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The rapid development of cloud computing with virtualization technology has beneited both the academia and the industry. For any
cloud data center at scale, one of the primary challenges is how to efectively orchestrate a large number of virtual machines (VMs) in a
performance-aware and cost-efective manner. A key problem here is that the performance interference between VMs can signiicantly
undermine the eiciency of cloud data centers, leading to performance degradation and additional operation cost. To address this issue,
extensive studies have been conducted to investigate the problem from diferent aspects. In this survey, we make a comprehensive
investigation into the causes of VM interference and provide an in-depth review of existing research and solutions in the literature. We irst
categorize existing studies on interference models according to their modeling objectives, metrics used and modeling methods. Then we
revisit interference-aware strategies for scheduling optimization as well as co-optimization based approaches. Finally, the survey identiies
open challenges with respect to VM interference in data centers and discusses possible research directions to provide insights for future
research in the area.
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1 INTRODUCTION

1.1 Background

Cloud computing has gained a great popularity due to its business-critical features like reliable performance, high scalability
and on-demand. In the past decade, the cloud computing industry has been booming since many Internet giants launched their
own cloud platforms, such as Amazon’s AWS, Google’s Google cloud, etc. Cloud computing is recognized by the industry as
an important technical driving force in the digital era, as well as a critical way to realize digital transformation for traditional
enterprises. The market continues to expand with the ever-increasing demands of cloud computing services. According to
Gartner’s analysis, global cloud revenue to total $474 billion in 2022, up from $408 billion in 2021 [1]. In addition, more than
half of enterprise IT spending in key market segments will shift to the cloud by 2025 [2].
Virtualization technology is the key technology to support cloud computing platform. By utilizing this technique, the

computing resources of a single physical server (PM) can be virtualized into multiple isolated computing domains managed
by a virtual machine monitor (VMM). Virtualization reduces the coupling among hardware resources and system or user
software, leading to improving the utilization of computing resources [3]. Moreover, due to the dynamic and open nature of
virtualization, it is easier to make cloud data center’s management and maintenance in a better manner for load balancing and
energy saving by online migration [4]. Despite its beneits, server virtualization also brings new problems, such as additional
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resource consumption and potential resource contention which inevitably leads to performance interference between VMs
[5]. Any virtualization technology cannot guarantee perfect resource and performance isolation. As a result, the applications
running on multiple VMs compete for the underlying resources of the host. Particularly, when the VM instances hosted by a
same physical server tend to have a strong conlict of resource demands, the performances of the VMs are likely to degrade
seriously.

With the increasing number and density of virtual machines within a single data center, performance degradation caused
by the mutual interference of VM instances has been a major concern. Analysis on Amazon EC2 platform shows that, due to
VM interference, disk IO bandwidth of EC2 server can drop by as much as 50% [6], whilst the network IO bandwidth can
decrease by as much as 60% [7]. Studies also found that 90% running time of MapReduce applications is largely afected by
the interference between CPU-intensive and IO-intensive operations [8]. In the meantime, performance interference has a
certain impact on the energy eiciency of cloud data centers [9]. In light of this, we argue that how to efectively detect
and measure performance interference and how to prevent or mitigate it through VM management are the key to improve
cloud servers’ quality. Nonetheless, there are many challenges [10ś12] in the detection, measurement and alleviation of VM
interference, which can be summarized as follows:

(1) The complexity in the causes of performance interference: performance interference is mainly caused by resource
contention, however, it requires a comprehensive understanding on VM’s feedbacks to the contention of diferent
resources and dynamics of workloads. The causes and consequences of performance interference can signiicantly
difer with diferent workload types.

(2) Real-time constraints: for performance-sensitive cloud applications, prompt decisions have to be made once the
performance interference occurs. This means that detection, prediction and scheduling methods are required to achieve
real-time scheduling.

(3) Limited information access: there is a semantic gap between VMs and the guest OS, which makes it diicult to accurately
measure and allocate the resources needed by VM. Out of security and portability concerns, the information acquisition
of internal applications inside the VM is very much limited.

(4) Low-overhead intervention: for minimal intrusion to the application runtime environment and ensuring smooth
operations, the overheads of detecting, measuring and mitigating VM interference need to be as low as possible.

We detail the contributions of our work and draw comparison to existing surveys on performance interference in Section
1.3.

1.2 Source of Cited Articles

We review a broad range of research articles indexed by mainstream academic databases including IEEEXplore, Springer,
Elsevier, ACM Digital Library. We chose łPerformance interferencež, łVM interferencež, łresource contentionž , łinterference
in cloudž, łinterference-awarež, etc. as the keywords in titles and abstracts and iltered the results by the relevance of topic. In
addition, we also extend our search to include articles that do not feature these keywords but have speciic content discussing
performance interference in the context. In terms of the year of publication, 64% of the cited articles were published in or
before 2017 and 36% were published in or after 2018. In terms of the article sources, journal papers account for 44% of the
whole collection, 53% are in conference proceedings, and the rest comes from other sources of publication such as books and
dissertations. The distribution of article sources is shown in Fig 1.

1.3 Comparison with Existing Surveys

This section summarizes relevant surveys on performance interference. It is worth noticing that a number of surveys on VM
scheduling optimization [13ś16] provide analysis related to the interference between VMs, but most of the discussions are
conceptual or limited to one or two aspects. In-depth analysis of the problem is not included in these papers. We retrieved
four surveys speciically focused on VM interference. In Table 1 we compare our survey with these works in multiple aspects
such target scenarios and interference metrics analyzed.
Surveys [17, 18] focus on performance interference during the process of VM migration. Bloch et al. [17] analyzed the

interference in the process of VM migration in several categories including co-located VM Interference, network interference
and application performance interference. They summarize the articles with focus on the classiication of performance
interference in the VM migration process. Similarly, relevant studies on how to minimize the resource interference during
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Fig. 1. Distribution of article sources

Table 1. Comparison with the Existing Surveys

Survey Studied scenarios
Metrics analyzed

Summarize modeling
and optimization

respectively

Focuses of content Year

Independent
metrics

Derived
metrics

[17] VM migration no no no Classiication of interference in VM
migration such as co-located

interference, network interference
and application interference

2014

[18] VM migration no no no The mechanism of performance
interference in the process of VM

migration

2018

[19] All (VM migration,
VM placement,

etc)

yes yes no Performance interference
optimization: learning based
approaches and queuing based

approaches

2017

[20] All (VM migration,
VM placement,

etc)

no yes yes Categorization of studies by
scenarios from the single-server

virtualization to geo-distributed data
centers

2014

This
survey

All (VM migration,
VM placement,

etc)

yes yes yes Interference modeling reviewed from
three aspects: modeling objectives,
modeling metrics and modeling
methods. Interference-aware

optimization from two aspects: VM
placement optimization and VM

consolidation optimization

2022

live migration of VMs are summarized in [18]. These two surveys focus their scope of investigation on the interference
caused by VM migration while in-depth analysis on interference detection and modeling are missing.

It is necessary to extend the discussion to more scenarios on the cloud. For example, the placement of VMs will also interfere
with the co-located VMs while the change of workload can be another factor leading to performance interference. In this
regard, Amri et al. [19] summarized existing performance interference optimization methods into learning based approaches
and queuing based approaches. However, this paper does not distinguish between modeling methods and optimization
methods in the literature. The two aspects are connected to each other but the methodologies and principles behind can be
very much diferent. Separate views of interference modeling and optimization are important for better understanding of
the problem and the solutions. Xu et al. [20] presented a comprehensive review of the modeling methods and optimization
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methods, but the majority of the papers surveyed in their work were published before 2014. Analysis of interference related
metrics is the fundamental part of interference modeling. There has been much discussion on which metrics are afected by
interference and which metrics are suitable to measure the degree of interference or performance loss. However, most of
the existing surveys [17] and [18] do not provide suicient insights to address these concerns. Some of the commonly-used
interference-indicating metrics are introduced in [20] and [19]. Our work extends the discussion covering more aspects from
metric selection to data collection.
Compared with the existing surveys, we in this paper present a more comprehensive review covering the modeling and

the optimization for VM interference in data centers. The scope of survey by Xu et al. [20] is the closest to that of our paper.
They summarize the related works based on diverse scenarios including single-server virtualization, mega data center, and
geo-distributed data centers. From a diferent perspective, we categorize relevant studies on interference modeling by their
modeling objectives, the modeling metrics, and the modeling methods. Within each category, we provide in-depth analysis,
comparison of studies as well as concrete examples. For interference-aware optimization, we summarize the latest approaches
by grouping them into placement optimization and consolidation optimization.

1.4 Our Contributions

Existing studies on performance interference mainly focuses on one of the following aspects: i) Analysis of the causes of
performance interference, ii) methods to assess performance interference qualitatively or quantitatively, and iii) approaches
to mitigating or avoiding performance interference. In this paper, we make a comprehensive survey that covers all the three
aspects. The overall structure of this survey study is shown in Fig. 2.
Our main contributions are summarized as follows:

(1) We present a formal deinition of VM performance interference followed by an analysis of the causes of performance
interference.

(2) We summarize and compare existing studies on the detection and assessment of performance interference by their
objectives of modeling, the metrics used for modeling and the modeling methods.

(3) We review existing interference-aware VM scheduling optimization approaches and categorize them as placement
strategies and consolidation strategies. We illustrate the corresponding worklow and analyze where existing studies
can be applied.

(4) We outline several research issues that remain to be resolved and possible directions for further study onVMperformance
interference.

1.5 Article Structure

The rest of this article is organized as follows: Section 2 gives the deinition of performance interference and analyzes the
causes. Section 3 summarizes the methods of measuring or modeling performance interference. Section 4 reviews existing
interference-aware VM scheduling optimization strategies. In Section 5, we discuss open issues and possible future directions
for future research. We conclude the article in Section 6.

2 PERFORMANCE INTERFERENCE: DEFINITION AND CAUSE

In this section, we provide the deinition of performance interference and analyze the possible causes of performance
interference between VMs.

