IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

2663

Cacomp: A Cloud-Assisted Collaborative Deep
Learning Compiler Framework for DNN Tasks
on Edge

, Senior Member, IEEE, Jinhui Lin
Weizheng Wu, Zhetao Li

Weiwei Lin

Abstract—With the development of edge computing, DNN serv-
ices have been widely deployed on edge devices. The deployment
efficiency of deep learning models relies on the optimization of
inference and scheduling policy. However, traditional optimization
methods on edge devices still suffer from prohibitively long tuning
time due to devices’ low computational power. Meanwhile, the
widely used scheduling algorithm, the dominant resource fairness
algorithm (DRF algorithm), struggles to maximize the efficiency of
model execution on edge devices and inevitably increases average
waiting time as it is not applicable in the real-time distributed com-
puting environment. In this paper, we propose Cacomp, a distrib-
uted cloud-assisted deep learning compiler framework that features
accelerating the optimization on edge devices with assistance from
the cloud and a novel inference task scheduling algorithm. Our
framework utilizes the tuning records from the cloud devices and
proposes a two-step distillation strategy to obtain the best tuning
record set for the edge device. For the scheduling process, we pro-
pose an RD-DREF algorithm to allocate inference tasks to edge devi-
ces based on dominant resource matching in real time. Extensive
results show that our framework can achieve up to 2.19x improve-
ment in the optimization time compared with other methods on
edge devices. Our proposed scheduling algorithm significantly
shortens the average waiting time of inference tasks by 30% and
improves resource utilization by 20% on edge devices.

Index Terms—Deep learning compiler, deep neural networks,
edge computing, resource allocation.

Received 13 August 2024; revised 14 April 2025; accepted 3 May 2025. Date
of publication 12 May 2025; date of current version 11 July 2025. This
work was supported in part by Guangdong Provincial Natural Science Foundation
Project under Grant 2025A1515010113, in part by Guangxi Key Research and
Development Project under Grant 2024AB02018, and in part by the Major
Key Project of PCL, China under Grant PCL2023A09. Recommended for
acceptance by M. Kandemir. (Corresponding author: Wentai Wu.)

Weiwei Lin is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510641, China, and also with
Pengcheng Laboratory, Shenzhen 518066, China (e-mail: linww @scut.edu.cn).

Jinhui Lin is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510641, China (e-mail:
202321044269 @mail.scut.edu.cn).

Haotong Zhang and Weizheng Wu are with the School of Software Engineering,
South China University of Technology, Guangzhou 510641, China (e-mail:
sewuweizheng @mail.scut.edu.cn; hoyt.zhang77 @ gmail.com).

Wentai Wu is with the Department of Computer Science, College of
Information Science and Technology, Jinan University, Guangzhou 510632,
China (e-mail: wentaiwu@jnu.edu.cn).

Zhetao Li is with the College of Information Science and Technology, Jinan
University, Guangzhou 510632, China (e-mail: liztchina@hotmail.com).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik @newpaltz.edu).

Digital Object Identifier 10.1109/TC.2025.3569132

, Member, IEEE, and Keqin Li

, Wentai Wu ', Member, IEEE,
, Fellow, IEEE

, Haotong Zhang

I. INTRODUCTION

EEP learning model has catalyzed an increasing number

of modern intelligent Internet-of-Things (IoT) applica-
tions, such as autonomous driving [1], [2], augmented reality [3]
and surveillance video analysis [4]. These applications typically
require abundant computing resources and low latency, whereas
IoT devices are resource-limited. Transferring these computa-
tions to the cloud will generate unbearable delay and fail to
fulfill their QoS requirements. To alleviate this issue, edge com-
puting [5], [6], [7], [8] is proposed, which leverages the nearby
servers and infrastructures to complete the computational tasks.

In order to serve the deep learning model inference tasks
from IoT devices, edge devices must be capable of executing
tasks efficiently. Meanwhile, as edge devices are resource-
constrained compared to cloud devices, it is of great significance
to fully utilize their computational resources. The inference effi-
ciency of deep learning models on edge devices heavily relies
on two aspects of deployment, the model inference optimization
and the inference task scheduling strategy.

For the optimization of inference, researchers have developed
some deep learning compiler frameworks, such as TVM [9] and
TensorFlow-XLA [10]. They can generate high-performance
code for various hardware and various deep learning frame-
works by utilizing hardware-specific optimization [11] and opti-
mized kernel libraries [12], [13]. However, these methods
require enormous engineering effort to tune for each hardware
platform and operator manually. This has facilitated the rise of
auto-tuning: an automated optimization process aiming at speed-
ing up the inference of deep learning models.

As Fig. 1 shows, auto-tuning methods, such as autoTVM [9]
and Ansor [14], decompose deep learning workloads into a
series of subtasks and continuously search for transformation
steps in the optimization space for each subtask. They use cost
model to identify potential transformation steps, execute the
modified subtask on the actual machine and record the actual
inference time for better prediction performance. In order to
achieve a better inference performance, auto-tuning methods
require thousands of actual measurements on real hardware
even for a small model. The prolonged tuning time has become
an obstacle to swiftly deploying the optimized deep learning
model. To address this problem, some researchers propose a few
methods as Fig. 1 depicts, including parallelling the measurement

0018-9340 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6876-1795
https://orcid.org/0009-0008-8456-7595
https://orcid.org/0000-0003-1729-3383
https://orcid.org/0000-0001-5851-327X
https://orcid.org/0000-0002-7804-0286
https://orcid.org/0000-0001-5224-4048
mailto:linww@scut.edu.cn
mailto:202321044269@mail.scut.edu.cn
mailto:sewuweizheng@mail.scut.edu.cn
mailto:hoyt.zhang77@gmail.com
mailto:wentaiwu@jnu.edu.cn
mailto:liztchina@hotmail.com
mailto:lik@newpaltz.edu

2664

Optimization Space Searcher

e -
|

&

Acceleration |

Model DAG
Cost Model Technology
Extractor
—
00000 Coiiaie
Subtasks l] .
Code Generation and Execution
E g \ -
Embedded Edge Device N
Fig. 1. Process of auto-tuning methods. Offline cost model and measurement

parallelization are two methods to accelerate the tuning process.

and training an offline cost model. However, for edge devices,
these methods fail to effectively speed up the optimization time
as edge devices lack enough computational resources for paralle-
lization or performing millions of measurements to train the off-
line cost model.

One enlightening approach to reduce the prolonged tuning
time on edge devices is to introduce the cloud-edge collabora-
tion paradigm. This appears to be an appealing solution, as it
has been successfully applied to the scenario of training models,
where the training process is migrated to cloud devices to accel-
erate the training procedure. However, there exists an obstacle
to transferring this paradigm to deep learning model optimiza-
tion. For instance, tuning the Inception-v3 network on the edge
device takes 44 hours and the final inference time is about 670
ms. Tuning on the cloud device only takes 10 hours but the best
tuning record set found by it can only reach an inference latency
of 820 ms on the edge device. However, the tuning process on
edge is such a prolonged one that transferring this process to
cloud devices is quite appealing. Therefore, how to leverage the
cloud-edge collaboration paradigm to accelerate the auto-tuning
process on edge devices while maintaining the speed-up of
inference time is a challenge.

Besides from the model optimization, inference task sched-
uling strategy also plays a crucial role in inference service
deployment [15], [16], [17]. In the process of inference task
scheduling, different types of models, such as VGG [18],
ResNet [19] and MobileNet [20], vary greatly in terms of
resource requirements. This brings about the second challenge
that without a reasonable resource allocation scheme, the exe-
cution of models may be sub-optimal in resource usage.
Designing a reasonable scheduling policy takes many factors
into consideration and a sub-optimal scheduling policy may
lead to a bad user experience for waiting too long or low effi-
ciency in using resources.

