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Abstract—This paper presents a scaled radix-2/8 fast
Fourier transform (FFT) (SR28FFT) algorithm for computing
length- discrete Fourier transforms (DFTs) scaled
by complex number rotating factors. The idea of the SR28FFT
algorithm is from the modified split radix FFT (MSRFFT) algo-
rithm, and its purpose is to furnish other algorithms with high
efficiency but without shortcomings of the MSRFFT algorithm. A
novel radix-2/4 FFT (NR24FFT) algorithm and a novel radix-2/8
FFT (NR28FFT) algorithm are proposed. These two algorithms
use SR28FFT to calculate their sub-DFTs of odd-indexed terms.
Several aspects of the two algorithms such as computational
complexity, computation accuracy, and coefficient evaluations
or accesses to the lookup table all are improved. The bit-reverse
method can be used for their order permutation and no extra
memory is required to store their extra coefficients by the two
novel algorithms, which contribute significantly to the perfor-
mance of the FFT algorithms. The SR28FFT algorithm can also
be applied to other algorithms whose decomposition contains
sub-DFTs of powers-of-two. The Appendix presents an algorithm
named SR28FFT-2 for further reducing the number of arithmetic
operations, and NR24FFT and NR28FFT algorithms based on
SR28FFT-2 requires fewer real operations than that required by
the MSRFFT algorithm.

Index Terms—Fast Fourier Transform (FFT), radix-2/4,
radix-2/8, scaled radix-2/8.

I. INTRODUCTION

F OR many years, the time to perform an FFT algorithm
was dominated by real number arithmetic, and consider-

able effort was devoted towards proving and achieving lower
bounds on the exact count of arithmetic operations (real addi-
tions and multiplications), herein called “flops” (floating-point
operations), required by a discrete Fourier transform (DFT) of a
given size [1]–[6]. It has been shown in the literature that direct
use of the Cooley-Tukey [7] approach to developing a higher
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radix FFT algorithm leads to a reduction in the arithmetic com-
plexity compared to that of the lower radix FFT algorithm. This
can be seen by comparing, for example, the radix-2, radix-4,
radix-8, and radix-16 FFT algorithms. Since programs with reg-
ular structure are generally more compact and have faster imple-
mentation, for powers-of-two DFTs, one often uses recursively
the same decomposition in each stage, thus loading full radix-2
or radix-4 program. When the DFT length is not a power of
radix, a smaller radix is used towards the end of the composi-
tion. This is so-called the mixed-radix method.
In 1968, Yavne [8] proposed an algorithm that was sub-

sequently rediscovered simultaneously by various authors
[9]–[11] in 1984 and became known as the “split radix”
FFT (SRFFT) algorithm, i.e., the radix-2/4 FFT algorithm, for

, and achieved a record flop count of
for , an improvement by 20% over the classic “radix-2”
algorithm (flops ) [7]. The papers [12]–[14] pro-
posed a class of split-radix FFT algorithms, which have the
same arithmetic complexity as the radix-2/4 FFT algorithm.
This class of algorithms are the best compromise between
structure and computational complexity. The radix-2/4 FFT
algorithm and the radix-2/8 FFT algorithm [15], [16] are two
well known algorithms in this class of algorithms. In 2000,
Grigoryan and Agaian [17] presented an algorithm which re-
duces the number of operations for DFTs of lengths longer than
256 at expense of a more complicated structure compared with
the radix-2/4 FFT algorithm; however, it is computationally
less efficient for shorter lengths. In 2007, Johnson and Frigo
presented a modified version of the split-radix FFT (MSRFFT)
that reduces the flop count by a further 5.6% (1/18) compared
to the standard SRFFT, i.e., MSRFFT reduces the order of
magnitude of operations from to .
The situation is more complicated since much more parame-

ters have to be taken into consideration than the sole operations
count [18]–[20]. The numerical accuracy, the size of memory,
and twiddle factor evaluations [21] or accesses to the lookup
table are also the main aspects of performance of FFT algo-
rithms. It is seen that the following four aspects will influence
the performance of the MSRFFT algorithm.
• MSRFFT requires more memory to store its coefficients if
coefficients are pre-computed and stored in a lookup table
in advance.

