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Discrete Fourier transform (DFT) is used widely in almost all fields of science and
engineering, and is generally calculated using the fast Fourier transform (FFT) algorithm.
In this paper, we present a fast algorithm for efficiently computing a DFT of size 3 x 2™.
The proposed algorithm decomposes the DFT, obtaining one length-2" unscaled sub-DFT
and two length-2™ sub-DFTs scaled by constant real numbers. For efficiently computing
the scaled sub-DFTs, the constant real factors are attached to twiddle factors, combining
them into new twiddle factors. By using this approach, the number of real multiplications
is reduced compared with existing algorithms. To obtain regular datapath, a novel
implementation method is presented aiming at the implementation of the proposed
algorithm and making its datapath regular like the radix-2 FFT algorithm. The method can
be applied to other algorithms with L-shape butterfly. Experimental result shows that, the
proposed algorithm consumes less processing time than the existing algorithms for all

scale DFTs, and than FFTW, a C subroutine library of FFTs, just for small scale DFTSs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Discrete Fourier transform (DFT) is widely used in almost
all fields of science and engineering, where frequency-
domain representation of a signal has to be analyzed [1-4].
In communication area, it has gained extensive attention,
because it is used in orthogonal frequency division multi-
plexing (OFDM) systems. However, direct computation of the
DFT is a computationally intensive task. Therefore, highly
efficient algorithms for computing the DFT are of great
importance. Fast Fourier transform (FFT) is one class of
efficient algorithms to compute a DFT.

FFT sequence lengths include powers-of-two and also non-
powers-of-two. Hence, it is necessary to develop FFT algo-
rithms to evaluate DFTs whose lengths are powers-of-two and

* Corresponding author.
E-mail addresses: zhengdavid@hnu.edu.cn (W. Zheng),
Ikl@hnu.edu.cn (K. Li), lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.sigpro.2015.01.008
0165-1684/© 2015 Elsevier B.V. All rights reserved.

also non-powers-of-two. Since the discovery of the FFT [5],
considerable effort has been devoted to the development of
the FFT algorithms for DFTs whose lengths are powers-of-two
[6-10]. Bouguezel et al. [11] and Bi et al. [12] proposed a
general class of split-radix FFT algorithms, in which higher
split-radix FFT algorithms substantially reduce data transfer
and twiddle factor evaluations as compared to lower split-
radix FFT algorithms. Johnson and Frigo proposed a modified
SRFFT (MSRFFT), reducing the number of operations as
compared to SRFFT at the cost of more evaluations of twiddle
factors, a non-standard permutation of data orders, and
poorer computation precision [13]. Enlightened by MSRFFT,
Zheng et al. [14] proposed two FFT algorithms, outperforming
SRFFT in the three aspects of complexity, evaluations of
twiddle factors, and computation precision, and also proposed
an algorithm which has the lowest arithmetic complexity as
compared to published algorithms. Simultaneously, consider-
able effort has been devoted to FFT algorithms for DFTs whose
lengths are non-powers-of-two, such as the algorithms in
[15-20] for DFTs whose lengths contain factor 3.
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When examining the amount of time spent on opera-
tions, it is interesting to note that time spent on load/store
operations is more than that on actual arithmetic computa-
tions [1]. Reducing the number of floating-point operations
is of less significance to execution time than that used on
recent hardware [23-25]. Many applications require more
convenience and more flexibility rather than just a lower
computational complexity [26,27]. The highly symmetric
structure of DFT lends itself nice to implement in various
parallel schemes [28,29]. Considerable investigations have
been carried out into architectures that efficiently compute
FFT algorithms, and specifically into memory conflict of FFT
processors [30-32]. Contrary to good behavior on general
purpose computers, radix-2/4, radix-2/8, and radix-3/9 FFT
algorithms have higher complexity on FFT processors, since
the algorithms with L-shape butterflies are more irregular
than algorithms with non-L-shape butterflies.

Applications in which lengths of DFTs are 3 x 2™ are arising
recently [19,20,27]. The following are several examples.

1. FFT is an efficient tool to compute MDCT. The MPEG
audio coding standard uses dynamically window mod-
ified discrete cosine transform (MDCT) to achieve high
quality performance. In layer Il of MDCT-I and MDCT-II,
the length of data blocks is N#2™. The layer Il
specifies a longer block (N=36) and a shorter block
(N=12).

2. In the applications of OFDM demodulation and modern
microscopy, the sequence lengths may be non-powers-
of-two.

3. A 1536-points FFT processor is used in Third Generation
Partnership Project Long-Term Evolution.

The length-3 x 2™ DFT is a special case of the radix-6 FFT
algorithm of Suzuki et al. [17] and the radix-3/6 FFT of
Zheng and Li [19] when power of 3 is unity. The special
case has been well researched by Bi [21] in 1998 and
Bouguezel et al. [22] in 2004. However, there exists room
for improvement in computational complexity for this
special case.