2.1 Definition of Performance Interference

The term ’performance’ in this paper refers to the ability of VMs or applications to maintain the intended service level. A
number of metrics can be used to represent performance. For example, task completion time can be used to measure the
performance for batch applications while request response time can be used to measure the performance for interactive
application. For IO-intensive VMs, their performance can be measured by IO throughput. Given ideal conditions, the
performance can be predictable. However, in some practical scenarios, the performance of a task or a VM is unable to reach
the expected level predicted based on the resource capacity of the host. Some studies deine this luctuation as performance
unpredictability [21] and there are many reasons leading to the problem. Themain reason behind performance unpredictability
is the resource contention between co-located VMs due to incomplete resource isolation by the virtualization technology.
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Fig. 2. The structure of this survey on VM performance interference and scheduling-based optimization in cloud data centers

VMs compete with each other for the underlying resources, which leads to the shortage of the actual resources provided by
the VM to load and consequently the luctuation of actual performance [5].
Since interference is mutual, the performance of VM may be afected by other co-located VMs. The measurement of the

performance loss of one of the co-located VMs due to interference is given by

�� (�@�) =
��
�
− ��

�����

��
�����

(1)
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where � and � represents two co-located VMs, ��
�
represents the actual performance of VM � under mutual interference

with VM �, ��
�����

represents the ideal performance of VM � when � runs alone, �� (�@�) evaluates to what extent VM �’s
performance is inluenced by the presence of VM �.
The selection of the performance metric is the key to accurately relecting the intensity of interference (which will be

introduced in details in Section 3.2). Depending on the system and applications, some metrics cannot serve as a good indicator
to quantify the change of performance shown in Eq. (1), yet one can assess whether the performance interference occurs by
observing and comparing the values of multiple metrics under ideal and actual conditions. For example, we can use a set of
metric to classify the VMs working in an ideal condition without interference, and then by clustering we can assess whether
performance interference occurs given new observations of these metrics [22]. Also, we can make use of outlier detection
methods, where the VM showing abnormal values of the relevant metrics can be considered being interfered by other VM
instances [23].

2.2 Causes of Performance Interference

Virtualization technology is the key supporting technology of cloud data center, playing an important role in the performance
improvement and resource optimization of cloud data center. However, the incomplete performance isolation leads to resource
contention between co-hosted VMs, resulting in the problem of performance interference.

2.2.1 Incomplete isolation by virtualization. Virtualization ofers critical features such as dynamic scaling and on-demand
resource provisioning [24]. With the advantage of virtualization technology, live migration and quick restart of VM make
the management of large data center more convenient. In addition, virtualization provides strong isolation among virtual
domains. For example, security isolation can prevent malicious attacks from other domains; error isolation can prevent
abnormal applications from damaging the entire system; and environmental isolation allows multiple operating systems to
run on the same computer. However, performance isolation is never 100 percent guaranteed. Under ideal conditions, running
application inside a VM is like running that on a separate PM from the user’s perspective because each VM runs a separate
operating system which is called guest OS. However, the incomplete resource isolation in the shared use of resources in the
system hinders its implementation.
Fundamentally, VMs share the physical resources provided by its underlying host. If a VM runs short of resources, it

will compete for the underlying resources, which results in the performance of other VMs being afected. As a result, the
performance of the application inside a VM can be susceptible to constant deviation from that it is expected to have and
dependent on not only the capacity of some speciic types of resources but the number of co-located VMs that compete for
them. At present, the mainstream VM monitoring managers (XenServer, vSphere, hypervisor) can achieve certain degree of
performance isolation by coniguring a dedicated physical CPU core and non-overlapping memory and disk space resources
for VMs [3]. However, the improvement is usually marginal because it is diicult to isolate some shared hardware resources,
such as CPU cache and network or disk IO bandwidth [25]. In general, contention on shared resources can be eliminated
through explicit resource isolation such as cache allocation technology (CAT) and memory bandwidth allocation (MBA).
However, explicit allocation results in poor system-wide performance if contention for resources is only minor. Additionally,
there is no interface for some resources to explicitly manage such as bus locks [26]. Therefore, the contention of these
hardware resources is the main cause of performance interference. Above all, under the current technical conditions, the
contention of the resources such as computing, network and memory will inevitably afect all VMs in the same host node to
a certain extent.

2.2.2 VM contention over multiple resources. Contentious resources sharing among VMs is the major cause of performance
interference. The more similar two VMs are in resource demand, the stronger the performance interference is. Therefore, an
intuitive approach is to use the similarity of resource demands to judge whether the VMs are suitable for co-location operation
[27]. In addition, cloud data center generally adopts over-subscription to maximize the utilization of resources, which results
in the resource demand by applications deployed on the server exceeds the resources actually owned by the server [28].
For example, allocating more vCPU cores to the VMs than the actual number of cores can create a deicit in cores available,
which intensiies the resource contention between applications and leads to potential performance interference between
them. The contentions over diferent types of resources (shown in Fig. 3) can have diferent impacts on VM performance
interference and the mechanisms behind can be quite diferent.
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Fig. 3. Resource contention factors of performance interference

The contention for CPU resources. CPU-intensive applications account for a large proportion of cloud tasks. They mainly
consume computing resources but occupy little IO resources. The main factor of performance interference between CPU-
intensive applications is the contention for cores and cache space. In a virtualized environment, each VM has its own vCPU,
but only when they occupy the physical CPU can they have computing ability. However, each physical CPU can only be
used by one vCPU at any time. If the time slice allocated to the vCPU of the VM is insuicient, the normal execution of the
task can not be guaranteed, and even the task may be delayed. As for caching, current VM architecture does not provide
isolated CPU cache space, and the applications deployed on the host will share the last level cache, resulting in that the miss
rate of the last level cache in the situation of co-located operation is much higher than that of running alone. An increase
in the value of cache miss ratio relects that most of the data in the CPU is read out of memory, which leads to longer task
run time, resulting in performance degradation [29]. In addition, the priority of tasks accessing the CPU also has an impact
on performance. For example, if a high priority application and a low priority application are deployed together, the high
priority application can always obtain CPU resources whilst the low priority application needs to wait for the high priority
application to inish running to obtain CPU resources, which will lead to greater performance interference.

The contention for IO resources. Contention can happen over local IO resources (e.g., disk access) and remote IO resources
(e.g., sockets). Network IO is responsible for communicating with remote devices, and disk IO is responsible for accessing
external storage devices. Multiple applications running on the server will inevitably share the disk bandwidth and network
bandwidth, and the actual occupied bandwidth of VMs which co-locate with other VMs will inevitably be less than the
bandwidth that they can occupy when running alone. This will inevitably slow down the speed of data exchange, and
inevitably afect the speed of task execution, and even task requests will starve to death due to lack of suicient bandwidth
resources [30].

The contention for memory resources. Although memories are typically empowered by non-overlapping technology, con-
tention inevitably happens between co-located VMs when there is insuicient memory capacity on the host. Besides, the
memory bandwidth responsible for communication with CPU will also cause performance interference due to contention.
The principle is similar to the that of IO devices, and memory bandwidth is the main reason of memory resource interference.
Memory capacity and bandwidth are determined by hardware, yet memory contention can be reduced to a certain extent
through the management and coniguration of memory resources [31, 32], which makes a low-cost approach to the reduction
of performance interference intensity and frequency.

3 MODELING PERFORMANCE INTERFERENCE

There are several ways to model the impact of performance on a given instance of VM by its co-located VMs. The model
relects the intensity of resource contention at diferent levels of the system from the application to the entire cloud service
system. It is important for the service provider to model and measure the actual performance of their virtual servers before
planning and making any scheduling or scaling decisions in a cloud data center.
We introduce the typically ways to model performance interference and summarize existing studies in three aspects:

modeling objectives, modeling metrics, and modeling methods. In Section 3.1, we classify the studies based on modeling
objectives which are associated to the characteristics of a single VM, a group of VMs, and interference-related resources. In
Section 3.2, we introduce the process of building an interference assessment model from the selection of indicative metrics to
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the collection of data. In Section 3.3, we summarize commonly-used models and methods for both qualitative and quantitative
analysis in the assessment of performance interference.

3.1 Modeling Objectives

Performance interference can be evaluated from diferent perspectives at diferent levels. Through reviewing existing studies,
we found four types of objectives. The irst objective is to model the interference characteristics of a single application or VM,
and the second is to model the actual performance or the performance loss with the presence of interference. The irst two
objectives are useful for interference awareness optimization based on the metrics of a single application or VM. The third
kind of modeling objectives is group-level modeling, wherein performance interference is examined over a group of VMs
during migration or a group of resource-competing applications. The fourth model objectives aims to model interference
from the perspective of resources. Because performance interference is caused by resource contention, resource-based models
can be used to solve the problem of performance interference by re-allocating the critical resource. We list some of the works
mentioned in this subsection in Table 2.

Table 2. Comparison of Studies based on Modeling Objectives

Ref. Modeling objectives Application scenarios Use of models
[33] Interference characteristics For co-located applications that are

memory-intensive and share
last-level cache

Quantify how susceptible an application is to be interfered
by other applications, and quantify how likely one

application is to interfere with another
[34] Interference characteristics For co-located VMs that are cache

intensive
Quantify how susceptible a VM is to be interfered by other
applications, and quantify how likely a VM is to interfere

with another
[35] Relative performance For MapReduce clusters Predict the actual performance of MapReduce application

under interferences
[5] Relative performance For the application ��������

operating under interferences
Predict the actual performance of application ��������

under interference conditions
[36] Critical resources For any types of VMs Determine the interference caused by competing for the

four resources according to VM usage
[22] Critical resources For any servers Determine the main interference source of the server
[37] Group-level modeling For VM migration process Quantify the degree of interference in the VM migration

process
[38] Group-level modeling For co-located interactive

applications with the
delay-insensitive application

Quantify the overall performance interference degree of
the two types of application under

3.1.1 Interference Characteristics Modeling.

Concepts of interference intensity and interference sensitivity. From the perspective of applications and VMs, performance
interference is mutual but asymmetric. Diferent applications or VMs have diferent interference characteristics, some are
easy to be interfered, and some are easy to interfere with co-located instances. In order to diferentiate them, studies [33, 34]
deined two concepts: interference sensitivity and interference intensity. Interference sensitivity is a measure of how much
an application or a VM will sufer when co-located with others and interference intensity is a measure of how aggressively of
an application or a VM when occupying resources. These two concepts can be expressed by a rough estimation and can be
used for scheduling. For example, if the value of interference intensity of application ���� to application ���� is 3, and that
to application ���� is 4, obviously, ���� is subject to the greatest performance interference of ���� evidently. Therefore,
the node which ���� is running in should irst schedule ���� instead of ���� . The value of interference sensitivity is used
in the opposite way.

