency advancement. Finally, energy storage devices
as energy buffers are often adopted to weaken the intermittency of
renewables and power shaving. All in all, the in-depth integration of
energy and IT technologies will become an inevitable tendency for data
center energy systems.

Goiri et al. [129] designed the first green data center prototype
capable of dynamically managing workloads and hybrid energy sources
(renewable, battery, and grid). This work validates that intelligent
workload scheduling and energy management can significantly re-
duce overhead and carbon emissions. Subsequently, Li et al. [128]
proposed an energy management framework, GreenWorks, for green
High-Performance Computing data centers. The framework consists
of elemental load power, intermittent power, and standby power.
GreenWorks fully uses hybrid renewable energy systems to achieve
coordinated management across power sources, significantly facilitat-
ing power-to-load matching. Subsequently, Li et al. [130] proposed
a cross-layer power management and coordination framework for
the HPC server cluster with a multi-source power supply, further
boosting the depth of renewable energy penetration. Furthermore, Liu
et al. [131] proposed a novel internal power switching network (DiPSN)
for DCs, which manages multiple heterogeneous power supplies in a
fine-grained manner. The proposed DiPSN can increase solar utilization
by 39.6%, save energy costs by 11.1%, enhance service performance
by 33.8%, and extend battery life by 9.3%. To solve the matching
problem between the power requirement and provision of the green DC,
Mtt et al. [132] first modeled the joint management of IT and energy
in a green DC. Subsequently, the author introduces a semi-black box
method based on game theory, which models the IT and energy supply
subsystems as buyers and sellers in the negotiation game, respectively.
Finally, a negotiation algorithm is suggested to find a trade-off between
power demand and supply.
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Moreover, considering ESDs with limited capacity can only cope
with power peaks over short periods, work [133] adopted ESDs and
workload scheduling to deal with low and high-frequency power fluc-
tuations, respectively. Likewise, works [134] predict green energy gen-
eration and actively use ESDs to smooth the power curve. Then, the
spatiotemporal characteristics of delay-tolerant workloads are used to
formulate lower carbon and electricity price scheduling solutions while
satisfying QoS. Observably, ESDs achieve a controlled transfer of power
resources in the time dimension, giving more opportunities and benefits
to increase the proportion of green energy use, while the lifetime and
capacity of ESDs need to be thoroughly considered.

Considering the single-point failure and power loss of centralized
UPS architectures, distributed UPS architectures are designed to guar-
antee system reliability and improve energy efficiency. For example,
Google implements distributed UPS at the service level to reduce the
power loss incurred by two cascaded converters [135]. Similarly, Face-
book designs rack-level UPSs to shorten the distance between backup
power and IT equipment, reducing the likelihood of failure and power
loss [136]. Moreover, some works use the integrated power supply with
lithium-ion batteries to realize distributed UPS functionality, e.g., local
energy storage (LES) developed by Microsoft [137]. Also, work [138]
proposed a novel distributed UPS architecture utilizing lithium-ion
ultracapacitors (LIC) to improve system efficiency and reduce reactive
power.

3.4.2. For geo-distributed data centers
For the energy management of distributed geographic data centers,

it is essential to fully consider the renewable energy generation at dif-
ferent locations, grid electricity prices, and available natural resources
to achieve the matching of green energy supply and workload distribu-
tion. Furthermore, based on the characteristics of geo-distributed DCs
and the flexibility of smart grids, energy networks are constructed to
allow energy flow and trading to mitigate regional energy production
and cost gaps.