Thus, we carry out a research for efficiently computing
the length—N = q x 2™ DFT, where g is an odd integer. Our
previous work [20] and this paper are two parts of the
research. In our previous work [20], we proposed a frame-
work in which, through the scaled DFT (SDFT) technique,
the performance of FFTs can be improved in both compu-
tational complexity and accurate precision. In this paper,
we propose an indexing scheme to map a standard FFT to a
non-standard FFT, and an implementation method to
iteratively implement the radix-2/8 FFT. The proposed
indexing scheme makes the algorithm in [20] clearer.
The proposed implementation method provides an itera-
tive way for the implementation of the radix-2/8 FFT,
which can take full advantage of the higher split-radix
FFT and reduce data transfer and coefficient evaluations
[22]. On the other hand, up till now, there does not exist
any FFT processor whose architecture is specialized for
the radix-2/8 FFT. Therefore, it is interesting to find an
approach that uses the radix-2/8 FFT to efficiently compute
length-N=3 x 2™ DFTs on a FFT processor.

In this paper, the length—N =3 x 2™ DFT is decom-
posed with the proposed radix-3 FFT. By using the pro-
posed radix-3 algorithm, two length-2™ sub-DFTs, which
are scaled by —15 and sin(27/3) respectively can be
obtained. The scaled sub-DFTs are implemented efficiently
with the proposed scaled radix-2/8 FFT. The proposed
radix-3 and scaled radix-2/8 FFTs easily allow us to achieve
the improvement in computational complexity.

The rest of the paper is organized as follows. Section 2
introduces the proposed algorithm in detail, including the
proposed radix-3 FFT and the scaled radix-2/8 FFT. Section 3
presents a method to implement the radix-2/8 FFT and the
proposed algorithm. Section 4 analyzes the performance of
the proposed algorithm by comparing its computational com-
plexity, accesses to lookup table, and execution time with
the algorithms reported in the literature [2,21,22]. Finally,
Section 5 offers concluding remarks.

2. Proposed radix-3 algorithm

In this section, we present a FFT algorithm for the
computation of length—N =3 x 2™ DFTs. In contrast with
our previous work [20], an indexing scheme is proposed
for mapping a standard FFT to a non-standard FFT, which is
a key technique for the proposed algorithm.

2.1. Proposed radix 3 algorithm

Suppose that x(n) is a sequence of length N, consisting
of complex numbers. The DFT of this sequence is also a
sequence, composed of the elements
N-1
X(l= " xmWy, k=0,1,..N-1, 1)
n=0
where Wik =e /27N and j=./—1. Assume that the
length N equals 3 x 2™ in the following discussion.
We now consider the decomposition of Eq. (1). The
proposed radix-3 FFT algorithm provides the following
decomposition:

N/3-1 N/3-1
X(y= 3" xCGmWis+W5 S xGn+N/3HWi;
n=0 n=0
N/3-1
+W3 ST xBn—N/3)WR,,
n=0
k=0,1,..,N—1, 2)

for the DFT. Two of the three sub-DFTs are rotated with
twiddle factors W5 and W3 k respectively. Generally, these
three sub-DFTs will be computed with a FFT algorithm.
Since their lengths are powers-of-two, the algorithm that
is used to compute the sub-DFTS can be the radix-2 FFT,
the radix-4 FFT, the radix-2/4 FFT, the radix-2/8 FFT, mix-
radix FFT, or MSRFFT, etc. In order to share operations
between the two sub-DFTs with rotating factors, the
decomposition of the proposed algorithm provides

N/3-1

XBl= Y x@n)+um)Ws,
n=20
k=0,1,...N/3-1, (©)
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X(3k+N/3) = (X(3k)+F3k))+ (— 1)N/3 mod 3jG3k),

k=0,1,...N/3—1,

X(3k—N/3) = (X(3k)+F3k)) — (— 1)N/3 mod 3jG3k),

k=0,1,..,N/3-1,
for Eq. (2), where

N/3-1

FBk=-15 Y umWwys,
n=0

and
N/3-1

k=0,1,...N/3-1,

“4)

©)

©)

GBk) = sin@x/3) Y vmWR%, k=0,1,...N/3-1.

n=0

0

The sequence u(n) in Egs. (3) and (6) and v(n) in Eq. (7) can

be represented in a matrix form

u(n)
R
where

wo |11
2‘[1 —1}'

X(3n+N/3)
x3n—N/3) |’

x(0)

x(1)
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It is noteworthy that the sub-DFTs in Eqgs. (3), (6) and (7)
are three non-standard DFTs. However, these three DFTs
can be directly computed with an algorithm which can
evaluate powers-of-two DFTs. Assume that the output of
the DFT in Eq. (6) directly computed through a FFT
algorithm is f(#). One can give the definition of f(n) as
the following:

N/3-1
fop=-15 3" umWyl,, n=0.1,...N/3-1. (10)
n=0

An indexing scheme is used, providing
F3k)=f(Bkmod N/3), k=0,1,...,N/3—1, 11

for mapping the sequence f(») in Eq. (10) to the sequence
F(3k) in Eq. (6). The indexing schemes used for computing
Egs. (3) and (7) are similar to Eq. (11). Assume that the
output of the DFT in Eq. (7) directly computed through a
FFT algorithm is g(77). One can give the definition of g(#) as
the following:

x(2)

x(3)

x(4)

x(5)

®)
N/3-1
g =sin(2z/3) »_ viWyls, n=0,1,..,N/3-1.
n=0
(12)
® o : .
An indexing scheme is used, providing
2 points X0
DFT
X(1)
2 points X(2)
DFT with
-1.5 X@3)
2 points = X(4)
DFT with
sin(-27/3) — X(5)
Fig. 1. Flowgraph for a size-3 x 2 DFT.
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Fig. 2.

