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Abstract. Discrete Fourier transform (DFT) finds various applications in signal processing, image processing, artificial
intelligent, and fuzzy logic etc. DFT is often computed efficiently with Fast Fourier transform (FFT). The modified split radix
FFT (MSRFFT) algorithm implements a length-N=2m DFT achieving a reduction of arithmetic complexity compared to
split-radix FFT (SRFFT). In this paper, a simplified algorithm is proposed for the MSRFFT algorithm, reducing the number
of real coefficients evaluated from 5/8N − 2 to 15/32N − 2 and the number of groups of decomposition from 4 to 3. A
implementation approach is also presented. The approach makes data-path of the MSRFFT regular similar to that of the
radix-2 FFT algorithm. The experimental results show that (1) MSRFFT consumes less time on central processing units
(CPUs) with sufficient cache than existing algorithms; (2) the proposed implementation method can save execution time on
CPUs and general processing units (GPUs).

Keywords: Fast Fourier transform (FFT), general processing unit (GPU) parallelism, modified split-radix (MSR), split-radix
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1. Introduction

Discrete Fourier transform (DFT) is one of the
most important tools in signal processing, image pro-
cessing, artificial intelligent, fuzzy logic, intelligent
systems, and web-based applications etc [23, 29, 30].
The DFT is generally implemented with a class of
algorithms called fast Fourier transform (FFT). Since
the introduction of Cooley and Tukey’s algorithm
in 1965 [5], considerable research has been con-
ducted resulting in a large number of algorithms

∗Corresponding author. Weijin Jiang, School of Computer and
information engineering, Hunan University of Commerce, Chang-
sha 410205, China. E-mail: xsph 519@163.com.

for length-2m DFTs [1, 6, 14, 26]. One of these
algorithms, split-radix FFT (SRFFT), achieved a
reduction of order of magnitude of computational
complexity over Cooley and Tukey’s algorithm. The
algorithm was presented by Yavne in 1968 [31] and
subsequently rediscovered simultaneously by various
authors [6, 19, 28] in 1984. Grigoryan and Agaian
[11] presented another algorithm, which reduces the
number of arithmetic operations for DFTs of lengths
greater than 256 at the expense of more compli-
cated structure compared with SRFFT; however, it
is computationally less efficient for smaller lengths.
The record of computational complexity was bro-
ken by an invariant of SRFFT, i.e., the modified
SRFFT (MSRFFT) algorithm, proposed by Johnson
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and Frigo in 2007 [13]. Subsequently, the record was
broken by two algorithms using scaled radix-2/8 FFT
(SR28FFT) in 2014 [33]. Other two algorithms using
SR28FFT in [33] can compute a power-of-two DFT
with less arithmetic operations, higher computation
accuracy, and less accesses to the lookup table of
twiddle factors over SRFFT.

Today FFT [5] plays an important role in numer-
ous applications. In particular FFT requires O(N)
memory access versus only O(N log N) floating
point operations, requiring not only high computation
throughput but also high memory bandwidth. More-
over, FFT requires extensive stride memory access, so
simple mapping to stream programming could result
in significant loss in performance. However, for many
years, the time to perform a DFT is dominated by
real number arithmetic, and considerable effort was
devoted to achieving and proving the lower bounds
of the operation count (real additions and multiplica-
tions), i.e., “flops” (floating-point operations) [8]. On
the recent computer hardware, performance of a fast
Fourier transform (FFT) algorithm is determined by
many factors rather than sole arithmetic operations
[7, 9]. Optimizing the number of arithmetic opera-
tions has been the focus of extensive researches, but
memory management is of comparable importance
on modern processors [3]. First, the implementation
of FFTs involves extensive memory accesses to inputs
and twiddle factors. Second, memory access is expen-
sive due to long latency and high power consumption.
Finally, memory size dominates chip area of FFT
processors.

Besides central processing units (CPUs), general
processing units (GPUs) are increasingly starting to
be used as commodity accelerators. The computation
cores of GPUs are optimized for repeating sim-
ple graphical operations, resulting in sporting much
higher memory bandwidth as well as floating-point
performance. Although their current power consump-
tion as a unit is fairly high (often 100 Watts or more),
because of their massive compute power their flops
per-watt figure is much lower than that of conven-
tional CPUs (In reality, the works of CPUs contain
many other works besides computations).