Examples of interference characteristics. There is a intricate relation between interference intensity and interference
sensitivity. For example, Kim et al. [33] modeled the interference characteristics based on the shared last-level cache(LLC)
and memory bus of applications in the cloud. For interference intensity, the authors found that the interference intensity is
related to two metrics including the LLC miss rate (the number of misses per second) and the LLC miss ratio (the number of
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LLC misses per LLC reference). The metric positively correlated with the interference intensity is taken as the numerator,
and the metric negatively correlated with the interference intensity is taken as the denominator. Therefore, the interference
intensity of application A to co-located application B is given by

Δ����−����,� |� ∝ � = ����−����,� ×

︄

1

����−����,�
, (2)

where ����−����,� |� ∝ � represents the interference intensity of application A to application B, ����−����,� represents the LLC
miss rate of application B and ����−����,� represents the LLC miss ratio of application B. As for the interference sensitivity of
application A itself, authors think that it is determined by two metrics, the LLC miss ratio ����−����,� of the application itself
and the proportion of LLC miss in the whole running ������,�. The equation of the sensitivity � of application A is given by

� = (1 − ����−����,�) × ������,� . (3)

Chen et al. [34] studied the VM interference sensitivity and intensity on cache resources. Authors think that the higher the
proportion of the total access number of least recently used (LRU) cache of VM � to all co-located VMs, the higher the cache
interference sensitivity of VM �. Besides, the higher the number of cache misses of VM �, the higher the impact of VM � on
other co-located VMs which means the cache intensity is higher.

3.1.2 Relative Performance Modeling.

Concept of normalized score. Many works proposed to measure interference by comparing the performance under ideal
conditions and interference conditions by introducing the concept of normalized score or normalized performance. Two
common forms of scores exist in the literature. The irst one is the ratio of the performance running in the actual environment
to the performance running alone under ideal conditions. For example, Koh et al. [5] proposed a normalized performance
equation based on task completion time which is shown in Eq. (4). Another form of normalized performance is the ratio of
the diference between the performance running in the actual environment and the performance running alone under ideal
conditions and the latter, such as the normalized performance formula based on CPI metric proposed by Chen et al. [39]
shown in Eq. (5).

�� (�@�) =
��� � ������� (�@�)

��� � ������� (�@����)
, (4)

�� (�@�) =
��� � ������� (�@�) − ��� � ������� (�@����)

��� � ������� (�@����)
, (5)

where �� (�@�) represents the normalized score, ��� � ������� (�@�) represents the performance in the actual environment
and ��� � ������� (�@����) represents the performance running alone under ideal conditions. The performance metrics
can be selected by a variety of metrics which can intuitively relect the actual operating condition, such as: running time
[5, 40, 41], application throughput [42], online application request response time [43] and QoS [44], etc. However, due to the
black-box nature of tasks and privacy terms, it is not easy for researchers to obtain these metrics in some cloud environments.
Thus, some metrics of the system bottom layer[22, 39, 45], such as CPI (cycle per instructions) and MIPS (Million Instructions
Per Second), are also widely used in performance interference models to represent performance because of their versatility
and easy access.

Examples of relative performance models. Modeling performance considering interference factor consists of two ways. One
is to model the left part of Eq. 4 or Eq. 5. The other is to model the actual performance under interference, that is, to model the
numerator on the right-hand site of Eq. 4 or Eq. 5. After investigation, we think that the irst way accounts for the majority.
Whether the irst method or the second method, the process of modeling is to establish the relationship between the selected
independent metrics and derived metrics.
For example, Bu et al. [35] built the normalized score model of MapReduce. Because MapReduce is a CPU-intensive and

IO-intensive application, authors selected CPU-related metrics and IO-related metrics as independent variables to predict
the normalized score of MapReduce �̂ . �̂ is deined on the task’s actual completion time (����� ) over the run time without
interference (� ), �̂ = �����/� . The modeling equation is given by

�̂ = ��̂��� + ��̂�� +�, (6)
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where �̂��� is a formula composed of CPU-related metrics, �̂�� is a formula composed of IO-related metrics and � is the
parament.
As another example, Koh et al. [5] selected 10 corresponding metrics as independent variables for the normalized score

model of the application ’�������� ’ when co-located with other load �, and then used the linear regression method to establish
the relationship between these metrics and the normalized score. The selected metrics and coeicients are shown in Table 6,
and the normalized score is given by

�� (��������@�) = �0 + �1 · �1 + �2 · �2 + · · ·�10 · �10, (7)

where �1 to �2 represent the metrics selected and �� (� = 1, 2, . . . , 10) are parameters.

3.1.3 Critical Resource Modeling. Resource contention usually occurs when multiple co-hosted VMs have intensive usage
on a speciic type of resource or a group of resources. Hence, a general approach is to detect VM performance interference
through monitoring the resource usage and quantifying its association with interference. Peng et al. [36] established a proile
for VM which contains CPU, MEM, BW, IO and other resources. Each type of resource has three metrics, namely, the average
resource utilization avg of the load running on the VM, and the proportion of the load resource utilization exceeding the
threshold value. With these metrics, authors can judge the resource usage of the VM, and then judge whether the load on
the VM has caused performance interference due to contention for a certain resource. Authors divide the interference into
three categories: no interference, medium interference and interference which are shown in Table 3. �������� represents the
threshold values of the selected metrics and ��� represents the average values of the selected metrics.

Table 3. Resource Contention Grouping

CPU MEM BW IO
Intensive �������� > 10 % �������� > 90% ��� > 2% ��� > 2%
Medium-intensive 0 < �������� ≤ 10% 10% < �������� ≤ 90% 0.6% < ��� ≤ 2% 0.4% < ��� ≤ 2%
No-intensive �������� = 0 �������� ≤ 10% avg ≤ 0.6% avg ≤ 0.4%

By analyzing the resource usage, the critical resource of contention that causes interference can be identiied. For example,
based on the percentage of time that diferent resources were accessed during task execution, Novakavic et al. [22] analyzed
the server’s current contention for the most intense resources. The running time of the whole server is divided into four
parts, which are the time of the CPU core running instructions ����� , the time waiting for memory access operations �� � ����� ,
the time waiting for disk reads ����� , and the network-related occupation time ���� . The irst two can be obtained by CPI
analysis, and the latter two can be obtained by system data. The whole running time is shown as

�������� = ����� +�� � ����� +����� +���� . (8)

The authors further proposed a resource contribution model to identify the type of resource most likely to be the main source
of interference. The model is given by

������� =

�
����������

�
−� ���������

�

�
����������

�������

, (9)

where � ����������

�
represents the time occupied by resource � in the actual environment, the � ���������

�
represents the time

occupied by resource � in the ideal environment and � ����������

�������
represents the time occupied by all resources in the actual

environment. The model compares the time occupied by resource � in the actual environment with in the ideal situation. The
larger the ratio is, the more intense the contention for resource � is. In addition, Javadi et al. [46] used a decision tree based
classiier to ind the main interference source. They conducted controlled interference experiment by using micro benchmark
and trained with the monitored data in each case. After training, the decision tree can classify interference sources according
to the observed measurements, which are easy to observe, such as CPU utilization, IO waiting time.
The abovementioned models work by monitoring the system and cannot predict the future resources usage. Towards a

proactive solution, Barve et al. [47] used random forest regression to predict the resource utilization of applications during
execution. They calculated the actual execution time of the application based on the resource usage predicted by the model.
Besides, Chen et al. [48] proposed a method to predict each resource contention statue based on Markov chain which is
introduced in Section 3.3.5. In addition, Tseng et al. [49] designed a dynamic prediction model for VM resource utilization
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in cloud data center, which used a population-based multi-objective genetic algorithm (GA) to predict the CPU utilization,
memory utilization and other resource utilization of VM at the future time � . Mehmood et al. [50] combined KNN and DT to
predict the memory and CPU usage of workload. The above two references are only for reference. However, the latter two
models did not take the interference factors into account. So these two studies are for your reference only.

3.1.4 Group-level Modeling. A branch of existing studies focus on measuring the overall performance interference at the
level of the entire cloud data center across multiple entities. A group-level interference model can provide some holistic
information for interference-aware VM optimization from the standpoint of overall interests of all participants.

Grouping VMs in Migration. In the process of VM migration, interference can happen due to interplay between source PM,
target PM, and the VM to migrate. Thus, the performance interference analysis for VM migration should not only take into
account the optimization of a VM, a PM or a task, but also all the participants in the migration event. For example, Xu et al.
[37] formulate the migration interference as

� = �� (�� , �� , �� ) ≈ �� + �� + �� × �� . (10)

where� quantiies the migration interference, �� represents the migration interference on source PM, �� represents the
migration interference on target PM and �� represents migration time. We can observe that this formula consists of three
parts and the irst two parts represent the interference of source PM and destination PM respectively because the VMs on
the source and destination PMs will sufer serious performance luctuations due to the extra resource consumption in the
progress of VM migration. With this model, the performance interference of all parties involved in the VM migration process
can be considered and reduce migration loss is more favorable.

Grouping Speciic Types of Workload. In most interference awareness optimization, the optimization object is not limited
to a single application and VM. Many works aggregated the individual models of applications or VMs to calculate overall
interference, but some studies directly model the overall interference measurement. For example, in some cloud scenarios,
application types are limited to speciic types. In this case, some works considered all running applications as a group to
measure performance interference. R. Shaw et al. [38] modeled the co-location interference of interactive load and delay-
insensitive load. Authors think that the number of SLA violation of interactive load increases exponentially with the increase
of load allocated to all PMs and the number of PMs used because interactive load needs faster response time. While the
delay-insensitive load is often more lexible to performance interference, so the number of SLA violation only increases
linearly with the increase of the number of loads running on VMs. The total performance interference degree imposed by
two kinds of loads on the data center is given by

�� =
1

�

�︁

�=1

(

�︁

�=1

��� � )
� + (

�︁

�=1

��� � )
� , (11)

where� represents the number of active PMs in the data center, � represents the total number of VMs, ��� represents the
number of interactive VM loads, ��� represents the number of delay-insensitive loads, � represents the index of VMs, �
represents the index of PMs and is the index value corresponding to diferent types of VMs. With the help of this model, the
author proposed a VM-PM mapping algorithm for two diferent types of load to avoid interactive load violating SLA due to
delay.