Chen et al. [139] considered the optimal workload and energy
management of a multi-cloud network. Subsequently, a systematic
framework was proposed to integrate RES, ESDs, cooling devices, and
dynamic energy prices into workload and energy management. In
response to the uncertainty of RES, the resource allocation problem is
mathematically expressed as a robust optimization problem to mini-
mize the net cost in the worst-case scenario. Additionally, to reduce the
computational complexity and additional network overhead of multi-
DC energy management decisions, work [140] designed a distributed
alternating direction multiplier approach, which allows each DC to
have autonomous control decisions. The solution trades off system
costs (electricity, water consumption, and carbon emissions) and the
performance of batch workloads based on current system information
without prior knowledge. Similarly, work [141] suggested a spatio-
temporal task migration mechanism to achieve multi-regional green
energy complementarity and thus offset carbon emissions. To be spe-
cific, latency-insensitive workloads are scheduled to DCs with sufficient
RES, and execution times are determined based on the dynamic produc-
tion of RES. Note the work [142] simplified the model by assuming
that RESs generation and regional electricity prices are accurately
predictable. The total profit maximization problem with multi-task
response time constraints is modeled as a nonlinear optimization prob-
lem with constraints. Following that work, the authors in work [143]
further proposed a multi-objective optimization approach for deter-
mining task allocation in distributed DCs to minimize average task
loss and maximize vendor profit. Nevertheless, these works ignore the
impact of green energy and task uncertainty on scheduling decisions.
Moreover, leveraging regional power price gaps to migrate VMs for cost
savings is feasible, but large-volume VM migration leads to additional
network energy. Therefore, the work [144] formulates the problem of
14

minimizing energy costs (both DC and network energy) as a mixed
integer linear programming problem and solves it in a reasonable time
using the CPLEX solver.

Smart grids (SGs) integrate multiple energy sources, including RES,
ESDs, and brown energy. SGs are a promising energy management so-
lution that supports bidirectional information flow and microgrids. To
address microgrids’ temporal and spatial coupling issues, work [145]
presented a stochastic planning problem considering electricity prices,
RES production, and workload uncertainty. Subsequently, a real-time
distributed algorithm based on Lyapunov optimization techniques and a
multiplier-based alternating direction approach is designed to minimize
the long-term operating costs of microgrids. To make these energy-
intensive distributed clouds greener, Camus et al. [146] suggested
that, based on the flexibility of the smart grid, the exchange of green
energy between distributed nodes can help further improve the holistic
improvement of the cloud’s self-consumption of on-site green energy.
Specifically, the proposed solution adopts VM migration and energy
exchange to balance the energy production and demand of each node
in the interconnection network while taking into account the network
communication delay and brown energy demand. Additionally, Gu
et al. [147] formulated energy management as a complex mixed integer
linear programming problem with millions of decision variables and
proposed a green task scheduling and energy management architecture.
The authors pay attention to two optimization issues: (1) Minimizing
total energy costs by workload scheduling. (2) Minimize total carbon
emissions within the energy cost budget. This work verifies that inte-
grating energy storage devices into the DC power system is an effective
way to reduce carbon emissions. In addition, grid-based energy trading
mechanisms have a significant impact on improving energy utilization
and saving costs. In addition, considering the variation of electricity
prices in different regions due to supply and demand, time and pro-
duction costs, work [148] proposed an evolutionary-based heuristic
algorithm to solve the Pareto-optimal solution for request scheduling
and resource allocation for multiple DCs.