Among the traditional resource scheduling algorithms, the
dominant resource fairness algorithm [21], [22], [23], known as
the DRF algorithm, is the most famous and widely deployed
one. However, in our scenario, this algorithm loses its competi-
tiveness as it is not equipped with a resource real-time update
mechanism and it does not take the distributed computing sce-
nario into consideration. How to modify this algorithm to make
it suitable for deep learning inference task scheduling on edge
computing is another challenge.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

To address these two challenges, we propose Cacomp, a
Cloud-Assisted Distributed Deep Learning Compiler Frame-
work for deep learning model deployment on edge devices. The
proposed compiler framework consists of a cloud-assisted model
optimization sub-system and a inference task scheduling sub-
system. The main task of the first sub-system is to fully leverage
cloud devices’ abundant computing resources to obtain the opti-
mization tuning records during the optimization process. These
records are transferred to edge devices and are further utilized to
decide the best tuning record set for model inference on edge
devices, which greatly shortens the time for optimization. The
inference task scheduling module is responsible for allocating the
inference tasks to the edge devices with the best resource match.
We design a Realtime Distributed-DRF (RD-DRF) algorithm to
generate scheduling decisions, which is developed based on the
monitor in real time the resource usage of the devices. Our main
contributions are as follows:

1) For optimization acceleration, we propose a cloud-assisted
framework that utilizes the records from cloud devices and
greatly shortens the time spent on optimization on edge
devices. We propose a two-step strategy and utilize the
memory access feature of the records to distill out the
excellent records.

2) For inference task scheduling problem, we propose the
RD-DRF algorithm. It updates the resource allocation
promptly and considers the distributed computing environ-
ment to overcome the weakness of the DRF algorithm.

3) Experiments on Huawei TaiShan 200 server and Rasp-
berry 4Bs prove that our proposed method achieves
2.19x to 4.02x optimization time improvement over
other optimization methods on all testing deep learning
models while maintaining the speed-up of inference
time. Extensive experiments on the real edge computing
environment show that, compared with the DRF algo-
rithm, our RD-DRF algorithm effectively shortens the
waiting time of inference task by up to 1.32x and task
completion time by up to 1.20x.

The rest of this paper is organized as follows. Section I dis-
cusses the related work. Section III introduces the overall archi-
tecture and the design details of our distributed deep learning
compiler framework. Section IV conducts the corresponding
experiments and analyzes the experiment results; Finally, the
summary of our work is concluded in Section V.

II. RELATED WORK
A. Deep Learning Compiler and Auto-Tuning

Deep Learning Compiler. For the better deployment and perfor-
mance of deep learning model execution, recent researchers are
dedicated to various DL compiler systems, including TVM [9],
TensorFlow-XLA [10] and Multi-Level Intermediate Represen-
tation (MLIR) [24]. These DL compilers embrace a series of
optimization methods, including hardware-specific optimiza-
tions, optimized kernel libraries and auto-tuning techniques.
Hardware-specific optimization leverages hardware intrinsic
mapping, memory allocation strategy and memory latency hid-
ing to generate high-performance codes targeting specific

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: CACOMP: A CLOUD-ASSISTED COLLABORATIVE DEEP LEARNING COMPILER FRAMEWORK

hardware [11]. For the optimized kernel libraries, DL compilers
can leverage existing libraries, such as oneDNN [12] and cuDNN
[13], by generating function calls during code generation. These
two intricate methods both require extremely elaborate design.
Once a new hardware platform or operator is involved, research-
ers have to restart the optimization process and manually tune
for them.

Auto-tuning Method. In order to free researchers from signifi-
cant manual effort, auto-tuning methods for the optimization of
deep learning model are proposed. autoTVM [9] and Ansor [14]
are two typical auto-tuning methods and a series of works are
made based on them. Meta-Schedule [25] comes up with a
domain-specific probabilistic programming language abstraction
to use domain experts to analyze the program. Chameleon [26]
introduces reinforcement learning and develops an adaptive
sampling algorithm to explore previously unseen design space
for code optimization. Haotuner [27] proposes a hardware-
adaptive deep learning operator auto-tuner specifically designed
for dynamic shape tensors for GPU devices. Roller [28] takes a
different construction-based approach to generate operator ker-
nels for various accelerators. Droplet [29] develop a search
method based on the coordinate descent algorithm to find the
optimal operator transformation step.

Accelerating Auto-tuning Optimization. Some methods have
been proposed to alleviate the prolonged auto-tuning time. Ada-
tune [30] proposes an adaptive evaluation method and reduces
the measurement overhead from autoTVM. DOPpler [31] intro-
duces a parallel auto-tuning measurement infrastructure whilst
maintaining high-quality tensor program optimization. [32] pro-
poses a new technique to alleviate costly candidate measure-
ments. Moses [33] proposes MLP-based pre-trained cost models
for tensor compilers to generate tensor programs much more
efficiently. TLP [34] used the schedule primitives to construct
an powerful offline cost model based on the Tenset dataset [35].
However, these works do not take into account the prolonged
optimization time required for accelerating inference on edge
devices with limited computational power. In contrast, we
explore the feasibility of utilizing the optimization records from
devices with abundant computational power and significantly
accelerate the optimization process.

B. DRF Algorithm

Dominant Resource Fairness (DRF) scheduling algorithm is a
generalized max-min algorithm for multi-resource systems [23].
DRF has four key properties: 1) Strategy-proofness, 2) Envy-
freeness, 3) Pareto Efficiency, 4) Sharing Incentive. A key con-
cept for the DRF algorithm is the dominant resource quota or
Dominant Share (DS) for resource allocation. The formula for
DS is as follows:

s (1)

rj

DS; = max;’_

DS is the dominant resource quota. DS is the maximum of all
resource type quotas. n is the resource type. u;; is the value of j
class of resource assigned to model task i. 7; is the system j type
resource value. In this paper, we calculate the DS of model tasks

2665

according to the formula (1) and allocate resources to the model
based on DS. DS ensures the fairness of resource allocation.
Based on this algorithm a lots of works and frameworks are
proposed. Li et al. [36] considered the particularity of cloud
server bandwidth resources and developed a mechanism in the
cloud—edge collaborative computing system. Zhao et al. [37]
propose a new allocation mechanism that generalizes bottleneck-
aware allocation under fairness constraints. Jiang et al. [38] con-
sidered fairness not only in terms of a user’s dominant resource
but also in another resource dimension which is secondarily
desired by the user. Sadok et al. [39] improved the DRF by look-
ing at past allocations and enforcing fairness in the long run while
keeping the fundamental properties of the DRF algorithm. Zhu
et al. [40] introduced the concept of soft fairness and proposed
QKnober to balance fairness and efficiency. However, none of
these improved DRF algorithms track the resource of the device
in real time or take the distributed computing environment into
consideration at the same time. Our proposed RD-DRF algorithm
considers these two problems and makes the original DRF algo-
rithm suitable in our distributed edge computing environment.

III. DISTRIBUTED DEEP LEARNING COMPILER FRAMEWORK

We propose the cloud-assisted collaborative deep learning
compiler framework (CaComp) to accelerate the optimization
time for deep learning models on edge devices as well as effi-
ciently scheduling inference tasks on edge devices. CaComp
can fully exploit the tuning records from cloud devices during
the optimization and swiftly find the best tuning record set
for edge devices. Moreover, it improves the traditional DRF
algorithm to make it possible to schedule the inference tasks in
the distributed computing scenario in the most efficient way.
The main structure of CaComp is shown in Fig. 2. CaComp con-
sists of three worker modules: cloud-based model optimization
worker, edge-based model optimization worker and edge-based
inference task scheduling worker. The cloud-based model opti-
mization worker runs the auto-scheduler part of TVM and sends
the tuning records to the edge device. These records contain
information about how the deep learning model is transformed
and the corresponding performance on cloud devices. The edge-
based model optimization worker next utilizes these records to
select the best tuning record set for the edge device with a two-
step distilling strategy. After that, the edge-based inference task
scheduling worker starts its scheduling scheme and utilizes the
RD-DREF algorithm to make decisions about which edge device
to run the next inference task.

