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Due to the increasing demand of cloud resources, the ever-increasing number and scale of cloud data cen-

ters make their massive power consumption a prominent issue today. Evidence reveals that the behaviors of

cloud servers make the major impact on data centers’ power consumption. Although extensive research can

be found in this context, a systematic review of the models and modeling methods for the entire hierarchy

(from underlying hardware components to the upper-layer applications) of the cloud server is still missing,

which is supposed to cover the relevant studies on physical and virtual cloud server instances, server com-

ponents, and cloud applications. In this article, we summarize a broad range of relevant studies from three

perspectives: power data acquisition, power models, and power modeling methods for cloud servers (includ-

ing bare-metal, virtual machine (VM), and container instances). We present a comprehensive taxonomy on

the collection methods of server-level power data, the existing mainstream power models at multiple levels

from hardware to software and application, and commonly used methods for modeling power consumption

including classical regression analysis and emerging methods like reinforcement learning. Throughout the

work, we introduce a variety of models and methods, illustrating their implementation, usability, and ap-

plicability while discussing the limitations of existing approaches and possible ways of improvement. Apart

from reviewing existing studies on server power models and modeling methods, we further figure out several

open challenges and possible research directions, such as the study on modeling the power consumption of

lightweight virtual units like unikernel and the necessity of further explorations toward empowering server

power estimation/prediction with machine learning. As power monitoring is drawing increasing attention

from cloud service providers (CSPs), this survey provides useful guidelines on server power modeling and

can be inspiring for further research on energy-efficient data centers.
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1 INTRODUCTION

With the onset of big data and the emerging application of Internet of Things (IoT), data centers,
as the mission-critical computing infrastructure, have been operating around the clock to propel
the fast growth of IT industry and economy [1]. However, these large-scale infrastructures are
also monsters that keep swallowing up energy (and the owners’ budgets as well), which raises
various energy efficiency issues. According to statistics, back in 2011, the number of data centers
around the world already exceeded 500,000 [2], and their electricity consumption accounted for
approximately 1.5% of the world’s total consumption [3]. By 2014, the energy consumption of U.S.
data centers had reached 70 billion kWh, which accounted for 1.8% of the total U.S. electricity
consumption [4]. It is predicted that the electricity demand for global data centers will increase
by 66% from 2011 to 2035 [5]. Excessive energy consumption imposes a heavy budget burden on
cloud service providers (CSPs), and energy reservation has been reckoned as a crucial mission in
data center management.

An important aspect of power and energy management is the implementation of a dedicated
monitoring system [2]. Here, energy consumption (E) refers to the total amount of electricity
used to perform some work by a system over a time period (T ), whereas Power (P ) consump-
tion is the rate at which the system consumes electricity. The relationship can be formulated as

E =
∫ T

0
P (t )dt . Accurate measurement can indeed be realized by traditional monitoring methods

(e.g., using external metering devices and internal integrated circuits), but they are not practically
feasible in many scenarios due to major drawbacks like expensiveness, poor scalability and com-
patibility, and coarse granularity. Thus, the software-based power/energy monitoring has emerged
as a prominent solution, where models are used to estimate and predict power or energy consump-
tion.

Energy is the integral of power over a period of time, whereas power reflects the instant status
of a target system. The difference makes it more challenging for the estimation of energy con-
sumption wherein the difficulties are not only attributed to the uncertainty and inaccuracy in the
prediction of P (t ) but also in the forecast of execution time for a given task. In this regard, most
energy reservation related studies start from modeling systems’ power or use power reduction as
a primary incentive for energy optimization. In this survey, we cover an extensive scope of rele-
vant work on power and energy management (including measuring, modeling, and optimization).
Therefore, without loss of generality and for brevity, in this work we refer to all models, model-
ing methods, and techniques concerning power and energy consumption as power models, power
modeling methods, and power optimization techniques, and additional statements will be made if
they are energy specific.

Mathematically, a power model can be defined as a function that maps one or several variables
related to the system states to the system’s power consumption (or cumulative energy), which
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takes one or more system state indicators (CPU, memory utilization, etc.) as input and is essentially
a function of these input variables (although it could be in more complicated forms like neural
nets). As a result, the model produces an estimate of the instantaneous power (or the cumulative
energy within a period of time) as its output.

The power consumption of a data center is mainly attributed to three parts: IT equipment
(servers, network equipment, storage equipment, etc.), the air-conditioning systems, and support-
ing infrastructures (lighting and power conditioning systems, etc.). However, in this article, we do
not intend to cover the entire system but only focus on cloud servers, and our primary purpose is
to present a holistic and fine-grained overview on cloud servers’ power acquisition, power models,
and modeling methods. The reasons we adopt a relatively narrow scope are twofold. First, we be-
lieve that the power consumption by cloud servers is worth conducting a comprehensive study, as
it typically reaches 70% to 80% [6], and challenges in server power management arise as features
like heterogeneity, virtualization, and workload complexity have been commonly introduced to
cloud server clusters. We also cover the power models for different forms of server instances and
the hosted applications. Second, power/energy consumption by other IT equipment and cooling
devices is admittedly important, and we have seen several surveys (e.g., [2, 7]) that cast their light
on the data center level. However, despite the broad scope they cover, a thorough and comprehen-
sive review on servers’ power consumption is still missing, which is exactly the motivation of our
work.

Currently, server power models have shown broad utility in research work related to data center
energy efficiency [7]. Although there have been a variety of existing models available for cloud
servers and extensive research on the power breakdown of servers and cloud applications, a sys-
tematic review of power models regarding the entire “component-server-application” hierarchy
and a comprehensive comparison between existing models are still missing. Power models at mul-
tiple granularity (from the digital circuit level to data center level) are summarized in the review
by Dayarathna et al. [2], but so far there is a lack of a comprehensive survey that covers the
entire hierarchy of server power monitoring from the underlying hardware level to the applica-
tion level. To this end, we present a comprehensive survey and apply a taxonomy on the power
collection methods, power consumption models, and power modeling methods for cloud servers
in a bottom-up manner, covering the collection methods of power-related data, component-level
power models, server instance-level power models, power models for VMs and containers, and the
state-of-the-art modeling methods. We also discuss the limitations of existing techniques, models,
and modeling methods, as well as some possible ways of improvement, based on which we provide
some insight into future research. The organization of this work is shown in Figure 1.

Our primary focus is on the cloud server in this work. Cloud servers are distinct from ordi-
nary physical servers in many features. First, they are typically set up in numbers while being
heterogeneous in a cloud data center. This requires the collection methods to have decent scala-
bility, have compatibility to different machine models, and be easy to deploy with low deployment
cost. Second, a cloud server can be bare-metal or a virtualized instance like a VM. The feature of
virtualization makes it challenging to acquire the server’s power when it is running on top of a
hypervisor potentially with several other instances. This also causes difficulties in building power
models for virtualized server instances since the sharing and contention of resources make an im-
pact on their power behavior. Moreover, most cloud servers are not dedicated to a monopolized
workload, and the uncertainty in the load pattern deteriorates a power model’s accuracy if it has
not been trained/fitted using a suitable model in a proper way. In view of these properties of cloud
servers, we start with power data collection in this survey and then introduce a wide range of
power models as the second part. The third part of this article focuses on the methods of power
modeling with which one can establish a purpose-built server power model and conduct training
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Fig. 1. Overview of the taxonomy on power data collection methods, server power models, and power mod-

eling methods.

with a right method. Particularly, we cast more light on emerging methods like the artificial neural
network (ANN) and reinforcement learning (RL).

The main contributions of this survey are as follows:

• We present comprehensive guidelines on power data collection methods and review a va-
riety of existing power models based on the hierarchy of cloud server instances. A broad
scope of studies in the area are discussed with necessary analysis on their usability, appli-
cability, and limitations.

• Considering the expertise required in modeling, we summarize a wide range of both tra-
ditional methods and emerging methods like ANN and RL, introduce their mathematical
foundations, and analyze their limitations and suitable scenarios in a detailed manner.

• We figure out several open challenges covering critical issues including the application
of power models to modern production environments with new virtualization techniques
(e.g., containers and unikernel) and novel power modeling methods using complicated
architectures like deep neural nets. These insights are provided as guidance for future
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research directions especially on realizing energy-aware cloud data center management at
the server level.

The main purpose of this survey is to provide guidance to the monitoring of power/energy con-
sumption by cloud server instances, so the topics we cover can be of particular interest to CSPs.
We opt not to delve further into the hardware design of bare-metal servers at the circuit level
because there is already extensive work on summarizing this scope of research (e.g., [2]), and we
believe that virtual cloud server instances, such as VMs and containers, deserve equal or even
more attention. In addition, we review several lightweight, application-centric power models that
are suitable for monitoring the power/energy of applications running on the cloud. Li et al. [8]
investigated the full life cycle of applications involving all resources from the device side to the
cloud side and present a variety of application energy consumption models. The part of our survey
regarding application-centric models (Section 3.3) is distinct from their work in several aspects.
First, we set our perspective of study on CSPs and model the power and energy impact of appli-
cations on cloud servers only. Second, the target problem of our work is the estimation of instant
power consumption, whereas most of the models presented by Li et al. [8] are energy consump-
tion models established on the assumption that the power cost P (R) of the relevant resources R
is known. By contrast, we organize our survey by introducing power data collection methods as
the first part, followed by a review of lightweight, hardware-centric power consumption mod-
els in Section 3.1. These two leading parts of content provide ways to obtain power values (i.e.,
P (R)) using practical metering methods (Section 2) or theoretical estimation (Section 3.1). In this
way, we not only outline different granularities of energy/power modeling but also associate the
application-centric energy/power modeling with hardware-centric models (especially component
power models) logically. This sets our work apart from other relevant surveys in terms of integrity.

2 THE COLLECTION METHODS OF POWER DATA

The collection of power data is the first step when it comes to establish and train/fit a power
model for a cloud server. In this section, we investigate the techniques related to data collection
from cloud servers. Existing methods are presented in four categories: methods based on instru-
ments, methods based on dedicated acquisition system, methods based on software monitoring
and calculation, and methods based on simulation.

2.1 Methods Based on Instruments

Traditionally, the main idea of instrument-based direct measurement methods is to obtain the
power data through an external power metering device. It is often required to connect the corre-
sponding power metering device to each server under test to collect instant power (or accumulated
energy for some meters) data.

Implementation. Regarding the way how the instrument is plugged into the system, methods of
data acquisition can be categorized into two types: through external devices and internal devices.
The difference is shown in Figure 2. The typical implementation of power metering with external
devices (e.g., power meter, the combination of galvanometer and voltmeter, and specialized power
modules) is to connect them to the upstream of the power distribution unit (PDU). The typical
implementation of power data sampling with internal devices is installing a specialized circuit
or module between the PDU and the motherboard. Currently, a great number of power/energy
metering devices are available, including internal modules like PowerMon2 and external metering
devices like OmegaWatt and WattsUp Pro. Table 1 summarizes the general features of external and
internal power acquisition devices.
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Fig. 2. The installation of external devices

and internal devices.

Fig. 3. The dataflow in remote power data collection

methods.

Table 1. General Features of External and Internal Power Acquisition Devices

Type of Data Measured Installation Accuracy Sampling Rate Data Granularity

External Meters Average power Plug and play High Medium Machine

Internal Modules Instantaneous power Interventional High High Machine/component

Advantages and applicable scenarios.