• Computing a DFT with the MSRFFT algorithm requires
arithmetic operations more than computing the same
length DFT with the SRFFT algorithm, if coefficients are
directly computed [22], [23] rather than loaded from the
lookup table.

• MSRFFT is not suitable for using the standard bit-re-
verse method [24] to permute its order, since it is an
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algorithm based on conjugate pair SRFFT algorithm [25],
[26]. MSRFFT’s order permutation requires quite a few
extra memory and memory access for its software im-
plementation and more complex circuits for its hardware
implementation.

• MSRFFT has errors within 10% of the standard conjugate-
pair split-radix algorithm [27], since the use of the tangent
function, which is singular, or equivalently the division by
a cosine, raises questions about the numerical accuracy.

The purpose of this paper is to develop algorithms for effi-
ciently computing length- DFTs. An efficiently auxiliary
algorithm, the scaled radix-2/8 FFT (SR28FFT) algorithm, is
developed for efficiently computing length- sub-DFTs
scaled by complex number rotating factors. The SR28FFT al-
gorithm decomposes a DFT according to the standard radix-2/8
FFT algorithm, and extracts a common factor 1 or from the
next recursion for each butterfly. Owing to no real operations
and tangent function required by multiplications and divisions
of rotating factor and common factor 1 or , no extra
memory is required to store extra coefficients, and numerical ac-
curacy is also not an issue. The MSRFFT algorithm is based on
conjugate pair SRFFT algorithm. Its inputs (or outputs) of one of
two odd-indexed sub-DFTs has to be rotated forward 1 position
in each recursive stage. The special rotation results in that the
algorithm cannot utilize the standard bit-reverse method to per-
mute its order. In contrast, the SR28FFT algorithms are based
on the standard radix-2/8 FFT algorithm. Its inputs/outputs do
not need to perform any extra rotation. Therefore, the bit-reverse
method can be used to permute its order. The SR28FFT algo-
rithm has been used in the radix-2/4 FFT and the radix-2/8 FFT,
i.e., a novel radix-2/4 FFT (NSR24FFT) algorithm and a novel
radix-2/8 FFT (NSR28FFT) algorithm are proposed. These two
algorithms overcome the shortcomings of the MSRFFT algo-
rithm and achieve the desired improvements.
The rest of this paper is organized as follows. Section II de-

scribes the proposed SR28FFT algorithm. Section III discusses
two novel algorithms, the novel radix-2/4 FFT algorithm and
the novel radix-2/8 FFT algorithm. Section IV analyzes per-
formance of algorithms. Section V evaluates computation ac-
curacy by computing relative error. Section VI draws the
conclusion. The Appendix presents an algorithm based on the
SR28FFT algorithm, considering only the improvement in arith-
metic operations and neglecting other performance.

II. SCALED RADIX-2/8 FFT ALGORITHM

Given a length- sequence , its DFT is also a
length- sequence defined by

(1)

where and .

A. Proposed Scaled Radix-2/8 FFT Algorithm

In this subsection, we propose an algorithm based on the stan-
dard radix-2/8 FFT algorithm for scaled DFTs of size- ,

which is named SR28FFT algorithm. The algorithm can be used
in the radix-2/4 FFT algorithm, the radix-2/8 FFT algorithm, etc.
The idea of SR28FFT is based on the fact that a reduction of

operations can be obtained for if a length-
DFT defined in (1) is a sub-DFT with a rotating factor and a
factor is extracted from the DFT. The factor
can be attached to the rotating factor of sub-DFTs to combine
a new rotating factor without any floating-point operation if the
rotating factor is a complex number. The factor is de-
fined by

(2)

The DFT in (1) can be re-expressed by the following equation
in which the factor is contained:

(3)

where

(4)

The DFT in (3) is necessary only for a sub-DFT or a DFT with
a complex rotating factor. If the sub-DFT or the DFT does not
have a complex rotating factor, the operations involved in the
factor become redundant and unnecessary.
Now, we discuss the decomposition of the DFT in (3). The

following decompositions are provided so that the DFT of (3)
can be computed more efficiently:

(5)
for the even-indexed terms, and

(6)

(7)

(8)

(9)
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for the odd-indexed terms, where .
The sequence in (6) and (7) and in (8) and (9) can
be expressed in a matrix form

(10)

where is a second-order Hadamard matrix defined by

(11)

The sequence in (5) and in (10) can be expressed in
a matrix form

(12)

No matter whether the value of the factor in (6)–(9)
is 1 or , the product of the factor and , ,

, or does not require extra real operations and can di-
rectly map to , where . The sub-DFT in (5)
is a DFT scaled by . Straightforward computation of
the sub-DFT will result in the same number of operations re-
quired by the standard radix 2/8 FFT algorithm. To reduce the
number of operations, the four length- sub-DFTs will be
of course decomposed recursively using (5)–(9). Besides that,
it is necessary for the length- sub-DFT in (5) to be further
decomposed with a appropriate strategy. The effective decom-
positions of the length- sub-DFT in (5) provide

(13)

for the even-indexed terms,

(14)

(15)

(16)

(17)

for the odd-indexed terms, where ,
and

(18)

with

(19)

and

(20)

The in (13) and in (18) can be expressed in the fol-
lowing matrix form

(21)

The length- DFT in (13) and the four length-
sub-DFTs in (14)–(17) will be decomposed recursively using
(5)–(9).
We now summarize the proposed scheme for the DFT in (3).

The DFT is first decomposed into five smaller sub-DFTs de-
fined in (5)–(9). Then, four sub-DFTs in (6)–(9) are decomposed
recursively according to (5)–(9), and the length- sub-DFT
in (5) is decomposed recursively according to (13)–(17). All
sub-DFTs in (13)–(17) are decomposed according to (5)–(9).
Fig. 2 shows signal flowgraph of 32-points DFTs. For clarity,
the special butterfly when (including ) and the
operations of input terms involved in are omitted. Fig. 1
shows flowgraphs of the general butterfly. Considering compu-
tation involved in in (4), it is the best for the SR28FFT
algorithm to be used in DFTs or sub-DFTs which are scaled by
complex number rotating factors, so DFTs’ scaling factors and
the factors can be combined into new rotating factors
without any floating-point operation. In Section III, we will dis-
cuss two algorithms which use the SR28FFT algorithm for com-
puting their sub-DFTs of odd-indexed terms. The first one is a
novel radix-2/4 FFT algorithm, and the second one is a novel
radix-2/8 FFT algorithm.

B. Special Case When and

A further improvement of arithmetic complexity can be ob-
tained if the special case when is taken into account.
Considering the special case when , a new extracted
factor is defined by

(22)

For saving real multiplications, all in (5)–(9)
and (14)–(17) are replaced by . The expres-
sion in (19) will be replaced by

. When , the rotating factors in
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Fig. 1. General butterfly of proposed SR28FFT algorithm.

Fig. 2. Signal flowgraph of 32-points DFT of proposed SR28FFT algorithm.

(6)–(9) will be distributed into the left brackets and attached
to the original coefficients. The new four rotating factors are

, where is an alternative. Therefore, the common
factor can be extracted. When ,
for (14)–(17), the rotating factors are can be
distributed into the left brackets, and the factor
from the new rotating factors is extracted and combined with

. The extracted factor from the sub-DFT in (13) is
rather than , i.e., the expression involved in
and in (13) is . Figs. 3

and 4 show flowgraphs of the general butterfly and the two
special butterflies when and for the SR28FFT
algorithm. In Fig. 4, , ,
and .

III. TWO NOVEL FFT ALGORITHMS

The proposed SR28FFT algorithm can be used by the
radix-2/4 FFT algorithm and the radix-2/8 FFT algorithm for

Fig. 3. Special butterfly when of proposed SR28FFT algorithm.