In conclusion, CaComp is built upon a cloud-assisted envi-
ronment and endeavors to accelerate the process of model opti-
mization on edge devices and increase scheduling efficiency. It
aims to minimize the model optimization time and the waiting
time of inference tasks on edge devices as well as maximizing
the resource utilization rate. The detail of our framework is
described in the following sections.

A. Cloud-Based Model Optimization Worker

We here first introduce the first module targeting producing
tuning records for further optimization and deployment on edge

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

2666

{ Cloud-assisted Collaborative Deep Learning Compiler Framework]

Auto-scheduler

Cloud optimization worker

Toresiep — N
Distillation] 2
8= <>
Optimization Hardware Code
Records Measurement FLOPS Generation
Edge Optimization Worker
CPU =
D D Memory E Required
- - ‘ £ Resource
=
I R I pewap e
- - Decision RD-DRF II:lefep LearTninlE
Edge Scheduling Worker Algorithm erenee Zas
Fig. 2. Overview structure of CaComp. CaComp contains three modules. The

cloud-based model optimization worker runs the optimization process and stores
the tuning records. Edge-based model optimization worker uses a two-step distil-
lation strategy to get the best tuning record set for the edge device. Edge-based
inference task scheduling worker leverages our RD-DRF algorithm to make
scheduling decisions.

devices. The auto-scheduler module requires a large amount of
computing resources to profile the transformed model, train the
cost model for exploring the solution space and so on. However,
the computational capability of edge devices is insufficient,
leading to the model optimization being a time-consuming one.

Thus, we develop a cloud-assisted module to accelerate the
optimization process by conducting the whole optimization
process on cloud devices. Cloud devices are equipped with
abundant computational resources, which makes them able to
execute the optimization much quicker than edge devices do.
For example, cloud devices can leverage GPUs to train the cost
model and have many more CPU cores to run multiple profile
inference tasks at the same time.

We slightly modify the source code of the auto-scheduler to
meet our demand. Each profiling sub-process is only allocated
with a few CPU cores so that the profiling results can be as close
as possible to those achieved when running on edge devices.
Each CPU core is assigned to one sub-processing to ensure these
profiling sub-processes do not interfere with each other.

After the optimization is finished, a series of tuning records
are stored and will be further exploited in the second module.
Each tuning record consists of a transformation item and the
result part as Fig. 3 shows. This record is about a frequently
occurring Inception-v3 net layer with the kernel size of 3 * 3,
feature map size of 49 * 49, input and output channel size of 96.
As traditional deep learning model operators, such as batch nor-
malization operator and convolution operator, are fundamentally
matrix multiplication, the transformation on them is essentially
the transformation on for-loops. Here for simplicity, we only
exhibit the transformation steps with reorder, split and parallel-
ism. The record item records how this layer is modified by

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

for i in range(96): # tput_height =
for j in range(96): # output_width (/;a)
for k in range(48): _,x!
sum_value = 0
for m in range(3):
for n in range(3):
for ¢ in range(48):
sum_value += ...

output[i, j, k] = sum_value

c_inner, ¢c_outer = split(c, 12)
i_inner, i_outer = split(i, 24)
parallelism(i_outer)
reorder(i_outer, i_inner, k, j,
m, c_inner, n, ¢_outer)

transformation

for i_outer in range(4):

for i_inner in range(24):
for k in range(48):
for j in range(96):
i_idx = i_outer * 24 + i_inner
sum_value = 0
for c_inner in range(12):
for m in range(3):
for n in range(3):
for c_outer
c_idx = c_outer * 4 + c_inner
sum_value += ...
output[i_idx, j, k] = sum_value

Fig. 3. Transformation and the corresponding conv layer. (a) Is the original for-
loop of the conv layer. (b) Are the transformation steps that are applied to it. (c)
Is the transformed for-loop.

traditional methods for optimizing for-loops, including tiling,
reordering, unrolling and so on. These transformations may
speed up the inference process by improving the locality of the
code and utilizing the advantage of multi-threading. The result
part records the performance after the transformation concerning
running time. After the cloud device finishes its optimization
process, it will send these tuning records to the edge device for
further exploitation.

B. Edge-Based Model Optimization Worker

We propose the second module for swiftly constructing the
optimized deep learning model for inference on edge devices.
Our current focus is to leverage the tuning records from the
cloud to determine the best tuning record set for the model to
run on edge devices. As can be seen in Fig. 4, this module lever-
ages a two-step distillation strategy to reduce the final measure-
ment overheads on edge devices. The first step is picking out the
relatively excellent ones based on their performance on cloud
devices. The next step is using the XGBoost classifier to further
distill out the edge-friendly tuning records. The details of this
sub-module are as follows.

1) First Step Distillation: It is evident that directly applying
the best tuning record for cloud devices will lead to sub-optimal
optimization on edge devices. The best tuning record set for
each device is unique as different devices possess different

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: CACOMP: A CLOUD-ASSISTED COLLABORATIVE DEEP LEARNING COMPILER FRAMEWORK

2667

Deep Learning Remaining Records
Model Subtasks -
L, | —
H —_
[1*1 Conv [} \ S50 —
| 5%5 Conv | }
oo Predict
Records’ Score
on Cloud XGBoost Best Record
~ - :
Y T~y Candidates
First Step Distillation Second Step Distillation
Fig. 4. Two-step distillation strategy of edge-based model optimization worker.
& 600 & 100 & 100
) >) Predict Good Records
-%0 -%D %0 Predict Bad Records
@ 450 @ @
o = 80 = 80
=] =] =]
Q Q Q
E " E E
= Y = =
[} : [[
Q Q Q
= = =
& 2 2
5] RS e 5 8 i %
E 0 Z 40 : E 40 :
100 200 300 400 18 19 20 21 22 23 18 19 20 21 22 23
(a)Inference Time on Cloud/ms (b)Inference Time on Cloud/ms (¢)Inference Time on Cloud/ms
Fig. 5. (a) Is the inference time of all records from the inception-v3 conv layer on cloud and edge, respectively. (b) Is the inference time of all records on cloud and

edge after the first step distillation, respectively. (c) Is the classification result of all records after the first step distillation.

hardware configurations. Besides, looping over all the records
and measuring their performance on edge devices will still bring
enormous overheads. Therefore, it is necessary to narrow down
the searching space on edge devices by reducing the number
of records.

The performance on cloud devices of these records is an
excellent metric. If a tuning record reaches a relatively satisfying
performance on a cloud device, we can assert that it can also
behave well on an edge device as it exhibits great parallelism
and locality. Conversely, the records falling short in inference
time on cloud devices are more likely to be degraded ones on
edge devices.

In Fig. 5(a), we select out the tuning records about the convo-
lution layer we mentioned before. We run the transformed sub-
task on the edge device and record the running time to study the
relationship between cloud and edge in terms of inference time.
As shown in the figure, the actual inference time on the edge
device almost linearly matches the one on the cloud device with
a correlation coefficient of 0.84. Furthermore, there only exist
few records that perform badly on cloud devices but achieve a
great score on edge devices. Most of the excellent records on
cloud devices still show superior performance on edge devices.
This can be recognized from Fig. 5(a) where there merely exist
few records on the lower right side. These results show that the
best tuning record set for edge devices must exist in the collec-
tion of better records of cloud devices. Therefore, the first step
we take is to retain the relatively good ones and clear out the
rest. Using this simple rule we can filter out those who fail to
leverage the hardware configuration of edge devices.