The difficulty, of course, is that GPUs are much
less general purpose than conventional CPUs, so
their applicability in a wide-ranging set of high per-
formance computing (HPC) applications must be
carefully studied, especially to identify their pros and
cons as well as devising effective algorithms, pro-
gramming models, and programming techniques &
methodologies, so as to attain optimal performance,

thereby eliminating the “hype” factor and becom-
ing truly General-Purpose Graphics Processing Units
(GPGPUs). However, usages of GPUs for scientific
computing have been mostly dominated by those
with needs for a large number of tightly-coupled
floating-point operations such as N-body problem
[21, 25], or those based on kernel matrix multi-
plication [16] accelerations. As the nature of these
applications is largely synonymous to graphics pro-
cessing, i.e., abundance of independent parallelism,
the ratio of floating point operations to memory
access being large, as well as memory being accessed
in a successive, “stream” fashion, they (obviously)
can be programmed and accelerated fairly easily,
using conventional shader graphics languages such
as NVIDIA Cg [18] or Microsoft High Level Shader
Language (HLSL), and using stream programming
abstractions. BrookGPU [4] and Microsoft Acceler-
ator [27] are extensions of C, and further develop
these concepts by hiding away the complexities
of underlying shader programming and allowing
the programmer to focusing on stream program-
ming. However, when the kernel algorithm(s) for an
application requires descriptions beyond stream pro-
gramming, GPU applicability is not well investigated.

To improve MSRFFT in practicality and computa-
tional complexity, we carry out a research. This work
and Ref. [33] are the two parts of the research. The
purpose of this paper is to enhance the practicality of
the MSRFFT algorithm. A modification is made for
the algorithm, which reduces the number of twiddle
factors evaluated and saves one group of decompo-
sition. In addition, we propose an implementation
method for the MSRFFT algorithm. The method
transforms an L-shape butterfly of the MSRFFT
algorithm into several non-L-shape butterflies, and
makes the data-path of MSRFFT regular similar to
the radix-2 FFT. We implement the algorithm on an
AMD Opteron processor 4122 CPU and an NVIDIA
GeForce GT 750M GPU by the proposed implemen-
tation method, and the results show that the MSRFFT
algorithm consumes less time than radix-2/4 and
radix-2/8 FFT algorithms for small scale DFTs.

The rest of this paper is organized as follows.
The simplified MSRFFT algorithm is described
and its performance is analyzed in Section 2. Sec-
tion 3 presents the implementation method for the
simplified MSRFFT algorithm, as well as gives a
comparison of CPU time of radix-2 FFT, SRFFT and
MSRFFT. Section 4 discusses the GPU parallelism
and gives GPU time of radix-2 FFT and MSRFFT.
Section 5 concludes this paper.



W. Zheng et al. / Datapath-regular implementation of modified split-radix FFT 959

2. Simplified MSRFFT algorithm

Given a length-L sequence x(l), its DFT is also a
length-L sequence defined by

X(k) =
L−1∑
l=0

x(l)wlk
L, k = 0, 1, ..., L− 1, (1)

where wlk
L = e−j(2πlk/L), j=

√−1, and the length-L is
assumed to be power-of-two.

2.1. Algorithm

Many algorithms can compute the DFT in Equation
(1). It is well known that for powers-of-two DFTs,
the MSRFFT algorithm requires the lowest arithmetic
operations among existing algorithms in the literature
until 2014. However, the following several aspects
affect its performance and practicality.

– The L-shape butterfly makes its hardware imple-
mentation more complex.

– No specifical method is presented for its imple-
mentation. If its implementation is conducted
according to the methods presented in [10, 15,
22, 24, 32], it will be very difficult.

– MSRFFT requires more evaluations of twiddle
factors than other algorithms.

Hence, it is interesting to (1) optimize the mem-
ory management of the MSRFFT algorithm and
(2) present an implementation method for the algo-
rithm. In the following, we consider to simplify the
MSRFFT algorithm. The simplified MSRFFT algo-
rithm provides

X(k) = U(k)+ (Z(k)t(L, k)

+Z
′
(k)t∗(L, k))s(L, k), (2)

k = 0, 1, ..., L− 1,

for the decomposition the DFT in Equation (1), where
t(L, k) and s(L, k) are defined by

s(L, k)

=

⎧⎪⎨
⎪⎩

1, L ≤ 4,

s(L/4, k) cos (2πk4/L), L ≤ L/8,

s(L/4, k) sin (2πk4/L), L/8 < L < L/4,

(3)

and

t(L, k) =

⎧⎪⎨
⎪⎩

1, k = 0,

1− j tan (2kπ/L), L ≤ L/8,

cot (2kπ/L)− j, L/8 < N < L/4,

.