Fig. 4. Special butterfly when of proposed SR28FFT algorithm.

efficiently computing their sub-DFTs of odd-indexed terms.
Besides the radix-2/4 FFT algorithm and the radix-2/8 FFT
algorithm, many other algorithms such as radix-2, radix-4,
radix-8, etc can also use the SR28FFT algorithm to reduce their
operations count. In this section, we present two algorithms,
a novel radix-2/4 FFT (NR24FFT) algorithm and a novel
radix-2/8 FFT (NR28FFT) algorithm, in which the SR28FFT
algorithm is used to reduce their arithmetic complexities.

A. Novel Radix-2/4 FFT Algorithm

With the NR24FFT algorithm, the DFT in (1) is decomposed
decimation-in-frequency (the decimation-in-time decomposi-
tion is similar to the decimation-in-frequency decomposition).
When , the DFT in (1) provides the following decom-
positions,

(23)
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Fig. 5. First stage of proposed NR24FFT algorithm.

for the even-indexed terms,

(24)

and

(25)

for the odd-indexed terms. The sequence in (23), in
(24), and in (25) can be expressed in a matrix form

(26)

and

(27)

A length- DFT is thus decomposed into a length-
DFT given by (23) and two length- DFTs given by (24) and
(25). The length- sub-DFT in (23) will be decomposed re-
cursively using (23)–(25) till the size is reduced to a 2-points
DFT. The two length- sub-DFTs in (24) and (25) are de-
composed and implemented recursively with the SR28FFT al-
gorithm using (5)–(9). Fig. 5 shows the decomposition in the
first stage for the NR24FFT algorithm.

B. Novel Radix-2/8 FFT Algorithm

In this subsection, we present a novel radix-2/8 FFT
(NS28FFT) algorithm for length- DFTs. Like the
NS24FFT algorithm, the NS28FFT algorithm also uses
SR28FFT to reduce the number of operations. When ,
the NR28FFT algorithm provides the following decomposi-
tions so that the DFT in (1) can be computed more efficiently
than the standard radix-2/8 FFT algorithm.

(28)

for the even-indexed terms,

(29)

(30)

(31)

(32)

for the odd-indexed terms. The sequences and in (29)–(32)
have been defined in (27). The sequences in (28) and
in (27) have been defined in (26). The length- sub-DFT in
(28) is decomposed using (28)–(32) until the size is reduced to
a 4-, 2-, or 1-points DFT. The four length- sub-DFTs in
(29)–(32) are computed with the SR28FFT algorithm, and are
decomposed using (5)–(9). Fig. 6 shows the decomposition of
the first stage of the NR28FFT algorithm.
We now summarize the proposed NR24FFT algorithm and

the proposed NR28FFT algorithm. The DFT in (1) is first de-
composed according to the standard radix-2/4 FFT algorithm
or the standard radix 2/8 FFT algorithm, then the sub-DFTs of
odd-indexed terms are computed with the SR28FFT algorithm,
and sub-DFT of even-indexed terms is evaluated recursively
with the algorithms themselves. By using the SR28FFT algo-
rithm, more efficient computation is obtained compared with
the standard radix-2/4 FFT algorithm and the standard radix-2/8
FFT algorithm.

IV. PERFORMANCE ANALYSIS

In this section, we consider the performance of the proposed
algorithms by analyzing and comparing them with the existing
algorithms such as the standard radix-2/4, radix-2/8, radix-8,
and etc [9], [16]. The analysis and comparison includes not only
the arithmetic operations but also the coefficient evaluations or
accesses to the lookup table, since it is also a main aspect of
performances of FFT algorithms.

A. Butterfly Analysis

The SR28FFT algorithm has three classes of butterflies, a
general butterfly and two special butterflies when and

, as illustrated in Figs. 1, 3, and 4. Since the SR28FFT
algorithm is based on the standard radix-2/8 FFT algorithm, the
arithmetic operations of these three classes of butterflies can
compare with those required by the radix-2/8 FFT algorithm.
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Fig. 6. First stage of proposed NR28FFT algorithm.

