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Abstract—Multiple sequence alignment (MSA) is the most common task in bioinformatics. Multiple alignment fast Fourier transform

(MAFFT) is the fastest MSA program among those the accuracy of the resulting alignments can be comparable with the most accurate

MSA programs. In this paper, we modify the correlation computation scheme of the MAFFT for further efficiency improvement in three

aspects. First, novel complex number based amino acid and nucleotide expressions are utilized in the modified correlation. Second,

linear convolution with a limitation is proposed for computing the correlation of amino acid and nucleotide sequences. Third, we devise

a fast Fourier transform (FFT) algorithm for computing linear convolution. The FFT algorithm is based on conjugate pair split-radix FFT

and does not require the permutation of order, and it is new as only real parts of the final outputs are required. Simulation results show

that the speed of the modified scheme is 107.58 to 365.74 percent faster than that of the original MAFFT for one execution of the

function Falign() of MAFFT, indicating its faster realization.

Index Terms—Convolution, fast Fourier transform (FFT), MAFFT, multiple sequence alignment (MSA)
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1 INTRODUCTION

MULTIPLE sequence alignment (MSA) refers to identify-
ing the biological similarity between three ormore bio-

informatic sequences. It is a basic tool in various aspects of
molecular biological analysis ranging from detecting key
functional residues, phylogenetic inference, structure pre-
diction of noncoding ribonucleic acids and proteins, to infer-
ring the evolutionary history of protein families. In the
process of MSA, in order to maximize the number of similar
amino acids or nucleotides, gap symbols ‘‘� ’’ are inserted
in sequences. That is, we transform k (k � 2) sequences
fs1; s2; . . . ; skg into fs01; s02; . . . ; s0kg, where each of the former,
si, i ¼ 1; 2; . . . ; k, can be expressed as a string of n amino-acid
or nucleotide symbols, and s0i is elongated version of si with
gaps ‘‘� ’’ inserted to maximize the similar regions of the
sequences. As a simple illustration, the resultant s01 and s02 in
the MSA with two protein sequences s1: TGCAATGACC
and s2: TGAATTGGTG are

T G C A A T � G A C C
T G � A A T T G G T G:

When gaps are inserted into sequences, the alignment score
will be reduced by the weight costs which depend on the
gap locations [1].

When k is not fixed, MSA is an NP-complete problem [2].
According to Hosni et al. [3], there are three main MSA
approaches, namely, divide and conquer [4], [5], iterative
method [6], [7], [8], [9], and progressive method [3], [10], [11],
[12], [13]. The progressive approach is the most used and the
most efficient one. It operates in three steps: (i) To determine
the sequences that are the first to be aligned, the distance
between every pair of sequences is computed and is stored in a
symmetric diagonalmatrix, called distancematrix. (ii) Byusing
the distance matrix and constructing a guide tree, the branch-
ing order of the sequences is defined. (iii) The sequences are
aligned through the guide tree. In order to enhance the multi-
ple alignment scores, a refinement step can also be applied
with the use ofMUSCLE [14],MAFFT [15], and PAAP [16].

Needleman and Wunsch [17] have presented a dynamic
programming (DP) for the optimization of sequence align-
ment. In fact, many heuristic algorithms [18], [19], [20],
including progressive and iterative refinement methods, are
based on the DP. The alignment of two sequences can be
implementedwith DP [17], [21], [22] inOðN2Þ time and space
complexity, whereN is the length of the aligning sequences.
As far asMSA is concerned, the run-time and space complex-
ity grow exponentially with the number of sequences, indi-
cating that the task for aligning many sequences of protein
and amino acidwill be very difficult [2].

In order to reduce the run-time and space complexity of
DP, an efficient algorithm has been proposed in anMSA pro-
gram, called multiple alignment using FFT (MAFFT). The
program drastically reduces the execution time compared
with existing methods [14], [23] by using fast Fourier trans-
form (FFT) and cyclic convolution to identify homologous
regions of sequences, whereas the accuracy of the resultant
alignments is comparable with that of the most accurate
methods in the literature. Although it is well-known that
there is a strong relation between FFT and convolution,
MAFFT is the first and only one to handle MSA by using
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convolution and FFT.MAFFT is the fastest program forMSA
compared with the existing programs whose accuracy of
resulting alignments are comparable with the most accurate
methods. The key technique inMAFFT, i.e., the identification
of the homologous regions of aligning sequences by using
FFT and convolution, can be applied to other algorithms of
MSA. It is thus of interest to modify the algorithm with less
memory size, lower computational complexity, more homol-
ogous regions detected, and higher efficiency.