(4)
The three sub-DFT of U(k), Z(k), and Z

′
(k) are

defined as follows:

U(k) =
L/2−1∑

l=0

x(l)wlk,

k = 0, 1, ..., L/2− 1, (5)

Z(k) =
L/4−1∑

l=0

x(4l+ 1)wlk,

k = 0, 1, ..., L/4− 1, (6)

Z
′
(k) =

L/4−1∑
l=0

x(4l− 1)wlk,

k = 0, 1, ..., L/4− 1. (7)

The sub-DFT U(k) in Equation (2) will be decom-
posed recursively according to Equation (2) until its
length is smaller than 4. The decomposition of the
sub-DFTs Z(k) and Z

′
(k) in Equation (2) provides

τ(k) = V (k)+ B(k)t(M, k)+ B
′
(k)t∗(M, k),

k = 0, 1, ..., M − 1, (8)

for more efficient computation, where M is the length
of this sub-transform, τ(k) in Equation (8) is derived
from Z(k) and Z

′
(k) in Equation (2), and the three

sub-DFTs of V (k), B(k), and B
′
(k) in Equation (8)

are defined by

V (k) =
M/2−1∑
m=0

x(m)wmk,

k = 0, 1, ..., M/2− 1, (9)

B(k) =
M/4−1∑
m=0

x(4m+ 1)wmk,

k = 0, 1, ..., M/4− 1, (10)

B
′
(k) =

M/4−1∑
m=0

x(4m− 1)wmk,

k = 0, 1, ..., M/4− 1. (11)

B(k) and B
′
(k) in Equation (8) will be decomposed

recursively according to Equation (8) until lengths of
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all their subsequent sub-DFTs are no greater than 4.
The sub-DFT V (k) in Equation (8) provides decom-
position of

V (k) = F (k)s(N/2, k)/s(2N, k)

+(C(k)t(N, k)+ C
′
(k)

t∗(N, k))s(N, k)/s(2N, k), (12)

for more efficient computation, where N is the length
of this sub-transform. The sub-DFTs of F (k), C(k),
and C

′
(k) are defined as follows:

F (k) =
N/2−1∑
n=0

x(n)wnk,

k = 0, 1, ..., N/2− 1, (13)

C(k) =
N/4−1∑
n=0

x(4n+ 1)wnk,

k = 0, 1, ..., N/4− 1, (14)

C
′
(k) =

N/4−1∑
n=0

x(4n− 1)wnk,

k = 0, 1, ..., N/4− 1. (15)

The three sub-DFTs in Equation (12) will be recur-
sively decomposed according to Equation (8) until its
lengths are no greater than 4.

We now summarize the scheme of the simpli-
fied MSRFFT algorithm for computing length-N=2m

DFTs. The length-N DFT is decomposed into one
length-N/2 sub-DFT and two length-N/4 sub-DFTs
in Equation (2). The length-N/2 sub-DFT is recur-
sively decomposed in Equation (2). Each of the
length-N/4 sub-DFTs is decomposed into one length-
N/8 sub-DFT and two length-N/16 sub-DFTs in
Equation (8). The length-N/16 sub-DFTs are recur-
sively decomposed in Equation (8). The length-N/8
sub-DFT is decomposed into one length-N/16 sub-
DFT and two length-N/32 sub-DFTs in Equation
(12). The sub-DFTs created by Equation (12) are
recursively decomposed in Equation (8).

2.2. Arithmetic operations

Of course, we need to compare the number of flop
operations required for computing a length-N DFT in
the simplified algorithm and the original algorithm.

It is clearly seen that, in an algorithm based on
Equation (2), the substitution of t(N, k) for wk

N saves
4 real multiplications compared to newfftN (xn, s)

of [13] per value of k of the loop except for the
special case of k=0, which offsets 4 real mul-
tiplications by s(N, k) in the same condition. In
other words, the number of arithmetic operations
in the algorithm based on Equation (2) is the
same as that in newfftN (xn, s) of [13]. In an
algorithm based on Equation (8), the number of
arithmetic operations is clearly the same as that in
newfftSN (xn, s) of [13], since both Equation (8)
and newfftSN (xn, s) of [13] are all the same. In
Equation (12), the number of operations required by
computing F (k)s(N/2, k)/s(2N, k) is the same as that
in newfftS4N (xn) in [13], and the rest of Equation
(12) is the same as newfftS2N (xn) of [13]. That is,
the number of operations required in an algorithm
based on Equation (12) is the same as the total flops
required by newfftS2N (xn) and newfftS4N (xn) in
[13]. From the above discussion, one can see that
both algorithms have the same number of arithmetic
operations.