3.4.3. For edge data centers
The edge computing paradigm advocates extending computing and

storage resources to network terminals, effectively alleviating the im-
pact of time-constrained IoT applications in data transmission de-
lays [149]. Nevertheless, with the extensive deployment of edge clouds,
the vast energy consumption has become a limit for expanding edge
cloud DCs [147]. Since the computing power and deployment density
of edge DCs are primarily different from traditional data centers, tra-
ditional data center-level methods are challenging to replicate directly
to edge systems. Some cutting-edge research work began to explore the
possibility of edge computing, renewable energy, and smart microgrids.
The device of edge nodes is relatively small, which allows them to be
deployed flexibly to locations where renewable energy can be used
more efficiently. Additionally, the microgrid [150] can significantly
shorten the distance between energy production and use and effectively
integrate distributed renewable energy in adjacent areas. In this way,
the microgrid will supply power to nearby edge devices with higher
transmission efficiency and lower operating costs. In the green cloudlet
network architecture, each edge cloud is powered by green energy
and traditional power grids. Due to the dynamic changes in energy
demand and green energy production, the energy supply and demand
relationship between different edge clouds is unbalanced, which leads
to the increased grid-connected power consumption of edge clouds.
Therefore, Aujla et al. [151] developed a green energy-aware edge
cloud placement approach, considering minimizing the edge cloud’s to-
tal cost and delay requirements. This strategy migrates avAtars (private
VMs used to perform offloading tasks) according to the green energy
gap of edge clouds in the cloudlet network to achieve computing nodes’
energy supply and demand balance. Further, the work [152] considers
both scheduling workloads across multiple edge clouds and tuning node
frequency to achieve a balance of QoS and renewable energy utilization

for edge computing.
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As a flexible energy carrier, the microgrid can conveniently match
dynamic local demand with on-site supply [153]. Based on Fog comput-
ing and microgrid, Jalali et al. [154] introduced a method to alleviate
the growth of IoT energy costs. This method uses microgrids to re-
duce energy transmission distances and losses, while fog computing
provides computing and storage services for local IoT workloads. Nu-
merical simulation results show that this seamless combination of fog
computing and micro-grid method simultaneously performs localized
management of computing services and energy supply, significantly
reducing IoT applications’ energy consumption. Note that the edge
node is the energy consumer, and the microgrid is the energy provider,
with significant uncertainty and stochasticity. Therefore, real-time in-
formation exchange is the foundation for the collaborative optimization
of both systems. For this purpose, Li et al. [147] proposed a unified
energy management framework to enable a sustainable edge computing
paradigm with distributed RES. The framework aims to bridge the lack
of collaboration between microgrids and edge computing systems. The
cooperation and supplementation of edge computing and microgrid
systems contribute to leveraging RESs, reducing the system’s brown
energy while providing superior QoS for time-constrained IoT applica-
tions. Moreover, Munir et al. [155] decomposed the problem of using
microgrids to power edge servers into two sub-problems. Subsequently,
the clustering method DBSCAN was adopted to solve the task alloca-
tion of edge clouds and DRL to derive the power supply solution for
microgrids. The proposed approach mitigates the uncertainty in task
load and microgrid energy generation. Overall, integrating microgrid
and renewable energy technologies is a potential direction for energy
management in edge data centers and deserves further exploration.

3.5. Waste heat recovery

Waste heat recovery (WHR) means taking measures to capture the
thermal energy emitted by IT equipment to produce useful energy
products. The main barriers to implementing WHR systems into DCs
are the low-quality waste heat (below 85 ◦C) and the high invest-
ment costs. Considering the thermodynamic conditions, deployment,
and applicability of data center operations, the waste heat recovery
technologies that have attracted the most attention from operators
are district heating, on-site power generation, and absorption cooling
system.

3.5.1. District heating
The basic idea of district heating (DH) is to leverage local thermal

resources to cover local heating demands [156]. Waste heat from
DCs is a prospective thermal resource [157]. Firstly, DCs are energy-
intensive infrastructures, consuming enormous amounts of electricity
and converting it into bulk heat. Secondly, the data center’s uniformly
distributed load curve and waste heat production are stable and avail-
able heat sources. Second, the uniformly distributed load profile and
waste heat generation make DCs a reliable heat source [158]. Finally,
Most CSPs build data centers close to the DH system to efficiently trans-
port waste heat to the DH network in exchange for economic benefits.
To sum up, recovering waste heat from DCs for DH systems has been
proven both technically and economically feasible [158]. For example,
Severin et al. [159] reported using coolant from a hot water-cooled
supercomputer for space heating. Heat recovery efficiencies as high as
80% and energetic efficiencies of 34% were achieved at coolant tem-
peratures up to 60 ◦C. Moreover, He et al. [160] designed a distributed
cooling solution to use DC waste heat to provide district heating in
Hohhot, China. The authors claim to save 18,000 tons of standard coal
and 10% of electricity per year compared to a conventional coal boiler
heating system.