• Good compatibility: External devices are easy to install and set up for basically any type of
bare-metal machines. Many servers are compatible with the ATX (Advanced Technology
Extended) specification, and thereby metering with internal devices is applicable in these
cases.

• High accuracy: Instrument-based data collection methods can obtain very accurate power
data, no matter if it is directly measured power or derived from voltage and current values.

• Necessity as the baseline: It is necessary to compare the real power consumption data ob-
tained by direct measurement with the predictions and estimates by some model during
experiments.

Drawbacks.

• Deployment and measurement difficulties: Easy deployment and fine-grained measurement
are difficult to achieve at the same time. In the actual test system, since the test object can
be an independent working node or a working node cluster, coarse-grained power moni-
toring at the server level is easy and low cost. But if we want a finer granularity of power
information (e.g., component level), we have to resort to more hardware-specific (i.e., less
generic) instrument-based measurement to obtain the power data from the circuit level,
which means that the deployment difficulty will be relatively high as servers are typically
heterogeneous in the cloud.

• Poor scalability: Installing power metering devices on each and every server in a cloud data
center is prohibitive and difficult for management.

2.2 Methods Based on a Dedicated Acquisition System

Some manufacturers have developed specialized power data acquisition systems for their own
server products. Such systems usually run on a server cluster and can directly obtain or estimate
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the entire cluster’s information including the status of each work node and power consumption.
But they are generally customized by the developers and may require specific hardware compati-
bility.

Implementation. The baseboard management controller (BMC), shown in Figure 3, is a typical
dedicated acquisition system usually integrated with the motherboard as a part of the intelligent
platform management interface (IPMI). It can be connected to the system bus, sensors, and a num-
ber of components to provide power and temperature information about the CPU, memory, LAN
port, fan, and BMC itself. The remote power data collection host first sends a data acquisition
request service to the LAN port, then it is received by the BMC. The BMC updates the specific
information of the sensor and stores it into the SDR data warehouse. The latest information in the
SDR data warehouse is transmitted to the remote management host via BMC and LAN connections
in turn.

Some comprehensive management systems have been further developed based on BMC. Such
systems are generally customized by the manufacturer, and the BMC is used to obtain the operation
status of each device and perform visualization. For example, the Huawei iBMC for Huawei servers
is able to collect the CPU temperature, power consumption, and fan speed through the IPMI [9].
Similar systems include Dell iDRAC and HPE Power Advisor.

Advantages and applicable scenarios.

• High accuracy: Dedicated acquisition systems are system softwares operating closely with
the underlying hardware. Thus, they can typically provide high quality, fine-grained power
data on compatible hardware.

• Ideal for homogeneous servers: These data acquisition solutions are tightly bound to a series
of server models and thus can be equipped for a cluster of homogeneous servers easily.

Drawbacks.

• Poor compatibility: Most production-level monitoring systems are designed for a limited
number of server models with poor compatibility across different vendors and manufac-
turers. Sometimes it could also be difficult in deployment on servers in the same model
but with different specifications. More importantly, the inter-connection between several
monitoring systems (which is very practical in large-scale data centers) could cause a lot of
trouble.

2.3 Methods Based on Software Monitoring

The main idea of the software-based monitoring calculation method is to estimate the power con-
sumption by modeling the relationship between the system’s power and some critical system state
indicators at the level of software. The common software monitoring tools include Joulemeter,
CloudMonitor, and DEM [10].

Implementation. The basic steps of methods based on software monitoring generally include the
following. First, obtain the critical system state–indicating information (e.g., resource utilization
or event counters) through the system APIs. Next, establish a model to express the system’s power
consumption using the indicators. In general, the most important components (e.g., CPU, cache,
disk, and network interface) are first considered for modeling and a lot of empirical analysis is
required. Then, estimate the power consumption of the system with the built model.

A series of power monitoring software tools have been developed, such as Joulemeter, which is
based on the work by Kansal et al. [3] in 2010 and originally designed for modeling VMs’ power
consumption. Joulemeter works completely at the software level based on constantly collecting
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Fig. 4. General modules incorporated in a cloud simulation tool/platform.

the utilization of various components like the CPU and memory. It has been successfully applied
to various operating systems (OS). Similar to Joulemeter, CloudMonitor [11] is a power moni-
toring software developed by Bohra and Chaudhary [12] and designed for predicting bare-metal
machines’ power consumption.

In our previous work [10], we introduced the implementation of DEM, a distributed power mon-
itoring system as a prototype for the power measurement in a cloud server cluster. The implemen-
tation is based on multiple component-level power models that are adaptive to heterogeneous
hardware and compatible with cross-platform cloud environments (e.g., Linux and Windows NT).

Advantages and applicable scenarios.

• Fine-grained measurement: Some power measurement software can provide component-
level power estimation as they typically decompose a server’s power into several parts,
each of which accounts for the power contributed by a certain component.

• Suitable for virtual instances: Products like Joulemeter do rely on hardware-specific infor-
mation and only work on the OS-level resource counters, which are generally available in
virtual instances like VMs and containers.

Drawbacks.

• No guarantee in accuracy: The essence of software-based monitoring methods is the under-
lying power models that are usually specified by their developers. This makes them very
generic but meanwhile could cause high error in case users lack necessary expertise of how
to set up the software on their servers. For instance, the monitoring software may fail to
self-calibrate in some circumstances and requires manual parameter setup.

2.4 Methods Based on Simulation

Different from the preceding methods, the simulation-based method obtains the power data by
simulating the environment of cloud data centers. Many tools support the monitoring of task,
job, or machine-level power and energy consumption throughout the emulation, but its credibility
depends largely on the simulation program design. Figure 4 abstractly describes in-flow and out-
flow of such tools or platforms.

Implementation. Currently, most cloud simulation frameworks are based on the CPU to establish
the power model and estimate the power consumption of large-scale data centers. For example,
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the linear power model, square power model, cubic power model, and square root power model
have been integrated in CloudSim [13] to help establish a user-defined power model. These models
are used for describing the power curve of servers using different mathematical forms for different
situations and demands. For example, the linear models require a relatively small amount of data
for fitting, whereas the square and cubic power models can be more accurate but also susceptible
to over-fitting with the increase in the number of parameters [14]. CloudLighting [15] adopts a
cubic polynomial power model, which formulates the average server power consumption as a
third-degree polynomial function of the average CPU utilization. Hsu and Poole [14] have pointed
out that the trend of the server power curve is clearly deviating from linearity. Considering the
phenomenon, introducing non-linear terms to the power model can better fit servers’ power curves
and in turn helps reduce error. The details about the definitions and comparisons of these power
models are provided in Section 3.

Advantages and applicable scenarios.

• Ideal for early experiments: Studies and projects on energy-efficient data centers must go
through extensive evaluations, but there will be a huge time and monetary cost if we re-
peat them on real servers with real meters. By contrast, a simulated environment greatly
shortens the experiment and development cycle given that the emulated results (e.g., energy
consumption) are basically reliable.

• Not limited by hardware resources: Using simulation tools is not limited by hardware re-
sources, which means that simulating a large-scale cluster (especially regarding its power
behavior) can be very useful before one decides to really deploy more servers. The results
of simulation are not real but could be informative for decisions like scaling out.

Drawbacks.

• Low credibility: The simulation-based environment only considers very limited factors com-
pared to a real cluster. Sometimes the obtained data by simulation probably has a large
deviation from the real cases.

2.5 Comparison of Power Collection Methods

There is no one-size-fits-all method in power data collection from cloud servers. The best choice
depends on the application scenario and the specific requirements by a cloud server provider. For
example, when it comes to quantitatively evaluating a power model to check its accuracy, the
collection method based on the instrument is necessary. But if we want to evaluate the power of a
VM, since the measurement methods based on the instrument cannot provide any VM-wise power
data, we need to resort to the collection method based on software monitoring and calculation. To
provide clear guidance, in Table 2 we compare the four power consumption collection methods
from multiple perspectives, including how to implement them, suitable targets, the difficulty of
deployment, data granularity, and data credibility.

It should be noted that multiple power collection methods can be combined in practice. For
instance, when designing a resource scheduling algorithm of a VM, the simulation technology
can be used to efficiently verify and refine the algorithm. When the algorithm enters the stage of
practical test, it is necessary to directly obtain the power using some real-world instruments as
the baseline.

3 POWER MODELS OF THE CLOUD SERVER

The power (consumption) model is essentially a function that maps the variables related to the
system’s state to the system’s power consumption. A power model usually takes one or multiple
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Table 2. Comparison of Four Power Collection Methods for Cloud Servers

Methods Implementation Suitable Targets
Deployment
Difficulty

Data
Granularity

Data
Credibility

Based on instrument Installation of extra
devices

Bare-metal
machines

Easy Machine level Very high

Based on dedicated
acquisition system

Specialized systems Specific models of
machines

Difficult Machine or com-
ponent level

High

Based on software
monitoring

Built-in power models Bare-metal and
virtual servers

Moderate Machine, compo-
nent, or VM level

Fair

Based on simulation System simulation Machine, compo-
nent, or VM level

Easy Machine, compo-
nent, or VM level

Low

system state indicators (CPU, memory utilization, etc.) as the function’s independent variables and
takes the instantaneous power (or the cumulative energy within a period of time) as its output.
Power models work as the foundation of software-based and simulation-based power monitoring
mechanisms, which have gradually become prevalent in today’s data center management. Using
power models enables flexible, scalable, and low-cost power estimation and prediction in large-
scale, heterogeneous cloud server clusters.

In this section, we present a comprehensive review on the existing power models for the cloud
server. Based on the target and the applicable type of cloud server, we summarize these models
into three categories: hardware-centric power models, virtualization-centric power models, and
application-centric power models.

3.1 Hardware-Centric Power Models

3.1.1 Machine-Level Power Models. This type of model is used for estimating the power con-
sumption of a physical machine and is applicable to the scenarios where our target is a bare-metal
server. Beloglazov et al. [7] consider the power consumption of a entire server as the sum of two
terms called static power consumption and dynamic power consumption, which can be formulated
as

Pserver = Pstatic + Pdynamic . (1)

Similar to CMOS circuits, the static power consumption is mainly incurred by the current leakage,
whereas the dynamic power consumption is mainly caused by the charging and discharging of
capacitors [2].

The more common way to model the power of a physical server is considering it as an assem-
bly of functioning components. For example, Song et al. [16] proposed to divide the total power
consumption of a server into multiple major components including the CPU, memory, disk, and
network interface card (NIC):

Pserver = Pcpu + Pmemory + Pdisk + PN IC . (2)

Similar models include those of Kansal et al. [3] and Tudor and Teo [17] where more or less com-
ponents are taken into account.

Inspired by the power characteristics of CMOS circuits, some previous research (e.g., [18])
adopted frequency-based power models to estimate a server’s power:

Pserver = c0 + c1 f
3, (3)

where c0 is a constant representing the base power of a physical server, c1 is a constant related to
the capacitance and voltage of the CPU, and f denotes the operating frequency of the CPU. It is
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worth noting that this power model is actually derived from the basic CMOS circuit power model
P = ACV 2 f , where A is an activity factor accounting for the frequency of gate switching, C is the
total capacitance at the gate outputs, and V is the voltage of the processor.