Flowgraph for a size-3 x 4 DFT.
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G(3k)=gBkmodN/3), k=0,1,...,N/3-1, (13)

for mapping the sequence g(») in Eq. (12) to the sequence
G(3k) in Eq. (7).

We now summarize the proposed scheme for comput-
ing the length—N =3 x 2™ DFT. The proposed algorithm
decomposes the DFT in Eq. (1) into three sub-DFTs in
Egs. (3)—(5). The sub-DFT X(3k) is a general sub-DFT of size
N/3=2™. The sub-DFTs F(3k) and G(3k) are two scaled sub-
DFTs. The general sub-DFT will be evaluated with the
standard radix-2/8 algorithm and the two scaled sub-
DFTs will be computed with the scaled radix-2/8 algorithm
proposed in the next subsection. Figs. 1 and 2 show the
flowgraph of a size-3 x 2 DFT and the flowgraph of a size-
3 x 4 DFT respectively. The general flowgraph of a length-
N=3 x 2™ DFT is illustrated in Fig. 3. As compared to the
algorithms in [17,21,22], when a length—N = 3 x 2™ DFT is
decomposed decimation in time with these algorithms,
the rotating factors of two of three sub-DFTs are W¥ and
W ¥, where k is the index of outputs. (The decomposition
decimation in frequency is similar to this.) We have to load
the rotating factors from a lookup table, which must spend
an amount of time on access to memory. The proposed
radix-3 FFT algorithm, as described above, decomposes the
length—N =3 x 2™ DFT with two real constant factors
—1.5 and sin(27/3), which can save much time from
access to the lookup table since the constant factors can be
stored in the registers on processors.

2.2. Scaled radix-2/8 algorithm

A length-N=2" DFT can be computed efficiently by
using the radix-2/4 FFT [33], the radix-2/8 FFT [22], or
MSRFFT [13]. However, there does not exist a published
algorithm that is specialized for length—N =2™ scaled
DFTs. Hence, in this sub-section, a scaled radix-2/8 FFT is
presented for computing powers-of-two scaled DFTs. A
length-N DFT scaled by a real constant factor s is composed
of the elements:

In the proposed algorithm, s is —1.5 or sin(2z/3) and
length N is power-of-two. The decomposition of the
proposed scaled radix-2/8 FFT provides

X(ky=U(k)+s x WEZ1(k)
+5 x WiKZ3(k)+s x WakZs(k)+5 x WKZ7(k),
k=0,1,...,N—1, 15)

for the scaled DFT in Eq. (14), where

N/2-1
Ulky=s > x@mWy,, k=0.1,...N/2-1, (16)
n=0

N/8—1
Z1(k) = Zox(SnH)Wﬂ;g, k=0,1,...N/8-1, 17)
n=

N/8—1
Zs(k) = Zox(8n+3)w',3’;8, k=0,1,...N/8-1,  (18)
n=

N/8 -1
Zs(k) = Z(Jx(8n+5)W’,3,’j8, k=0,1,...N/8-1, (19
n=

N/8—1
Zky= > x@n+7)Wi's, k=0,1,...N/8—1. (20)
n=20
U(k), Z1(k), Z3(k), Zs(k), and Z;(k) are five sub-DFTs of the
DFT in Eq. (14). U(k) is a sub-DFT scaled by the factor s. In
order to share common operations, the following eight
equations are required:

X(ky=U(k)+((s x WKZ1(l)+s x W3KZs(k))

+(s x W3kZs(k)+s x Wikz,(ky)),
k=0,1,..,N/8—1, 1)

X(N/2+k)y=U(k)
—((s x WKZ1(k)+s x W3kzZ5(k))
+(s x W3KzZ3(k)+5s x WFZ7(ky)),
k=0,1,..,N/8—1, (22)

N-1
X(ky=s > xmWg, k=0,1,...N-1. 1)~ XWN/A+=UN/A4+k N
n=0 —Jj((s x WyZ1(k)+s x W}Zs(k))
x(0) > x(0)
) ' N/3 DFT — 3
X(N-3) > x(N-3
xX(N/3) . . X/
N/3 DFT .
X(N/3+3) With Permuting | y(n/3
Factor
15 order :
X(N/3-3) (/3
X(2NI3) > x(2N/.
N/3 SDFT
X(2N/3+3) with . > x(2V/
factor
X(2N/3-3) sin(2x/3) A L e

Fig. 3. General flowgraph of a DFT of length—N =3 x 2™.
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—(s x W3kzZ5(ky+5 x WKZ7(ky),
k=0,1,...,N/8—1, (23)

X(3N/4+k)=U(NN/4+k)
+i((s x WRZ1(k)+s x WRZs(k))
— (s x WikZs(k)+s x WZ7(ky)),
k=0,1,...,N/8—1, (29

X(N/8+k)=U(N/8+k)
+(Wh(s x WKZy(k)—s x W3KZs(k))
+W3(s x WikZs(k)—s x WiKZ7(k))),
k=0,1,..,N/8—1, (25)

X(5N/8+k)y=U(N/8+k)
—(W(s x WKZ(k)—s x W3KZs(k))
+W3(s x WikZs(k)—s x WIKZ;(k))),
k=0,1,..,N/8-1, (26)