The aim of this work is to improve MAFFT in efficiency.
We modify the MAFFT, and devise a correlation computa-
tion algorithm and an FFT algorithm. In the former, an amino
acid residue and a nucleotide residue are expressed as one
and two complex numbers, respectively, instead of vectors
consisting of two and four real numbers, in the MAFFT. The
idea of linear convolution is utilized for improving the corre-
lation computation between sequences by the proposed algo-
rithm. The complex number scheme for nucleotide sequences
has already been explained in theURL: http://mafft.cbrc.jp/
alignment/software/algorithms/algorithms.html [24] and
used in [25]. The modification in MAFFT is made after the
publication of [26], and the Katoh2002 scheme (four real
numbers are used for denote a nucleotide) is still used when
the –nomemsave option is given. We rediscover and present
the scheme in this paper. Our presentation contains not
only the scheme for nucleotide sequences but also an exact
derivation and the scheme for amino acid sequences. The cor-
relations of alignment sequences are efficiently calculated
using the proposed FFT algorithm which can eliminate the
permutation of order. The elimination of order permutation
can reduce the FFTCPU time since the time spent in the order
permutation is about 15-25 percent of total FFT time. More-
over, it corresponds to a novel FFT algorithm on real data,
which requires only the real parts of the final outputs of the
correlations of sequences. The proposed correlation compu-
tation and FFT schemes allow us to achieve the improvement
ofMAFFT in efficiency.

The rest of this paper is organized as follows. Section 2
reviews MSA presented in MAFFT. Section 3 proposes a cor-
relation calculation algorithm based on complex-valued
expressions for bioinformatic sequences. Section 4 presents
an FFT algorithm for the implementation of the proposed cor-
relation calculation algorithm. Section 5 analyzes the perfor-
mance of the two proposed algorithms by comparing them
with those in MAFFT. The analysis and comparison include
the requiredmemory size, computational complexity, and the
access to the lookup table of twiddle factors. Section 6
includes two simulations which simulate the computation of
MSA and the computation of the correlation between two
sequences. Finally, conclusions are drawn in Section 7.

2 OPTIMIZATION OF ALIGNING PATH

In this section, we present two aspects of the optimization of
the aligning path: digital sequence expression and correlation
computation. These two aspects are basics for us to under-
stand the proposed scheme. The presentation is derived from
[26] and source code of the currentMAFFT 7.127b.

The frequency of amino acid expressions strongly
depends on the difference of physico-chemical properties,
particularly volume and polarity, between the amino acid
pair involved in the expression [27]. Expressions between

physico-chemically similar amino acids tend to preserve the
structure of proteins, and such neutral expressions have
been accumulated in molecules during evolution [28]. It is
reasonable to consider that an amino acid a is a vector con-
sisting of the volume vðaÞ and polarity pðaÞ, which is intro-
duced by Grantham [29]. The values of the properties in
amino acid are listed in Table 1.

We now take the amino acid sequence s: YKFLSCVSNM
as an example. By looking up the table, the sequence s can be
expressed as ((6.2, 136.0), (11.3, 119.0), (5.2, 132.0), (4.9, 111.0),
(9.2, 32.0), (5.5, 55.0), (5.9, 84.0), (9.2, 32.0), (11.6, 56.0), (5.7,
105.0)). Then the sequence is converted to the normalized
forms: v̂ðaÞ ¼ ½vðaÞ � v�=dv and p̂ðaÞ ¼ ½pðaÞ � p�=dp, where
the overbar denotes the average of 20 amino acids (v ¼ 84:025
and p ¼ 8:325), and dv and dp denote standard deviations of
volume and polarity respectively (dv ¼ 41:86540189 and dp ¼
2:622379645). An amino acid sequence of symbols is then con-
verted to a sequence of vectors.