It is intuitive that a server’s power is basically proportional to the workload it takes, which leads
to a straightforward way to formulate power consumption as a function of resource utilization of
the server. Empirical studies have shown that CPU usage/utilization has a strong correlation with
the server’s power [14]. Considering this, a great number of studies use CPU utilization as the
only indicator of server power and propose diversity forms of univariate models. Fan et al. [19]
proposed a power model that is essentially a linear interpolation between the idle power and full
(max) power of a server:

Pserver = Pidle + (Pmax − Pidle )ucpu , (4)

where Pidle and Pmax denote the power consumption when the server is idle and fully utilized,
respectively, and ucpu represents CPU utilization. The model implies that the server power con-
sumption grows linearly as CPU utilization increases from 0% to 100%. Considering that this model
may oversimplify the power curve of a server, they further proposed another model in a non-linear
form:

Pserver = Pidle + (Pmax − Pidle ) (2ucpu − uγ
cpu ), (5)

whereγ is a parameter fitted by minimizing the square error of the model on training data. Through
experiment, Fan et al. [19] pointed out that the error of Equation (5) is reduced from 5% to 1% by
introducing the non-linear term. Compared to Equation (4), this non-linear model performs better
in tracking the dynamic power consumption of a server. However, the determination of parameter
α at the exponent may be difficult, to which a potential solution could be empirical analysis on a
large power dataset.

More non-linear power models with similar ideas have been studied. Rivoire et al. [20] refined
the preceding model by adding more trainable parameters to improve accuracy:

Pserver = α0 + α1ucpu + α2u
γ
cpu , (6)

where αi and γ are model parameters that need to be determined during fitting/training. Hsu and
Poole [14] proposed another complex model and proved its accuracy based on their empirical study
on a large public server power dataset—SPECpower_ssj2008. Based on their experiment observa-
tions covering server power data released from December 2007 to August 2010, they suggested
adopting two non-linear terms in the power model:

Pserver = α0 + α1ucpu + α2u
γ0
cpu + α3 (1 − ucpu )γ1 . (7)

3.1.2 Component Power Models. The main limitation of machine-level power models is that we
can only evaluate the overall power consumption of a cloud server, and it is hardly useful when
we need to know how much power is consumed by each component inside the server. Figure 5
displays the proportion of power consumed by major server components for a server in a data
center owned by Google.

In this article, the components of physical server refer to the power-consuming parts in a server
that are not independent or not working independently, such as the CPU, memory, disk, and NIC.
From the breakdown of a typical server’s power consumption (Figure 5), it is clear that the CPU,
memory, and disk are the main contributors to the power consumption of a server. With little
change to the computer architecture since the prevalence of commodity machines, the distribution
of power is expected to remain basically the same in the near future. In the following contents,
we cast the focus on these major components and summarize a wide range of component power
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Fig. 5. Typical breakdown of the physical server’s power consumption [21].

models of the CPU, memory, disk, and NIC, with which the overall power consumption of a server
can be formulated as

Pserver = Pcpu + Pmem + Pdisk + PN IC +C, (8)

where Pcpu , Pmem , Pdisk , and PN IC represent power consumption of the CPU, memory, disk, and
NIC, respectively. C denotes the server’s base power, which includes the power consumption of
other components regarded as a static part.

CPU power models. Generally, the CPU is the primary power consumer in a server, especially
under computation-intensive workloads. In many cases, the power behavior of a server mainly de-
pends on the power characteristics of its CPU. CPU utilization is the most commonly used measure
of the proportion of non-idle CPU time slices, which effectively reflects the workload intensity on
the CPU. CPU utilization is easy to obtain at the OS level, so most studies adopt CPU utilization
for estimating the CPU’s power consumption.

A very prototypical form of the CPU power model is the linear model. For example, Fan et al.
[19] parameterized a simple CPU power model as

Pcpu = α0ucpu + α1, (9)

where both α0 and α1 are parameters that need to be obtained through training or fitting, anducpu

denotes CPU utilization. When the maximum power and idle power of the CPU are known, the
model can be further simplified:

Pcpu = P idle
cpu +

(
Pmax

cpu − P idle
cpu

)
ucpu , (10)

where P idle
cpu and Pmax

cpu represent the idle power consumption and maximum power consumption,
respectively. A problem that stands out for the model is that its usability counts on the fixed values
of the CPU’s idle and max power, which, however, can change over time if frequency scaling
technologies (e.g., DVFS) are applied. Basmadjian et al. [22] observed that the power consumed by
each core on a multi-core processor is the same as that by a single-core processor. Inspired by this
observation, they proposed an accumulative form to calculate the power consumed by the CPU:

Pcpu = P idle
cpu +

n∑
i=1

P i
cor e , (11)

where n represents the number of CPU cores and P i
cor e represents the power consumed by the i-th

core.
Non-linear models are also widely adopted to estimate the power consumption of CPU use based

on its utilization. For example, Luo et al. [23] proposed a polynomial model as a univariate function
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of CPU utilization:

Pcpu = α0 + α1ucpu + α2u
γ
cpu + . . . , (12)

where αi is the coefficient of the polynomial expression. In case γ = 2, the model is a quadratic
polynomial model. In theory, the power curve of any complexity can be fitted by this model if
we add as many terms (with higher order) as needed. But at the same time, the more terms and
parameters the model has, the more prone to over-fitting it becomes.

In addition, some research models the power consumption through investigating the internal
structure of the CPU. For instance, Basmadjian and De Meer [24] proposed an additive processor
power model:

Pcpu = Pmc + Pdies + Pintd , (13)

where Pmc is the power of chip-level mandatory components, Pdies represents the power of con-
stituent dies, and Pintd stands for the power of inter-die communication. Sarood et al. [25] con-
sidered the impact of cache and memory access on the power consumption of each CPU core and
formulated a CPU power model as follows:

Pcpu = Pcor e +

3∑
i=1

дiLi + дmM + Pbase , (14)

where Pcor e is the idle power of CPU, Li represents the number of cache accesses, дi represents
the unit cost of cache access, дmM represents the cost of memory access, and Pbase denotes the
static package power.

Although various forms of models are available for estimating the CPU’s power consumption,
we find two potential issues. On the one hand, CPU utilization, as the most popular indicator of
CPU workload, in some cases cannot truly reflect how “busy” the processor is because it is typically
computed based on the number of non-idle time slices, which could remain high when it is actually
working on moving data around without much computation. On the other hand, existing models
rarely consider the correlation between multiple cores, which could bring a significant impact on
the CPU’s power. A possible direction of improving existing models is to take the intra-core load
sharing policy into account.

Memory power models. The role of memory is critical in both computation and power consump-
tion. It has been figured out that in peta-scale systems, the main memory consumes about 30% of
the total power [26]. The activities of memory closely correlate to the multi-level caches in mod-
ern server architecture. Since cache misses will trigger memory operations, some studies (e.g., [3])
calculate the power consumed by memory based on the number of the last-level-cache misses
(LLCMs) in a unit of time, which is called the LLCM-based memory model:

Pmem = P idle
mem + α · NLLCM , (15)

where α is a training parameter and NLLCM denotes the number of cache misses. The principle
behind this is the strong correlation between LLCMs and the intensity of memory page swapping
activities. From a different perspective, Basmadjian et al. [22] proposed to describe the power
model of SDRAM memory by mainly considering the state of memory:

Pmem = P idle
mem + P

dynamic
mem =

n∑
i

si · p + 7.347 ·C · γ , (16)

where the idle power of memory is defined as the sum of each memory module’s size si times a
constant p that depends on the type and vendor of the memory module (a list of example p values
are provided in the work of Basmadjian et al. [22]). C is a constant whose value also depends on
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the specific memory type (e.g.,C = 2.3 for buffered DDR2), andγ ∈ [0, 1] reflects the memory state
and can be obtained with a probabilistic approach.

The preceding memory power models are designed from the angle concerning how the mem-
ory works, but using these models requires access to some low-level counters in the first place. For
example, the counter of LLC (e.g., LLC-load-misses and LLC-store-misses) is a kind of hardware
event counter gathering information from the processor, but not all types of OS kernels provide
(direct) access to it. Considering the parameters NLLCM and γ of Equation (15) and Equation (16)
that are both lower-level counters, they can more accurately reflect the memory activity and be
more helpful for constructing highly accurate models. But this, however, results in relatively poor
applicability to heterogeneous server architectures, as only a limited portion of them provide rel-
evant interfaces. In addition, frequently acquiring LLCM events can cause considerable overhead
to the system.

Lightweight approaches to the estimation of memory power is required in many situations
where accuracy is not the primary demand. Lin et al. [10] proposed using the memory footprint to
characterize the memory activity and estimated the power consumption of memory using a simple
linear model:

Pmem = P idle
mem + α · umem , (17)

where α is a training parameter and umem is the memory footprint, namely the memory usage.
Although there is no direct relationship between the memory footprint and memory activity, it
is very likely to experience frequent memory access and physical page swapping in case a large
portion of memory space is occupied.

Another intuitive idea is to directly use the frequency of memory access to characterize the
current power consumption of memory. For example, the works of Bohra and Chaudhary [12]
and Arroba et al. [27] modeled the power consumption of memory by using the following linear
formula:

Pmem = P idle
mem + α · s, (18)

where α represents the training parameter and s is the number of memory accesses in a unit of
time. The number of memory reads and writes requested by the CPU is recorded by specialized
performance counters invisible to ordinary OS users, so the model needs the support from some
special performance monitoring tool (which has to be installed as an extra module into the kernel)
to read the counter’s value.

Arroba et al. [27] divided the power consumption of memory into idle power and dynamic
power. They suggested that the dynamic power consumed by memory is proportional to the fre-
quency of memory accesses, whereas the idle power is related to the working temperature. Con-
sidering the impact of DVFS technology, the proposed memory power model is formulated as

Pmem (k ) = α1 ·Tmem + α2 ·T 2
mem + α3 · fmem (k ), (19)

where Tmem is the operating temperature of memory and fmem (k ) represents the frequency at
which memory is accessed when the server is in the DVFS state denoted as mode k . Model param-
eter αi is obtained via training.

Disk power models. A great portion of power consumed by a hard disk drive (HDD) comes from
its mechanical operations (e.g., the spinning plates and the moving read-write heads). Due to the
lack of visibility into the hard drive’s power state and the complicated impact of disk hardware
caching techniques, the power behavior of the disk is difficult to catch [3]. Zhang et al. [28] sug-
gested that the power consumed by the disk can be divided into a idle part and a dynamic part,
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whereas the dynamic power of the disk can be modeled based on its work state. Basmadjian et al.
[22] introduced a disk state-based power modeling method with a simple disk power model:

Pdisk = a × Paccess + b × Pidle + c × Pstar tup , (20)

where they consider three states of a disk: accessing, idle, and startup. Accordingly, a, b, and c
represent the probability that the disk is in one of these three states (a + b + c = 1), respectively.
The idle and start-up power of the disk (i.e., Pidle and Pstar tup ) are reference values from the
manufacturer’s data sheet.

Allalouf et al. [29] pointed out the idle power of disk accounts for about two-thirds of the max-
imum power, and the dynamic power of disk is closely related to its I/O request rate. They used a
quadratic polynomial function to describe the power characteristics of an HDD:

Pdisk = P idle
disk + α1q + α2q

2, (21)

where bothα1 andα2 are training parameters andq is the request rate for disk I/O. Disk throughput
or I/O speed (often measured in megabytes per second) is another indicator that reflects the inten-
sity of disk operations in real time. In view of this, Kansal et al. [3] proposed a throughput-based
power model where they consider the read and write speed of disk separately:

Pdisk = P idle
disk +Crmr ead +Cwmwrite , (22)

wheremr ead andmwrite represent the read and write speed of disk, respectively.Cr andCw depend
on disk specifications as the coefficients for read and write operations, respectively. At the same
time, they also observed that the difference in power consumption between read and write on an
HDD is basically negligible, and thus the disk model based on throughput can be simplified to a
linear model with only one parameter:

Pdisk = P idle
disk + α0m, (23)

where α0 is the model parameter and m denotes the current throughput of disk, namely the sum
of its read speed and the write speed.