2.3. Evaluation of twiddle factors

We now count the number of real coefficients eval-
uations or accesses to the lookup table for computing
a length-N DFT in the original and simplified algo-
rithms. Assume that all coefficients will be evaluated
and stored in a lookup table in advance, and no coef-
ficient will be initiated and kept in registers of a
processor during the processing time. For clarity, in
counting process we neglect the special case of k=0
and k=N/8.

The function newfftN (xn, s) of [13] needs to
evaluate the coefficients sin (2πk/N)s(N/4, k) and
cos (2πk/N)s(N/4, k) for 0 ≤ k < N/4. The coef-
ficient s(N, k) has the property that s(N, N/4− k)
= s(N, k) for 0 ≤ k < N/8. It is easy known
that sin (2π(N/4− k)/N)s(N/4, N/4− k) = cos
(2πk/N)s(N/4, k) for 0 ≤ N < N/4. The required
number is L/4 for a recursion with a length-L
sub-DFT (or DFT). The total required number of
coefficient evaluation is N/2− 1 for all recursion.
Equation (2) needs to evaluate real coefficients
tan (2πk/N) for 0 ≤ k < N/8 and s(N, k) for
0 ≤ k < N/4. The required number of coefficient
tan (2πk/N) evaluations is N/8. The number of
coefficients s(N, k) evaluation is N/4− 1 for all
recursion. The total number of coefficient evaluation
is 3/8N − 1 in Equation (2).

Equation (8) and newfftSN (xn, s) of [13] all con-
tain coefficient tan (2πk/N) for 0 ≤ k < N/8 where
N is the length of the corresponding sub-DFT.
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Equation (8) does not need to evaluate this coefficient,
since this coefficient has been evaluated in Equation
(2). The function newfftSN (xn, s) of [13] requires
to evaluate this coefficient, and the number of coeffi-
cient evaluation is 1/32N since the maximum length
of sub-DFTs computed in Equation (8) is N/4 for
computing one length-N DFT.

Both Equation (12) and newfftS2N (xn) of [13]
all require to evaluate the coefficient s(N, k)/s(2N, k)
for 0 ≤ k < N/2 where N is the length of the
corresponding sub-DFT. The coefficient has the
property that s(N, N/2− k)/s(2N, N/2− k)=s

(N, k)/s(2N, k) for 0 ≤ k < N/4. The number
of coefficient evaluation is N/16− 1 for all
recursion in computing one length-N DFT since
the maximum length of sub-DFTs computed in
newfftS2N (xn) of [13] is N/8. Both Equation (12)
and newfftS4N (xn) of [13] all require to evaluate
the coefficient s(N/2, k)/s(2N, k). The coefficient
is cos (2πk/2N) for 0 ≤ k < N/4 and sin (2πk/2N)
for N/4 ≤ k < N/2. This means that the required
number of coefficient evaluation is N/32 for all
recursion in computing one length-N DFT. The total
number required by Equation (12), and functions
newfftS2N (xn) and newfftS4N (xn) of [13] are all
3/32N − 1.

From the above discussion, one can see that the
number of real coefficients evaluation is 15/32N − 2
in the simplified algorithm, and 5/8N − 2 in the
original algorithm. That is, the simplified algorithm
reduces the number of coefficient evaluation by
5/32N compared to the original algorithm.

3. Serial implementation of simplified
MSRFFT

3.1. Proposed implementation method

From architecture point of view, regularity is more
significant than computational complexity. Regular-
ity of FFT algorithms can be categorized by data-path
and computation. We can use dynamic voltage
and frequency scaling (DVFS) [17] and component
dynamic scheduling (CDS) [10], [32] techniques to
minimize the irregularity of computation. The DVFS
and CDS techniques can reduce energy consumption
and even the number of components required by a
FFT processor. The irregularity of data-path can be
solved by permuting orders of intermediate results
[22], [15]. In this section, we presents an implemen-
tation method that does not need to change the orders

of intermediate results, and makes the data-path of
the MSRFFT algorithm regular similar to that of the
radix-2 FFT algorithm.