X(3N/8+k)=UBN/8+k)
—j(Wi(s x WKZ1(k)—s x W3kZs(k))
—W3(s x WikZs(k)—s x WikZ;(k))),
k=0,1,...,N/8—1, 27)

X(7N/8+k)=UBN/8+k)
+i(Wi(s x WKZy(k)—s x WRkZs(k))
—W3(s x WxZs(k)—s x WZ7(k))),
k=0,1,..,N/8—1. (28)
There are many common operations in Egs. (21)-(28). For
example, the evaluation of X(N/2+k) requires only a
complex subtraction, since other operations are contained

in the evaluation of X(k). Eqs. (21)-(28) can be further
represented in the following matrix form:

Xk [ Uk
X(N/2+k) ae(k)
X(N/4+k) U(N/4+k)
X(3N/4+k) ao (k)
X(N/8+k) | = 2@ oy g | (29)
X(5N/8+k) be(k)
X(3N/8+k) UBN/8+k)
_X(7N/8+k)_ | bo(k)
where ® represents Kronecker product, and
1 1
m= . 30)
L O
14:{; Iz], 31)
L= 10 32
=lo 1) (32)

a,(k) and a.(k) in Eq. (29) can be expressed in a matrix
form:

ae(k) Zy(k)
bel) | ity @ Hy)SaHy ® LRy | 2 33
a) | = 4(Ib ® Hy)S4(Hy; ® Ih)Ry Zs |’ (33)
bo(k) Z7(k)
where
s x W¥ 0 0 0
0 sxW¥ 0 0
Ri=1 o 0 sxw} o | 34
0 0 0 s x Wik
1 0 0 O
0 Wi 0 o0
Ss=|o o0 1 o | (35)
0 0 0 w;
L 0
Ti=|y _pg,l| (36)

The DFT U(k) in Eq. (16) will be recursively decomposed if
its length is greater than 4. The DFTs Z;(k), Z3(k), Zs(k), and
Z7(k) in Egs. (17)-(20) will be evaluated with the standard
radix-2/8 algorithm. Let k vary from O to N/8—1, all
outputs of sequence X(k) can be obtained from Eq. (29),
or Egs. (21)-(28).

We now summarize the scheme that the proposed
scaled radix-2/8 algorithm is used for computing a
length—N = 2™ scaled DFT. The scaled DFT in Eq. (14) is
decomposed into a scaled sub-DFT of length—N/2 and four
general sub-DFTs of length—N/8. The scaled sub-DFT of
length—N/2 will be recursively decomposed and calcu-
lated according to the scaled radix-2/8 algorithm. The four
general sub-DFTs of length—N/8 are computed with the
standard radix-2/8 FFT. The flowgraph of the proposed
scaled radix-2/8 length-32 FFT is shown in Fig. 4, contain-
ing four butterflies: a special butterfly when k=0, a special
butterfly when k=N/16, and two general butterflies.

3. Datapath-regular implementation of radix-2/8 FFT
algorithm

From the architecture point of view, the regularity of a
FFT algorithm, a property that the operations which are
implemented at a certain position will appear at their
counterparts, is more significant than computational com-
plexity. Regularities of FFT algorithms can be categorized
by datapath and computation [34]. The regularity of
datapath is the property that signal data flows from one
stage to next stage along the same path. The regularity of
computation is the property that the same computations
are implemented in the same circumstances. Cooley-
Tukey's FFT is very regular. The radix-2/4 FFT follows
Cooley-Tukey's FFT, and the radix-2/8 FFT follows the
radix-2/4 FFT. Owing to higher complexity, algorithms
with L-shape butterflies, such as the radix-2/4 FFT and
the radix-2/8 FFT, are rarely implemented on FFT proces-
sors. Multicore parallel processors also favor those algo-
rithms with non-L-shape butterflies. The regular structure
results in faster implementation on general processors and
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x(0) — X(0)
x(2) — X(1)
x(4) — X(2)
xgg; — ))g(i)
w8y
x(10) — XES%
jgﬁg ] A 16-points DFT )’ggg
;§}§§ ] Scaled by s ﬁg;
x(20) — V4044 X(10)
x(22) —| OO/ X(11)
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28) |
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r ] A e
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x(15) —|Ad4points DFT | —j — NP2 NS X(30)
X(23) —| 3 X Wiy o wd N XG1)
Fig. 4. Flowgraph of a length-32 DFT scaled by s.

simpler implementation on FFT processors. Therefore, it is

interesting for the radix-2/8 FFT to be implemented more

regularly. The irregularity of datapath handled by permuting

the orders of intermediate data will result in a notably slower

software implementation [35,36], though it is attractive for wk

hardware implementations. In this section, we present an wil ok -

implementation method that makes the datapath of the 8 -4 -

radix-2/8 FFT regular like the radix-2 FFT. The method does w3k ~ —J D

not need to permute the order of immediate data. w3 wTk —J

3.1. Butterfly unit of two-to-two

The main idea of the proposed implementation of the
radix-2/8 FFT lies in the observation that the flowgraph of
the radix-2/8 FFT is the same as that of the radix-2 FFT and
the difference between these two FFT algorithms lies in
the locations of twiddle factors. To make datapath of the
radix-2/8 FFT regular like the radix-2 FFT, each of
general L-shape butterflies of the radix-2/8 FFT is divided
into 4 types of 8 butterfly units of two-to-two (BU-2). A
BU-2 is similar to a radix-2 FFT butterfly, with two
inputs and two outputs, a complex addition, a complex
subtraction, but 0, 1, or 3 complex multiplications as
compared to 1 complex multiplication of a general radix-
2 FFT butterfly. The first type of BUs-2 is the same as a
special radix-2 FFT butterfly for the computation of length-
2 DFTs, appearing at the right of the general L-shape
butterfly of the radix 2/8 FFT in Fig. 5. Assume that the
two inputs of a BU-2 are x(m) and x(n), and the BU-2 is
computed in place. We give an expression of this type of
BUs-2 as follows:

{ X(m) = x(m)+x(n),

X(n) = x(m) —x(n), 37)

Fig. 5. A general butterfly of radix-2/8 FFT algorithm.

where X(m) and X(n) are the outputs of this type of BUs-2.
The second type of BUs-2 is the same as another special
class of radix-2 FFT butterflies, corresponding to the middle
part of the general L-shape butterfly in Fig. 5. One can
provide

{i(m) = x(m)+x(n), 38)

(n) = —j(x(m)—x(n)),

for the expression of this type of BUs-2. The third and fourth
types of BUs-2 correspond to the left part of the general L-
shape in Fig. 5. We can give their expressions as follows:

X(m) = x(M)W§ +x(n))Why,

1 5k (39)

X(n) = (X(M)Wg —x(n) W3g),
and

X(n) = x(MW3 —x(n)WiK, 40

{ X(m) = (Xm)W3 +x(m)W3k,
where the variable N, which is equal to twice the number
of BUs-2 contained in the BU-2 block, is the width of the
BU-2 block, and the variable k is the ordinal number of
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the BU-2 in the BU-2 block, in the range from O to N/8—1.
In Egs. (37)-(40), the variable n is equal to m+N/2. A BU-2
block consists of certain a type of BUs-2, which is similar to a
butterfly block of the radix-2 FFT. From Fig. 5, one can easily
read all BUs-2 in a general radix-2/8 butterfly: four BUs-2
with the first type, two BUs-2 with the second type, one
BU-2 with the third type, and one BU-2 with the fourth type.

3.2. BU-2 block indexing

One of the BU-2 blocks of the radix-2/8 FFT matches
one of the butterfly blocks of the radix-2 FFT. However, in
contrast with the fact that one class of the radix-2 FFT
butterflies compose one type of radix-2 butterfly blocks,
the four types of BUs-2 compose the four types of BU-2
blocks of the radix-2/8 FFT. The flowgraph of a length-16
DFT is depicted in Fig. 6, where the numbers in circles
are the types of BUs-2. It is easy to read all BUs-2 and
their types, and all BU-2 blocks and their widths in this
figure.

In the following discussion of BU-2 block indexing, a
BU-2 block of width N, consisting of certain a type of BUs-
2, is named B(N, t), where t = 0, 1, 2, 3 indicates the type
of BUs-2 of the BU-2 block. As illustrated in Fig. 6, every
two smaller BU-2 blocks can be referred to as a decom-
position of their right bigger BU-2 block. A BU-2 block of
width N is divided into two smaller BU-2 blocks of width
N/2. Thus, the type t of a smaller BU-2 block can be
determined by the BU-2 type of a bigger BU-2 block. The
decomposition of BU-2 blocks of radix-2/8 FFT has the
following rules:

1. A BU-2 block of width N and type t=0 is decomposed
into two length—N/2 BU-2 blocks of types t=0 and t=1
respectively, i.e., B(N,0)—~B(N/2,0)B(N/2,1).

2. A BU-2 block of width N and type t=1 is also decom-
posed into two smaller blocks with types t=2 and t=3
respectively, i.e., B(N,0)—B(N/2,2)B(N/2,3).

xX(0) X(0)
X(8) >©< 0 X(1)
X(4) >¢o<>< 0 X(2)
x(12) >®< W X(3)
s XXX

0 0 X(4)
x(10) >®< 1 % 0 X(S)
X(6) 1 /U\ 0 X(6)
sty N AU
x(1) 0 X(8)
o 2 YN,
X(5) 2 1 /><>%<><\ X(10)
x(13) >@< /U\ I 0 X(11)

x(3) 1 X(12)
X(11) >@< 3 />§1;§<\ X(13)
X(7) 3 X(14)
X(15) >@< X(15)

Fig. 6. Flowgraph of a length-16 DFT.

3. A BU-2 block of width N and BU-2 type t=2 or t=3 is
decomposed into two length—N/2 BU-2 blocks with
BU-2 type t=0, i.e., B(N,2 or 3)—B(N/2,0)B(N/2,0).

In the above description, — denotes the decomposition of
BU-2 blocks. The relationship between BU-2 type and BU-2
block decomposition is illustrated in Fig. 7. The numbers in
circles denote BU-2 types. For clarity, the widths of blocks
are omitted.