However, the supply–demand mismatch for thermal energy is also
a severe challenge for the DH system [13]. The heat demand in the DH
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system is greatly affected by many factors. For example, the generating
capacity of power plants is affected by time and season, and the heat-
ing demand of buildings is affected by climate and human activities,
which are full of significant volatility and uncertainty [161]. Some
researchers have introduced thermal energy storage (TES) technology
to address the issue of eliminating supply–demand mismatch and peak-
setting in DH systems. The work [162] investigated energy systems
with heat pumps and long-term TES to meet building complexes’ heat-
ing and cooling needs, achieving sustainable operation. Additionally,
work [163] integrated industrial waste heat into existing urban DH
systems to increase the system’s income. Specifically, a high propor-
tion of industrial waste heat is transferred from summer to winter
using seasonal heat storage. This solution addresses the energy gap
in different seasons and obtains more economic profit. Furthermore,
work [164] configured water tanks (WT) in DH systems to reduce peak
loads using load-shifting effects, thereby reducing system operation and
maintenance costs.

3.5.2. On-site power production
Waste heat-based power generation technology is a sustainable way

to save energy and reduce emissions in DCs. To better reuse the low-
quality waste heat generated by data centers for power generation,
commonly used technologies include Power Plant Co-location (PPC)
and Organic Rankine Cycle (ORC) [12].

Specifically, PPC uses waste heat generated by the DC to preheat
boiler water from a nearby power plant. This technology effectively
shortens the distance of thermal energy transmission and reduces the
loss of thermal energy, which reduces fossil fuel and the cost of electric-
ity generation. Furthermore, thanks to the compatibility between the
waste heat temperature and thermodynamic properties of the organic
fluid, the ORC system is considered a promising power generation
technology. Its operating principle is similar to the steam rankine cycle,
but uses a low boiling organic fluid rather than water/steam as the
working fluid. Fig. 9 describes an ORC system, including an expansion
turbine, a condenser, a pump, an evaporator, and a superheater. The
critical factor of this technology is that ORC is not limited by the
temperature of the heat source and can operate normally with various
high- and low-quality waste heat. The thermal and chemical properties
of the organic working fluid determine the operating temperature range
and efficiency of the ORC [165]. In addition, ORC has good waste heat
compatibility and can use various heat sources, such as solar [166],
renewable geothermal, fuel energy, and waste heat. Moreover, ORC has
more flexible deployment methods and fine-grained power generation
control than the traditional power cycle. Importantly, ORC has a good
match with the waste heat generated by liquid cooling and two-phase
cooling systems. Therefore, compared to the water/steam Rankine
cycle, these characteristics make ORC more suitable for on-site power
generation using waste heat. Recently, Ebrahimi et al. [167] evaluated
the effectiveness of ORC systems in reusing waste heat in DCs from
a thermodynamic and economic perspective. The work also analyzed
the best server refrigerant and working fluid choice under operating
conditions. Araya et al. [168] are committed to applying ORC systems
to data center operations and designed a 20 kW ORC system prototype
to prove its feasibility and economy. Araya et al. [169] developed a
laboratory-scale ORC system based on the ultra-low (40 ◦C to 85 ◦C)
waste heat conditions of typical server racks in data centers. The author
describes how to implement the ORC system in actual data centers from
experimental and theoretical aspects.