The analysis of the three classes of butterflies are listed as fol-
lows.
1) The general butterfly of the proposed SR28FFT algorithm,
as illustrated in Fig. 1, requires 4 complex multiplications
by . To finish the same transformation, the standard
radix-2/8 FFT algorithm requires 6 complex multiplica-
tions by or . Since the proposed SR28FFT algorithm
just changes the multiplications by or and other op-
erations required by the SR28FFT algorithm is the same as
those required by the standard radix-2/8 FFT algorithm in
the general butterfly, two complex multiplications by or
are saved by the SR28FFT algorithm, i.e., a reduction

of 4 real multiplications and 4 real additions is achieved by
the general butterfly.

2) For the special butterfly when of the SR28FFT al-
gorithm, as illustrated in Fig. 3, all complex multiplica-
tions are implemented with 16 real additions and 20 real
multiplications. In order to implement the same works, the
standard radix-2/8 requires 16 real additions and 24 real
multiplications. It can been see that this special butterfly
achieves a reduction of 4 real multiplications.

3) The special butterfly when , as illustrated in
Fig. 4, all complex multiplications are implemented with
32 real additions and 52 real multiplications. In order to im-
plement the same works, the standard radix-2/8 requires 32
real additions and 56 real multiplications. Obviously, the
special butterfly also achieves a reduction of 4 real multi-
plications.

It is seen that a reduction of operations is easily obtained by the
three classes of butterflies of the SR28FFT algorithm.

B. Arithmetic Complexity

For a FFT processor that does not adopt dynamic voltage and
frequency (DVS) components [28], if arithmetic units cannot be
reduced and the number of operations of algorithms is reduced,
no benefits can be gained. So, a reduction of operations caused
by the special butterflies when and when is
useless for the FFT processor [29], [30]. The one-butterfly im-
plementation and the three-butterfly implementation have dif-
ferent advantages and disadvantages for the software and hard-
ware implementation. To make a complete comparison, we will
count the number of real operations of the proposed SR28FFT
algorithm respectively for the one-butterfly implementation and
the three-butterfly implementation.
Let and , respectively, be the number of real additions

and the number of multiplications required by the SR28FFT
algorithm for a length- DFT. Suppose that a butterfly-unit
of two-to-two (BU-2) is an arithmetic unit with two inputs of
complex number, two outputs of complex number, one com-
plex addition, and one complex subtraction. A BU-2 is imple-
mented with 4 real additions. The proposed decomposition is
achieved by three classes of butterflies that are illustrated in
Figs. 1, 3, and 4. Every butterfly requires 24 BUs-2 and some
complex multiplications. The complex multiplications of the
general butterfly contain 32 real additions and 56 real multi-
plications. The complex multiplications of the special butterfly
when contain 16 real additions and 20 real multiplica-
tions. The complex multiplications of the special butterfly when

contain 32 real additions and 52 real multiplications.
The proposed decomposition consists of dividing a length-
DFT to one length- DFT, four length- sub-DFTs, and
four length- sub-DFTs in the first stage. This is achieved
by performing general butterflies and the 2 special
butterflies, i.e., the special case when and the special
case when . The decomposition process is repeated
successively for each of the resulting DFTs until the size is re-
duced to a 8-, 4-, 2-, or 1-point DFT. Therefore, it is seen that
the expressions for the number of real multiplications and real
additions of the one-butterfly implementation of the proposed
FFT algorithm are, respectively,

(33)

For small lengths , 2, 4, and 8 DFTs, the SR28FFT
algorithm require 0, 4, 16, and 52 real additions, and 0, 0, 0,
and 4 real multiplications for implementing them. The arith-
metic complexity of the one-butterfly implementation is given
in Table I. We can see from this table that the number of mul-
tiplications of the one-butterfly implementation required by the
SR28FFT algorithm are less than that required by the standard
radix-2/4 FFT algorithm and the standard radix-2/8 FFT algo-
rithm, and the required total flops (floating-point operations) is
also less than that required by the two classical algorithms.
It is seen that the number of real additions and real multipli-

cations of the three-butterfly implementation of the SR28FFT
are, respectively,



2498 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 10, MAY 15, 2014

TABLE I
COMPARISON OF ARITHMETIC COMPLEXITY OF ONE-BUTTERFLY

(34)
With the initial conditions , , , ,

, and , we compute the (34) using Matlab, and
obtain

(35)

and

(36)

where , ,
, and . (Note:

the integer value of the boolean value “true” is 1; the integer
value of the boolean value “false” is 0). The expression of
is the same as the number of additions required by the SRFFT or
the MSRFFT algorithm to compute a length- DFT [31], [32].
Tables II gives the arithmetic complexity of the three-butterflies
implementation. It is seen from this table that the number of
multiplications needed by the proposed SR28FFT algorithm is
less than those needed by the standard radix-2/4 FFT algorithm
and the standard radix-2/8 FFT algorithm, the number of real
additions required by the SR28FFT algorithm is equal to that
required by the standard radix-24 FFT algorithm and less than
that required by the standard radix-2/8 FFT algorithm, and the
total flops required by the SR28FFT algorithm is less than those
required by the two classical algorithms.
The NR24FFT algorithm decomposes a length- DFT into

a length- sub-DFT and two length- sub-DFTs. The
length- sub-DFT is decomposed and evaluated recursively
until the size is reduced to a 2-points DFT with the NR24FFT
algorithm itself, and two length- sub-DFTs are computed
with the SR28FFT algorithm. The decomposition is achieved
by performing general butterflies and 2 special but-
terfly when and . The number of operations of
the butterflies performed by the NR28FFT algorithm are the
same as that performed by the SRFFT algorithm. The general
butterfly requires 16 real additions and 8 real multiplications.
The special butterfly when requires 12 real additions,
and the special butterfly when requires 4 real mul-
tiplications and 16 real additions. Let and be the
number of real additions and real multiplications required by
a length- DFT by the proposed NR24FFT algorithm respec-
tively. Therefore, the arithmetic complexity of the NR24FFT
algorithm can be obtained easily by follows:

.
(37)

For the length- DFT, and .
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TABLE II
COMPARISON OF ARITHMETIC COMPLEXITY OF THREE-BUTTERFLY

Fig. 7. Comparison of number of real multiplications.

The NR28FFT algorithm decomposes a length- DFT into
a length- sub-DFT and four length- sub-DFTs. The de-
composition is achieved by performing general but-
terflies and 2 special butterfly when and .
The decomposition is repeated successively for the length-
sub-DFTs until the size is reduced to a 2- or 4-points DFT. Four
length- sub-DFTs are decomposed and evaluated with the
SR28FFT algorithm. The number of operations of the butterflies
performed by the NR28FFT algorithm are the same as that per-
formed by the standard radix-2/8 FFT algorithm. The general
butterfly requires 44 real additions and 20 real multiplications.
The special butterfly when requires 4 real multiplications
and 36 real additions, and the special butterfly when
requires 16 real multiplications and 40 real additions. Let
and be the number of real additions and real multiplica-
tions required for a length- DFT by the NR28FFT algorithm

Fig. 8. Comparison of flops (real additions and real multiplications) count.

respectively. Therefore, it can be seen that the arithmetic com-
plexity of the proposed NR28FFT algorithm is

(38)

For length and 4 DFTs, the algorithm requires 4 or 16
real additions, and 0 and 4 real multiplications for computing
them. Two comparisons are given in Figs. 7 and 8 respectively.
It is clear seen from these two figures that the NR24FFT al-
gorithm and the NR28FFT algorithm require less number of
real multiplications and less flops (real additions and real mul-
tiplications) count among radix-2, radix-4, radix-8, radix-2/4,
radix-2/8, and the two proposed FFT algorithms.
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C. Twiddle Factors

It is obvious that two real coefficients are required when the
4mult-2add (a complex multiplication is performed using 4 real
multiplications and 2 real additions) scheme is used to compute
a complex multiplication. In counting the number of real coeffi-
cient evaluations or accesses to the lookup table required by the
proposed SR28FFT algorithm, it is assumed that the coefficients
required by the special butterflies, such as , ,