We can obtain the BU-2 type of a BU-2 block in two
ways: reading it from a table in which all BU-2 types of
BU-2 blocks are pre-calculated and stored in advance, or
evaluating it directly. In the way of pre-calculation and
table storage, a BU-2 block needs 2 bits memory to store
its BU-s type, and a length-N DFT only needs N/16 bytes
memory to store all BU-2 blocks (only quarter BU-2 blocks
require to be stored, because the BU-2 blocks in the other
parts can refer to BU-2 types of these quarter BU-2 blocks).
Fig. 8 shows the table to store BU-2 types of quarter BU-2
blocks of a 64-points DFT. When we want to refer to BU-2
type of the jth BU-2 block from the table, whatever stage
the block is in, if j < N/4, the jth entry in the table is the
type of the block; otherwise, the type of the block is
represented by the (j mod N/16) th entry in the table.

In the way of the direct computation of BU-2 blocks of a
length-N=2" DFT, the computation needs to iteratively go
through m stages. In the ith stage, there are 2'~' blocks
needed to be dealt with, where i e[1,m]. Set @ =2"? (or
a=21%) where |x] is the largest integer not greater than
x), and f =j. Let £(j) be the BU-2 type of the jth block of
any stage. The £(j) can be evaluated through the following
three steps:

1. While (= 8)
(a) While (f<a) a<—a/2;
(b) a—a/4;
(c) p<p mod a.

2. If p <4, then &(j)=p.

3. If4 <[ <8, then &(j)=0.

The way to directly compute the BU-2 type of a block does
not require any extra memory. All arithmetic operations
can be performed by bitwise shift operations.

There are three properties which are significant for
both the pre-calculation and the direction evaluation. All
BU-2 types of all BU-2 blocks can be obtained iteratively
through these three following properties:

1. If j <4, then &(j) =j.

2. If4<j<38, then &(j)=0.

3. &G | na) = &) where n=0, 1, 2, ..., or 7, and | denotes
the bitwise OR operation.

3.3. Three loops program for length-2™ DFTs

There are two methods to implement a FFT algorithm, i.e,, a
recursive method and an iterative method. For a FFT algorithm,
the recursion provides a method for theoretical analysis and
decomposition of a DFT into smaller sub-DFTs. The iteration is
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Fig. 7. Block decomposition of radix-2/8 FFT algorithm.
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Fig. 8. Table to store category identifications of a length-N=64 DFT.

much faster than the recursion on general processors. It is
often that FFTs are implemented in the iterative method on
general processors.

For the computation of a length-N=2" unscaled DFT, a
three loops iterative C/C+ + program has been developed
and implemented. In the program, there are m stages
required to be gone through. In the ith stage, the DFT is
decomposed into 2i=1 BU-2 blocks, where i=1,2,...,m.
The BU-2 types of the BU-2 blocks can be obtained by
reading from a table or directly computing. What need to
be done for each BU-2 block is to implement all BUs-2
according to their type. The program goes through m
stages in the outer loop, implements all BU-2 blocks for
every stage in the middle loop, and deals with all BUs-2 of
every BU-2 block in the inner loop. Before the three loops,
the coefficient table is evaluated and stored, and the input
terms are permuted according to the bit reverse algorithm.
If we want to get the category of a block from the lookup
table, the table needs to be evaluated before the three
loops in this program. Algorithm 1 shows the structure of
the program. By comparing with the program in [37], it
can be seen that the datapath of this program is regular.

Algorithm 1. Regular implementation of the radix-2/8 DIT
FFT algorithm.

Require: Input sequence of the length-N=2" DFT, x(n)
Ensure: Output sequence of the DFT, x(n)
Initiate coefficient table
Permute the orders of intputs
span<1
number_block—N/2
fori—mto 1do
for j«number_block—1 to 0 do
m«j x span x 2
n<m-+span
for k<0 to span-1 do
Calculate the outputs of the BU-2 of inputs x(m) and x(n)
(in terms of the category of the jth block)
mem+1
nen+1
end for
end for
number_block — number_block/2

span<«span x 2
end for
return x(n)

For a length-2™ sub-DFT scaled by a real constant s, the
three loops program is fundamentally similar to Algorithm 1,
except that (1) the coefficients must be the products of the
scaling factor s and the original coefficients when j=2 or 3
for all i, and (2) the results of BUs-2 must be multiplied by
the scaling factor s for i=1 and j=0 or 1.

We now summarize the proposed implementation
scheme. BU-2 and BU-2 block are two basic executing
units in the proposed method. The BUs-2 of the radix-2/8
FFT are classified into four types by their multiplications,
and the BU-2 blocks are categorized into four types
accordingly. The BU-2 type of a BU-2 block is determined
by the decomposition of a bigger BU-2 block. The BU-2
type of a BU-2 block can be calculated and stored in a table
in advance before the computation of a DFT, and they can
also be computed directly.

4. Performance analysis

In this section, we consider the performance of the
proposed algorithm for computing a DFT of length-3 x 2™
by analyzing and comparing it with the algorithms
reported in [2,19,21,22]. In addition, we implement the
proposed algorithm in two ways (recursive implementa-
tion and iterative implementation) on an actual processor
and compare their execution time.

4.1. Arithmetic complexity

Let Ay and My be respectively the numbers of real
additions and multiplications required by a DFT of length-N.
Let My be the number of real multiplications required by a
scaled DFT of length-N. Assume that a complex multiplication
requires four real multiplications and two real additions.