3.2 Metrics of Interference

3.2.1 The selection of metrics.

Common metrics. There are two types of metrics that can be used to detect and measure the performance interference
between VMs: independent metrics and derived metrics. The independent metrics refer to the variables directly sampled as
observations and can serve as indirect indicators for performance interference. The derived metrics are variables that can
directly measure the intensity of interference or the level of performance loss caused by interference.
The selection of independent metrics is usually associated to the critical resources. Existing studies typically follow two

paths. One is to directly select the metrics based on the main resources demand. For example, for CPU-intensive applications,
CPU-related metrics should be selected, such as CPU cycle, cache miss rate, vCPU utilization rate, etc. [51]. And as for
IO-intensive applications, the common selected metrics are IO throughput, bandwidth, read /write or transmission rate [52],
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etc. The other path is to trace the access process of the mainly consumed resources [48] and we will take the Ref. [48] as an
example of the second path to introduce below. The commonly selected metrics for diferent resource intensive applications
or VMs are shown in Table 4. The selected metrics can be PM-level data or VM-level data. For example, the utilization of
vCPU and the utilization of pCPU can be selected to relect ’CPU utilization’ in Table 4.

Table 4. Common Metrics that Reflect the Usage of Critical Resources

Resource Utilization indicators
CPU CPU utilization, CPU cache, CPU cycle

Memory memory utilization, idle amount and memory bandwidth
Disk IO disk utilization, partition utilization, disk read / write IO data

Network IO in and out traic, packet loss rate and network bandwidth

Derived metrics are results of calculation based on some performance metrics, as shown in Eq. (4) and Eq. (5). Some works
used application performance as a performance metric such as running time [5, 40, 41], application throughput [42], online
application request response time [43] and QoS [44] because these metrics can directly display the impact of performance
interference on the performance of cloud system . Another works used some metrics of the system bottom layer [22, 39, 45]
as a performance metric such as CPI (cycle per instructions) and MIPS (Million Instructions Per Second). These bottom layer
metrics are not read from application-level monitoring, but from the relatively bottom level. However, it is these metrics such
as MIPS that determine the application performance, so these metrics can be used as performance metrics.

Examples of metric selection. Bu et al. [35] built a specialized model for MapReduce applications. Because Mapreduce
mainly consumes CPU resources and IO resources, the selected independent variable metrics are shown in Table 5. The
authors also used a derived metric based on the task completion time.

Table 5. The Selected Metrics of the Model Given by Eq. (6) in reference [35]

Parameters

System CPU
�� : Local CPU usage in ����
�� : Aggregated CPU usage of co-located VMS
�� : CPU usage in ���0

System IO

�� : Local read rate in ����
�� : Local write rate in ����
�� : Aggregated read rate of co-hosted VMs
�� : Aggregated write rate of co-hosted VMs
��� : IO utilization of physical server

Task
�� : Average CPU demand
�� : Average read rate
�� : Average write rate

Koh et al. [5] built model for the application �������� . The path to select the independent variable metrics is the second
path. Because the application �������� mainly consumes memory resources, the selection process should track the process of
accessing memory. First, because the application �������� mainly uses memory resources, the metrics related to memory
reading and writing should be directly selected. Second, because memory read-write requests need to be sent to the CPU, so
some CPU-related metrics should also be selected. Third, since memory access will only occur when the requested content
can not be found in cache, the cache-related metrics should also be considered. Besides, because the state of TLB also has a
signiicant impact on memory read and write, authors selected the performance counter ’blocks’ as one of the independent
variable. To sum up, Koh et al. [5] select 10 corresponding metrics as independent variables for the normalized performance
model of the �������� when co-located with the other load �. The selected metrics and coeicients are shown in Table 6.

3.2.2 Data collection. From the literature, we summarize that there are two ways to collect data for interference modeling:
data collection based on interference injection and data collection based on historical records.
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Table 6. The Independent Metrics and Coeficients in [5]

X Coeicient X Coeicient
������� 6.60E-01 �����_������ 5.70E-04
���ℎ�ℎ��� -3.98E-01 ����_������� -4.41E-05
���ℎ������� -6.62E-10 ������_������ 1.95E-05
�������ℎ�� -4.99E-04 ����_������� -7.13E-06
���������ℎ�� -1.06E-03 ������ 8.19E-04

�0 4.33E-01

Interference injection. The basic idea of interference injection is to manually increase the pressure on speciic resources in
the host environment where the target VM or application under test is running. By controlling the strength � of the resource
pressure, the actual performance of application � under diferent levels of interference can be obtained. This characterizes its
sensitivity to interference. In this way one can also calculate the normalized performance of � given the resource pressure �
[53]. The formula is shown in Eq. (12)

�� (�, �) =
��� � ������� (�, �)

��� � ������� (�, 0)
. (12)

where��� � ������� (�, 0) represents the performance of application� under no resource pressure conditionwhile��� � ������� (�, �)
represents the performance of application � under resource pressure � . There are two ways to apply resource pressure. One
can simply increase workload on the host machine, or simulate resource contention by manually controlling the resource
capacity.
Two kinds of workload injection can be applied to increase resource contention. For the irst one, the workload injected

can accurately control its own usage of resources. Examples of such benchmarking workloads include iBench [54], CISBench
[55] and Cuanta [56]. Because their occupancy of related resources changes regularly with time, the resource pressure on the
load to be tested will also changes regularly over time. By doing so, the actual performance of the application to be tested
under diferent pressures can be obtained. Another of the injected load is that the injected load cannot accurately control its
own occupation of resources. Therefore, researchers obtain the actual performance of the load to be tested under diferent
interference situation by running the load to be tested co-located respectively with a large number of diferent applications,
such as Fecbench [47], and they also classiied these applications into diferent categories and then summarizing the general
rule of aggregated performance of the loads to be tested co-located with diferent kinds of tasks [9]. The injection load can not
only exert pressure, but also feel the pressure exerted by the load to be tested, and then calculate the interference intensity
and even resource utilization of the load to be tested [55, 57].
The second way to increase resource contention is to manually control the capacity of the speciic resource without

introducing additional workload. Experiments [58] proved that it is completely reasonable to simulate the phenomenon of
łresource contentionž by deliberately limiting the resource supply to the VM. This method does not need to run other loads
and saves the resource cost. However, there are few existing studies resort to the second method.
In theory, interference injection method can obtain the performance data for any levels of performance interference,

but it is diicult to obtain comprehensive performance interference data due to many factors. For example, because the
operating system and advanced programming language shield the underlying hardware details, it is diicult to achieve
desired interference accurately on speciic resources.

Historical data. The data required for establishing the performance interference model can be extracted directly from the
logs of a cloud system. Due to the dynamic nature of cloud environment, the performance of the running tasks and VMs will
be more or less disturbed in a long time, and these data are recorded in the monitoring data. Researchers can use tools to
collect historical data. For example, Masouros et al. [59] used PCM API [60] to collect underlying performance counters, and
Buchaca et al. [61] used system calls to collect relevant data. Of course, researchers can also directly extract the data required
by the model from the open dataset and by this way they does not need to run the VM, lead to saving resource consumption
and time overhead.

Data collected from historical records of a production system can be more valuable than those acquired in test environment,
but there are also some shortcomings. Firstly, the lexibility is poor. If the monitoring dimension needs to be updated, the
historical data need to be accumulated again. Secondly, its application scope is only suitable for clusters with large resource
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contention, while for the cluster with stable operating environment, it is unable to obtain comprehensive performance
interference data due to the lack of suicient performance interference in the environment.

3.3 Modeling Methods

This section introduces the methods of establishing a model for detecting or assessing performance interference between
VMs. Existing modeling methods presented in the literature typically fall into two categories: qualitative analysis modeling
and quantitative analysis modeling. The output of qualitative analysis modeling is the level of performance interference or
the interference-related characteristic for an application or VM. The output of quantitative analysis is a value which measures
the degree of performance interference or the performance loss due to interference.

3.3.1 ualitative analysis modeling methods. Most of the existing works used classiication or clustering methods for
qualitative analysis. Qualitative analysis can be applied to roughly assess performance interference (in levels) or identify the
relevant characteristic of the application or VM. We summarize and compare these works in Table 7.

Table 7. Comparison of the Studies based on ualitative Analysis

Ref. Classiication Clustering Method Qualitative Results
[62] ✓ ✓ SVM,K-means Categorize the task as: Memory-intensive,

CPU-intensive, Disk-intensive and
Cache-intensive, and categorize the

interference as: Absent, Low, Moderate,
and High

[38] ✓ ANN Categorize the application as: interactive or
delay-insensitive

[63] ✓ static classiication Categorize the interference level as:
Absent,Low,Moderate,andHigh

[5] ✓ hierarchical
clustering

Classify the known applications that are
similar to the interference characteristics

of unknown applications
[64] ✓ hierarchical

clustering
Group the applications with similar

interference performance into clusters

Classiication and clustering. Both classiication and clustering ofer the simplicity for modeling performance interference in
the case when our primary concern is whether or why it happens. Classiication-based methods requires supervised learning
over labeled, which means one needs to train the detection model with prior knowledge about the presence of interference in
the training samples. Clustering-based methods can group the applications by similarity in an unsupervised learning manner.
The result of clustering ofers insights on whether or why a VM is interfered. However, additional information (e.g, number
of interference levels) is required with clustering so as to determine the presence of interference qualitatively.