2) Second Step Distillation: After we filter out the badly per-
forming records, there still exists quite a few tuning records for
each subtask. Therefore, we need to further strategically distill
out the potential superior records. To further gain an insight into
the next step, we profile the records extracted by the first step on
the edge device and depict the inference time on cloud and edge
in Fig. 5(b), respectively. We can observe that some records
exhibit exceptional performance on cloud devices. However,
their performance degrades rapidly on edge devices, which even
rank in the bottom 10% and are located at the upper left of the
map. In contrast, some records also exist on the lower right of
the map implying that they outperform others on edge devices
although they are ordinary and even worse on cloud devices.

These two types of vividly contrary records possess different
memory access features. The former one may read too much
data at a time and can fully utilize the cache system on the cloud
device. However, this in turn hurt the locality when running on
edge as more cache misses occur which result in their perfor-
mance loss. The latter may read fewer data at a time and can not
completely leverage the cloud device’s cache system. Neverthe-
less, this makes them succeed in fully exploiting the locality of
edge devices and thus significantly excel over others. Therefore,
we can utilize their memory access features to classify these two
types of records, the edge-friendly one and the edge-unfriendly
one.

To construct the classifier a training dataset is indispensable.
We randomly select a portion of the filled records and the size is
controlled by the size parameter o. We directly reuse the feature
extraction module from the auto-scheduler and use these

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

2668

features to construct the input feature of the dataset, including
the max step of unrolling, the production of the outer loop and
SO on.

After the features are obtained, we need to get the real infer-
ence time on the edge device to label these records. Only the
selected records will be run and thus this procedure will not con-
sume too much time. These sampled records come from differ-
ent sub-tasks and their inference time differ in terms of time
scale. We use the following formula to normalize the inference
time on cloud and edge, respectively.

time; = minTime(Records, i.task) [time; ()

minTime(i.task) is the minimum inference time among all
records whose tasks are the same as record i. After this we cal-
culate the final calibrated score by

1imefingl = liMecdge [1iMe cioua 3)

In this way, we can both consider the impact of inference time
on cloud and edge. For example, if two records reach the same
inference time on edge and one of them is marked with a worse
score on the cloud, then it is more likely that it leverages the
hardware configuration of the edge device better than the other
one. Therefore, it should be given much more attention by given
a higher score.

The last step is to divide these records into two categories.
We set up a threshold f and those records whose scores are
higher than it will be classified into the edge-friendly kind and
the rest automatically go to the edge-unfriendly kind.

Finally, before training the model, these data need to be dis-
criminated based on their score. The samples that are located at
the lower right of the Fig. 5(b) are the most important ones as
they fully utilize the hardware configuration of the edge device
and the best tuning record exists among the ones that possess
similar memory access features. The classifier’s priority is to
learn and extract these records’ features. When it enters its pre-
diction process, it can distinguish the relatively excellent ones
from others with higher confidence. This is true for the point at
the upper left of the Fig. 5(b). The rest of the records exist near
the threshold line, which indicates that they perform ordinarily
on edge devices, not way too excellent or awful. These records
contribute nothing to our goal as they do not succeed in explor-
ing the best transformation step in the optimization space.
Meanwhile, the misclassification of them does not harm to the
final result. These records should be assigned with less weight
and the classifier does not need to pay too much attention to
them. In our practice, we directly weigh these records by the dis-
tance between them and the threshold line. By doing so, our
classifier can better serve our aim of finding the best record set.

With all data given reasonable weight, the next step is to
choose and train the classifier. We use the eXtreme gradient
boosting(XGBoost) model as our classifier. XGBoost outper-
forms other algorithms in terms of prediction accuracy by using
the information of the first and second derivatives in its optimi-
zation. It also allows us to assign weight to each record.

After the XGBoost model finishes its training process, it can
be utilized to further predict the possible edge-friendly records.
As one record generates a few feature sets and the XGBoost

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

Algorithm 1: Cloud-assisted Edge Inference Optimization
Algorithm.

Input: machine learning workload 7, cloud device C, edge device
E, max record count M., score threshold /3, sample rate o
Output: best tuning record set Ry, for E
1: Initialize subtask set Sy, tuning record list L, distilled tun-
ing record list Ly, final tuning record list Ly, training dataset
D and XGBoost model Xgb.
subtask set Sy, < splitTask(T)
while len(L) < M. do
L+ L N tuneOnCloud(C)
end while
for subtask S; in S, do
Scorepes; — maxScore(L, S;)
L;—L;N dl?[lll(L, S, SCOVebesl)
end for
10: D « sample(Ly, o)
11: labelTransform(D)
12: Xgb.train(D)
13: Ly < Xgb.predictEdgeFriendly(Ly)
14: Ry = measureOnEdge(Ly)
15: for subtask S; in S, do
16: Rpyesr.append(bestRecord(Ly, S;))
17: end for
18: return Ryey

b

model gives each feature set its classification result, we use the
voting method to decide whether a tuning record is an edge-
friendly one. Fig. 5(c) shows the final classification result for the
aforementioned layer. As it can be seen, the records that are far
away from the threshold line are almost all correctly classified.
These records, especially the edge-friendly ones, are exactly what
we intend to search for. The records that are adjacent to the
threshold line are somewhat misclassified. This is absolutely
acceptable as they have no possibility of achieving the best infer-
ence performance and the number of records that are classified as
edge-friendly is still nearly the half number of total records.

Next we gather these edge-friendly records and run them on
edge devices. The tuning records with the least inference time
among them are the most suitable records for edge devices.
Therefore, the best optimization for the deep learning model on
edge is at hand. Algorithm 1 describes the entire procedure.

Our algorithm requires the deep learning model workload, the
max record count, the score threshold and the sample rate as
input. In lines 2-5, we first run the optimization process on a
cloud device and stop when the number of records is greater
than the max record count. Then in lines 6-8, we first filter out
some of the records according to their score on the cloud device
and the score threshold parameter controls how many records
will be discarded. After that in lines 9-12, we randomly choose
records from the remaining records, run them on edge device,
preprocess and weigh them to train the XGboost classifier. In
line 13, we use the trained model to pick out the potential
records. Finally, in lines 14-17, we run the remaining records
and return the best ones for the edge device.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: CACOMP: A CLOUD-ASSISTED COLLABORATIVE DEEP LEARNING COMPILER FRAMEWORK

C. Edge-Based Inference Task Scheduling Worker

We propose the last module for the scheduling of the deep
learning inference tasks. All the models have already been opti-
mized in terms of inference time and are ready for deployment
on edge devices. During their inference, an amount of hardware
resources, such as memory and CPU cores, are required and
need to be managed by the scheduling policy.

DREF algorithm is a fairness-aware scheduling algorithm for
multiple resource types, which makes it an excellent strategy for
the scheduling of deep learning inference tasks. DRF algorithm
has the characteristics of sharing incentives, policy verification,
Pareto efficiency and being envy-free. It has been proven to be a
successful multi-resource allocation scheme. However, in distrib-
uted edge computing scenarios where resource changes drasti-
cally in real time, the DRF algorithm suffers from the following
defects:

1) DRF algorithm does not provide the details of the
resource real-time update mechanism. DRF algorithm
only records the allocated resource and does not record
the resource released when a task is done. In this case,
the released resource cannot be reused, resulting in a
waste of resources. In addition, the lack of real-time
monitoring of resources leads to inaccurate Dominant
Share (DS) of the model. Inaccurate DS cannot faithfully
reflect the resource relationship between devices and
tasks, resulting in unfair resource allocation and unrea-
sonable inference tasks scheduling.

2) DREF algorithm does not consider distributed scenarios.
DREF algorithm considers the resources on different devi-
ces as a whole. DRF algorithm may result in the total
amount of idle resources meeting the requirements while
no nodes actually have enough idle resources.