A size-N=2" sub-DFT is implemented with the stan-
dard radix-2/8 FFT algorithm discussed in Section 3.3. The
numbers of operations required by the DFTs with lengths-
N=2, 4, and 8 are given in Table 1.
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When N > 8, the decomposition of the radix-2/8 FFT
consists of dividing a DFT of size N into one sub-DFT of size
N/2 and four sub-DFTs of size N/8. This is achieved by
N/8—2 general butterflies and 2 special butterflies (when
k=0 and k=N/16). A general butterfly of the standard
radix-2/8 FFT algorithm requires 20 real multiplications
and 44 real additions. The special butterfly when k=0
requires 4 real multiplications and 36 real additions. When
k= N/16, the special butterfly requires 16 real multiplica-
tions and 40 real additions. Therefore, it can be seen that
the expressions of the numbers of real multiplications and
real additions required by the standard radix-2/8 FFT
algorithm for length-N=2™ DFTs are respectively

MNI%N—20+MN/2+4MN/8, N> 8, (41)

AN :%N_12+AN/2+4AN/8= N> 8. (42)

A size-N=2™M scaled DFT is implemented with the
proposed scaled radix-2/8 FFT algorithm described in
Section 2, where the required number of real additions is
equal to that required by an unscaled DFT implemented
with the standard radix-2/8 FFT algorithm. The general
butterfly and special butterfly when k=N/16 of the scaled
radix-2/8 FFT algorithm require the same number of real
multiplications as that required by an unscaled DFT
implemented with the standard radix-2/8 FFT algorithm.
Four extra real multiplications are required by the scaled
radix-2/8 FFT algorithm for special butterfly k=0. The
expression of the number of real multiplications required
by the scaled radix-2/8 FFT algorithm is

?VI%N—16+M;V/2+4MN/3, N>8, (43)

where Mj =2, M5 =4, M} =8, and M3 = 16.
For a DFT of length-N=3 x 2™, the implementation
with the proposed algorithm contains the evaluations of

Table 1
Arithmetic complexity of 2-, 4-, and 8-points DFTs.

N Multiplications Additions
2 0 4
4 0 16
8 4 52
Table 2

Arithmetic complexity for N=3 x 2™.

a length-2™ unscaled sub-DFT, two length-2™ scaled sub-
DFTs, and N/3 3-points DFTs. A 3-points DFT requires only
12 real additions (it is different from the general 3-points
FFT algorithm). Thus, the arithmetic complexity required
by the proposed algorithm for computing a DFT of length-
N=3x2"is

My =My/;3+2 ><Mf\,/3, N>3, (44)

AN =4N+3AN/3. N> 3. (45)

The arithmetic complexity of the proposed algorithm and
the algorithms reported in [21,22] are given in Table 2.
From the table, it can be seen that the proposed algorithm
saves floating-point operations compared with the algo-
rithms in [21,22] when lengths are greater than 24.
Besides the special case when the lengths of the sub-
DFTs are 24, the algorithms in [21,22] have to multiply
every input/output elements of corresponding scaled sub-
DFTs by scaling factors, which requires slightly less than
2™+2 real multiplications. However, the scaled sub-DFT is
implemented with the proposed scaled radix-2/8 FFT, and
the scaling factor s is attached the twiddle factors of the
FFT, which requires only 8m real multiplications. Thus, we
can see that the proposed algorithm reduces slightly less
than 2™*2 —8m real multiplications for the length-3 x 2™
DFT compared to the algorithms in [21,22].

Two comparisons of the proposed algorithm and the
radix-3/6 FFT in [19] are given in Tables 3 and 4 respec-
tively. Table 3 compares the computational complexity for
length—N = 6™ DFTs. Table 4 compares the computational
complexity for length—N =3 x 2™ DFTs. From these two
tables, one can see that the radix-3/6 FFT is suitable for
length—N = 6™ DFTs, and the proposed algorithm is more
efficient than the radix-3/6 FFT for computing the
length—N = 3 x 2™ DFTs. Total, as compared to our previous
paper [19], the proposed algorithm saves the number of
operations by 2N —8m — 16 for the length—N = 3 x 2™ DFT.
As compared to our previous paper [20], the proposed
algorithm optimizes the number of data transfers, address
generations, and twiddle factor evaluations or accesses to
the lookup table. Further, the proposed algorithm achieve
the computational complexity being equal to that of [20]
when the powers-of-two sub-DFTs in [20] are implemented
with the radix-2/4 FFT. In addition, the proposed algorithm

N Algorithm in [22] Algorithm in [23] Proposed algorithm
My An Total My An Total My An Total

24 36 252 288 36 252 288 36 252 288
48 128 624 752 128 624 752 104 624 728
96 356 1500 1856 372 1500 1872 292 1500 1792
192 960 3504 4464 936 3528 4464 768 3528 4296
384 2404 8028 10 432 2348 8100 10 448 1964 8100 10 064
768 5824 18 096 23920 5696 18 288 23984 4840 18 288 23128
1536 13 668 40 284 53952 13220 40812 54032 11508 40812 52320
3072 31424 88 752 120 176 30232 90 072 120 304 26 768 90 072 116 840
6144 71012 193 884 264 896 68 316 196 980 265 296 61180 196 980 258 160
12288 158 400 420528 578 928 151856 427776 579 632 137 592 427 776 565 368
24 576 349 540 906 588 1256128 334164 923196 1257 360 305732 923 196 1228928
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Computational complexity for length-N = 6™ DFTs with m e (I,[+2) [19].