Some examples in existing works. For classiication methods, a variety of classiication-based methods are explored for
modeling performance interference. For example, on the characteristic types related to interference, Meyer et al. used SVM
(Support Vector Machine) to classify applications that mainly consume the same resources into one category [62]. Shaw et al.
used ANN (Artiicial Neural Network) to divide workloads into interactive and delay-insensitive workloads [38]. In addition,
the classiication method can also be used to classify the interference level. For example, Ludwig et al. designed formulated
static classiication rules to divided the performance interference degree into four categories: Absent, Low, Moderate,and
High [63]. The classiication standard in this article was ixed. We think that researchers can change the static standard to
the dynamic loating standard to adapt to the rapid change of the operating environment.
Clustering-based methods can be used to assess the intensity level of performance interference. For example, Meyer et

al. used K-means to divide the interference data into diferent interference levels [62]. In addition, some works used this
method to compare the similarity of interference characteristics between applications. For example, Koh et al. [64] used the
hierarchical clustering method to compare the similarity between unknown applications and known applications, and then
infer the interference performance of unknown applications based on the values of known applications [5]. And Li et al. used
clustering method to divide the applications with similar interference performance into a set [64].
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Qualitative analysis can be combined with quantitative analysis for modeling. For example, Li et al. built quantitative
model for each interference type of applications [64]. Koh et al. [5] take the distance of hierarchical clustering as the value of
similarity to model the performance interference of unknown applications:

�� (�@��) =
︁

�

�� × �� (�). (13)

where �� (�@��) represents the interference of unknown application� sufering from co-located application ��, � is the
number of known applications similar to � ,�� represents the ratio of similarity of application � to all similar applications
and �� (�) represents the degree of performance interference of known application � .

3.3.2 uantitative analysis modeling methods. The purpose of building quantitative analysis models is to measure how
strong the interference is. This is usually done using interference-related metrics. The output of a quantitative analysis model
is the values quantifying the degree of performance interference or the performance loss due to interference. The process of
modeling is to establish the functional relationship between the selected independent metrics and performance interference
measurement metrics. We summarize some of the works mentioned in this subsection in Table 8.

Table 8. Comparison of Studies on uantitative Analysis Modeling

Ref. Method Target Scenarios Use of Models
[65] statistical analysis Network-intensive and CPU

moderate
Quantify the overall performance degradation due to VM migration

interference in the process of VM migration
[66] statistical analysis Network-intensive,

CPU-intensive
Quantify the performance degradation due to interference of the

co-location of CPU-intensive VMs or the co-location of
network-intensive VMs

[67] function regression CPU-intensive, RAM-intensive,
Disk-intensive

Establish the relationship between the number of co-located VMs and
the degree of performance interference

[42] function regression CPU-intensive, IO-intensive Quantify the performance degradation due to interference based on
four metrics shown in Table 10

[48] markov chain Network-intensive,
CPU-intensive, IO-intensive

Predict the performance degradation due to interference based on the
probability of entering the next stage of access resources

[68] neural network Any type Predict the impact of two co-located applications interference based on
RNN

[59] neural network Any type Predict the impact of two co-located applications interference based on
LSTM

Modeling method based on statistical analysis. The methods of modeling based on statistical analysis refers to the method
that study the correlation between independent variables and interference measures, such as proportional and inverse. This
method is simple and easy to conigure, but because the statistical data is usually only suitable for the server that meets the
speciic hardware coniguration or only considers the speciic running environment, the model or parameters obtained in
many cases can nott have good generalization ability.
Anu et.al [65] studied the correlation between some resource metrics and performance interference measurement in the

process of VMmigration. Authors thought that the performance interference in the migration process is mainly caused by CPU
resources and network resources. By analyzing the corresponding relationship between resource metrics and performance
interference, the interference caused by CPU resources is given by

�� =
��

��
, (14)

where�� represents the contention degree of CPU resources,�� is the number of CPUs required by the VMs in the system, and
�� is the total number of CPUs that can be allocated. The above formula relect the correlation between the two CPU-related
metrics and the interference measurement. In the correlation,�� is directly proportional to the interference and�� is inversely
proportional to the interference.
Wang et al. [66] studied the performance degradation due to interference of the co-location of CPU-intensive VMs and

network-intensive VMs. For CPU intensive VMs, the higher the LLC miss rate, the higher the performance degradation. For
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network intensive VMs, the higher the LLC miss rate of other co-located VMs, the higher the performance degradation. The
performance degradation formulas of the two VM types are given separately by

����
= ����

× ����
, (15)

����
=

�︁

�≠�

����
=

�︁

�≠�

��� �
× ��� �

, (16)

where ����
represents the performance degradation due to interference of CPU-intensive VM, ����

represents the LLC miss
rates of the CPU-intensive VM, ����

represents the the performance degradation due to interference of network-intensive
VM, n represents the number of co-located VMs with the VM, ��� �

represents the LLC miss rates of one of the co-located
VMs with the network-intensive VM.

Modeling method based on function regression. A regression model can be univariate or multivariate. The essence of
performance interference model is to describe the mapping relationship between one or more performance indicating
variables and performance interference measurement. Therefore, regression analysis is one of the common methods to
determine the parameters of performance interference model.
Jersak et al. [67] used regression method to establish the relationship between the number of co-located VMs and the

degree of performance interference for the co-location operation of the same resource intensive loads. The equations for
three kinds of resource intensive VMs are shown in Table 9, where y represents the degree of performance interference, and
x represents the number of co-located VMs. This study only focuses on co-located interference under the same resource
intensive, only focuses on the number of VMs and does not consider the diversity of load types on VMs although the types of
the loads running on VMs of a physical host are diferent in general.

Table 9. The Models for Co-location Interference in [67]

Resource Interference Model
CPU � = 6.5346 ln(�) − 4.4983,
RAM � = 34.398 ln(�) − 4.7183,
Disk � = 35.347 ln(�) + 7.2785,

Chiang et al. [42] selected four metrics as independent variables and established the functional relationship between these
metrics and performance interference measurement after suicient VM co-location experiments, which is given by

�̂ = � +

4︁

�=1

�� × ���1,� +

4︁

�=1

�� × ���2,� , (17)

where ���1,� are the values of the �-th parameter of VM��1, � values are 1 to 4, and the order is shown in Table 10. The repre-
sentation of VM��2 is the same. If we combine���1,� and���2,� into the power formula, such as (1+

∑4
�=1���1,�

+
∑4

�=1���2,�
)2,

primary non-linear formula can be built. Because the formula is complex, we do not list it here. After author’s experiments,
the test results show that the nonlinear model has the best performance. Besides this article, the idea of the article of Sun et
al. [51] is very similar.

Table 10. The Selected Performance Metrics in [42]

CPU IO
Local utilization in DomU Read requests per second
Global utilization in Dom0 Write requests per second
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Modeling method based on Markov chains. The quantitative prediction of performance interference can also be probabilistic.
Markov chain is a stochastic process following Markov property based on probability theory and is commonly used to model
system behaviors which are linked to a certain space of states. The possibility of entering the next stage is calculated through
probability. Chen et al. [48] inferred the actual time under interference condition taken by VM to access resources based on
the probability of entering diferent stages when accessing resources. Votke et al. [69] selected the number of VMs on all
servers, service rate under interference or non-interference state, request rate and other parameters to predict the number of
requests sufered from performance interference executed in cloud data center.

Fig. 4. The three states in the process of accessing disk

We take [48] as an example to illustrate the practice of this method in performance interference modeling. In this article,
the model of VM performance was built by predicting the probability of entering the next state transition when accessing
network, CPU and disk resource. For example, because accessing disk resources is consists of three states such as pCPU,
Dom0 and Disk, authors designed a state transition diagram for these steps, which is shown in Fig 4. The � in the Fig 4
represents the probability of entering the next state. The irst state ���� represents the step that a job completes service at
physical CPU to place the IO request in the shared memory area. The second state ���0 represents the step that interrupts
are sent to privileged VM Dom0. The third state ���� represents the step that the job obtain the disk response in the shared
memory area. The probability of the state transition from pCPU to Dom0 is calculated by the metrics include the capacity of
physical CPU, the capacity of virtual CPU and the CPU utilization due to relevant VM. The probability of the state transition
from Dom0 to Disk is calculated by the metrics such as the utilization of disk channel. Authors proposed the equation of the
predicted average time spent by accessing disk resource, which is given by

� (����� ) =
1

����0
+

1

����
+

1

�����
, (18)

where ����0, ���� and ����� respectively represent the probability of staying at the current stage which is calculated by 1
minus the probability of transition to the next stage.

Modeling method based on neural networks. Neural network, with a large number of neurons and dense connections
between them, has proved very efective as a power tool to learn sophisticated patterns. In a cloud data center, the VM
running environment is ever-changing. Thus, it is diicult to establish precise relationship between performance interference
measurement and corresponding metrics with simple models. Precise models should be complex and nonlinear and the
neural network has the ability to learn and build the model of nonlinear complex relationship. The advantages of neural
networks are not limited to this. After learning from the initial input and its relationship, it can also infer the unknown
relationship from the unknown dates, which makes the neural network has a wide application space in the complex problem
of VM performance interference [59, 61, 68].

Buchaca et al. [68] proposed a workload-workload prediction method using a sequence-sequence model based on recurrent
neural networks (RNNs) to predict the impact of two co-located applications interference. The model uses two gating loop
units (GRU) as building blocks; one GRU processes the incoming trace signals of the two applications and passes the processed
information to the other GRU, which outputs the predicted resources usage with time dimension of the two applications
when co-located with each other. In addition to the work, Masouros et al. [59] established a similar pairwise co-located
performance prediction model based on LSTM and David et al. [61] did it based on RNN. Although the above works can only
predict the performance of two co-located applications, the proposed models consider the time dimension and more inely
correlate the relationship between the corresponding metrics and performance interference measures.

3.4 Comparison of Studies on Modeling

After reviewing the relevant works (listed in Table 2, Table 7 and Table 8), we have the following conclusions:

(1) In the process of experiment, most of the studies focus on the problem of mutual interference between two VMs or
tasks. There are few in-depth analysis on the problem of multiple VMs or tasks interfering with each other.
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(2) Most of the existing methods use the task execution time for measuring performance interference under CPU intensive
workloads. For network IO intensive and disk IO intensive applications, more metrics are considered in addition to task
execution time, including the throughput rate of the VM.