Considering the above two problems, we propose the RD-DRF
algorithm. In our distributed deep learning compiler framework,
the RD-DRF scheduler extracts the most efficient model running
resource requirements from the inference logs and monitors the
devices’ resources in real time. We run each model with the num-
ber of allocated CPU cores from 1 to max. Here we define the
efficiency indicator as follows:

Efficiency(i) = InferTime(1)/(InferTime(i) * i) 4

i is the number of allocated cores. We choose the number with
the best efficiency indicator for each model. RD-DRF algorithm
uses both the real-time resource and the most efficient model run-
ning resource requirement as the scheduling inputs.

Algorithm 2 shows the pseudo-code of our RD-DRF algo-
rithm. RD-DREF algorithm firstly obtains the real time resource
R available on the devices and the real-time resource U allocated
to the inference tasks and calculates the DS of the inference
tasks. RD-DRF algorithm selects the inference task with the
smallest DS (the smallest s;) and obtains the resource require-
ment D; of the inference task. RD-DRF algorithm traverses all
devices, finds the device i that satisfies the demand value D; and
generates a scheduling decision to schedule the inference task j
to device i. If there are multiple devices to meet the require-
ments, the RD-DRF algorithm will preferentially select the

2669

Algorithm 2: Realtime Distributed-DRF Algorithm.

Input:
The device i’s real-time CPU and memory; R, =
<Ti,cpus Tijmemory> (l = ln)
The multi-inference tasks waiting queue; Q
The inference task j’s allocation resources;
< Uj cpus uj,memory> (] = 17’}1)
The inference task j’s demand resources; D; (j = 1..m)

U =\

1: while Q is not Empty do
2: R« devices' real-time cpu and memory capacities
3: U < inference tasks' real-time resources
4: forj=1;j<=m;j++do
3 §; = max(uj,cpu /RCPU’ uj,memory/Rmemory)
6: end for
7: pick inference task j with lowest dominant share s;
8: Dj <« demand resources of model task j
9: fori=1l;i<n;i++do
10: if D; < R; then
1 Uj=U;+D;
12: scheduleToDevice(, i)
13: break
14: end if
15: end for
16: if i > n then
17: wait()
18: endif

19: end while

device with more idle resources. After generating the scheduling
decision, the RD-DRF algorithm updates the resource value U; of
the inference task j. If no devices meet the requirement D;, the
RD-DRF algorithm waits for resource release before generating a
new scheduling decision. RD-DRF algorithm repeats the schedul-
ing process until the inference task waiting queue Q is empty.

RD-DRF algorithm records the device resource in real time
and updates the inference tasks’DS in real time, ensuring the
fairness of resource allocation and improving resource utiliza-
tion. In addition, the RD-DRF algorithm considers distributed
scenarios and detects whether the devices have sufficient resour-
ces before scheduling. Compared with the DRF algorithm,
RD-DRF algorithm effectively improves the success rate of
scheduling and reduces the average waiting time. Like the DRF
algorithm, RD-DRF algorithm uses a binary heap to store the DS
of the model tasks. However, after each scheduling, RD-DRF
algorithm will traverse all model tasks and recalculate the DS of
the model tasks. As a result, the time complexity of the RD-DRF
algorithm is O(n).

IV. EXPERIMENTS

Our framework aims at reducing the time spent on optimiza-
tion for deep learning models on edge devices as well as increas-
ing the throughput and resource utilization during the model
inference process. In this section, we provide the final experi-
mental results.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

2670

TABLE I
THE CONFIGURATION OF THE CLOUD SERVER AND EDGE DEVICE

Huawei TaiShan Raspberry
200 server 4Bs
CPU cores 96 4
Memory size 256 GB 8 GB

64 KB of L1 cache
capacity, 512 KB of
L2 cache capacity
and 48MB of L3
cache capacity

16 KB of L1 cache
capacity and
128 KB of L2
cache capacity

Cache size

TABLE 11
THE CPU AND MEMORY REQUIREMENTS OF THE
FOUR TYPES OF MODELS FOR THE MOST
EFFICIENT INFERENCE ON THE RASPBERRY 4BS

Model CPU Cores Memory
Inception-V3 2 80 MB
Mobilenet-V2 1 330 MB

Resnet-18 2 1257 MB
VGG-19 3 1658 MB

A. Experiments Settings

Our cloud-assisted environment is supported by a cloud
server and four edge devices. We use the Huawei TaiShan
200 server provided by Pengcheng Laboratory as the cloud
server and Raspberry 4Bs as edge devices. The configuration
of these two servers is shown in Table I. The operating sys-
tem of each node is Centos7.7. The version of TVM is
0.12.dev0.we tested four classic visual convolutional neural
networks (Mobilenet-v2, VGG-19, Resnet-18 and Inception-
v3), which are the backbone model of nowadays deep-
learning-based IoT applications.

We compared our cloud-assisted optimization methods with
several prior works in terms of optimization time and inference
time. We evaluated five solutions, including Auto-scheduler
[14], TLP [34], Adatune [30], Meta-schedule [25] and One-
Shot Tuner [41]. We did not modify any of these work’s
implementation.

In the scheduling experiments for the edge computing sce-
nario, we use Kubeedge to manage our edge devices and the
managing master is one of the edge device. The optimized deep
learning models are containerized. At every time of making a
scheduling decision, the master node will monitor every edge
device’s real-time resources and deploy the task to them accord-
ing to the scheduling algorithm.

Our experiments test RD-DRF, DRF, Round Robin and
Random Search algorithms. RD-DRF algorithm is our pro-
posed method of improving scheduling algorithm of the DRF
algorithm. Round Robin algorithm is the deep learning com-
piler default scheduling algorithm. Random Search algorithm
is a comparison item. We evaluate the performance of the
algorithms by analyzing the sequence diagram of inference
tasks, the average waiting time and the average CPU utiliza-
tion of the four scheduling algorithms on the worker nodes.
The resources required by each inference task are shown in
Table II. The number of each deep learning model’s inference
task is 400.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

== Resnet-18
B VGG-19

Mobilenet-V2
3 Inception-V3

X

o

Pe%0el)

XX

e

2]

XX
250

%
X2

e

Consumed Time/h

g
&3 % Ky
1 RN m
9 :3:5
: A BB RN
ed\!\e‘ awne TLP Tunet yedWe . omP
Am_sc‘n A one s ot Me‘agc‘n Ca
Fig. 6. End-to-end optimization time.
3 I Exploration
I Measurement
= [Update
26
<
£
54
2
(=}
&)
” - i. l .
0 1 2 3 4 5 7 10 11 12 15 16 1
Layer

Fig. 7. Layer-wise breakdown of optimization time for VGG-19 by auto-
scheduler(left bar in each pair) and cacomp(right bar in each pair).

B. Model Optimization Results

For the evaluation of our method, we use the end-to-end opti-
mization time and inference time as the efficiency indicator of our
method and other methods. We also provide ablation analysis for
different classifiers and distillation strategies for our method.

1) End-to-End Optimization Time: The results of total opti-
mization time are shown in Fig. 6, Cacomp dominates all prior
work on all the convolutional neural networks in terms of con-
sumed time by transferring the optimization process to the cloud
device and reusing its tuning records to reduce the measurement
overheads on edge device. As a result, our method reduces the
end-to-end optimization time by 4.02, 2.39, 2.47 and 2.19 on
average against other methods, respectively. The methods we
compare do make an effort on how to reduce the optimization
process time. However, they underestimate the cost due to the
insufficient computational power on edge devices. For example,
the One-Shot Tuner and TLP both pretrain a cost model to
accelerate the optimization process. To obtain this cost model
they need to run multiple tuning tasks on edge devices and the
measurement overheads are unbearable. Our method introduces
the abundant computational power from cloud devices and
swiftly explores the enormous optimization space. Our two-step
distillation strategy also reduces the consumed time by only
measuring the relatively excellent tuning records on edge devi-
ces, which is the reason why we outperform other methods. In
terms of wall-clock time, our method finished the optimization
process in under 20 hours for all the models on our edge device
for which other work needed 1 day to 3 days.