In our previous work [10], we made use of a benchmarking toolkit—IOmeter—to investigate the
power behavior of an HDD under different data transfer rates. We found surprisingly different
power behaviors of the disk in different work modes. Specifically, in random I/O mode, disk power
consumption is basically proportional to its throughput (in megabytes per second), and meanwhile
a greater difference between the read and write operation ratio leads to higher power consumption
by the disk. When the disk is working in sequential I/O mode, its power is almost independent
on the read/write operation ratio. Based on the observations, we presented a solution based on
differentiating the work mode (i.e., sequential I/O or random I/O) of a disk. The proposed disk
model can be formulated as follows:

Pdisk =

{
αseq · S if S > HS or O > HO ,
αrnd · S otherwise,

(24)

where

S = Sr ead + Swrite , (25)

O = Or ead +Owrite , (26)

where αseq and αrnd represent the average disk power at the throughput of 1 MB/s in sequential
and random I/O mode, respectively. Variable S is the I/O speed (i.e., throughput combining read and
write),O is the number of disk operations per second, Sr ead is the I/O speed of read (in megabytes
per second), Swrite represents the I/O rate of write,Or ead represents reading operations per second
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(in times per second),Owrite represents the operations writing per second, and the thresholds HO

and HS are used to determine the work state of the disk.

Network interface power models. Gandhi et al. [30] pointed out that the power consumption of
peripheral devices can reach 23% of the total power consumed by a server. In communication-
intensive applications, the power consumed by the NIC is not negligible. Gupta et al. [31–33]
figured out the importance of network energy consumption. It has been found that most Ethernet
interfaces can stay in a low-power mode, but most of the them are not really in an energy-saving
state when they are not working. We have also seen protocol-level (e.g., TCP) studies on the en-
ergy saving mechanism. For example, Gunaratne et al. [34] proposed a G-TCP connection scheme,
which adds a shim layer between the data transport layer and the application layer as a probe to
control the devices at both ends of the TCP protocol connection. Blanquicet and Christensen [35]
proposed a G-SNMP energy-saving management protocol, which collects network device energy
consumption information into a library by adding additional information to the SNMP protocol
for real-time management and estimation of power consumption.

Focusing on the NIC itself, Basmadjian et al. [36] proposed that the interface can either be idle

or in the dynamic mode in any given time slice, and they used P idle
N IC

and P
dynamic

N IC
to represent its

idle power and dynamic power, respectively:

EN IC = P idle
N ICTidle + P

dynamic

N IC
Tdynamic , (27)

where Tidle and Tdynamic represent the time duration that the network interface is in idle mode
and dynamic mode, respectively. Given a period of time T = Tidle +Tdynamic , the average power
consumption of the NIC in time T is formulated as

PN IC =

(
T −Tdynamic

)
Pidle + PdynamicTdynamic

T

= Pidle +
(
Pdynamic − Pidle

) Tdynamic

T
. (28)

In the model, the impact on the NIC’s power by the work mode of the underlying network spec-
ifications is taken into account. In addition, the mode and the communication pattern in which
the network component is working also affect the utilization of other components like the CPU.
For example, in case of serial P2P communication, a remarkable portion of CPU time slices will be
used for communication-related instructions, which could significantly increase the CPU’s utiliza-
tion and power. By contrast, embedded network solutions (e.g., Infiniband) are likely to transfer
a heavy communication load to the embedded architecture and thereby put less pressure on the
CPU.

We have seen extensive studies on hardware-centric power models. However, it can be observed
that the interactions between the components are not considered in most research at either the
machine level or the component level. Considering the complexity of the workload on a cloud
server, we believe that it is necessary to investigate the correlation between the power consump-
tion of different components and take that into account. For example, the power characteristic
of the CPU could be entirely different in memory-intensive (while low disk usage) jobs and in
IO-intensive jobs.

3.2 Virtualization-Centric Power Models

3.2.1 Power Models of the VM. Virtualization technology has been prevailing in modern data
centers where VMs, as the maturest implementation of virtualization, are usually the actual
“servers” that directly run user applications. On this point, the VM is a sort of cloud server—it
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Fig. 6. Comparison of traditional processes running on top of the OS and the architecture of VMs hosted by

the server through a virtualization layer.

provides the computation, storage, and network to users independently. When it comes to mod-
eling VMs’ power consumption (which could be very useful for service pricing), some studies
consider the VM as an independent power-consuming entity (although it is not), whereas others
attempt to associate its power behavior to its host machine.

The virtualization layer (on the right-hand side of Figure 6) allows applications to run in a
VM just like they do in a real bare-metal machine. Meanwhile, it also provides several standard
interfaces (which may differ between hypervisors) from which we can monitor the resource usage
(e.g., CPU utilization) of each VM.

However, power metering at the hardware layer cannot be applied directly to sampling VMs’
power data. In current research on VM power consumption, there are basically two methods to
obtain VM power data: a white-box method and a black-box method. The white-box method is
to implant a probe into the VM and obtain information from inside the VM, whereas with the
black-box approach, we regard a VM as a process and gather its power information from the host.

Most existing studies adopt the white-box method and generally need to set up a monitoring
probe into the VM to gather information from inside the VM instance. For example, Li et al. [37]
proposed a method for modeling the power consumption of each VM the in case where there are
n VMs on the server (each VM denoted by VMi ):

Pserver = Pstatic + α0

n∑
i

U
cpu

V Mi
+ α1

n∑
i

Umem
V Mi

+ α2

n∑
i

U IO
V Mi
+ ne, (29)

from which one can derive the power consumption of a single VM on this server:

PV Mi
= Pstatic + α0U

cpu

V Mi
+ α1U

mem
V Mi

+ α2U
IO
V Mi
+ e, (30)

where Pstatic represents the baseline power, and U
cpu

V Mi
, Umem

V Mi
, and U IO

V Mi
represent the CPU uti-

lization, memory usage, and disk throughput of VMi , respectively. Parameters α0, α1, and α2 are
weights that need to be trained offline, n is the number of VMs, and e is the adjustable residual
term.

With a similar approach, Kansal et al. [3] proposed another component-based VM power model:

PV Mi
= α0U

cpu

V Mi
+ α1N

LLCM
V Mi

+ α2b
IO
V Mi
, (31)

whereU
cpu

V Mi
represents the CPU utilization of VM i , N LLCM

V Mi
represents the LLCMs caused byVMi ,

and b IO
V Mi

represents rate of I/O requested by the VM. Parameter αi (i = 0, 1, 2) needs to be trained

offline. Bohra and Chaudhary [12] used inside-the-VM monitoring daemons and base their model
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on the pairwise relations CPU, cache and disk, DRAM according to their empirical study. They
first presented an additive model including the power consumption by all co-hosted VMs:

Psum = C1

(
α1 + α2Pcpu + α3Pcache

)
+C2 (α4 + α5PDRAM + α6Pdisk ), (32)

where C1 and C2 are constants determined by observing the average increase in total power con-
sumption when an idle machine runs CPU- or I/O-intensive jobs, respectively. Parameters α1 and
α2 represent the base power when the VM is idle, whereas α2, α3, α5, and α6 represent the weights
of corresponding power-consuming sources. Then the authors derived the power model for an
individual VM:

PV M = αP
cpu

V M
+ βPCache

V M + γPDRAM
V M + ωPDisk

V M , (33)

where P
cpu

V M
, PCache

V M
, PDRAM

V M
, and PDisk

V M
denote the corresponding resource usage by the target VM.

Coefficients α , β , γ , and ω are training parameters.
Different from the linear models introduced previously, Versick et al. [38] and Wabmann et al.

[39] proposed adopting a polynomial model to estimate the dynamic power consumption of a VM
via the information of the CPU, HDD, and NIC. The comprehensive model is formulated as

PV M = PCPU + PH DD + PN IC + PStatic

= α1xC + · · · + αmxm
C + bC

+ β1xH + · · · + βmxm
H + bH (34)

+ γ1xN + · · · + γmxm
N + bN + Pstatic ,

where xC , xH , and xN denote the features that indicate the utilization of the CPU, HDD, and
NIC, respectively. For each component, a series of polynomial terms (from order 1 to m) are used
to model its power, and the corresponding parameters are αk and bC (for PCPU ), βk and bH (for
PH DD ), and γk and bN (for PN IC ). With the model, the authors claim that the error can be reduced
to 3.1% when the order m is set to 6.

Peng et al. [40, 41] also proposed a power model by considering a series of lower-level power
features such as the uOps (micro-operations), halted cycles, LLCMs, translation look-aside buffer
(TLB), front-side bus (FSB), interrupts, and DMAs. In the proposed model, all information acquired
in a fixed time period and the overall power consumption of the VM is the sum of the power
consumption of each component:

PV M = Pcpu + Pmem + Pdisk + PIO , (35)

Pcpu = uOps − Halt2,

Pmem = LLC +TLB + FSB,

Pdisk = Interrupt + DMA3,

PIO = Interrupt + DMA.

Compared with utilization-based modeling methods, this model requires reading low-level coun-
ters from the kernel, and the availability of these counters in a VM is dependent on the hypervisor.

In our previous research [42], we found that from the perspective of the host, the power con-
sumption curves of VMs with different core numbers are very similar. According to this observa-
tion, we adopted a lightweight approach and proposed a VM power model (CAM) by considering
the vCPU configuration and the current vCPU utilization of the VM. The core specification-aware
VM power model can be formulated as follows:

Pvm (uv ,n) = α ·
( n
N

)γ

· uγ
v , (36)
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where both α and γ are model parameters tunable during training, uv represents the current
vCPU utilization of the VM, and n and N represent the number of cores assigned to the VM
and the total number of physical cores in the host machine, respectively. Similar to the machine-
level power model, the v-core specification-aware VM power model adopts a non-linear form so
that it can characterize the non-linear VM power curve. In addition, it is adaptive to different
vCPU configurations on the same host machine through a unified expression with no need for
retraining.

Phung et al. [45] proposed a lightweight, combinatorial linear power model to evaluate the
power consumption of a VM. They divided the power into three terms: idle power, additional
power due to workloads, and temperature-dependent additional power use led by increased fan
speeds:

Ptotal = Pidle + Pwork + Pheat (T ), (37)

where Pheat (T ) denotes the extra power caused by excessive heat dispersion as a function CPU
temperature T . The other two terms are formulated as

Pidle = aF + bF 2 + c,

Pwork =

n∑
k=0

Pk =

n∑
k=0

( f F + eF 3/2 + f F 2)μ + дα + hβ,

where F is the effective frequency of the CPU, and a, b, c , d , e , f , д, and h are coefficients to be
determined. Pk is the power consumed by running workload k (with a total number of n work-
loads), μ is the number of micro-instructions issued, α is the number of LLC read misses, and β is
the number of TLB misses.

Despite the similarity between a VM and a real machine, virtualization overhead has been the
major limitation of VMs and is an important factor that existing VM power models hardly take into
account. The functioning of a VM hypervisor does consume power, and it is worthwhile to delve
into how and to what degree it accounts for each VM’s power consumption among all co-hosted
instances.