(3) Incremental training of the interference models are of great importance as we may see constant environmental changes
in the cloud data center. However, techniques like reinforcement learning are rarely explored in modeling performance
interference.

(4) In terms of the objectives, responses of diferent applications to mutual interference and their interference characteristics
are hardly explored.

4 INTERFERENCE-AWARE VM SCHEDULING OPTIMIZATION

The VM scheduler in a virtualized cluster is responsible for both the placement of new VM instances and the consolidation of
running instances through VM migration [70] or killing. With prevalent deployment of virtualized services, much efort
has been paid to the development of interference-aware optimization methods. These VM scheduling optimization methods
include the optimization of the new task placement strategy and the optimization of adjusting the current VM-PM mapping
in the data center. Some optimization strategies proposed in the literature have multiple optimization objectives beside
interference reduction. For example, they can be designed to be interference-aware while being efective in reducing energy
consumption. We deine these multi-objective optimization strategies as interference-aware co-optimization strategies.

4.1 Strategies for Interference-aware VM Scheduling

The majority of studies with the aim of avoiding or mitigating VM performance interference focusing on the optimization of
VM placement and consolidation. The placement of VMs is combined with the design of queues and task priority. Recent
studies also explore the possibility to perform optimized, interference-aware VM scheduling without prior knowledge about
the applications or the environment. Besides, some studies investigated how to reduce the side-efects of optimization such
as the performance luctuation caused by VM consolidation in the process of migration.

4.1.1 Interference-aware VM Placement Optimization. Interference-aware placement strategies optimize the placement rules
to avoid the potential impact of performance interference on the new VMs (and the associated tasks) in the initial stage of
scheduling. The architecture of the strategy is shown in Fig. 5. Some works adopt task priority design to adjust the scheduling

Fig. 5. The framework of placement strategy

order. The module łplacement strategyž in Fig. 5 is responsible for the search of candidate nodes and the decision of the node
that the task schedule to. In this module, the interference-related data of the task to be scheduled will be fed into the model
to predict the performance interference after scheduled to the selected candidate nodes and then the task will be scheduled to
one node according to the requirement of interference optimization. In addition, in recent years, there are more and more
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optimization schemes without prior knowledge. These schemes do not require any data to be given in advance, but obtain
interference information and make decisions automatically.

The design of task priority. The design of task priority allows for more lexible control over the VMs waiting to be scheduled
in some speciic scenarios. For example, the priorities can be determined according to the interference characteristic or
preferred operation guarantee of diferent kinds of tasks. We compare the design of the task priority in the literature in Table
11.

Table 11. Comparison of the Task Priority Design for Interference-aware VM Placement

Ref. Higher priority Lower Priority
[71] CPU-intensive applications Interactive applications
[72] Network-intensive

applications
CPU-intensive applications

[38] Delayed-insensitive tasks Interactive tasks
[33] The descending order of

the values of interference
intensity

The ascending order of the
values of interference

sensitivity

For example, in order to guarantee the response time of interactive applications, the CPU-intensive applications which
occupy CPU for a long time should be classiied into ultra-low priority unless the applications are at risk of delay [71].
Similarly, Sampaio et al. [72] designed similar priority rules for CPU-intensive and network-intensive applications because
they thought that guaranteeing the operation of network-intensive tasks is more important. Besides, in the work of Shaw et
al. [38], the scheduling strategy irst scheduled delayed-insensitive tasks, and then arranged the scheduling of interactive
tasks according to the resource pressure of all nodes after delay-insensitive tasks have been scheduled, so as to prevent
interactive tasks from performance degradation due to interference. In addition, Kim et al. [33] designed two priorities for
tasks based on the magnitude of interference intensity and interference sensitivity separately. Based on the two priorities,
the algorithm schedules a part of tasks one by one irstly according to the descending order of the values of interference
intensity, and then allocates other tasks based on the ascending order of the values of interference sensitivity so as to avoid
the mutual interference of several tasks that are not suitable for co-location operation.

Placement Policy. A diversity of VM placement strategies can be found in the literature. Most of them seek to avoid or
alleviate performance interference by reduce source contention. They difer in terms of the adoption of inference metric, goal
of placement, and the placement rules. We summarize them in Table 12.

In simple terms, a placement policy chooses the best it for a VM among several candidate nodes. Some nodes are excluded
from the set of candidate nodes at the beginning of placement scheduling. For example, Alves et al. [73] and Lin et al. [75]
limited the range of candidate nodes with the constraints of integer linear programming and iltered out the nodes that
do not satisfy the threshold requirements of resources capacity. In the node search, most existing works used non-global
optimization methods such as heuristic algorithms [35, 42, 67, 72, 73] and meta- heuristic algorithms [74]. In the node search
phase, the performance interference of the tasks or VMs after scheduled to candidate nodes were predicted and recorded.
Generally speaking, in the prediction process, only the the relevant metrics of the task to be scheduled and the candidate
node need to be input into the model to obtain the prediction results. However, some works proposed more ine-grained
methods, in which the prediction results of surrounding environmental factors were also taken into account. For example,
Reza et al. [76] considered the prediction results of the incoming rate of events in a future time interval and Swain et al.
[77] considered the overlapping time of the task to be scheduled and the co-located tasks. Considering the surrounding
environmental factors will increase the accuracy of performance interference prediction and pave the way for accurate and
ine-grained interference-aware scheduling.

The choice of the node that the task schedule to depends on the objectives of placement optimization. The objectives can
be divided into two types. One is to mitigate interference for the scheduled task and another is to ensure that of the overall
system. For the irst objective, some works compared the predicted interference in the process of node search, and selected
the node with the optimal performance interference if the task was scheduled to [71, 78]. Besides, some works did not pursue
the optimal interference, as long as the interference does not exceed the threshold [35, 67, 79] or the task does not exceed the
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Table 12. Comparison of Interference-aware VM Placement Strategies

Ref
Resources
Considered

Interference Metric
Placement Goal Placement Rule

Single VM
or Task

Group-
level model

[42] Disk IO,
CPU

✓ Schedule the incoming tasks to
diferent VMs in a way that
minimizes the interference
efects from co-located

applications

Heuristic (Minimum interference online
scheduler, Minimum Interference Batch
Scheduler, Minimum Interference mixed

scheduler)

[67] CPU,
RAM,
Disk IO

✓ The interference of tasks on
the nodes is lower than the
threshold and meets the
resource requirements

Heuristic (The First-it Decreasing, The Best-it
Decreasing, The Worst-it Decreasing)

[72] CPU,
Network

✓ The task performance and
resource capacity meet the

requirements

Heuristic

[73] CPU,
Memory

✓ Optimize task completion time
and save active PM

Integer programming, Meta-Heuristic (Iterative
Local Search)

[74] CPU,
RAM,
Disk IO

✓ Reduce the number of active
PMs, improve resource

utilization, and optimize the
completion time

Integer programming,Meta-Heuristic (Gray
Wolf algorithm)

deadline [41]. For the second objective, the algorithm should take into account the overall group-level interference of all
related cloud entities. Some works combined the performance interference models of each single entities such as VMs or
tasks to form an overall performance interference model [73ś75] and some works directly used the overall model built in the
modeling stage such as the work of R. Shaw et al. [38].

Prior knowledge-free optimization schemes. The cloud environment is complex and dynamic, which complicates the
decision-making of VM placement strategy. As a result, the efectiveness of optimization strategies are sensitive to the
changes of the cloud environment. In recent years, researchers have been exploring a new approach called prior knowledge-
free optimization. For example, Rameshan et al. [80] proposed a scheme called stay-away, which continuously learns the
state-space representation to distinguish the states of execution for multiple co-located VMs. Based on the timely updated
representation, the system can mitigate the adverse impact of performance interference on sensitive applications when
coexisting with other batch applications.
As an experience-driven learning paradigm, reinforcement learning does not require suicient data provided in advance.

The decision maker (agent) obtains learning information by receiving reward (feedback) from the environment and updates
its policy accordingly. Deep learning ofers strong perception ability but hardly provides end-to-end decision-making ability,
while reinforcement learning can make up for it. Therefore, the combination of the two provides a solution to the perception
decision-making problem of complex systems. This emerging approach is called deep reinforcement learning (DRL). Enabled
by the characteristics of DRL, recent studies seek to integrate interference-related factors with the reward mechanism in the
design of prior knowledge-free optimization schemes [81, 82].

4.1.2 Interference-aware VM Consolidation Optimization. Due to the dynamic environment of cloud data centers, the initial
host of a VM instance may not be the optimal one for the task after a period of execution. Consolidation strategies are
designed to dynamically adjust the locations of VMs. Interference-aware VM consolidation optimization aims to adjust
the current VM-PM mapping to avoid or lower the impact of performance interference in the system. The architecture of
consolidation strategy is shown in Fig. 6. The performance interference monitoring system is responsible to estimate whether
there is a trend of interference in VMs by monitoring the resource pressure in the cloud system and observing the running
situation of VMs. When there is a trend of interference in VMs, it delivers warning to consolidation strategy. In term of the
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Fig. 6. The framework of VM consolidation strategy

consolidation strategy, it can alleviate the resource contention and optimize the VM operation by online migration or killing
VM according to the interference-aware resource prediction model or interference-aware application performance prediction
model. In the process of consolidation, we have to pay attention to the interference of VM migration process because the
changes of the running environment can seriously afect the source server and destination server. In the following, we
irst introduce the performance interference monitoring system that decides if consolidation is necessary, then we discuss
state-of-the-art consolidation strategies in the literature. We summarize the relevant works in Table 13.