To implement the radix-2/4 FFT algorithm on gen-
eral processors, the paper [24] developed an efficient,
serial Fortran program. The structure of the program
is very similar to that of Cooley-Tukey FFT algo-
rithm. In the program, a butterfly indexing scheme
was used which allows the program to calculate the
radix-2/4 FFT algorithm stage by stage. The pro-
posal of the indexing scheme is to find the next part
in which butterflies need to be calculated. The pro-
cess is bouncing and discontinuous, namely, there
exists memory and control divergence which will
cause significant performance delay on GPUs for all
DFT, and on general processors for large scale DFTs.
For some specific applications (hardware implemen-
tation, necessity of reducing the overhead, or the
memory occupation) it may be useful to increase the
regularity of the algorithm. This can be done by the
use of a butterfly with permuted outputs [22]. The
contributions of the paper [15] consists of mapping
the radix-2/4 FFT algorithm to a constant geometry
structure, improving the regularity on their proposed
pipelined architecture.

The proposed method implements a DFT in terms
of block rather than butterfly. A block consists of
consecutive butterfly-units of two-to-two (BUs-2).
A BU-2 is similar to a butterfly of radix-2 FFT
algorithm, with two inputs, two outputs, a complex
additions, a complex subtract, and 0 to 2 complex
multiplications. The BUs-2 can be classified by com-
plex multiplications into the following four types:{

x(n) = x(n)+ x(n+N/2)s(N, n),

x(n+N/2) = x(n)− x(n+N/2)s(N, n),
(16)

⎧⎪⎨
⎪⎩

x(n) = x(n)t(2N, n)+ x(n+N/2)t∗(2N, n),

x(n+N/2)

= −j(x(n)t(2N, n)− x(n+N/2)t∗(2N, n)),

(17){
x(n) = x(n)+ x(n+N/2)

x(n+N/2) = x(n)− x(n+N/2),
(18)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(n) = x(n)(s(N/2, n)/s(2N, n))

+x(n+N/2)(s(N, n)/s(2N, n))

x(n+N/2) = x(n)(s(N/2, n)/s(2N, n))

−x(n+N/2)(s(N, n)/s(2N, n)),

(19)
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Fig. 1. Decomposition of a DFT in terms of Block.

where n=0,1,...,N/2-1, and N is the width of the block
that is twice the number of BUs-2 in the block.

A block only allows a class of BUs-2 in it. Blocks
are classified by the types of BUs-2. Blocks are classi-
fied by BUs-2 in a block and their type. A block in the
BUs-2 in Equations (16), (17), (18), or (19) is banked
type 0, 1, 2 or 3. The types of blocks can be one-to-
one correspondence with decomposition of blocks.
Let B(i, N) be a block of type i and width N, and let
symbol→ be an action of decomposition. A DFT of
length-N is B(0, N). The recursive decomposition of
blocks starts with the block B(0, N) until lengths of
all sub-blocks are equal 2. Block decomposition obey
the following four rules.

1. B(0, N)→ B(0, N/2)B(1, N/2). This decom-
position appears only in the first stage.

2. B(1, N)→ B(2, N/2)B(2, N/2). This decom-
position appears in the right part of Equations
(2), (8), and (12).

3. B(2, N)→ B(3, N/2)B(1, N/2). This decom-
position corresponds to the left part of Equation
(8).

4. B(3, N)→ B(2, N/2)B(1, N/2). This block
decomposition corresponds to the left decom-
position of Equation (12).

Figure 1 shows decomposition of a DFT in terms of
blocks. In the figure, the dashed lines represent the
omitted decomposition. Figure 2 shows the dataflow
of one 16-points DFT, where BUi denotes that the
type of the BU-2 is i. Let us see the figure from right to
left. In the first stage, there is only one length-16 block
with type 0. The length-16 block is split into two
length-8 blocks with types 0 and 1 in the second stage.
The two length-8 blocks are split into four length-4
blocks with types 0, 1, 2, and 2 in the third stage.
Finally, the four length-4 blocks are decomposed into
eight length-2 blocks with types 0, 1, 2, 2, 3, 1, 3, and
1 in the four stage. In this way, the data-path of the
simplified MSRFFT algorithm is the same as that of
radix-2 FFT algorithm, except for the positions of
rotating factors.