3.2.2 Power Models of the Container. Being regarded as a more lightweight approach to re-
source isolation than the VM, containers and server containerization (Figure 7) have gained in-
creasing popularity driven by the uprising trend of micro-services in web applications.

Being more process like and less machine like, containers make it more difficult to model their
power consumption than VMs. One of the reasons is the life cycle of each container being quite
uncertain, which means that each container can be running long-term applications (e.g., back-
ground processes or management processes) or short-term jobs (e.g., temporarily online services).
The second reason relates to the nature of containers in that they are frequently scheduled by
the orchestration system and typically are not bound to servers. This somehow makes it difficult
to identify and associate a particular container to any host to determine its power behavior. In
addition, many orchestration systems (e.g., Docker Swarm and Kubernetes) manage containers in
groups (called Pods in Kubernetes), and the monitoring interfaces they provide may not be fine
grained enough for power monitoring at single-container level.

So far, there are only a few studies related to modeling the power behavior of containers. Con-
sidering the similarity between multiple containers, it is important to study the characteristics of
a group of containers via machine learning (ML) or statistical methods. For instance, Kang et al.
[43] proposed a container power model based on k-medoids clustering. The proposed model first
needs to calculate the power consumed by n containers under different workload types in a stan-
dard test pool. Then it uses the server specification and container characteristics as attributes and
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Fig. 7. Diagram illustrating the placement of containers on bare-metal hosts and the creation of containers

based on remote images. Docker containers are used here as an example.

applies the k-medoids to cluster the containers in the test pool. Finally, when a new container
is brought online, the similarity (e.g., Euclidean distance) between the container and each of the
resulting medoids is calculated, and the power consumption of each medoid will represent all con-
tainers’ power in its corresponding cluster. The model effectively solves the problem caused by
a large number containers in heterogeneous environments through clustering. However, two as-
pects may significantly influence its effectiveness in accuracy: (1) the size of the test pool used for
generating the reference clusters and (2) the coverage of each cluster and potential bias in each
medoid.

Targeting at fully containerized servers, Piraghaj et al. [44] considered multi-level virtualiza-
tion wherein containers are consolidated into VMs, which are hosted by bare-metal servers. To
serve their power optimization objective, they used the following formula to estimate the power
consumption of a containerized server:

Psum =

{
Pidle + (Pmax − Pidle ) ·U i f NV M > 0,
0 i f NV M = 0,

(38)

where

U =
NV M∑
j=1

Nc∑
k=1

Uc (j,k ), (39)

where Uc (j,k ) is the CPU utilization of container k in VM j hosted by the server. In the first equa-
tion, we can reckon Pmax − Pidle as the dynamic part of the host’s power consumption, whereas
in the second equation, the authors assume that the CPU utilization is completely attributed to
the containers running on the server. Combining the two equations and given the utilization of
container k (running in VM j), we can derive the underlying power model for this container as

Pcontainer
j,k = Pidle + (Pmax − Pidle ) ·Uc (j,k ) . (40)

Phung et al. [45] proposed a RAPL model, which is a linear function of the RAPL CPU package
energy counter:

Pcontainer = (aECPU + b) × α , (41)
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where a and b are coefficients to be determined, ECPU is the amount of energy consumed by the
CPU package, and α is the CPU utilization of container c .

In addition, Fieni et al. [46] introduced a lightweight power monitoring system SMARTWATTS
that adopts online calibration to automatically adjust the CPU and DRAM power models to maxi-
mize the accuracy of runtime power estimation of containers. They pointed out that given power

modelM
f
r es from aggregated events, E

f
r es =

∑
c ∈C E

f
r es (c ), the power consumption of any container

c by applying the inferred power model M
f
r es at the scale of the container’s events E

f
r es (c ) can be

predicted:

p̂
dyn
r es (c ) = M

f
r es · E

f
r es (c ), f ∈ F , (42)

where p̂
dyn
r es (c ) denotes dynamic power consumption of the monitored resource of container c ,

f represents the given frequency, F represents the available frequencies, M
f
r es is derived from a

Ridge regression linear least squares regression with L2 regularization, and E
f
r es is the hardware

performance counter (HwPC) reading.
Tadese et al. [47] proposed a power model for Docker containers running benchmarking appli-

cations including CPU-intensive and network-intensive tasks. Linear regression and second-order
polynomial interpolation are used to fit the model on the observed power values:

P
cpu
container = 0.1065u + 12.4411, (43)

Pnet
container = −17.7368r 2 + 37.2859r + 3.8210, (44)

where P refers to the power consumed by Docker, u means the percentage of CPU usage (as an
addition by cores), and r means utilization of the data rate. The authors came to the conclusion
that the CPU is not the only contribution to container power consumption.

Considering the features of container as a form of lightweight virtualization and its potential
of becoming prevalent, it is worthwhile to carry out deeper research on how to effectively model
containers’ power consumption. First, we believe that it is an indispensable effort to associate a
container’s power behavior to that of its host. In addition, we believe that potentially this can be
done from two perspectives. For one, the resource contention and virtualization overhead should
be taken into account, which also applies to the power modeling of VMs. For the other, it is worth
further study as to whether it is possible to consider Pod (a basic unit consisting of multiple con-
tainers) as a whole in a large-scale scenario (e.g., Kubernetes) where containers are monitored and
managed in groups.

3.3 Application-Centric Power Models

Application is another angle from which we can look into the power consumption of a cloud server.
On the one hand, extensive research has shown the difference in a server’s power characteristics
when hosting different types of applications. On the other hand, application-level power moni-
toring is often of great use when it comes to service pricing and resource scheduling. Therefore,
in this section, we summarize a broad range of application-centric power models by first catego-
rizing them into the power models for general applications, computation-intensive applications,
data-intensive applications, and communication-intensive applications.

3.3.1 Power Models of General Applications. A great portion of the applications running
on cloud servers are not easy to be identified as computation-intensive, data-intensive, or
communication-intensive applications. A common feature of general applications is that they pro-
duce a mixed workload instead of imposing an extreme single type of pressure like floating point
operations or disk I/O. Smith et al. [48] developed CloudMonitor for cluster power monitoring,
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which uses a process that monitors system resource utilization to measure power consumption.
In this work, they suggested using a single power model for different types of workloads:

Papp = Pidle + α1Pcpu + α2Pmem + α3Phdd + α4Pnet , (45)

where Pidle is a constant base value, and Pcpu , Pmem , Phdd , and Pnet represent the power consump-
tion by the application from utilizing the CPU, memory, disk, and network, respectively. Weight
coefficient αi (i = 1, 2, 3, 4) is the parameter for training.

Wang et al. [49] specified more sources of power consumption in their application model as
follows:

Papp = α1ucpu + α2cmr + α3cer + α4nie + α5 fcpu + Pidle , (46)

where αk (k = 1, 2, 3, 4, 5) is training parameter, and ucpu and fcpu represent the CPU utilization
and frequency, respectively. By cmr , cer , andnie, they denote the cache miss rate, context exchange
ratio, and number of instructions executed in a unit cycle caused by the application, respectively.

Koller et al. [50] proposed an application throughput-based power model, in which they ob-
served that there is a linear relationship between the dynamic power of any application and its
throughput. The linear model has a simple form and can be formulated as

Papp = c0 + c1 · tr , (47)

where tr is the throughput rate of the application. Both c0 and c1 are constants depending on the
application. The authors suggest calibrating c0 and c1 in separate runs for each application.

3.3.2 Power Models of Computation-Intensive Applications. The computation-intensive appli-
cations mainly refer to those running programs that feature a large amount of computation, such
as floating point operations. Looking into the problem by regarding an application as a set of tasks,
Chen et al. [51] suggested that the task-related factors and system configuration directly affect the
total energy needed to finish the task. They proposed a task-level model for estimating the energy
demand of a given computation-intensive task by mainly considering the data size of each task,
system configuration, and some other factors:

Ei
app = fcomp

(
PT i

comp ,DS
i
comp ,DT

i
comp ,C

i
comp

)
, (48)

where Ei
app represents the energy consumption for executing the i-th computation-intensive task,

and fcomp is a function of PT i
comp , DS i

comp , DT i
comp , andCi

comp , which are the number of processes,
size of data to be processed, size of data for transmission, and system configuration, respectively.

With the focus on the entire workflow of applications, Gamell et al. [52] investigated the energy
consumption caused by every operation in the workflow and proposed a model as follows:

Eapp =
Pcpu

C
· Is ·V ·

(
tprod +

tcons

Ia

)
, (49)

where Pcpu represents the dynamic power of CPU, Is represents the number of simulation steps,
Ia represents the number of simulation steps between two analyses, V represents the number of
variables, and tprod and tcons represent the time to produce a variable and consume a variable,
respectively.

Colmant et al. [53] investigated how to estimate power consumption at the process level.
They proposed a CPU frequency and unhalted cycles based power model that is suitable for
computation-intensive applications:

P
app

f
(ucpid ) =

C1

109
ucpid −

C2

1018
uc2

pid , (50)
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where f is the frequency of the CPU, and C1, C2 are frequency-dependent constant parameters.
The variable ucpid represents the number of unhalted cycles count by process (pid). They specify
the parameters for a Xeon (f =2.90 GHz) processor: C1 = 8.64 and C2 = 6.10.

Leite et al. [54] studied the energy characteristic of computation-intensive programs and in-
troduced an analytical prediction based on their experimental measurements of instruction-level
energy cost. Their model can be easily converted to estimating an application’s power consump-
tion as a function of CPU frequency f given a short time interval Δt :

Papp ( f ) =
∑

i ∈I N S

Ni · ei ( f )

Δt
+ Pcoolinд ( f ,Tmax ), (51)

where INS denotes the set of atomic instructions and Ni represents the number of executions
of the i-th type of instruction. With ei ( f ), they record the per-instruction energy cost at CPU
frequency f . Tmax is the temperature threshold for the cooling system, the power of which is
excluded because it cannot be attributed to a single application.

3.3.3 Power Models of Data-Intensive Applications. Data-intensive applications tend to process
massive amounts of data and thereby incur very frequent I/O requests. According to the type of
operation, a data-intensive workload can be divided into online data-intensive workloads and of-
fline data-intensive workloads [55]. Currently, most of the existing models for data-intensive loads
fall into the second type, within which a great number of these models are built for estimating
the power consumption of MapReduce applications. Therefore, in the following, we first summa-
rize power models for general data-intensive workloads and then present some special focus on
MapReduce applications widely deployed as a very typical offline workload.

Poess and Nambiar [56] proposed to separately consider the power impact of I/O-intensive ap-
plications on the server and any external storage attached. They performed experiments using
the TOC-H benchmark of database applications and first introduced a server-level model for any
servers running database applications:

Pserver
app = 1.3 (NcPc + 9Nm + NdiPd ) + 100, (52)

where Pserver
app represents the power consumption of the server, Nc is the number of CPUs used,

Pc is the value of thermal design power (TDP) consumption of the CPU, Nm denotes the number
of memory DIMMs, Ndi represents the number of internal disks, and Pd represents the power
consumption of the disk. The authors further provided a power consumption model for estimating
the power of the I/O subsystem as follows:

P io
app = 1.2Ne · Nde · Pde , (53)

where Ne denotes the number of chassis, Nde represents the external disks in each chassis, and
Pde stands for the power consumed by each external disk. Therefore, the power consumption of
the whole system under a data-intensive workload can be formulated as

Papp = Pserver
app + P io

app . (54)

At present, many data-intensive applications are comprised of multiple interrelated tasks, which
in turn make up a workflow and typically run on distributed servers. For example, Gamell et al. [52]
proposed an intricate model to estimate the energy required to finish a data-intensive workflow:

Eapp = V · Is �
�

(
tst
mem +

t ld
mem

Ia

)
· Pmem + �

�
tst
stд +

t ld
stд

Ia
�
�
· Pstд + �

�
tst
net +

t ld
net

Ia
�
�
· Pnet

�
�
, (55)

where V represents the number of (workflow) variables; Is represents the number of simulation
steps; Ia represents the number of simulation steps between two analyses; tst

mem , tst
stд , and tst

net
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represent the data storage time from the memory, staging, and network, respectively; t ld
mem , t ld

stд ,

and t ld
net represent the data loading time from the memory, staging, and network, respectively;

and Pmem , Pstд , and Pnet represent the dynamic power of the memory, staging, and network,
respectively.