Table 13. Comparison of the Studies on Interference-aware VM Consolidation

Ref. Criteria Operations Strategy
[22] Multiple metrics of VM signiicantly deviate

from the normal value
Online

migration
If only little VMs are afected, the afected VMs
are migrated; if most VMs are afected, the
interference source VMs are migrated

[66] Normalized performance exceeds threshold Online
migration

Same as Ref. [22]

[83] The LLC miss rates of VMs and PMs is very
high

Online
migration

Migrate a VM with a high LLC miss rate to a
PM with a low LLC miss rate

[84] The running VM obviously afects the
operation of other VMs

Turn of the
VM

Suspend the VM that causes high resource
pressure

[45] CPI metric luctuates abnormally Turn of the
VM

Turn of the source VM that causes
performance luctuations

[85] The state needs to be changed judged by
Q-learning

Online
migration

QoS reward in multi-agents Q-learing

The performance interference monitoring system. The performance interference monitoring system is responsible for
activating the consolidation strategy. The activation condition determines the interference tolerance of the system and
decides if certain operations should be triggered to alleviate the interference. A threshold is usually used as the criterion
to decide whether to trigger the consolidation strategy. Some works set the threshold value based on the metric of task
normalized performance which are shown in Eq. (4) and Eq. (5). If the threshold is exceeded, it will be considered that the
performance degradation caused by interference is unacceptable, and then trigger the implementation of consolidation
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strategy [45, 86]. As described in section 3.1.2, performance evaluation criteria include application-level metrics such as task
execution time and request response time, as well as PM-level and VM-level metrics such as CPI and MIPs. In addition to the
criteria about performance,some works set the threshold value based on the metric of resource contention. For example,
Chen et al. established a threshold equation based on the frequency of split locks to estimate whether the contention of
memory bus lock is excessive [26]. Although Chen et al. studies resource allocation in that article, research can also be
done on VM scheduling based on this detection method. Besides the single metric threshold, multiple metrics also can be
applied to estimate whether the VM operation is abnormal by judging whether the selected multiple metrics of VMs seriously
deviate from the normal values range by clustering or outlier detection [22, 23]. Some monitoring mechanisms not only
estimate whether the running state of the task and VM is abnormal, but also identify the main interference source causing
the interference [22, 48], which provides a more ine-grained reference for consolidation strategy.

Consolidation strategy. Existing studies generally implement VM migration strategies based on application performance
and physical resource contention intensity. For example, Novakovic et al. [22] predicted the performance interference between
VMs based on the underlying monitoring metrics. They identiied the active VM that causes performance interference and
then migrate it to a new host server. Ahn et al. [83] proposed to adjust the server-VM mapping based on the LLC miss
rate of all servers and VMs to ease the memory access pressure. However, this method has a disadvantage. It may cause
repeated migration of some VMs which always take up more resources than co-located VMs and frequent migration may
cause performance jittering. In order to optimize this phenomenon, the number of migrated VMs and the times of migration
should be taken into account when deciding the migration strategy. For example, in [66] the authors implemented diferent
consolidation strategies based on the number of interfered VMs and that of the VMs in normal state. They pointed out that
when the number of interfered VMs on a server is small, it is suggested to migrate the VMs being interfered. Otherwise, the
interfering VMs should be migrated. The operation of VMs is not limited to the VM migration, and turning of the VMs is also
an operation method [15]. For example, Salimi et al. [84] suspended the VMs that cause a signiicant increase in the resource
pressure to the other VMs on the server. These VMs will be resumed when these will no longer cause high interference to the
co-located VMs.
Similar to the development of placement strategies, researchers are exploring the application of reinforcement learning

in the design of consolidation strategies. For example, based on Q-learing algorithm, Nishtala et al. [85] added a penalty
mechanism for violating QoS into the reward mechanism to adjust the allocation state which is seriously afected by
interference and avoid new interference caused by new allocation scheme.

Mitigate performance luctuations in VMmigration. The process of VMmigration leads to changes in the system environment.
In the process of migration, the additional consumption of CPU, network and memory resources can be signiicant. Hence, the
threat to the stability of the system and the cost of migration should never be overlooked. In order to reduce the interference
efect of resource pressure on all participants in the migration process, it is necessary to build a measurement model for the
resource pressure or interference degree of participants. For example, Xu et al. [37] regarded all participants in the migration
process Ð source PM, destination PM, and all VMs on related PMs as an integrated whole modeling object. The interference
in this part was deined as migration interference. After the migration process is completed, the destination PM, the migrated
VM and the VMs on the destination PM were regarded as another whole object and the interference in this part was deined
as co-located interference. The interference efect of the two parts was measured by a ixed number. The lower the ixed
number value is, the less impact the corresponding migration scheme has on the performance of the participants. In addition,
Anu et al. [65] also modeled the migration process, but the selected metrics are all PM-level metrics not VM-level metrics
compared with the previous paper. The above two mentioned models regard the migration process as a whole, and the
evaluation of the migration strategy is only a ixed number, so we think these two models are as coarse-grained models.
We expect that the more ine-grained model of online migration process will be proposed which considers the impact on
diferent participants in diferent stages of the migration, rather than just a inal number for all participants in the whole
process. Due to the distribution of cloud data centers, the consideration of the cost of migration process is not only limited to
resource contention, but also the data transmission time. Besides interference awareness, with topology awareness, the cost
of migration can be better measured to formulate a more friendly migration strategy [87].

4.1.3 Comparison of the Studies on Interference Optimization. Through reviewing the existing studies on interference-aware
scheduling optimization (summarized in Table 11-13), we have the following conclusions:

ACM Comput. Surv.



Performance Interference of Virtual Machines: A Survey • 23

(1) The research on interference-aware placement optimization is more extensive than that on interference-aware con-
solidation strategy. This may come down to the fact that VM placement is more fundamental. As suggested in [86],
placement strategy should be enabled whenever new tasks arrive, and consolidation strategy should be enabled in
daily management.

(2) In the design of interference-aware placement strategy, heuristic algorithms are commonly favored. This is mainly
attributed to their interpretability and low overhead. Heuristic algorithms can be enhanced by applying proper queue
priority based on the characteristics of tasks.

(3) In the design of interference-aware consolidation strategy, the majority of existing approaches [45, 66, 84, 86] are based
on the performance metrics and current resource contention status. Besides, to minimize the impact on the system
operating environment, the number of VMs to be migrated during each consolidation cycle should be limited.

4.2 Interference-aware Co-optimization via VM Scheduling

The mitigation of VM interference can come along with other optimization objectives. A number of existing VM placement
and consolidation strategies seek to achieve load balancing [88, 89], save energy [90], increase resource utilization, reduce
physical resource waste [91], or improve economic beneits [92]. Under many circumstances, we can reduce performance
interference while improving other aspects of the cloud system by means of scheduling. Among these objectives, we found in
the literature that it is very common to consider energy consumption and network topology in the design of interference-
aware scheduling solutions. On the one hand, energy eiciency of data centers has become a broad concern. Many works
set both energy consumption optimization and interference optimization as optimization objectives and developed VM
scheduling strategies that are both interference-aware and energy-aware. On the other hand, though interference-aware
optimization can alleviate the shared resources contention such as network resource in the data center, it is not enough to
optimize the performance because the cost of data transmission is also closely associated to the topology. Thus, it is necessary
to explore interference-aware and topology-aware VM scheduling optimization.

4.2.1 Co-optimization of interference and energy consumption. With the arising concern about the excessive energy consump-
tion of data centers, energy eiciency has become an important factor in server management [93]. An interference-aware
optimization strategy typically aims to optimize performance and avoid violating SLA, whilst an energy-aware optimization
strategy typically seeks to reduce overall energy costs. It is natural to combine them when both objectives matter.
Interference-aware and energy-aware VM scheduling strategy can be regarded as multi-objective optimization. Some

researches pay more attention to energy saving. For example, Nishtala et al. [85] use Q-learning reward mechanism to
achieve optimal task management. Energy consumption-related factors accounts for most part of the reward such as load
level, the number of cores, and DVFS. Only one metric related to performance inference, which is positive if QoS is reached,
is considered in their work. Some works assign same importance to both and there are two methods to achieve that in the
existing literature. One scheme of the irst method is to combine the energy consumption model and performance disturbance
model to form a new quantitative equation, and then use heuristic algorithm to select node for scheduling VMs based on
the new equation [94]. The other one scheme of the irst method is to use integer programming method to set up objective
function of the weighted sum of the two models and then schedule VMs according to the mapping of the optimal solution
[95, 96]. The second method is based on the research results of energy consumption problem to impose constraints on
interference-aware scheduling optimization. For example, research shows that an idle server represents 60%-70% of the power
consumed when it is fully utilized. Therefore, they suggest switch idle PMs to sleep mode. In addition, restrictions should also
be applied to CPU power consumption to maximize the ratio of the amount of work performed to the consumed energy [72].

4.2.2 Co-optimization of interference and topology. In cloud data centers, the link distance between nodes and the network
traic are both important factors afecting the network transmission eiciency. To achieve optimized performance for network-
intensive application and VM migration process, it is not enough to reduce the contention for network bandwidth. The
uncertainty of network environment between nodes also brings uncertainty to task performance no less than the performance
interference caused by resource contention. The number of some CPU and network IO-intensive hybrid operations, such as
MapReduce, exist in cloud data centers are abundant. Therefore, it is signiicant to carry out the research on interference and
topology awareness in this scenario.
There are two ways to optimize the cost of link. One is to assign the transmission cost between diferent nodes as the

penalty value of scheduling, The objective function of scheduling optimization should not only include the performance of
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tasks, but also the penalty of data transmission in diferent nodes, so that the VM scheduling will consider the link cost [87].
Another method is similar to that of the irst method, but the idea of this method is to increase the data locality, so that the
nodes that transmit data intensively to each other are limited to a small subnetwork . This method sets diferent levels of
locality such as VM-local, server-local, rack-local. The locality determines the network data transmission distance. If the
resource conditions permit, the locality with the smallest network transmission range is preferred, and the VM is allocated to
the nodes within the corresponding range [35].

5 OPEN ISSUES AND FUTURE DIRECTIONS

By reviewing existing approaches, we argue that there are still open challenges for the research on VM performance
interference detection, prediction and optimization. In this section we discuss what can be further explored in the area.
These topics are related to the improved interference modeling, interference-aware optimization for speciic parties and
applications, and extending the study to cover containerized infrastructure and more hardware-related factors. A summary is
provided in Table 14.