, , and are ini-
tialized and kept in the internal registers of the processor during
the processing time of the corresponding algorithm. For the gen-
eral butterfly, sixty real coefficients are required to be evaluated
or loaded from the lookup table by the SR28FFT algorithm. To
finish the same task, the standard radix-2/8 FFT algorithm re-
quires to perform the same evaluations or accesses to the lookup
table. For special butterfly when , no coefficient is re-
quired to be computed or loaded by the SR28FFT algorithm
and the standard radix-2/8 FFT algorithm. For special butterfly
when , four or no coefficient is required to be com-
puted or loaded by the SR28FFT algorithm, and eight coeffi-
cients are required by the standard radix-2/8 FFT algorithm, if
all the real and imaginary parts of , , , and are
or are not initiated and stored in the internal registers. It is seen
that all or half of evaluations or accesses of real and imaginary
parts of , , , and are saved by the SR28FFT al-
gorithm compared with the standard radix-2/8 FFT algorithm.
Therefore, by counting the required number of the butterflies in
the SR28FFT algorithm, the number of real coefficient evalua-
tions or accesses to the lookup table for the two algorithms is

(39)
where for comparing under the same conditions, it is assumed
that all the real and imaginary parts of , , , and
are not initiated into the internal registers. For various values of
, the number of real coefficient evaluations or accesses to the

lookup table of the proposed SR28FFT algorithm is compared to
that required by the standard-2/8 FFT algorithm in Table III. It is
seen from the table that savings of over 35% in the evaluation of
twiddle factors or in the access to the lookup table can easily be
achieved by the proposed algorithm. Note that, when the lookup
table is used, similar savings are obtained by the proposed algo-
rithm in the address generation for reading the twiddle factors.

D. Real Input Signals

When the NR24FFT algorithm and the NR28FFT algorithm
deal with real input signals, the numbers of multiplication are
half of those required for complex input signals, and the num-
bers of real addition are half of those required for complex input
signals minus , which is similar to theMSRFFT algorithm,
the radix-2/8 FFT algorithm, and the radix-2/4 FFT algorithm
for real input signals.

V. FLOATING POINT ACCURACY

Accuracy is one of the most important factors of system
performance. In this section, we discuss the accuracy on the
computing results of the (root-mean-square) relative error

of length- DFTs.

TABLE III
COMPARISON OF REAL COEFFICIENT EVALUATIONS OR

ACCESSES TO LOOKUP TABLE

TABLE IV
RELATIVE ERROR FOR LENGTH- DFTS

We compute the relative error of the related algorithms
compared to the exact results, for pseudo random inputs

, in 32-bits single precision, on Pentium
E6700 with Windows 7 and Microsoft Visual Studio 2008. The
coefficients are pre-computed and stored in a lookup table, by
rounding/truncating the 64-bits double precision coefficients
into 32-bits single precision coefficients. The exact results are
from the implementation of a common approach in the case of
64-bits double precision. The comparing results, in Table IV,
show that the computation accuracy is slightly improved by the
proposed NR24FFT and NR28FFT algorithms compared with
the standard radix-2/8 FFT algorithm. It is well known that the
amount of the roundoff has randomness and determinism. The
general improvement on quantized loss lies in the determinism,
since the SR28FFT algorithm reduces the number of complex
multiplication by or . The improvement of “ 1.27%” is
perhaps resulted in by the randomness.

VI. CONCLUSION

In this paper, we have proposed an auxiliary algorithm, the
SR28FFT algorithm, which is based on the standard radix-2/8
FFT algorithm, for efficiently computing the length- sub-
DFTs scaled by complex number rotating factors. Two novel al-
gorithms based on the SR28FFT algorithm, i.e., the NR24FFT
algorithm and the NR28FFT algorithm, have been proposed for
computing length- DFTs. It has been shown that, the
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proposed SR28FFT algorithm reduces the number of operations
compared with the standard radix-2/8 FFT algorithm and the
standard radix-2/4 FFT algorithm, and several aspects of the
FFT algorithms such as arithmetic complexity, computation ac-
curacy, and coefficient evaluations or accesses to the lookup
table have been improved by the NR24FFT algorithm and the
NR28FFT algorithm compared with the standard radix-2/4 FFT
algorithm and the standard radix-2/8 FFT algorithms.Moreover,
the NR24FFT algorithm and the NR28FFT algorithm can use
the bit-reverse method to permute their data order, and has no
extra coefficients required to be evaluated and stored. In addi-
tion, the SR28FFT-2 algorithm in the Appendix further reduces
the number of arithmetic operations compared to that required
by the SR28FFT algorithm. If the NR24FFT algorithm and the
NR28FFT algorithm use the SR28FFT-2 algorithm, their com-
putational complexity are lower than the MSRFFT algorithm.
The SR28FFT algorithm and the SR28FFT-2 algorithm can also
be applied to other algorithms such as radix-4, radix-8, etc to ef-
ficiently compute their similar length- sub-DFTs.