Fig. 2. Dataflow of a 16-points DFT.

A type-table is used to store the types of blocks.
The type-table can be obtained by block decom-
posing. For a fixed-length DFT, in order to reduce
computational complexity, its type-table can be eval-
uated in advance. The implementation of a block is to
read its block type from the type-table and then per-
form the corresponding BUs-2 according to the type
of the BUs-2. Each type requires 2-bits memory to
store. A length-N DFT requires to store N/4 block
types, since the number of blocks is at most N/2 and
the block whose serial number is out of N/4 can also
directly refer to the type-table. For a length-N DFT,
no matter what stage the j-block is in, the type of the
j-th block can refer to

1. the j-th entry in the type-table for j < N/4.
2. the (j mod N/8)-th entry in the type-table for

j > N/4 and j /= 3N/8.
3. the N/8-th entry for j=N/4 or j = 3N/8, if the

value of the N/8-th entry in the type-table is 2
or 3, the type of j-th block is 3 or 2.

Figure 3 shows the type-table of length-256 DFTs,
and length-N=4, 8, 16, 32, 64, 128 and 256 DFTs can
lookup this table to determine their types of blocks.

To summarize, the butterflies of the simplified
MSRFFT algorithm can be expressed in BUs-2 that
are non-L-shape. The BUs-2 are categorized by mul-
tiplications into four types. A block consists of
consecutive BUs-2 of the same type. Blocks are clas-
sified by the types of BUs-2 into four types. The
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Fig. 3. State Table of 256-points DFTs.

types of blocks can be computed and stored to a
state-table in advance. The DFT can be implemented
through looking up the state-table and performing the
corresponding BU-2. In this way, the data-path of
the simplified MSRFFT algorithm is completely the
same as that of the radix-2 FFT algorithm.

3.2. Three loops program

A C/C++ program of the simplified MSRFFT algo-
rithm based on the type-table has been worked out,
and its algorithm is showed in Algorithm 1. By com-
paring Algorithm 1 with the program of SRFFT in
[24], we can see that the data-path of the simpli-
fied MSRFFT algorithm is regular. For computing

Algorithm 1 Regular implementation of the simpli-
fied MSRFFT algorithm
function xn=0...N−1 ←MSRFFT DITN (xn)

{Computes length-N=2M DFT with the simplified
MSRFFT DIT algorithm}
Initiate coefficient-table and type-table
Permute the orders of input terms
span← 1
number block← N/2
for i← M to 1 do

for j← number block-1 to 0 do
m← j×span×2
n← m+ span

for k← 0 to span− 1 do
For a BU-2 of inputs x(m) and x(n),
calculate the outputs according to
the type of the j-th block in the type-table

m← m+ 1
n← n+ 1

end for
end for
number block← number block/2
span← span× 2

end for
return

Table 1
Execution time of algorithms (ms)

N Radix-2 Radix-2/4 Radix-2/8 MSRFFT

1024 0.062 0.016 0.016 0.016
2048 0.063 0.031 0.047 0.031
4096 0.140 0.078 0.094 0.078
8192 0.359 0.188 0.234 0.172
16384 0.734 0.438 0.531 0.406
32768 1.625 0.984 1.141 0.906
65536 3.766 2.135 2.469 2.063
131072 7.969 4.547 5.547 4.984
262144 23.672 11.203 12.484 13.641

a length-N=2M DFT, the three loops C++ program
steps through M − 1 stages in the outer loop, deals
with all blocks in the middle loop, and performs all
BUs-2 in the inner loop. Before the three loops, a
coefficient-table and a type-table are evaluated and
stored, and the input terms are permuted.

Ref. [13] did not make a comparison of exe-
cution time. Due to more memory required, some
researchers mentioned that the MSRFFT algorithm
dissipates more time for computing a DFT than some
previous published algorithms. Now, our programs
are tested running on an AMD Opteron processor
4122 CPU which provides L2 cache of 512kB×4 and
L3 cache of 6MB. All programs are executed repeat-
edly for 100 times. Execution time, given in Table
1, shows that the simplified MSRFFT consumes less
time than algorithms in [2, 5, 6] for N < 131072. Due
to the requirement of more memory, execution time
of the simplified algorithm actually increases when
N is greater than 131072.