The correlation between two sequences is defined as fol-
lows:

cðkÞ ¼ cvðkÞ þ cpðkÞ; �Lþ 1 � k � L� 1; (1)

where cvðkÞ and cpðkÞ are the correlations of volume compo-
nent and polarity component between these two sequences,
M and N are the lengths of sequences 1 and 2, L ¼ max

ðM;NÞ, and k is the lag index. (In MAFFT, L ¼ 2dlog 2Le,
where dxe rounds up the real number x to the nearest inte-
ger). The correlation cðkÞ represents the degree of similarity
of two sequences with the positional lag of k sites. The 20
highest values of cðkÞ indicate that the sequences with the
corresponding lag kmay have homologous regions.

The correlation cvðkÞ of component volume between
sequences 1 and 2 with the positional lag k is defined as:

cvðkÞ ¼
XM
m¼1

v̂1ðmÞv̂2ðmþ kÞ;

�Lþ 1 � k � L� 1;

(2)

where v̂1ðnÞ and v̂2ðnÞ are volume components of nth site of
sequence 1 with length M and sequence 2 with length N
respectively. Generally speaking, M ’ N in many cases, the
calculation of Eq. (2) requires OðMNÞ operations. Similar to
Eq. (2), the correlation cpðkÞ of component polarity between
sequence 1 and 2 with lag k is defined as

TABLE 1
Values for Properties in Amino Acid [29]

Amino Property Amino Property

acid p v acid p v

Ser S 9.2 32.0 Tyr Y 6.2 136.0
Arg R 10.5 124.0 Cys C 5.5 55.0
Leu L 4.9 111.0 His H 10.4 96.0
Pro P 8.0 32.5 Gln Q 10.5 85.0
Thr T 8.6 61.0 Asn N 11.6 56.0
Ala A 8.1 31.0 Lys K 11.3 119.0
Val V 5.9 84.0 Asp D 13.0 54.0
Gly G 9.0 3.0 Glu E 12.3 83.0
Ile I 5.2 111.0 Met M 5.7 105.0
Phe F 5.2 132.0 Trp W 5.4 170.0
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cpðkÞ ¼
XM
m¼1

p̂1ðmÞp̂2ðmþ kÞ;

�Lþ 1 � k � L� 1:

(3)

From the mathematical point of view, the lag k is in the
range from �Lþ 1 to L� 1. However, the range of lag k in
Eq. (3) is inaccurate from the biological viewpoints, since
sequences are often aligned sequentially by matching the
front to the front and the back to the back. It is impossible
for a pairwise alignment to match the first residue of one
sequence to the last residue of another one.

MAFFT computes Eq. (2) through FFT, which reduces
the computational complexity from OðL2Þ to OðLlogL2 Þ. The
method is based on the cyclic convolution property of dis-
crete Fourier transform (DFT):

V1 � V2 ¼ IDFT ðDFT ðV1ÞDFT ðV2ÞÞ; (4)

where V1 and V2 are the volume component vectors of a
pairwise sequences, � denotes cyclic convolution, and
DFT ðV Þ and IDFT ðV Þ represent the DFT and inverse dis-
crete Fourier transform (IDFT) of sequence V respectively.
If the order of sequence 2 is reversed, Eq. (2) can be re-
expressed as follows:

cvðkÞ ¼
XL
m¼1

v̂1ðmÞ ^v2
 ðL� k�mÞ;

�Lþ 1 � k � L� 1;

(5)

where ^v2
 denotes the reversed sequence 2. Since Eq. (5) is

the convolution representation of the correlation cðkÞ and
satisfies the condition of Eq. (4), the right part in Eq. (5) can
be computed by using Eq. (4). If DFT ðV Þ or IDFT ðV Þ is
evaluated with FFT, the computational complexity for com-
puting Eq. (2) or (5) is proportional to Llog2L. The correla-
tion cpðkÞ in Eq. (3) can be computed with the method
similar to the correlation cvðkÞ in Eq. (2).

According to the 20 highest values of the correlation cðkÞ,
MAFFT can detect and locate homologous regions, then a
segment-level DP is conducted and obtains an optimal path
of the alignment. By using the optimal path, the aligning
matrix is divided into several sub-matrices at the boundary
corresponding to the center of homologous segments, which
can reduce the solution space of the alignment and save the
CPU time [26].