5.1 Accurate and Fine-grained Interference Modeling

Existing approaches of interference modeling mostly resort to simple mathematical forms (e.g., linear models) and more
importantly, overlook the interference between VMs that exhibit relatively diferent patterns of resource usage. In fact,
VMs and applications have very complex characteristics in terms of causing or being afected by interference. For example,
memory-intensive application may in some case compete intensively for CPU time slices, which makes it possible to interfere
with CPU-intensive workload. Numerically, the selected load or performance metrics may not show a clear functional relation
with the intensity of performance interference. Moreover, in diferent execution stages, the resource requirements of the VM
and other co-located VMs can vary signiicantly. As a result, the interference degree of the same application running on the
same VM at diferent times may be diferent and the single model cannot accurately show this relationship. A promising
solution is to use deep neural network for models and reinforcement learning for decision-making.
In terms of granularity, most performance interference models assume a static interference pattern throughout the VM

lifecycle or task execution phases. Most of the existing methods simplify the interference prediction problem into a regression
problem. The model produces a single value global prediction estimate instead of a series of time-varying prediction values. In
the implementation phase, many studies regard diferent task execution stages as a single process, ignoring the diference of
resource requirements at diferent execution stages. The ine-grained performance interference models can provide more detail
information for performance interference optimization, and is conducive to the development of a more reined optimization
method, which promote the reasonable use of debris resources during operation so as to reduce resource contention and
performance interference. For example, Wang et al [97] focused on the modeling of the irst stage, that is, the stage of reading
data from the storage device. Their method is dedicated to avoiding the interference between co-located applications in this
speciic stage.

5.2 Performance Interference Optimization for Diferent Parties

For cloud service providers, proit is the priority. From this perspective, how to minimize performance interference without
compromising the proit of service is non-trivial. For example, Lin et al [75] used the linear programming method to model
the proit maximization problem considering multiple interference factors. Service providers can also arrange customized
solutions or service quality for users according to their identities, so as to save resources and maximize beneits through
diferentiated services.
Performance interference-aware optimization can also beneit the customers. For cloud service users, they may also

have demands for performance interference detection and prediction. For example, users need to know whether the quality
of service they get satisies their requirements. But from their point of view, many load characteristics are not easy or
impossible to obtain because some data is not visible to the user or needs to be obtained from the service provider and other
co-located applications users. Therefore, it is necessary to study the selection of load indicators that are visible and easily
accessible to users for research. Generally, application-level load indicators, such as transaction response time and some
VM-level indicators, are more appropriate for selection, because users are the main trigger of VM-level and application-level
behavior changes and it’s easy to obtain for users. For a instance, Amannejad et al. [98] based on the application transaction
response time of web services on the cloud platform detects whether the application transaction has performance interference
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phenomenon. This detection model still has room for improvement, and more application-level load indicators can be added,
such as transaction type, transaction load increment, IO throughput, etc. In a word, the optional load characteristics of user
identity-oriented detection and measurement models are hardly explored.

5.3 Mitigating Interference for Real-time Applications

Some applications featuring real-time interactions are particularly sensitive to delay. Shortening response time is the priority
of some hard real-time applications such as cloud gaming. In this case, we need prompt prediction and scheduling to prevent
serious degradation in the application performance and the user experience [99]. The detection, prediction and scheduling
mechanisms for real-time applications cannot be oline, and the time complexity of real-time scheduling algorithm must
be low to ensure the timely execution of tasks. The cloud computing environment is dynamic, so the real-time detection,
prediction and scheduling mechanism need to consider time-varying and unexpected situations, and the accuracy must be
high, otherwise it will lead to continuous VM migration. From the above, we observe that it is particularly important to
mitigate interference in real-time applications, but how to realize it is a very challenging and practical topic.

There are two possible ways to solve this problem. The irst is to improve the design of scheduling algorithms. For example,
Caglar et al. [100] proposed an interference-aware scheduling algorithm for soft real-time applications on cloud platform.
Machine learning method is used to learn the best matching mode of these classiied VMs. At the same time, the forward
propagation and back propagation of neural network are used to optimize the previous steps. The second way is to mitigate
interference from the perspective of hardware. To realize real-time prediction and scheduling on a cloud platform, one has to
take into account the restriction on hardware access by real-time client software as well as the communication delay due to
the geographic distribution of nodes [101].

5.4 Container-Oriented Interference Detection and Prediction

Cloud-native is a kind of new cloud technology product system, which is the future development direction of cloud computing.
After using cloud native technology, developers do not need to consider the underlying technology implementation, and can
make full ues of the lexibility and distributed advantages of the cloud platform to realize rapid deployment, on-demand
scaling, non-stop delivery, etc. Container represents the emerging light-weight virtualization technology which is also
called the next-generation virtualization technology. Containers encapsulate a relatively independent environment that is
similar to but less isolated than that provided by virtual machines [102]. The main diference between them is the location
of virtualization layer and the usage of operating system resources. Compared with VM, the architecture of container can
reduce hardware cost, deploy development/test/production environment more quickly, maintain development/test/production
environment more easily, and are more compatible with microservice architectures. In view of these advantages of container,
it is expected to be more widely used than VMs in the future. Therefore, the performance interference analysis of co-located
container load and the model building of performance interference detection and prediction for container are both worthwhile
research directions. For example, Chen et al [103] used direct observation method to analyze the co-located interference of
diferent container loads at the micro architecture level metrics (such as hardware counter, read-write rate and running time
under diferent co-located environments). It also provided a list of recommended co-located loads and non-recommended
co-located loads for diferent types of container applications. The idea is also adopted in [53]. It is expected that increasing
attention will be to paid to the research on performance interference in containerized systems in the future.

5.5 Further Investigation in VM Performance Unpredictability

At present, the research on performance unpredictability of VMs in cloud data center mainly focuses on the performance
interference caused by resource contention. This is the main factor accounting for the unpredictable performance of cloud
data center. Nonetheless, we argue that there are still other factors, such as hardware heterogeneity of PMs in CDC and
communication interaction between multiple modules of diferent task types, which can also contribute signiicantly to the
interference between VMs.
Hardware resource heterogeneity is a common property of large-scale cloud data centers. It has been reported that

heterogeneous hardware resources of physical host machines can cause VM performance luctuations by up to 60% [104]
for large virtual machine instances and 280% [105] for small virtual machine instances. In order to compensate for the
performance uncertainty caused by heterogeneous hardware, it is necessary to compare and analyze the performance of
diferent hardware types, and build a scientiic performance interference model. In the scheduling phase, we can allocate tasks
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to the PM corresponding to the hardware type that can make it inish the fastest according to the hardware heterogeneous
status [106]. In some situations, VMs have special mapping or isolation requirements for hardware types and we can schedule
VMs according to diferent requirements of the same hardware type [107].

In data centers at scale, the cost of communication interaction should also be considered as the impact can be no smaller
than the performance interference caused by resource contention. For example, some user-oriented and delay-sensitive cloud
applications have multiple interaction modules and complex interaction patterns. These interaction behaviors and resource
contention among VMs jointly make the task performance prediction agnostic [63]. For these VMs, the beneits of two VMs
running on two servers separately are not necessarily more than the beneits of the co-location operation on one server
because the communication interaction gain of co-location operation on a server is greater than the performance interference
loss of that. Kejiang Ye et al. [108] proposed a scheduling method that comprehensively considers performance interference
and communication interaction characteristic. However, the method in this article needs to traverse all possible placement
situations, resulting in high time complexity. In order to remedy this shortcoming, we can model the impact of diferent
interaction modes on the performance of VM and then replace exhaustive search with the a heuristic strategy based on the
output of the model to improve the practicability of the scheme.

Table 14. A Summary of Future Directions

Future directions Perspectives Possible solutions

Accurate and ine-grained
interference modeling

Model accuracy
Explore reinforcement learning and neural networks

for model design

Fine-grained modeling
Study time-series modeling and modeling for

diferent operation stages

Performance interference optimization
for diferent parties

For cloud service providers
Explore the connection between

VM performance interference and proiting

For cloud service users
Enable the users to be interference-aware

with diferentiated quality of service

Mitigating interference for
real-time applications

Software-level optimization
Build interference model for real-time applications

and design fast and accurate real-time scheduling algorithm

Hardware-level optimization
Explore the optimization of hardware resource

access mechanism

Container-oriented interference
detection and prediction

Containerized systems
Model the performance interference

characteristics of containers

Further investigation in
VM performance unpredictability

Hardware resource heterogeneity
Build performance interference models that

can adapt to heterogeneous hardware

Communication and interaction
Explore how to balance the gain in interaction and
the performance loss due to co-location interference

6 SUMMARY AND CONCLUSION

The interference between VMs is one of the main causes of performance degradation and also complicates the management
of virtualized data centers. The problem has a strong impact on the performance of the entire system as well as the cost of
operation. In this survey, we irst summarize the causes of VM performance interference. Then we provide a comprehensive
review of the methodologies in modeling performance interference between co-located VMs and categorize them according
to their modeling objectives, adopted metrics and modeling methods. Then we review a wide range of existing interference-
aware VM scheduling schemes in two parts, including the interference-aware optimization through VM placement and
consolidation and co-optimization schemes that take multiple objectives into account.
Through analyzing existing interference-related models, we found that most of the studies are limited to the problem of

mutual interference between a pair of VMs. Also, incremental training of the interference models is of great importance in
terms of adapting to environmental changes, but it is hardly explored. By reviewing studies on interference-aware scheduling
optimization, we observe that the research on placement optimization is more extensive than that on VM consolidation

ACM Comput. Surv.



Performance Interference of Virtual Machines: A Survey • 27

strategy. Particularly, heuristic algorithms is a very popular option when it comes to the design of placement strategy. It is
expected that an increasing number of new approaches will adopt deep learning and reinforcement learning methods for
interference-related modeling and decision-making. Meanwhile, it is also critical to ensure that the detection and scheduling
operation are light enough for real-time applications. Another open challenge comes from the fact that interference is not the
only factor that leads to unpredictable performance. This motivates us to investigate the association between VM interference
and the data center infrastructure such as hardware heterogeneity and the interaction of applications. This research work will
help researchers ind the important characteristics of VM interference and select the most suitable techniques to address the
VM interference issues with the speciic requirement. Along with a summary of these open issues, we also provide insights
for the possible solutions accordingly, aiming to inspire further study on the performance interference in cloud data centers.
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