Fig. 7 shows that our method optimizes VGG-19 by orders of
magnitude faster than the auto-scheduler. The optimization

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: CACOMP: A CLOUD-ASSISTED COLLABORATIVE DEEP LEARNING COMPILER FRAMEWORK 2671
TABLE III
THE INFERENCE TIME OF FOUR DEEP LEARNING MODELS AFTER DIFFERENT AUTO-TUNING OPTIMIZATION METHODS (MS)
Ansor Adatune TLP One-shot Tuner Meta Schedule Cacomp
Inception-V3 684.22 = 6.71 763.61 = 5.21 686.72 + 10.04 761.09 = 9.59 671.99 *+ 8.52 680.81 = 7.61
Mobilenet-V2 58.58 = 1.25 76.42 = 231 57.04 = 1.61 78.58 £ 2.25 56.89 = 0.99 59.23 = 0.98
Resnet-18 114.36 = 4.05 126.56 = 3.55 112.05 = 5.15 127.14 = 4.64 117.36 = 5.95 116.36 = 5.08
VGG-19 991.21 = 20.51 1191.81 = 18.75 1002.55 = 18.78 1156.72 = 29.11 1042.83 = 24.73 1026.19 = 17.01
N Ansor 3 Cacomp
£ 10
=08
8 o6
S 04
8 02
5 0.0°
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23
Fig. 8. Layer-wise breakdown of normalized average inference time of all tuning records for resnet-18 by ansor and cacomp.

Resnet-18 BRRR VGG-19
=80
E 60
£
B 40
g
2 20
<
~0
Au\o-sc“""‘“\:xo D\s\'\\\“‘\o“s\ev‘\ Qe swep? O (qcom?®
Fig. 9.

includes three steps, the search and selection for the transforma-
tion candidate, the hardware measurements of the transformed
layers and the update of the cost model. The optimization on
edge devices alone performs extremely slowly as each of these
steps requires abundant computing resources. In contrast, our
method accelerates this process and fully utilizes the computing
resources from the cloud. It speeds up the first step and the last
step of the optimization by up to 4 times and the second step by
up to 9 times on average.

2) Inference Time: As shown in Table III, Cacomp performs
almost as well as the best inference time found by other auto-
tuning methods. Adatune and One-shot Tuner are based on
autoTVM, which requires manually written templates to define
operators’ search space. They are limited by the design of the
template and thus fall short in inference time. TLP, meta sched-
ule and Cacomp are extended from Ansor. These four methods
can all find the best candidate in the optimization space regard-
less of their tuning efficiency. The final optimization results
implies that our methods can find the best tuning record set
much quicker than other auto-tuning methods do without losing
any inference speed-up performance.

Fig. 8 isolates the effectiveness of Cacomp in distilling tuning
records and locating high-performing candidates. As can be
seen, Ansor repeatedly executes hardware measurements on
edge devices. However, most of them achieve unacceptable per-
formance and the cost model learns these tuning records’ fea-
tures, which makes the auto-tuning process less efficient to
search in the optimization space. In contrast, Cacomp only runs
the distilled tuning records from cloud devices. These high-
quality records efficiently leverage the hardware configuration

Mobilenet-V2

[XJ Inception-V3

20000

Measurement
Overhead

uler L oation
el oDy

nly
Auto-S tep-t 2 e

Ablation analysis on the performance impact by different component of cacomp in terms of optimization time and measurement overhead on edge device.

of edge devices and outperform most of the candidates found by
Ansor. We observed that our two-step distillation strategy func-
tions as a precise filter that efficiently narrows down the optimi-
zation space.

C. Ablation Analysis

1) Design Components: The impact of each design compo-
nent in our method, i.e., the cloud-assisted optimization part, the
first step distillation and the second step distillation on model
optimization time is evaluated by eliminating one at a time.
Fig. 9 shows that all these design components make contribu-
tions to the acceleration of optimization time. Fig. 9 also exhib-
its different distillation strategy’s actual exploration searching
space, which can be quantified by the real measurement count of
tuning records. For all the models the effect of transferring the
optimization process to the cloud device makes the greatest con-
tributions as it reduces the tuning time from 51 hours on average
to around 12.5 hours. The first step distillation also greatly eases
the measurement overheads on edge devices as it effectively
gets rid of the bad tuning records. The second step distillation
can also decrease the measurement overheads on edge devices
as it efficiently picks out the edge-friendly records.

2) Record Classifier: We evaluated different model architec-
tures for the record classifier. We trained an XGBoost model, a
random forest model and an LSTM-based model with the same
sampled tuning records. We used the following indicator to
evaluate the performance of these models:

__count(predict(records) == true)

Score

)

count(recordsg)

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

2672

I Resnet-18 E VGG-19 I Mobilenet-V2 I Inception-V3

80

60

Score

40

20

0

XGBoost Random Forest LSTM model

Fig. 10. Score of different classification model on different models.

—— Inception-V3 —— Mobilenet-V2 —— Resnet-18 — VGG-19
6
DR-DRF Algorithm
6 10000 20000 30000 40000 50000
© DRF Algorithm
S
=
P
St
i=}
-
2
g 6 0 10000 20000 30000 40000 50000
- Round Robin
4
2
0
60 10000 20000 30000 40000 50000
Random Search
4
0 10000 20000 30000 40000 50000
Time(ms)
Fig. 11. Averaged number of inference tasks in execution using different
algorithms.

As our classifier’s target is to obtain the edge-friendly records,
this indicator can fully evaluate how many records we need are
truly distilled out. Here we define the records whose normalized
scores are higher than 0.9 as excellent ones. As Fig. 10 shows, the
XGBoost model outperforms other classifier models over all deep
learning models (14.06% higher than random forest model and
11.1% higher than LSTM-based model on average).

D. Inference Task Scheduling Results

Fig. 11 are the sequence diagrams of models of RD-DRF
algorithm, DRF algorithm, Random Search algorithm and Round
Robin algorithm, respectively. From the results of the RD-
DREF algorithm in Fig. 11, the inference task completion order
is: Mobilenet-V2 > Resnet-18 > Inception-V3 > VGG-19.
RD-DREF algorithm preferentially schedules the inference task
with the smallest DS. RD-DRF algorithm updates the DS of
the inference tasks in real time through the data in Table II and
the real-time resource of the inference tasks. According to the
real-time DS, the RD-DRF algorithm calculates the priority of
the inference tasks and finally generates a scheduling decision.
The inference task completion order of the DRF algorithm

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

111

Distributed-DRF RoundRobin RandomSearch

W
S

33 [¥%)
(=] (=]

Model Task Average Waiting Time(S)
=

Fig. 12. Averaged inference task waiting time of four scheduling algorithms.

model is the same as that of the RD-DRF algorithm: Mobilenet-
V2 > Resnet-18 > Inception-V3 > VGG-19, but the completion
time of each kind of inference task is later than RD-DRF algo-
rithm. DRF algorithm does not consider distributed scenarios and
does not update the inference tasks’ resources in real time, leading
to insufficient accuracy and real-time performance of DS. When
allocating resources to inference tasks, DRF algorithm cannot
allocate enough resources to the inference tasks with the smallest
DS, and does not guarantee the fairness of resource allocation. In
Fig. 11, the scheduling results of the RD-DRF algorithm show
that in different periods, the number of inference tasks with the
smaller DS is particularly prominent. However, in the scheduling
results of the DRF algorithm in Fig. 11, we cannot find the advan-
tages of the inference tasks with the smaller DS. This is one of the
reasons why the completion time of the DRF algorithm is longer
than the RD-DRF algorithm. In the figure of Round Robin, we
can see that although there are occasional glitches, the overall
number of inference tasks for each inference task is relatively uni-
form, which is in line with the characteristics of the Round Robin
algorithm. For the random search algorithm, the distribution of
inference tasks is chaotic, which is in line with the characteristics
of the Random Search algorithm. Round Robin algorithm and
Random Search algorithm do not distinguish the priority of infer-
ence tasks, resulting in unfair scheduling and a long completion
time.