3.5.3. Absorption cooling system
Conventional air conditioning is cooled by vapor compression,

which requires significant energy consumption. An absorption cooling
system (ACS) can be adopted to reduce the cooling load and power
to replace the vapor compression system to provide the chilled water
source [170]. ACS can operate at generator temperatures of 70 to 90 ◦C,
which matches the available waste heat from liquid-cooled and two-

phase cooled DCs. Nevertheless, there are some limitations to ACS, such
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Fig. 9. Schematic diagram of organic rankine cycle by data center waste heat.

as the system not being suitable for air-cooled DCs without an extra
heat booster and space constraints when retrofitting ACS to operating
DCs. Fig. 10 illustrates a typical absorption cooling cycle where a circuit
of absorbers, solution heat exchangers, liquid pumps, generators, and
expansion valves, called chemical processors, replace a conventional
vapor compressor [171].

Single-effect absorption cooling systems are widely used in DC
cooling systems to reuse low-quality waste heat [171]. Chen et al. [172]
proposed a two-stage LiBr/H2O absorption system that reduced the
PUE from above 1.67 to 1.4. Heywood et al. [173] took low-quality
waste heat to drive the 10-ton single-effect LiBr/H2O absorption cool-
ing device, specifically the system for transferring the heat generated
by the server to the absorption cooling unit. Additionally, combining
green energy and waste heat in the DC power system to achieve
refrigeration and heating has become a novel method to reduce DC
energy consumption [174]. For example, mixing solar energy with ACS
is a suitable choice. Izquierdo et al. [175] proposed an ACS proto-
type system with single-effect and double-effect ACS and 48 square
meters of flat solar collectors. The test results show that the heat
provided by the solar collector can reach the working temperature of
the prototype single-effect mode, but the ACS based on the double-
effect mode may require additional energy. Similarly, to raise the
energy efficiency of the single-effect LiBr/H2O absorption system, Shar-
ifi et al. [176] proposed a solar-assisted LiBr/H2O absorption system,
which takes generator and evaporator temperatures as variables. Subse-
quently, a multi-objective multi-variable genetic algorithm was adopted
to optimize the system to maximize exergy and energy efficiency
under different operating conditions. Furthermore, as a continuous,
high-quality heat source, geothermal energy also meets the require-
ments of the ACS. Han et al. [177] proposed and studied a novel
LiBr/H2O absorption refrigeration system using abandoned wells based
on the enhanced geothermal system. Numerical experiments show
that the refrigerating capacity is maintained above nine MW, and
the chilled water temperature provided has reached the temperature
of the LiBr/H2O double-effect refrigeration system. Therefore, CSPs
can prioritize building large-scale data centers in areas rich in solar
and geothermal resources. In addition, the close integration of ACS
and renewable energy will be a promising direction for building a
sustainable DC.

4. Real-world datasets

Section 3 has investigated and classified green-aware management
technologies and solutions. Validating and evaluating these solutions
in a realistic environment is time-consuming and expensive, espe-
cially for large-scale solutions. Simulation has therefore become the
preferred method to address this problem, which allows reproducible
experiments to be conducted in a controlled environment, thus speed-
ing up theoretical research. After investigation, we found that some
reviews [178,179] have systematically investigated cloud simulation
tools, but there are few works to collect real-world datasets. Therefore,
some real-world datasets related to the topic of this review (including
workload traces, renewable energy source, meteorological data, and
electricity price trace) were classified and summarized to facilitate
better research.
16
Fig. 10. A schematic of a simple absorption cooling system.

4.1. Workloads trace

4.1.1. Google cluster trace
The workload repository is provided by Google and includes the

workload traces of the server clusters in the Google data centers. To
date, two versions of workload traces have been publicly released,
clusterdata-2011 trace and clusterdata-2019 trace. The available access
link is: https://github.com/google/cluster-data.

4.1.2. Alibaba open cluster trace
The workload repository is provided by Alibaba Group and includes

traces and machine attributes of multiple types of workloads in real
production clusters. So far, Alibaba has released two versions of work-
load traces, cluster-trace-v2017 and cluster-trace-v2018. These traces
include not only interactive online service requests and batch work-
loads, but also hardware information of the machines in the cluster.
The available access link is: https://github.com/alibaba/clusterdata.