4. Parallelism on GPU

In order to estimate the effect of our implementa-
tion method on GPU, we devise a compute unified
device architecture (CUDA) program for GPU par-
allelism where we can compare our implementation
method to other methods in GPU time. For a length-
N = 2m DFT on GPU, we implement a mixture of
MSRFFT and the radix-2 FFT. The first m− 4 stages
are implemented with MSRFFT, and the rest four
stages are implemented with the radix-2 FFT.

NVIDIA’s CUDA is a new GPU architecture. It is a
programming language based on C, and allows more
flexible operations beyond stream programming for
such “irregular” kernels by extensive multi-threading
and the ability for the threads to share data rapidly via
shared memory. The programming language CUDA
allows for a block of threads to be specified eas-
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ily as arrays, SIMD-like specifications. However,
there are still many CUDA peculiarities that makes
their straightforward application difficult to attain the
expected performances. One difficulty is that, many
of the accelerators are installed in I/O expansion slots
such as the PCI-Express interface; therefore the data
transfer between the host CPU and device often occu-
pies a large percentage of the total execution time.
This makes it difficult for accelerators to improve
the performance of memory intensive applications
like FFT. As a result, the currently reported results
of FFT on GPUs [12, 20] have been only on par with
conventional CPUs at best, indicating that real perfor-
mance of GPUs have not been exploited yet despite
the hopes. NVIDIA’s CUDA provides a FFT library,
CuFFT, which can accelerate the implementation of
FFT achieving the maximum 10 times speedup. How-
ever, the efficiency of CuFFT on some GPUs such as
NVIDIA GeForce GT 750M is very poor.

Table 2 gives GPU time of radix-2 FFT and
MSRFFT on NVIDIA GeForce GT 750M for a
length-2048 DFT. For NVIDIA GeForce GT 750M,
saders are 384 unified, bus width is 128 Bit, and
memory size is 2048 MB. A higher-performance
FFT parallelism is very complex, in which one have
to think about various techniques to improve the
performance, including the regularity of the FFT
algorithm, the shared memory utilization, in-place
or out-of-place computation, the method to permute
data-order, and the lookup table utilization etc. In
our program, we consider only the regularity of
the implementation, and measure whether the pro-
posed implementation method can or not improve
the FFT parallelism on GPU. Thus, our program
is simple, containing nothing but FFT regularity.
The longest length that our program can compute is
2048 points. In order to improve the FFT regular-
ity, we develop a specialized function for computing
length-16 DFTs of the fourth stages from outputs. To
improve the performance, the function utilizes only
registers and not uses the on-chip shared memory.
We devise four schemes to compute a DFT on GPU,
i.e., the radix-2 FFT, the MSRFFT algorithm, the
mixture algorithm of MSRFFT and the specialized
function for length-16 DFTs, and the mixture algo-
rithm of MSRFFT and the radix-2 FFT (in which
the radix-2 FFT is used in the final four stages).
The GPU time in Table 2 shows that the fourth
scheme consumes the least time for computing the
length-2048 DFT on NVIDIA GeForce GT 750M
and the MSRFFT algorithm consumes the most time,
indicating the proposed implementation method has

Table 2
GPU time of radix-2 FFT and MSRFFT for a length-2048 DFT

Radix-2 MSR MSR+Register MSR+Radix-2

0.021502 0.022728 0.020704 0.019712

provided a higher-performance implementation for
MSRFFT GPU parallelism.

5. Conclusion

This paper modified and simplified the MSRFFT
algorithm, and the number of real coefficients eval-
uated by 5/32N and the number of groups of
decomposition from 4 to 3. A novel implementa-
tion method has been proposed for the simplified
MSRFFT algorithm. The method makes the data-
path of the simplified MSRFFT algorithm regular
similar to that of the radix-2 FFT algorithm. The
method can be applied to other algorithms such as
radix-2/4, and radix-2/8 etc, making their data-path
regular similar to mixed-radix algorithms. A three
loops serial program and a GPU parallelism program
have been proposed for the simplified algorithm, and
the results show (1) the simplified MSRFFT algo-
rithm consumes less time than the radix-2, radix 2/4,
and radix 2/8 FFT algorithms for computing a length-
N < 131072 DFT on the general processors, and (2)
the proposed scheme for MSRFFT GPU parallelism
can obtain higher-performance than the radix-2 FFT
due to the improvement of irregularity of MSRFFT.
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