N In [19] Proposed algorithm
My An Total My An Total
4%x9=36 128 464 592 128 464 592
8x9=72 276 1092 1368 260 1108 1368
4 x27=108 656 1952 2608 656 1952 2608
8 x27=216 1340 4364 5704 1316 4444 5760
16 x 27=432 2912 9768 12 680 3168 9656 12824
16 x 81=648 5668 16 468 22136 5636 15796 21432
32 x81=1296 11704 35824 47 528 12 888 35472 48 360
64 x 81=2592 25268 78 100 103 368 28372 76 948 105 320
16 x 243=3888 44720 127 576 172 296 48 960 129 476 178 436
32 x 243=7776 92796 273164 365960 105 700 278 396 384 096
Table 4 Table 5

Computational complexity for length-N =3 x 2™ DFTs.

Execution time of recursive implementation (repeatedly 1000 times).

Algorithm Total

Radix-3/6 FFT in [19]
Proposed algorithm

4Nm+8
4Nm—2N+8m+24

reduces the power of quantization noise as compared with
the algorithms in [20,21,22]. However, considering the rea-
ders of signal processing, the discussion does not appear in
this paper.

4.2. Execution time

Execution time of a DFT is determined by many factors,
such as arithmetic complexity, accesses to lookup table,
hardware architecture, and iterative or recursive implemen-
tation. The proposed algorithm is implemented in two ways,
a recursive method and an iterative method. We compare
their execution times with FFTW and the algorithms in
[21,22]. The comparison of the recursive implementation is
conceptive. The iterative implementation has real-life mean-
ing. The recursive programs are performed repeatedly 1000
times on processor E6700 (32 kB data cache and 32 kB code
cache respectively with 8 ways 64 bytes lines). The execution
times are shown in Table 5. It can be seen that the proposed
algorithm conceptively consumes less execution time than
the algorithms in [21,22].

The iterative algorithm and FFTW are performed rep-
eatedly 100 times on CPU E6700 with Studio 2005 in
Windows 7. FFTW runs in two models: MEASURE and
ESTIMATE. (MEASURE model will optimize its program for
the next run by measuring the performance of FFTW with
different parameters in the real-life environment. ESTI-
MATE model configures the parameters of program by
estimating.) Each implementation of both FFTW and the
proposed algorithm must load the inputs. If FFTW loads the
inputs only once for the 100 repeated executions, its execu-
tion time will be reduced rapidly. Execution time of the first
run of FFTW is viewed as the initiating time and is not
contained into the total execution time. Time to initiate the
two tables (storing block categories and coefficients) has been
included into execution time of the proposed algorithm. Time

N In [21] In [22] Proposed
192 0.391 0.368 0.323
384 0.891 0.857 0.822
768 2.098 1.988 1.892
1536 4.686 4.537 4177
3072 10.412 10.148 9.230
6144 22.941 22.313 20.515
12288 50.201 49171 45.027
24576 108.884 106.620 98.409
49152 237.600 234.000 213.400
Table 6
Execution time repeatedly 100 times.
FFTW with
N Proposed
MEASURE ESTIMATE
3 x 256 0.000 >0.015 0.047
3x 512 0.015 >0.031 0.078
3 x 1024 0.031 0.047 0.078
3 x 2048 0.078 >0.078 0.124
3 x 4096 0.156 >0.078 0.188

to free and destroy memory and objects is ignored. Owing to
each experiment in FFTW's execution a different execution
time, the execution time of FFTW with MEASURE model is
counted by its smallest value. Table 6 shows the execution
time of FFTW and the proposed algorithm. From this table,
we can see that the proposed algorithm consumes less time
than FFTW when N is small. When N is large, the proposed
algorithm consumes execution time that is between those
spent by MEASURE and ESTIMATE model of FFTW. The
reason why FFTW with MEASURE model consumes less time
when N is large lies in that FFTW can adapt to hardware to
maximize performance but our program cannot. To allow
readers to understand how the proposed algorithm saves the
computation time, we have provided the c/c++ code as
supplemental material for readers' read and comparison. The
code is developed with Microsoft Visual Studio 2008 on
Windows 7, and requires the support of version 3.3 of FFTW.
The code contains three main functions:
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® program3x2mTest(): test the validity of the program.

® Execute_FFTW(): test time of FFTW on 3 x 2™ DFTs.

® Executing_time(): test time of the proposed algorithm
on 3 x 2™ DFTs.

5. Conclusions

In this paper, we have proposed an algorithm for
computing DFTs of length-N=3 x2™. We have also
presented a method to implement the radix-2/8 FFT
algorithm and the proposed algorithm. The algorithm
divides decimation-in-frequency the DFT into three
length—N/3 sub-DFTs. The two length—N/3 sub-DFTs
scaled by constant factors are evaluated by the proposed
scaled radix-2/8 algorithm. The proposed algorithm
reduces the number of real multiplications compared
with the related algorithms. The implementation
method makes datapath of the radix-2/8 FFT algorithm
regular like the radix-2 FFT algorithm, and gives theo-
retic support to its implementation in both hardware
and software. Experimental results show that the pro-
posed algorithm consumes less execution time. The idea
of the proposed algorithm can be applied to a DFT of
length-q; x g,, reducing its number of real operations,
where q; and g, are co-prime with each other. The
proposed implementation method can be applied to
other algorithms with L-shape butterflies, making their
datapath regular like fixed-radix FFT algorithms.
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