4.1.3. Parallel workloads archive
The Parallel Workloads Archive provides raw logs and models of

workloads running on Parallel systems. These workloads can be used
to validate and simulate workload management for large parallel high-
performance computers. The available access link is: https://www.cs.
huji.ac.il/labs/parallel/workload/.

4.1.4. Statistical Workload Injector for MapReduce (SWIM)
The SWIM repository is provided by Facebook and includes the

workload traces of the server clusters in the Facebook data centers.
SWIM is often adopted to test and assess the performance of MapReduce
systems. To date, two versions of workload traces have been publicly
released, FB-2009 trace and FB-2010 trace. Moreover, the available
access link for this SWIM is: https://github.com/SWIMProjectUCB/
SWIM/wiki.

4.1.5. Wikipedia access traces and WikiBench
Wikipedia access traces contains a trace of 10% of all user requests

issued to Wikipedia during the period between September 19th 2007
and January 2nd 2008. In addition, WikiBench, as a web-hosting
benchmark, can be used to stress test servers or systems where Web
applications are deployed. The available access link for this WikiBench
and Wikipedia access traces is: http://www.wikibench.eu/.

4.2. Renewable energy sources and meteorological data

4.2.1. The National Renewable Energy Laboratory (NREL)
NREL provides some developed data sets, maps, models, and tools

used to analyze renewable energy and energy efficiency technologies.
In addition, large amounts of real-time meteorological data for the
United States, including solar radiation, cloud cover, and wind speed,
are available from the National Solar Radiation Database (NSRDB).
The available access link for the NREL homepage and NSRDB are:
https://www.nrel.gov/ and https://nsrdb.nrel.gov/, respectively.
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4.2.2. Photovoltaic Geographical Information System (PVGIS)
PVGIS provides three tools, including PV performance tool(grid

connected, tracking PV, off grid), solar radiation tool (monthly, daily,
hourly) and typical meteorological year tool(temperature, wind, hu-
midity, air pressure). The available access link for PVGIS is: https:
//ec.europa.eu/jrc/en/pvgis.

4.2.3. National Climatic Data Center (NDCD)
NDCD provides researchers with hourly, daily and monthly solar

radiation tracking data for some cities in the United States from 2000
to 2021. The available access link is: http://www1.ncdc.noaa.gov/pub/
data/uscrn/products.

4.2.4. Solar Radiation Data (SoDa)
SoDa provides global solar radiation and meteorological database

called HelioClim-3, which provides many additional services for re-
search activities, such as AI-based solar forecast, long-term irradiation
time-series, weather forecast data, and so on. The available access link
for SoDa is:http://www.soda-is.com.

4.2.5. Windfinder
Windfinder provides a large amount of wind and meteorological

observation data collected by 21,000 weather stations around the world
since 1999. The available access link for Windfinder is: https://www.
windfinder.com/historical-weather-data/.

4.3. Electricity price trace

4.3.1. The Independent Electricity System Operator (IESO)
IESO is the core of Ontario’s electricity system, providing Ontario’s

hourly electricity demand for the next 34 days. In addition, the IESO
not only provides forecasts of available solar and wind power genera-
tion in the next 48 h, but also provides easy access to market price data,
including real-time and historical reports. The available access link for
IESO is: https://ieso.ca/en/.

4.3.2. Comed’s HOURLY PRICING program (ComEd)
ComEd provides the price and the trend of dynamic hourly elec-

tricity prices of U.S. regions based on wholesale market prices. The
available access link for ComEd is: https://hourlypricing.comed.com/.

4.3.3. U.S. Energy Information Administration (EIA)
EIA provides independent statistics and analysis of the U.S. power

system, including hourly electricity demand, renewable energy genera-
tion forecasts, and average retail electricity prices. The available access
link for EIA-Electricity is: https://www.eia.gov/electricity/.