Figs. 12 and 13 are the diagrams of the average waiting time
of the inference task and the averaged CPU utilization, respec-
tively. From Fig. 12, the average waiting time of the inference
tasks for the RD-DRF algorithm is shortened by 32.5%, 38.8%
and 45.2% compared with the DRF algorithm, Round Robin
algorithm and Random Search algorithm, respectively. RD-DRF
algorithm ensures the efficiency of scheduling inference tasks and
monitors the resource of edge devices in real time. The resources
of edge devices are limited. RD-DRF algorithm monitors and
recycles the resource of edge devices in real time, which is benefi-
cial to improve the resource utilization of edge devices and reduce
the average waiting time of inference tasks. In Fig. 13, the aver-
age CPU utilization on the worker nodes of the RD-DRF algo-
rithm reaches 93.2%. Compared with the DRF algorithm, Round
Robin algorithm and Random Search algorithm, the average CPU
utilization of the RD-DRF algorithm is increased by 20.4%,

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: CACOMP: A CLOUD-ASSISTED COLLABORATIVE DEEP LEARNING COMPILER FRAMEWORK

100

80 1

601

40+

20
0-

Distributed-DRF RoundRobin RandomSearch

Algorithm Average CPU Utilization(%)

Fig. 13. Averaged CPU utilization of four scheduling algorithms.

27.5% and 29.0%. respectively. In edge scenarios with limited
resources, RD-DRF algorithm greatly improves the average CPU
utilization. The higher average CPU utilization of the worker
nodes indicates that more CPU resources are efficiently used for
model inference. The highest average CPU utilization of the
RD-DREF algorithm is one of the reasons for its shortest inference
tasks” completion time and shortest average waiting time.

V. CONCLUSION AND FUTURE WORK

In this paper we present a distributed deep learning compiler
framework that greatly shortens the optimization time on edge
devices as well as scheduling deep learning inference task in an
efficient way. Our model optimization sub-system utilizes the
tuning records from cloud devices and distills out the outstand-
ing ones. Our inference task scheduling sub-system monitors
the resource usage of edge devices in real time. We design the
RD-DRF algorithm to generate scheduling decisions according
to the inference tasks’ resource requirements and the devices’
capacity. Results of the optimization time show the advantage
of our two-step cloud-assisted algorithm. Results of the experi-
ments on edge devices demonstrate that our RD-DRF algorithm
can effectively shorten the inference task waiting time and
improve resource utilization. In the future, we plan to consider
the scenario of heterogeneous computing where GPU is further
considered. We also plan to further investigate the chance of
combining our work with other optimization methods of the
deep learning compiler.

REFERENCES

[1] Q. Song, E. Engstrom, and P. Runeson, “Industry practices for
challenging autonomous driving systems with critical scenarios,” ACM
Trans. Softw. Eng. Method., vol. 33, no. 4, pp. 1-35, 2024.

[2] S. Tang et al., “A survey on automated driving system testing:
Landscapes and trends,” ACM Trans. Softw. Eng. Method., vol. 32,
no. 5, pp. 1-62, 2023.

[3] P. A. Rauschnabel, B. J. Babin, M. C. Tom Dieck, N. Krey, and T.
Jung, “What is augmented reality marketing? Its definition, complexity,
and future,” pp. 1140-1150, 2022.

[4] M. Zhang, J. Wang, Q. Qi, Z. Zhuang, H. Sun, and J. Liao, “Cognition
guided video anomaly detection framework for surveillance services,”
IEEE Trans. Services Comput., vol. 17, no. 5, pp. 2109-2123, Sep./Oct.
2024.

[5] X. Wang et al., “Wireless powered mobile edge computing networks: A
survey,” ACM Comput. Surv., vol. 55, no. 13, pp. 1-37, 2023.

2673

[6] X. Dai, Z. Xiao, H. Jiang, and J. C. Lui, “Uav-assisted task offloading
in vehicular edge computing networks,” IEEE Trans. Mobile Comput.,
vol. 23, no. 4, pp. 2520-2534, Apr. 2023.

[71 L. Yin, J. Sun, J. Zhou, Z. Gu, and K. Li, “ECFA: An efficient
convergent firefly algorithm for solving task scheduling problems in
cloud-edge computing,” IEEE Trans. Services Comput., vol. 16, no. 5,
pp. 3280-3293, Sep./Oct. 2023.

[8] W. Wei, Q. Ke, A. Zielonka, M. Pleszczynski, and M. Wozniak,
“Vehicle parking navigation based on edge computing with diffusion
model and information potential field,” IEEE Trans. Services Comput.,
vol. 16, no. 5, pp. 3827-3836, Sep./Oct. 2023.

[9] T. Chen et al, “{TVM}: An automated {End-to-End} optimizing
compiler for deep learning,” in Proc. 13th USENIX Symp. Oper. Syst.
Des. Implement. (OSDI), 2018, pp. 578-594.

[10] A. Sabne, “Xla: Compiling machine learning for peak performance,”
Google Res, 2020.

[11] M. Li et al., “The deep learning compiler: A comprehensive survey,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 708-727, Mar.
2020.

[12] oneDNN Contributors, “OneAPI deep neural network library (ONEDNN).”
[Online]. Available: https://github.com/oneapi-src/oneDNN

[13] S. Chetlur et al., “CUDNN: Efficient primitives for deep learning,”
2014, arXiv:1410.0759.

[14] L. Zheng et al., “Ansor: Generating {High-Performance} tensor programs
for deep learning,” in Proc. 14th USENIX Symp. Operating Syst. Des.
Implementation (OSDI), 2020, pp. 863-879.

[15] M. Xue, H. Wu, G. Peng, and K. Wolter, “DDPQN: An efficient DNN
offloading strategy in local-edge-cloud collaborative environments,”
IEEE Trans. Services Comput., vol. 15, no. 2, pp. 640-655, Feb. 2021.

[16] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “EOSDNN: An efficient
offloading scheme for DNN inference acceleration in local-edge-cloud
collaborative environments,” IEEE Trans. Green Commun. Netw.,
vol. 6, no. 1, pp. 248-264, Jan. 2021.

[17] M. Xue, H. Wu, and R. Li, “DNN migration in IOTS: Emerging
technologies, current challenges, and open research directions,” IEEE
Consum. Electron. Mag., vol. 12, no. 3, pp. 28-38, Mar. 2022.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

[20] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[21] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica, “Dominant resource fairness: Fair allocation of multiple resource
types,” in Proc. 8th USENIX Symp. Netw. Syst. Des. Implement. (NSDI),
2011.

[22] X. Li, W. Li, and X. Zhang, “Extended efficiency and soft-fairness
multiresource allocation in a cloud computing system,” Computing, vol.
105, no. 6, pp. 1217-1245, Jun. 2023.

[23] J. H. Sun, S. Choudhury, and K. Salomaa, “An online fair resource
allocation solution for fog computing,” Int. J. Parallel Emergent
Distrib. Syst., vol. 37, no. 4, pp. 456-477, 2022.

[24] N. Vasilache et al., “Composable and modular code generation in
MLIR: A structured and retargetable approach to tensor compiler
construction,” 2022, arXiv:2202.03293.

[25] J. Shao et al., “Tensor program optimization with probabilistic programs,”
Adv. Neur. Inf. Process. Syst., vol. 35, pp. 35783-35796, 2022.

[26] B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Esmaeilzadeh,
“Chameleon: Adaptive code optimization for expedited deep neural
network compilation,” 2020, arXiv:2001.08743.