The procedure of the one-to-one alignment can be
extended to group-to-group alignment by considering the
one-to-one alignment as the special case of the group-to-
group alignment with one sequence in each group. The
group-to-group alignment algorithm is a straightforward
extension of the one-to-one alignment algorithm, and is the
core of progressive and iterative approaches. The essential
difference of group-to-group alignment from pairwise
sequence alignment is the existence of gaps within each
group of pre-aligned sequences [30]. By replacing v̂1ðmÞ
and v̂2ðmÞ in Eq. (2) with v̂group1ðmÞ and v̂group2ðmÞ, and
p̂1ðmÞ and p̂2ðmÞ in Eq. (3) with p̂group1ðmÞ and p̂group2ðmÞ,
the two equations are extended to group-to-group align-
ment. The volume v̂groupðmÞ and polarity p̂groupðmÞ of a

group are defined as:

v̂groupðmÞ ¼
X

i2group
WiviðmÞ; m ¼ 1; 2; . . . ; L; (6)

and

p̂groupðmÞ ¼
X

i2group
WipiðmÞ; m ¼ 1; 2; . . . ; L; (7)

where Wi is the weight factor of sequence i, which is evalu-
ated in the same manner as in [10], [23], [31] for progressive
method, or in the same manner as the weight system in [16],
and L is the longest length in the group.

The correlation cðkÞ between two nucleotide sequences
can be evaluated through

cðkÞ ¼ cAðkÞ þ cT ðkÞ þ cGðkÞ þ cCðkÞ;
� Lþ 1 � k � L� 1;

(8)

by representing a nucleotide sequence as a sequence of 4-D
vectors whose components are frequencies of A, T , G, and
C at each column, instead of volume and polarity values.
For example, the nucleotide sequence “TAGTAA...” can be
expressed as ((0,1,0,0), (1,0,0,0), (0,0,1,0), (0,1,0,0), (1,0,0,0),
(1,0,0,0), ...).

3 PROPOSED CORRELATION COMPUTATION

In this section, we propose a method for computing the
correlation between sequences in MAFFT. The proposed
method is different from the original method scheme in two
aspects. (i) The method uses one complex data to express an
amino acid residue, instead of a vector composed of two
real numbers, and uses two complex numbers replacing a
vector of four real numbers for expressing a nucleotide resi-
due, (ii) Linear convolution with a limitation is proposed
for computing the sequence correlations. For general mathe-
matical sequences, the linear convolution can identify more
homologous regions than those of the cyclic convolution.
However, the bioinformatics sequences are just a very small
part of the mathematical sequences. Moreover, the alpha-
bets in a bioinformatics sequence are arranged in a metho-
dical manner rather than a random fashion. Thus, the
limitation of the linear convolution is proposed for improv-
ing the efficiency of the correlation computation of bioinfor-
matic sequences of MAFFT. Although the convolution in
the proposed algorithm is an intermediate form between
cyclic convolution and linear convolution, we call it linear
convolution.

3.1 One-to-One Alignment

From Section 2, we find that the computations of Eqs. (2)
and (3) are not exactly identical to that of their cyclic convo-
lution numerically. The computation using linear convolu-
tion is exactly identical to that of Eqs. (2) and (3). This is the
reason why linear convolution in the proposed scheme
replaces cyclic convolution in computing the correlations
between sequences. Fig. 1 illustrates the computation of the
correlation of sequence s1 ¼ ‘‘ABCD’’ and sequence s2 ¼
‘‘CABD’’. In Fig. 1a, the correlation of the two sequences is
computed directly according to Eqs. (2) and (3). Since the
lengths of the two sequences are the same, the value of L in
Eqs. (2) and (3) is four. The computation of the correlations

636 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO. 3, MAY/JUNE 2017



using cyclic convolution is shown in Fig. 1b, where the cor-
relation cðkÞ is the number of the matched characters
between these two sequences. It is clear that, the computa-
tion of the correlation using cyclic convolution does not
keep pace with the computation directly using Eqs. (2) and
(3), and some computations that need to be performed are
neglected. Fig. 1c shows the computation of the correlations
of these two sequences through linear convolution. By com-
paring Figs. 1a and 1b with Fig. 1c, one can find that the
computation using linear convolution overcomes the defi-
ciency of that of cyclic convolution in Figs. 1a and 1b. More-
over, more correlations obtained by linear convolution will
result in more homologous segments identified.

An amino acid a, as mentioned before, can be repre-
sented as a vector whose components are the volume vðaÞ
and polarity pðaÞ. A complex data is like a vector of two real
numbers except that it has special rules for addition
and multiplication. In order to evaluate the convolution
more efficiently, the proposed one-to-one alignment uses a
complex data to describe an amino acid, i.e., one can use
p̂ðaÞ � jv̂ðaÞ or v̂ðaÞ � jp̂ðaÞ to denote the amino acid a,

where j ¼ ffiffiffiffiffiffiffi�1p
.