4.3.4. Southwest Power Pool (SPP)
SPP conducts statistics and analysis on the power systems of 17

states in the central United States, including price contour map, gen-
eration mix and comparison analysis of energy production forecast
and actual demand, etc. The available access link for SPP is: https:
//www.spp.org/.

4.3.5. Balancing Mechanism Reporting Service (BMRS)
BMPS provides operational data of the U.S. power system, focusing

on power prices in various regions, the actual power demand of the
system, and forecasts of wind energy production. The available access
link for BMRS is: http://www.bmreports.com.

5. Open issues and future directions

Numerous efficient green-aware management techniques and solu-
tions have been proposed and widely adopted. However, there are still
many challenges to constructing sustainable DCs that still need to be
thoroughly addressed. Based on the observations of existing works, we
put forward some open issues and promising directions for sustainable
DCs.
17
5.1. Distributed workload management framework

For multi-cloud workload management, most existing work adopts
a centralized management scheme; that is, a single global controller
makes scheduling decisions according to the current state of each cloud.
Nevertheless, this centralized method has two limitations. On the one
hand, it will increase the complexity and delay of system decisions. On
the other hand, since many heterogeneous data centers are distributed
in different geographical locations, it is not possible to obtain all
the global state information at any time to make optimal decisions.
Therefore, developing a distributed method for multi-cloud workload
management is an open issue.

As an emerging technology, multi-agent Deep Reinforcement Learn-
ing (MADRL) [180] has achieved good results in many application
scenarios. Therefore, it is feasible to configure a DRL agent as a personal
scheduler for each cloud node while jointly managing multiple nodes
based on multi-agent interaction and cooperation mechanisms. Com-
pared with the single-agent system, the multi-agent system has high
learning efficiency, robustness, and scalability. Therefore, developing a
MADRL-based distributed workload management framework will be a
feasible and promising direction.

5.2. Heterogeneous virtual resource management

Most CSPs provide containers and VMs as service resource units for
users. Nevertheless, as described in Section 3.2.2, there are many differ-
ences in features and structures between containers and VMs, which not
only increase the complexity of resource integration and migration but
also easily form resource fragmentation and reduce resource utilization.
Moreover, previous efforts focused on the consolidation and migration
of either the VM or the container. Therefore, efficiently managing
heterogeneous virtual resources with different granularities in the cloud
platform is a problem worthy of further study.

In addition, although resource consolidation and migration among
cloud nodes can effectively improve resource utilization of each node
and reduce energy consumption, it also brings problems such as net-
work overhead, service delay, and additional energy costs. Previous
work has proposed resource compression techniques to reduce data
transfer volume and service latency, but VM sizes typically exceed
10 GB, resulting in SLA violations and additional power costs. There-
fore, how to trade off the possible benefits and costs of resource
migration is an open issue.

5.3. Energy-efficient cooling management

Promoting cooling energy efficiency mainly starts from two direc-
tions: liquid cooling and natural cooling sources. As racks’ power and
heat density increase, air cooling can no longer satisfy their cooling
requirements. Therefore, liquid cooling with higher cooling efficiency
is undoubtedly the superior choice. Instead of using chillers and air
conditioners, liquid cooling systems use liquid to come into direct or
indirect contact with chips and other devices to remove the heat gener-
ated so that the PUE value can be below 1.09. In addition, compared to
air-cooled systems, the waste heat temperature of liquid-cooled systems
reaches 40–60 ◦C, which provides better heat recovery performance.
Meanwhile, building a data center in an area with low year-round
temperatures or extensive natural cooling sources can significantly
reduce the PUE of the data center. Therefore, the cooling solution with
liquid cooling as the primary cooling load and non-liquid cooling as
auxiliary cooling is undoubtedly the tendency of the new generation
data center cooling system.
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https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/pvgis
http://www1.ncdc.noaa.gov/pub/data/uscrn/products
http://www1.ncdc.noaa.gov/pub/data/uscrn/products
http://www1.ncdc.noaa.gov/pub/data/uscrn/products
http://www.soda-is.com
https://www.windfinder.com/historical-weather-data/
https://www.windfinder.com/historical-weather-data/
https://www.windfinder.com/historical-weather-data/
https://ieso.ca/en/
https://hourlypricing.comed.com/
https://www.eia.gov/electricity/
https://www.spp.org/
https://www.spp.org/
https://www.spp.org/
http://www.bmreports.com


Sustainable Computing: Informatics and Systems 42 (2024) 100989W. Lin et al.
Fig. 11. Microgrid.