One of the most popular models in batch data processing is the MapReduce paradigm. For a
MapReduce processing task, Zhu et al. [57, 58] proposed an auto-regression-based power model,
in which the power consumption of a single worker is estimated by the following function:

Papp (t ) = α0P
′
data (t − 1) + α1Δx (t ), (56)

where both α0 and α1 are parameters that require training, P ′
data

(t − 1) is the measured power
consumption at time t − 1, and Δx (t ) denotes the arrival rate threshold. Specifically, in this work,
the authors proposed obtaining α0 and α1 via the least squares estimation method along with
a technique called exponential forgetting training. They also adopted an estimation module that
continuously monitors each server under a dynamic workload.

Lang and Patel [59] introduced an approach to estimate the energy demand of a MapReduce
application by quantifying the energy consumed by each computation phase:

Eapp = PiTi + PmTm + PsTs + PrTr , (57)

where PiTi , PmTm , PrTr , and PsTs correspond to the initial phase, map phase, reduction phase, and
shift phase of a MapReduce application, respectively.

3.3.4 Power Models of Communication-Intensive Applications. Communication-intensive appli-
cations typically need to exchange a large number of messages between processes. The message
passing interface (MPI) has attracted extensive studies as a widely used API for developing high-
performance computing (HPC) applications that require frequent messaging. Messages can be sent
in multiple ways, among which broadcasting is a typical information transmission method and a
great number of communication-intensive power model have been designed for it. For example,
Diouri et al. [60] proposed a method for power consumption estimation for a particular broadcast
algorithm under various execution configurations. They presented two models for estimating the
power of a server node and a switch, respectively:

pserver
app = pserver

idle + δpserver , (58)

pswitch
app = pswitch

idle + δpswitch , (59)

where pserver
idle

represents the idle power consumption of server, pswitch
idle

represents the power con-

sumption when the switch j is powered on without any workload, and δpserver and δpswitch

are the mean extra power costs caused by the high-level operations. Further, they provided a so-
phisticated method for estimating the energy consumption of running Scatter & AllGather (SAG)
algorithms with an MPI:

E
M P I /SAG
app =

N∑
i=1

p
nodei
saд +

M∑
j=1

p
switchj
saд

= tscat t er (N , M, v )��
�

N∑
i=1

p
nodei
scat t er (v ) +

M∑
j=1

p
switchj
scat t er

��
�
+ tallдather (N , M, v )��

�

N∑
i=1

p
nodei
allдather

(v ) +
M∑
j=1

p
switchj

allдather

��
�
,

(60)

where N , M, and v represent the number of compute nodes, switches, and number of processes per
node, respectively. The work divides the energy consumption in the scattering and aggregation
stages into two independent and symmetric terms, respectively.
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Gamell et al. [61] investigated the energy consumption produced during the transmission pro-
cess of a data-intensive application. They built a model for estimating the total energy required
for communication:

Ecomm
app =

⎧⎪⎨⎪⎩

∑M
i=1

datai

BWnet
Ptr ansf er if smp (srci ) � smp (desti ),∑M

i=1
datai

BWmem

(
Pactive

cpu + Pactive
mem

)
otherwise.

(61)

where BWnet and BWmem represent the bandwidth of the network and memory, respectively. The
condition smp (srci ) � smp (desti ) indicates that the MPI ranks i and j are mapped to the cores that
do not share memory. Pactive

cpu and Pactive
mem denote the dynamic power of the CPU and memory,

respectively. Ptr ansf er is the power consumed in data transfer and depends on the network char-
acteristics. An issue of the model is that the authors do not take network/memory contention into
account.

Although the research on application-centric power models has somehow been extensive, many
problems remain that need further consideration. For example, given so many application type-
specific power models and generic models, there is a lack of empirical study to compare their
effectiveness in different situations with different combinations of workload and load intensity. In
addition, the power behavior of applications (of different types) probably differs on cloud servers
wherein basically three cases of contention can be expected: monopolized servers (little con-
tention), similar applications on one host (moderate contention), and disparate applications on
one host (fierce contention). For more accurate power modeling, applications’ power behavior in
each case needs further investigation.

4 THE METHODS OF POWER MODELING

In many cases, existing power models may be too general to be sufficiently accurate on a spe-
cific type of machine that exhibits sophisticated power consumption behavior. Moreover, a limited
number and type of variables are considered in most of the models we survey, resulting in poor
flexibility in applying existing models to completely different specifications of servers with differ-
ent hardware and software configurations. These problems motivate a lot of exploration in how to
establish an effective power model based on the power data we possess. In this section, we summa-
rize both classical and emerging power modeling methods and the corresponding implementation
of model training and hyper-parameter tuning.

Most of the modeling methods we introduce in this section take the machine state-related infor-
mation (e.g., the utilization of CPU, memory and I/O, and other various indicators) as the features.
It is worth noting that the modeling methods vary in the number (and even types) of features they
can take as input: some of them only accept one or two variables, whereas some other methods
(e.g., neural nets and support vector regression (SVR)) can theoretically cover an arbitrary number
of feature variables.

4.1 Power Modeling Based on Empirical Parameterization

In the case where collecting a sufficient amount of power data (for training/fitting) is not feasible
and the accuracy of the resulting model is not extremely important, we can determine all of the
model parameters based on the server’s specification, a limited number of measurements, or even
experience. The parameters determined in these ways are referred to as rated parameters, mea-
sured parameters, and empirical parameters, respectively. Specifically, the rated parameters refer
to the official values labeled by the manufacturer. They are product specific and are usually results
of calibration by the vendors. Typical rated parameters include the rated power consumption of
servers, max frequency of memory modules, TDP of CPUs, and so forth. Measured parameters
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refer to the parameters whose values are obtained through measurement in the actual experiment.
For example, the idle and full power of a blade server can be measured with a power meter. The
empirical parameters mainly refer to the parameters determined on the basis of existing knowl-
edge and experience we gained from empirical practice by others. Such knowledge can be a set of
power data released online.

With the increasing availability of server power-related data (most of which have been verified
by authorities and organizations), it has become possible to determine the power model parameters
totally based on the existing knowledge and data obtained by a third party. The work of Hsu and
Poole [14] is a good example, in which they comprehensively studied the power characteristics
(also called signature by the authors) of servers completely based on a large public dataset named
SPECpower_ssj2008. Verified and published seasonally by SPEC, the dataset contains power (and
performance) data of a variety of servers submitted by mainstream manufacturers like Huawei,
IBM, and Dell. Hsu and Poole [14] suggested that a non-linear, utilization-based server power
model is the best fit for the data in SPECpower_ssj2008 ranging from years 2007 to 2010. With
only measured and empirically determined parameters, the model they proposed is formulated as
follows:

P (u) = Pidle + (Pmax − Pidle )u0.75
cpu , (62)

where 0.75 is the empirical parameter as a conclusion from their analysis. Clearly, the main ad-
vantage of the power modeling based on empirical analysis is that it is simple to use and easy
to configure. Although it is not realistic to expect high accuracy from these models, they can be
a considerable option in case we cannot perform in situ experiments or we are unable to collect
sufficient training data for some reason.

4.2 Power Modeling Based on Function Regression

Regression analysis is one of the most conventional methods we use to quantify the relationship
between the target variable (i.e., server power, in our case) and several feature (or explanatory)
variables (CPU utilization, cache misses, etc.). It can be single-variable regression or multi-variable
regression depending the dimension of input, whereas for multi-variable regression we usually
resort to Lasso regression or ridge regression for data fitting. In the following, we introduce how
to build and train regression-based server power models using statistical approaches.

The objective function (or the criterion) of regression models is generally defined as the mean
absolute error (MAE) or some extended form based on MAE. Therefore, most existing studies
apply the least squares estimation to obtain the optimal model parameters given a set of data. For
instance, Kansal et al. [3] proposed constructing separate models for estimating the power of the
CPU, memory, and disk using linear regression with the least squares estimation method. A similar
way of training the regression method is adopted by Lin et al. [62], in which they fitted multiple
component power models.

Model fitting is more intricate for the non-linear power models. Luo et al. [23] evaluated different
kernel function forms in an attempt to estimate server power with a multivariate nonlinear power
model. They adopted and compared different training methods (which are the objective functions
essentially) such as the polynomial with Lasso:

min
α0,α1

⎡⎢⎢⎢⎢⎣
1

2N

N∑
i=1

(
yi − α0 − xT

i α1

)2
+ λ | |α1 | |

⎤⎥⎥⎥⎥⎦
, (63)

where α0 and α1 represent the model parameters that need to be trained using Lasso regression
and λ represents the regularization coefficient. The main purpose of the penalty term λ | |α1 | | is to
constrain the parameter space to make it sparse, which effectively prevents over-fitting.
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Arguing that least squares estimation cannot guarantee a smaller maximum error, Hsu and Poole
[14] proposed using the maximum absolute percentage error as the error metric, which is defined
as

max
u

�����
Pu

P (u)
− 1

����� , (64)

where Pu represents the actual power of server at utilization u and P (u) is the estimated value by
the power model. The authors claimed that when a prediction error threshold is set, the trusted
range of the model estimation should be gradually narrowing as the utilization u decreases (be-
cause the power consumption of a server is low when under-utilized), and thereby the advantage
of this metric is that it ensures the model has a small prediction error over the entire range of
utilization.

After collecting a relatively large number of server component-level features, Zhou et al. [63]
proposed adopting principal component analysis (PCA) to reduce the dimension of the feature
space, based on which they evaluated multiple regression models including a multivariable linear
regression model, a power regression model, and an exponential regression model. We denote
them by Pl in , Ppow , and Pexp , respectively. The expressions are shown as follows:

Pl in = α0 + α1x1 + α2x2 + · · · + αmxm + ε, (65)

Ppow = α0 · xα1

1 · x
α2

2 · x
α3

3 · · · · · x
αm
m + ε, (66)

Pexp = α0 · eα1x1+α2x2+· · ·+αm xm + ε, (67)

where αi (i = 1, 2, 3, . . . ) and ε are parameters that need to be trained and xi (i = 1, 2, 3, . . . ) are
the input features extracted using PCA.

4.3 Power Modeling Based on ML

With the rapid advances in ML, it has been widely used in many research areas, one of which is
the application of ML methods in power modeling and forecast [64–66]. In the following, based
on our survey on relevant methods that have been successfully applied to cloud server modeling,
we introduce the most representative approaches in the area and compare them with regard to
usability and applicability.

In general, there are three classes of ML-based methods according to the statistical foundation
based on which they learn from the data. With this in mind, we categorize existing ML-based
power modeling approaches into the following types: supervised learning methods, unsupervised
learning methods, and RL methods.