APPENDIX

In this appendix, we only consider the improvement of com-
putational complexity of the proposed algorithm, and ignore
the improvements of other performance. For differentiating
the SR28FFT algorithm in Section II, the algorithm in this ap-
pendix is named “SR28FFT-2”. In the SR28FFT-2 algorithm,
the number of extracting factors is two. The first one is similar
to the factor in (2), defined in the following.

(40)
Another one is defined by

otherwise.
(41)

Let be the product of and , i.e.,

(42)

Replacing the definition of in (2) by the definition in
(42), the DFT in (3) can be used for further decomposition in
this appendix. The following decompositions are provided so
that the DFT of (3) can be computed efficiently:

(43)
for the even-indexed terms, and

(44)

(45)

(46)

(47)

for the odd-indexed terms, where sequences in (43),
in (44) and (45), and in (46) and (47) have been defined
in Eqs. (10)–(12), and in (44) and (46) can be defined by

(48)

Similar to the SR28FFT algorithm, the length- sub-DFT
in (43) needs to be decomposed further. The following decom-
position

(49)

is provided for its even-indexed terms, and the decompositions

(50)

(51)

(52)

(53)

are provided for the odd-indexed terms, where
. The sequence in (50) and (51) and the sequence
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TABLE V
NUMBER OF REAL MULTIPLICATIONS

in (53) and (52) have been defined in (18) with re-defined
by

(54)

where

(55)

The four length- sub-DFTs in (50)–(53) will be decom-
posed recursively using (43)–(46). The length- DFT in (13)
is calculated using the method of the SR28FFT algorithm.
The SR28FFT-2 algorithm is similar to the SR28FFT al-

gorithm. However, there are the following two points that the
SR28FFT-2 algorithm can reduce the number of real multipli-
cations compared with the SR28FFT algorithm.
1) For each , except for the special cases when

, the computation of and of the
SR28FFT algorithm requires 4 more real multiplications
than that of and of the SR28FFT-2
algorithm, and the computation of of the SR28FFT
algorithm requires 2 fewer real multiplications than that
of the SR28FFT-2 algorithm. In other words, a general
butterfly or a special butterfly when of the
SR28FFT-2 algorithm can save 4 real multiplications com-
pared to that of the SR28FFT algorithm

2) As far as the SR28FFT algorithm is concerned, the recur-
sive decomposition of in the special case when
cannot save the number of operations, since in (13) the

number of real operations involved in
is four more real multiplications than those involved in

, which offsets the real multiplication
saved by the special butterfly when in the next stage.
However, in (49), the number of real multiplications in-
volved in does not require extra real
multiplications compared with that involved in ,
namely, the recursive decomposition of can in the
special of save the four real multiplications.

That is, except for the special butterfly when , each
butterfly of the new algorithm requires 4 real multiplications
less than the SR28FFT algorithm. The following equation gives
the number of real multiplications required by the SR28FFT-2
algorithm:

(56)

For small lengths , 4, 8, and 16 DFTs, the SR28FFT-2
algorithm require 0, 0, 4, and 20 real multiplications for im-
plementing them. The three algorithms, MSRFFT, SR28FFT,
and NR24FFT, require the same number of real additions for a
DFT. Table V gives a comparison of the number of real multi-
plications required by these three algorithms, showing that the
SR28FFT-2 algorithm requires less real multiplication than the
MSRFFT algorithm for , and the NR24FFT algorithm
requires less real multiplications than the MSRFFT algorithm
when . In reality, the NR28FFT algorithm also re-
quires less real operations than MSRFFT.
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