[27] P. Mu et al., “Haotuner: A hardware adaptive operator auto-tuner for
dynamic shape tensor compilers,” IEEE Trans. Comput., vol. 72, no. 11,
pp. 3178-3190, Nov. 2023.

[28] H. Zhu et al., “{ROLLER}: Fast and efficient tensor compilation for
deep learning,” in Proc. 16th USENIX Symp. Oper. Syst. Des.
Implement. (OSDI 22), 2022, pp. 233-248.

[29] M. Canesche, V. Rosdrio, E. Borin, and F. Quintao Pereira, “The
droplet search algorithm for kernel scheduling,” ACM Trans. Archit.
Code Optim., vol. 21, no. 2, pp. 1-28, 2024.

[30] M. Li, M. Zhang, C. Wang, and M. Li, “Adatune: Adaptive tensor
program compilation made efficient,” Adv. Neural Inf. Process. Syst.,
vol. 33, pp. 14807-14819, 2020.

[31] D. Borowiec, G. Yeung, A. Friday, R. Harper, and P. Garraghan,
“Doppler: Parallel measurement infrastructure for auto-tuning deep

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

https://github.com/oneapi-src/oneDNN

2674

learning tensor programs,” IEEE Trans. Parallel Distrib. Syst., vol. 34,
no. 7, pp. 2208-2220, Jul. 2023.

[32] B. Steiner, C. Cummins, H. He, and H. Leather, “Value learning for
throughput optimization of deep learning workloads,” Proc. Mach.
Learn. Syst., vol. 3, pp. 323-334, 2021.

[33] Z. Zhao et al., “Moses: Efficient exploitation of cross-device transferable
features for tensor program optimization,” 2022, arXiv:2201.05752.

[34] Y. Zhai et al., “Tlp: A deep learning-based cost model for tensor
program tuning,” in Proc. 28th ACM Int. Conf. Architectural Support
Program. Lang. Oper. Syst., vol. 2, 2023, pp. 833-845.

[35] L. Zheng et al., “Tenset: A large-scale program performance dataset for
learned tensor compilers,” in Proc. 35th Conf. Neural Inf. Process. Syst.
Datasets Benchmarks Track (Round 1), 2021.

[36] X. Li, W. Li, and X. Zhang, “Multi-resource fair allocation with
bandwidth requirement compression in the cloud—edge system,” Comput.
Electr. Eng., vol. 105, 2023, Art. no. 108510.

[37] L. Zhao, M. Du, and L. Chen, “New multi-resource allocation
mechanism: A tradeoff between fairness and efficiency in cloud
computing,” China Commun., vol. 15, no. 3, pp. 57-77, 2018.

[38] S. Jiang and J. Wu, “Multi-resource allocation in cloud data centers: A
trade-off on fairness and efficiency,” Concurrency Comput. Pract. Exp.,
vol. 33, no. 6, 2021, Art. no. e6061.

[39] H. Sadok, M. E. M. Campista, and L. H. M. Costa, “Stateful DRF:
Considering the past in a multi-resource allocation,” [EEE Trans.
Comput., vol. 70, no. 7, pp. 1094-1105, Jul. 2020.

[40] S. Tang, C. Yu, and Y. Li, “Fairness-efficiency scheduling for cloud
computing with soft fairness guarantees,” IEEE Trans. Cloud Comput.,
vol. 10, no. 3, pp. 1806-1818, Mar. 2022.

[41] J. Ryu, E. Park, and H. Sung, “One-shot tuner for deep learning
compilers,” in Proc. 31st ACM SIGPLAN Int. Conf. Compiler Construct.,
2022, pp. 89-103.

Weiwei Lin (Senior Member, IEEE) received the
B.S. and M.S. degrees from Nanchang University, in
2001 and 2004, respectively, and the Ph.D. degree in
computer application from the South China Univer-

- ,":E" sity of Technology, in 2007. Currently, he is a Pro-
'&ﬂ ; fessor with the School of Computer Science and

] .‘?, J Engineering, South China University of Technology.
3 I 41 His research interests include distributed systems,
il cloud computing, and Al application technologies.
/ He has published more than 150 papers in refereed

journals and conference proceedings. He has been a
Reviewer for many international journals, including IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON SERVICES
COMPUTING, IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSAC-
TIONS ON COMPUTERS, IEEE TRANSACTIONS ON CYBERNETICS etc. He is a
Distinguished Member of China Computer Federation.

Jinhui Lin is currently working toward the master’s
degree with the School of Computer Science and
Engineering, South China University of Technology,
China. His research interests include cloud comput-
ing and cloud-edge collaboration.

Haotong Zhang received the bachelor’s and mas-
ter’s degrees from the South China University of
Technology, in 2016 and 2019, respectively. He is
currently working toward the Ph.D. degree with the
South China University of Technology. His research
interests include internet of things, edge computing,
and cloud edge collaboration.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 8, AUGUST 2025

Wentai Wu (Member, IEEE) received the bache-
lor’s and master’s degrees in computer science from
the South China University of Technology, in 2015
and 2018, respectively. Sponsored by CSC, he
received the Ph.D. degree in computer science from
the University of Warwick, U.K. His research interests
include parallel and distributed computing, distributed
machine learning, and energy-efficient computing.

Weizheng Wu received the master’s degrees with
the School of Software Engineering from the South
China University of Technology, in 2023. His
research interests include cloud computing, distrib-
uted system, distributed computing, and resource
scheduling.

Zhetao Li (Member, IEEE) received the B.Eng.
degree in electrical information engineering from
Xiangtan University, in 2002, the M.Eng. degree in
pattern recognition and intelligent system from Bei-
hang University, in 2005, and the Ph.D. degree in
computer application technology from Hunan Uni-
versity, in 2010. From 2013 to 2014, he was a Post-
doctoral Researcher in wireless network with Stony
Brook University. Currently, he is a Professor with
the College of Information Science and Technology/
College of Cyber Security, Jinan University. He is a
member of CCF.

Keqin Li (Fellow, IEEE) received the B.S. degree
in computer science from Tsinghua University, in
1985 and the Ph.D. degree in computer science from
the University of Houston, in 1990. He is a SUNY
Distinguished Professor with the State University of
New York and a National Distinguished Professor
with Hunan University, China. He has authored and
co-authored more than 1080 journal articles, book
chapters, and refereed conference papers. He holds
over 75 patents announced or authorized by the Chi-
nese National Intellectual Property Administration.
Since 2020, he has been among the world’s top few most influential scientists
in parallel and distributed computing regarding single-year impact (ranked #2)
and career-long impact (ranked#4) based on a composite indicator of the Sco-
pus citation database. He is listed in Scilit Top Cited Scholars (2023-2024). He
was a 2017 recipient of Albert Nelson Marquis Lifetime Achievement Award
for being listed in Marquis Who’s Who in Science and Engineering, Who’s
Who in America, Who’s Who in the World, and Who’s Who in American
Education for over 20 consecutive years. He received the Distinguished Alum-
nus Award from the Computer Science Department, University of Houston, in
2018. He received the IEEE TCCLD Research Impact Award from the IEEE
CS Technical Committee on Cloud Computing, in 2022 and the IEEE TCSVC
Research Innovation Award from the IEEE CS Technical Community on Serv-
ices Computing, in 2023. He won the IEEE Region 1 Technological Innovation
Award (Academic), in 2023. He was a recipient of the 2022-2023 International
Science and Technology Cooperation Award and the 2023 Xiaoxiang Friend-
ship Award of Hunan Province, China. He is a Member of the SUNY Distin-
guished Academy. He is an AAAS Fellow, an AAIA Fellow, an ACIS Fellow,
and an AIIA Fellow. He is a member of the European Academy of Sciences
and Arts. He is a member of Academia Europaea (Academician of the Acad-
emy of Europe).

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 23:49:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/108510
http://dx.doi.org/e6061

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