4.3.1 Power Modeling Based on Supervised Learning. The task of supervised learning is to learn
a model from labeled data so that the model can predict the output from any given input. In the
problem setting of power modeling, the input includes any features that can be collected from
the system under test, whereas the output is the estimate or prediction of server power. Typical
supervised modeling approaches include SVR, ensemble learning, and neural networks.

Support vector regression. The underlying theory of SVR is an extension to support vector ma-
chine (SVM), which is a classical learning method in ML. The idea of SVM is to map input from
the original space to a high-dimensional feature space to produce a classifying hyper-plane that
maximizes the interval between (the support vectors of) two classes (depicted in Figure 8(a)). The
learning strategy of SVM is interval maximization, which can be formalized into a problem of con-
vex quadratic programming. Power modeling is essentially a regression problem, but the way we
construct the hyper-plane in SVM can be easily extended to performing predictive regression—this
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Fig. 8. Schematic diagrams showing how SVM builds the hyper-plane in a two-dimensional space and how

SVM regression can be used to fit power data with a similar statistical idea to SVM.

makes an SVR model. The difference between SVR and SVM is that the training goal of SVM is
to keep the points in each dataset away from the boundaries of classification, whereas SVR needs
to keep each data point in the training set as close to the hyper-plane (represented by a vector of
weights) as possible (Figure 8(b)). The expression of the hyper-plane to fit is formulated as follows:

yi = w · φ (xi ) + b, (68)

where φ (xi ) is the representation of xi in the mapped space by the kernel. The training of SVR
models requires a target function (or loss function) with tolerance to marginal error and robust-
ness to over-fitting. Generally, the construction of the hyper-plane (i.e., the actual resulting power
model we desire) is realized by imposing constraints on the optimization of the target function
as a convex quadratic problem. For example, Liang et al. [67] proposed using the following target
function to find the optimal parameters of their server power model based on SVR:

min
1

2
| |w | |2 +C

I∑
i=1

(
ξi + ξ

∗
i

)

s.t. yi −w · ϕ (x i ) − b ≤ ε + ξi (69)

w · ϕ (x i ) + b − yi ≤ ε + ξ ∗i

ξi ≥ 0, ξ ∗i ≥ 0,

where x i denotes the input features (as a vector); yi represents the labels (i.e., measured power
of the server); w and b denote the parameters that construct the hyper-plane; ξi and ξ ∗i represent
the lower relaxation boundary and the upper relaxation boundary, respectively; andC is a pre-set
constant for the target function. Luo et al. [23] also built a server power prediction model based on
SVR and compared its accuracy with Lasso linear regression and stepwise regression models using
the benchmark workload of SPEC CPU 2006. They concluded that SVR attains the highest accuracy
in power prediction. A similar approach was adopted by Veni and Bhanu [68] and Salam et al. [69],
where the SVR method is applied to modeling VMs’ power consumption. SVR is sensitive to the
quality and the number of features provided. To further improve SVR-based power models, Yang
et al. [70] boosted SVR with feature extraction using PCA.

Ensemble learning. The main idea of ensemble learning is training a number of individual learn-
ers and combining them into a more powerful one on a specified learning task. Figure 9 depicts
the general framework of ensemble learning, in which we first need to build and train a set of
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Fig. 9. Brief scheme of ensemble learning. Fig. 10. General architecture of a (fully con-

nected) neural network model.

relatively weak learners (i.e., models) and then combine them using a certain strategy. The advan-
tage of ensemble learning is that integrating multiple learners can effectively mitigate the risk of
over-fitting and under-fitting caused by using a single learner [71].

According to the way individual learners are constructed, the existing algorithms of ensemble
learning can be roughly divided into two categories: serialized training of learners and parallel
training of learners. In the first method, the individual learners are trained one after another so as
to produce improving models step by step. This incurs a strong dependency between individual
learners [72]. By contrast, parallel training generates usable learners in a parallel manner and in-
tegrates all of these weak learners as the final model [71]. Typical algorithms of serialized training
and parallel training are the boosting method and the random forests (RF) algorithm, respectively.
In the problem of server power estimation/prediction, parallel methods like RF and bagging are
currently used more frequently. For example, Harton et al. [73] proposed an RF-based server power
estimation framework, where a large number of base predictors are trained and contribute to the
final result of prediction.

Lin et al. [10] exploited the utilization of multiple server components as the input features and
used R-Square as the metric to investigate the performance of different RF models, which are
composed of different numbers of CART trees. The results report that RF can be fairly accurate
and robust as a way to build power models, but its major limitation is the long training time
required.

Apart from RF, the GBDT, XGBoost [74], LightGBM [75], and many other boosting algorithms
are widely used in prediction tasks. These new approaches can be more efficient and easily adapted
to server power estimation and prediction.

Neural network. The ANN is an emerging computational connectionist model that is able to
learn very complex representations (i.e., the underlying patterns of data) using a net consisting of
a large number of neurons connected in form of layers. The most basic form of ANN is the fully
connected net, which is also called multi-level perceptron (MLP). Despite that many variants have
been proposed, the general structure of ANN is shown in Figure 10.

The ANN has been widely applied to complicated regression tasks, among which power esti-
mation and prediction have drawn much attention. Liu et al. [76] built a back-propagation neural
network (BPNN) and a long short-term memory neural network (LSTM) to predict the power con-
sumption of a data center using the CPU utilization and memory usage data from Google workload
traces. Li et al. [77] proposed a deep neural network based power model that takes into account a set
of time granularity. Lin et al. [78] experimentally compared the performance of cloud server power
models based on BPNN, Elman neural network, and LSTM (the corresponding power modeling
frameworks are shown in Figure 11). Specifically, the power model based on BPNN takes features
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Fig. 11. General architectures of modeling a cloud server’s power with the BPNN, Elman neural network,

and LSTM neural network.

in a time window as input and predicted server power after being training with back-propagation
methods. The Elman neural network (Figure 11(b)) is a type of recurrent neural network (RNN) that
incorporates a special layer of memory cells that memorize the hidden state of every forward prop-
agation in the network. As a more complex form of RNN, LSTM (Figure 11(c)) adopts more param-
eters (and thus more complicated functions) for each neuron to adaptively control the impact by
neurons’ memory and the instant input. LSTM can outperform non-recurrent forms of neural nets
especially in case where there are long-term temporal patterns in the time series of server power.

As two powerful tools for learning the representations of data, the auto-encoder (AE) and re-
cursive auto-encoder (RAE) are often used for both long-interval prediction and short-interval
prediction. Their structures are shown in Figure 12(a). Considering the potential availability of
a great number of system features in server power modeling and the dependency between one
feature and another, both of them can be very useful in feature engineering. For example, if we
use a large window of past power values as input, which makes the problem a long-interval auto-
regression, the better choice is applying RAE to produce highly representative features rather than
directly using the raw vector of past power values as the features of our model.
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Fig. 12. Power consumption prediction model based on AE and RAE.

In addition to the preceding works, neural network based methods have been widely used in
resource prediction and load prediction tasks [64, 65, 79–81]. Although the target is different, most
of the models used in studies can be adapted to the problem of server power modeling as it is
essentially a time series prediction task in the context where we are estimating a server’s power
given a window of the past measures.

4.3.2 Unsupervised Learning. Targeting ML scenarios without the presence of labels, unsuper-
vised learning algorithms perform error correction and back propagation independently on la-
beled/annotated data. For example, clustering algorithms (e.g., K-means and hierarchical cluster-
ing) and the Gaussian mixture model (GMM) have been widely used in unsupervised learning
tasks. In power modeling, the output of a model is essentially equivalent to drawing an sample
from an estimated distribution of power data. On this point, many relevant studies choose GMM
as an unsupervised approach to establishing power models [82, 83].

Gaussian mixture model. The GMM is an extended Gaussian model that uses a linear combination
of multiple Gaussian distributions to characterize the data distribution based on a limited number
of observations. Each individual Gaussian distribution represents a stochastic factor that makes
impact on the observed output, say, the true power. A weight is assigned to each distribution and
fitted on a set of observations so that the hybrid of these Gaussian distributions can approximate
the real distribution of power. The expression of the GMM can be formulated as

P (y |θ ) =
K∑

k=1

αk Φ(y |θk ), (70)

where αk ≥ 0 is the vector of weights (as training parameters) and subject to
∑K

k=1 αk = 1, Φ(y |θk )
is the density function of (single-variate) Gaussian distribution, which estimates the probability of
observing y as follows:

Φ(y |θk ) =
1

√
2πσk

exp �
�
− (y − μk )2

2σ 2
k

�
�
, (71)

where θk = (μk ,σ
2
k

). In theory, if the GMM integrates a sufficient number of Gaussian models and
the weights are trained properly, the hybrid model of the GMM can precisely fit the true distri-
bution of power data. Dhiman et al. [82] proposed a GMM-based model for estimating the power
consumption of VMs. They first partitioned the data into different groups according to the CPU
utilization. Then they used a method called Gaussian mixture vector quantization (GMVQ) to gen-
erate a GMM (the weights, essentially) in each group. Finally, they calculated the distance between
multiple Gaussian distributions and selected the closest ones to produce power predictions.
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Expectation-maximization. The expectation-maximization (EM) algorithm is designed for deter-
mining the optimal set of parameters (αk , μk ,σ

2
k

) in the GMM to find the proximate distribution
to the ground truth (i.e., the real distribution of data). For example, Hao et al. [83] proposed a
GMM-based power model and applied the EM algorithm to find the best parameters. In general,
the parameter estimation of the Gaussian distribution function only requires the process of max-
imum likelihood estimation. However, maximum likelihood estimation is challenging on data in
the presence of latent variables, which, in the problem of power modeling, can be the unknown
factors affecting power behaviors. As a solution, EM performs iterative steps of constructing an
expectation (i.e., the likelihood) with estimated latent variables and optimizing the parameters to
maximize the likelihood. EM can be used to search for the optimal parameter set of a GMM-based
power model by executing the follow steps:

(1) An initial guess is generated for the each individual Gaussian distribution’s parameters.
(2) E-step: Compute the expectation of the likelihood function of current parameters based

on the observed power data.
(3) M-step: Perform maximum likelihood estimation to optimize the current parameters in

the hybrid distribution.
(4) Repeat E-step and M-step until convergence.

The main strength of using EM to train unsupervised distribution models like GMM is its us-
ability with the presence of missing data and robustness against noisy data.

4.3.3 Reinforcement Learning. Adopting an entirely different philosophy from supervised and
unsupervised learning methods, RL does not intend to find a concrete model but targets at building
a smart agent that can make “right” decisions. RL has been successfully applied to a wide range of
scenarios, such as scheduling, gaming, industrial control, and robotics. The Google artificial intel-
ligence (AI) team further proposed deep reinforcement learning (DRL) by combining RL with deep
learning [84], which is considered to be an important way to move toward the general intelligence.

A great portion of existing research uses server power models as a tool but sets their target at
cluster or data center-wise energy conservation. One of the applications of RL on a cloud platform
is the research on automatic resource scheduling and power management. For example, Farah-
nakian et al. successfully used an RL algorithm to learn energy-efficient strategies of VM consol-
idation without prior knowledge about the environment and workload. Liu et al. [86] proposed a
hierarchical cloud resource and power management method based on DRL using the framework
shown in Figure 13. The framework mainly consists of a global layer responsible for VM allocation
and a local layer responsible for local power management. Specifically, in the global layer, DRL is
used to solve the resource optimization problems with supplemental techniques like automatic
encoder and weight sharing. And in the local layer, LSTM-based workload prediction adopts some
model-free RL methods to forecast the server power distribution to support proactive scheduling.