5.4. Integration and utilization of renewable energy

Integration and utilization of RESs is a potential measure for build-
ing sustainable DCs, but many challenges exist. Firstly, the generation
of RES is particularly intermittent and dynamic. In particular, on-
site green energy production is influenced by location, weather, and
facilities, making it difficult to predict accurately. Secondly, the mixed
supply pattern of multiple heterogeneous energy sources also increases
the supply system’s insecurity of switching operations and power in-
stability. Finally, the dual volatility of power demand and energy
production in DCs makes it extremely difficult to match energy supply
and demand.

Therefore, AI technology can be adopted to predict the generation
of green energy based on historical records and weather traces. In
addition, ESDs act as an energy buffer, allowing for peak and valley
shaving of power. Specifically, ESDs charge when green energy gen-
eration exceeds power consumption and discharge when power peaks,
thus making full use of carbon-free energy.

5.5. Microgrid for edge clouds

The edge cloud is generally powered by the grid and equipped with
green energy production equipment and ESDs (Fig. 11). Edge clouds
act as both consumers and producers of energy. Meanwhile, the energy
demand and output of edge cloud are easily affected by workload and
weather, which leads to an imbalance between energy supply and de-
mand. Therefore, achieving the energy supply and demand balance of
distributed edge clouds is an open issue with the continuous evolution
of DCs.

For this issue, the microgrid will be a good choice, which can
effectively integrate various RESs located in the adjacent area, such
as wind turbines, photovoltaics, diesel generators, ESDs, etc. This way
can provide power for edge cloud with less transmission cost and
more flexible supply. Therefore, the power supply scheme based on a
microgrid also faces the challenge of dynamic switching and managing
a multi-heterogeneous power supply.

5.6. Waste heat recovery

With the evolution and rapid adoption of liquid cooling technology,
the waste heat from data centers will hold tremendous potential and
benefits for recycling. In particular, compared with ordinary water-
cooling technology, the cooling loop of warm/hot water-cooling tech-
nology operates at a water supply temperature above 40 ◦C for a long
time. The return water temperature of more than 45 ◦C significantly
improves the outdoor heat dissipation efficiency and even realizes free
cooling. In addition, high-temperature wastewater can directly meet
the water temperature requirements of urban floor heating and hot
18
water supply, which is conducive to high-efficiency waste heat recovery
in DCs. In addition to the three waste heat recovery technologies
discussed in Section 3.5, waste heat can also be considered for drying
biomass materials, maintaining the temperature of anaerobic digestion
reactors, and desalinating seawater.

6. Conclusion

This review systematically surveys cutting-edge research work and
routes in sustainable DCs. Firstly, a new conceptual model of sus-
tainable DCs is constructed to cover the latest research advances in
four significant systems and to indicate future evolutionary directions.
Secondly, we analyze the characteristics and benefits of technologies
such as workload scheduling, virtual resource consolidation, thermal
modeling, cooling control optimization, power management, renewable
energy integration and utilization, and waste heat recovery from a
technical perspective. A systematic view of achieving efficient data
center management is provided. Furthermore, to facilitate experimental
work by researchers in the field, we have collected real-world datasets
related to the topic, including workload traces, RESs, climate data, and
regional electricity price traces. Finally, we identify and suggest some
critical challenges and potential solutions for constructing sustainable
DCs.
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