4.4 Other Methods

In this category, we outline some server power modeling approaches that are not commonly
adopted in research but still could be inspiring. A very typical approach is the evolutionary
algorithms. For instance, unlike the statistical methods, Arroba et al. [27] proposed to use the
particle swarm optimization (PSO) algorithm to search for the best parameter settings during the
training of a power model. By comparing with the traditional least squares method, they reported
that the model trained with the PSO algorithm performs much better in various tests using
different benchmark workloads. In addition, Hilburg et al. [87] developed a model for dynamically
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Fig. 13. Cloud computing resource allocation and server power management framework.

Table 3. Comparison of Power Modeling Methods Based on Empirical Parameterization,

Function Regression, and ML

Modeling Methods Advantages Limitations Suitable Scenarios

Empirical parame-
terization

Out of the box Poor accuracy Any scenarios with no power
data available and no strict accu-
racy requirements

Function regression Easy to build and fit Model functions must well
fit power curves for decent
accuracy

Cloud servers with relatively
clear power behavior patterns

Machine learning Can learn from complex
power behavior and typ-
ically high accuracy af-
ter being well trained

Requires large training
dataset, long training time,
and easing to over-fitting

Higher input dimensions and
complex power behavior

predicting power consumption using the grammatical evolution (GE) algorithm, which is an
optimization algorithm that simulates the generation and evolution of DNA sequences.

4.5 Comparison of Power Modeling Methods

In Table 3, we summarize the usability and applicability of each type of power modeling method.
The truth is that there is no one-size-fits-all solution when it comes to cloud server power
modeling, and acquiring a good power model often means putting more effort in data collection
and model design. Using empirical parameterized models and fitting models in forms of regres-
sion functions are generally easy in practice, but the drawback is also obvious—the resulting model
could be inaccurate if the target server shows a much more complicated power pattern than the
model can approximate. Using more complex models with the help of ML can provide a decent
solution in case there is a sufficient amount of data for training and reasonable knowledge of
parameter tuning.

5 CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Currently, a lot of data centers are still in the evolving stage from traditional architecture to the
cloud architecture. The way of hybrid deployment allows the use of IT equipment to cover both
traditional stand-alone patterns and cloud IT resource sharing patterns. Moreover, some leading
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cloud service giants have already introduced new virtualization technology to further improve
the utilization of resources and reduce waste of energy in their server farms. In this trend, cloud
server power management has become a critical aspect that service providers must pay attention
to. Meanwhile, challenges also arise as the orchestration of resources and the applications on the
cloud make the power behavior of servers more complicated while flexible, accurate, scalable, and
fine-grained power monitoring is still in urgent demand.

5.1 Refinement of Models for Power-Intensive Components

Most of the existing research only considers the basic server components (the CPU, memory, disk,
etc.) in their power models. However, peripheral devices (e.g., the GPU) connected via the PCI slots
have become increasingly important in both functioning and power consumption. In view of this,
it is necessary to develop fine-grained power models that cover a broader range of components in
modern cloud servers.

General-purpose GPU (GPGPU) computing has emerged as a significant computing architecture
thanks to the rapid advance of AI and HPC. However, it is also undoubtful that the GPUs are com-
ponents that can swallow up energy, as their rated power can reach almost 1,000 in wattage. GPU
power models have received increasing attention. For instance, a major direction is to investigate
the power behavior of servers running both CPU- and GPU-intensive applications [88–91]. In ad-
dition, applying DVFS technology to reduce the power consumption of the GPU is also a research
hotspot [92–95]. The GPU is designed to perform highly parallel computation like processing high-
dimensional matrices, but there is still a significant difference in its power characteristics when
running different workloads. For example, training fully connected neural nets and convolutional
neural nets on a same size of data can result in completely different GPU utilization and power
consumption. As well, power-saving methods for specific GPU models are also worth investigating
[96–102].

The surge of GPUs also brings about challenges in monitoring the power of virtualized server
instances like VMs. CSPs like Amazon have been offering powerful instances equipped with a
GPU, which turns out to be extremely expensive in the hourly price. Is computation on a GPU in a
virtualized environment as efficient as that on a bare-metal one? Is the price really proportional to
the actual power cost? The answers require further exploration into the power behavior of GPUs.
In addition, some HPC systems use shared component structures, which is another challenge for
power management as it relates to how to manage power at the intra-node and inter-node levels
in such a system with nodes sharing geographically distributed components such as the CPU,
GPU, and FPGA.

5.2 Power Consumption Modeling for Containers

Containerization is believed to be the very path to realizing lightweight cloud services, or the so-
called micro-services. Most of the global CSPs have begun to provide the container platform open
for developers and end users. Despite the debate as to whether containers will take the place of tra-
ditional VMs sooner or later, this new technology certainly brings challenges to the way we used
to monitor cloud servers’ power, and we have to consider a container as a potential form of cloud
server, which resembles a process from the prospective of the OS while functioning just like a VM
for end users. The difficulties in estimating the power consumption of containers are multi-fold.
On the one hand, the number of container instances that can be run on a single server is much
bigger than that of the VM, which implies myriads of them need to be monitored when we look
at an entire data center with thousands of physical servers. This probably results in prohibitive
overhead in gathering, estimating, and predicting their power. On the other hand, the life cycle
of containers is often uncertain while we may see frequent re-allocation, restart, and destroy of

ACM Computing Surveys, Vol. 53, No. 5, Article 100. Publication date: September 2020.



A Taxonomy and Survey of Power Models and Power Modeling for Cloud Servers 100:35

containers under the management of automatic orchestration software. To make container power
monitoring practical, a possible solution is to monitor containers in groups just like the orchestra-
tor does in the Kubernetes platform where containers are put in pods.

5.3 Power Consumption Modeling for Unikernel

With the development of virtual technology, there are increasing doubts that VMs may not be the
actual solution for achieving smooth scaling in high-density applications. But there an alternative
to containers. Developed to be even more lightweight than containers, the concept of unikernel is
gradually attracting more attention. Song et al. [103] demonstrated that the unikernel can show
promising advantages in delay, memory usage, image size, and power consumption over VMs and
containers. Although the unikernel has been widely used in some special applications like cloud
service security [104], topics such as how to model the power consumption of unikernel instances
and how to maximize its advantage in power saving still need further exploration.

5.4 Power Consumption Modeling Based on the ANN

We have seen more and more studies build a variety of ANN models for predicting cloud servers’
workload and power consumption. Although many decent models have been built and were tested
to be very accurate, there remain two aspects that we can focus on in future work.

The first aspect is about how to effectively perform training in virtualized environments (e.g.,
VMs and containers) where the main difficulty is the acquisition of true power data. There is
no external instrument that can be used for direct power measurement in such environments.
However, VM- or container-level power information could be very important to realizing energy-
aware resource allocation [76] and instance scheduling in a hierarchically virtualized data center.
A possible theoretical approach is to leverage unsupervised learning methods, through which the
power contribution by each virtualized instance can be regarded as latent variables that follow
certain distributions.

Another aspect worth exploring is how to choose the optimal ANN structures (and the
corresponding optimization algorithms) when building a power model. Models that are too
complex are prone to over-fitting and difficulty in generalization and, more importantly, cause
significant waste of resources during training. The suitability of different ANN structures depends
on scenarios that need to be carefully considered. For example, given a series of server power
data with successive timestamps, it is worth considering models able to learn temporal patterns
like the auto-regressive model, RNN, and LSTM [105]. Another interesting approach is hybrid
ANN [106], which is the combination of ANN and traditional technologies to establish a more
efficient prediction model. Since searching for the optimal model structure in power modeling
required lots of expertise, we suggest using automatic structure search methods like neural net
architecture search (NAS) to shorten the parameterization process.

5.5 Power Consumption Modeling for the Edge Cloud in the IoT

With the rapid development and deployment of of IoT applications, the power consumption and
its distribution over the complex hierarchical architecture of the IoT cloud is drawing more con-
cerns. Li et al. [107] conducted experiments on real-world test beds and drew a conclusion that the
edge cloud (incorporating the compute and storage resources) consumes three times more energy
than the sum of all IoT devices plus the wireless access points. A similar phenomenon is found
in fog computing. Bonomi et al. [108] argued that moving to fog computing is very important
for future cloud services and applications, especially for IoT applications with geographical dis-
tribution, latency sensitivity, and high resiliency. From the perspective of the power efficiency,
Jalali et al. [109] proposed two dataflow and time-based power models in the context of shared
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and non-shared network devices, respectively. In the work, they conclude that the power effi-
ciency of fog computing is higher than cloud computing under the same service request rate.
To achieve power saving, Wang et al. [110] proposed to cache various network resources into
fog devices in the edge layer, from which terminal devices can get quick response through pub-
lic network and device-to-device communication (D2D) technology. There is a trade-off between
the service quality (e.g., metrics like delay) and the reservation of power/energy consumption in
fog computing. Deng et al. [111] studied how to optimize overall power consumption with con-
straints on the service delay under different distributions of workload. Liang et al. [112] proposed
a fog-cloud hybrid wireless access network architecture based on the load distribution in fog com-
puting. They established a power model to estimate the power required and apply constraints to
ensure the service quality by adaptively offloading the computing tasks between the cloud and fog
devices.

IoT services may well be consuming even a larger amount of energy than the clouds do so
far, which definitely deserves more attention especially from the perspective of reining in their
power consumption. The main difficulty here is that one should not solely focus on the energy
consumed by the cloud servers or that by end devices. Instead, it is necessary to pay attention to
the interaction between the cloud, edge, and end layers and find out the potential correlation in
power consumption.

5.6 Joint Optimization of Power by Coordinating Workload on Servers

and the Cooling System

Although we do not reach the scope of modeling the cooling system’s power in this survey, it
generally accounts for a big part in a data center’s electricity bills. Studies have found that both
the power of cloud servers and cooling instruments are not only prominent but often are closely
related to each other. It is intuitive if we consider the fact that the more utilized the servers are,
the more heat they will be producing and, consequently, the harder the cooling system needs
to work. In view of this, it is of great significance to explore how to realize joint optimization
of their power via adaptive control over both cloud servers and cooling devices. This requires a
thorough understanding on the power behaviors of both servers and the cooling system and the
heat exchange design of data centers.

6 CONCLUSION

Monitoring the power consumption of cloud servers is the very foundation of any power and en-
ergy management strategies in modern cloud data centers. Although there are several methods to
acquire real-time power and a variety of models available for estimating or predicting the power
consumption of servers, how to select the best fit in practice requires much expertise. In view of
this, we presented a comprehensive survey that covers a broad range of techniques and studies
concerning how to collect power data from cloud servers, how to select a suitable power consump-
tion model, and how to establish a specialized power model on a set of power data. For each aspect,
we summarized existing techniques, models, and modeling methods in the form of a taxonomy.
By comparing existing approaches and solutions, we analyzed their advantages, limitations, and
suitable scenarios to provide useful guidance for researchers and engineers. In addition, as part
of the survey, we also pointed out several open challenges along with possible research direc-
tions covering the research on power estimation in new virtualized circumstances and edge/fog
environments and modeling methods using cutting-edge ML methods, aiming to provide useful
guidance and inspiration for research on energy consumption management and the application of
energy-aware cloud computing.
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