The expressions of the aligning sequences should stay
the same. We now consider the case of two sequences.
Assume that the two sequences are s1 and s2. First, if the
volume value (or polarity value) of an amino acid in s1 is
the real part of the expression, the volume value (or polarity
value) of an amino acid should be also the real part of the
expression in s2. Second, if the imaginary part of an amino
acid in s1 is positive, the imaginary part of an amino acid in
s2 should be negative, and vice versa. The situation of multi-
ple sequence alignment is similar to that of two sequences.
The correlation cðkÞ of the sequences s1 and s2 in Eq. (1) can
be re-defined as

cðkÞ ¼
XMþN�1

m¼0
s1ðmÞ t s2ðmþ kÞ;

� Lþ 1 � k � L� 1;

(9)

where

s1ðmÞ t s2ðmþ kÞ
¼ <fs1ðmÞg<fs2ðmþ kÞg þ =fs1ðmÞg=fs2ðmþ kÞg
¼ p̂1ðmÞp̂2ðmþ kÞ þ v̂1ðmÞv̂2ðmþ kÞ;

(10)

and <fsðaÞg and =fsðaÞg denote the real and imaginary
parts of the complex number sðaÞ respectively. As the dis-
cussed in Section 2, it is impossible for a pairwise alignment
to match the first residue of one sequence to the last residue
of another one. Thus, it is unnecessary to obtain all cðkÞ for
Eq. (9) by padding enough zeros. To obtain 2aþ 1 reliable
correlation cðkÞ, 2a zeros have to be padded for these two
sequences, where �a � k � a and bð2L�N �MÞ=2c � a �
ðN þM � 1Þ=2, where bxc denotes the biggest integer which
is smaller than x. By padding bð2aþN �M þ 1Þ=2c zeros at
the end of the sequence s2 and then reversing it, and pad-
ding b2a�N þM þ 1Þ=2c zeros at the end of the sequence
s1, a novel equation which is similar to but not a convolu-
tion is obtained as follows:

cðkÞ ¼
Xb

n¼1
s1ðnÞ t s2ðk� nÞ;

k ¼ 0; 1; . . . ;b� a;b� aþ 1; . . . ;b� 1;

(11)

where b ¼ bð2aþN þM þ 1Þ=2c. In Eq. (11), the b� 2a� 1
correlation cðkÞ when a < k < b� a are unnecessary. We
call Eq. (11) semi-convolution, which is not a full convolu-
tion equation, since the operation operator is ‘‘ t ’’ rather
than a multiplication. However, Eq. (11) can be computed
efficiently by using standard convolution as

cðkÞ ¼
Xb

n¼1

�
s1ðnÞs2ðk� nÞ

� j½v1ðnÞp2ðk� nÞ � v2ðk� nÞp1ðnÞ�
�

¼ IDFT
�
DFT ðs1ÞDFT ðs2Þ

�

� jIDFT
�
DFT ðv1ÞDFT ðp2Þ �DFT ðv2ÞDFT ðp1Þ

�
;

k ¼ 0; 1; . . . ;b� a;b� aþ 1; . . . ;b� 1;

(12)

where DFT ðsÞ and IDFT ðsÞ represent the DFT and iDFT of
the sequence s respectively. Since v1ðnÞ, v2ðnÞ, p1ðnÞ, and
p2ðnÞ are real numbers, the entries in IDFT ðDFT ðv1ÞDFT
ðp2Þ �DFT ðv2ÞDFT ðp1ÞÞ are real numbers and those
of jIDFT ðDFT ðv1ÞDFT ðp2Þ �DFT ðv2ÞDFT ðp1ÞÞ are imagi-
nary numbers. Moreover, it is known that the values of cðkÞ
are real numbers. Therefore, in Eq. (12), the real parts of
IDFT ðDFT ðs1ÞDFT ðs2ÞÞ are equal to the values of cðkÞ, and
the evaluation of the term �jIDFT ½DFT ðv1ÞDFT ðp2Þ �
DFT ðv2ÞDFT ðp1Þ� can be neglected, i.e.,

cðkÞ ¼ <fIDFT ðDFT ðs1ÞDFT ðs2ÞÞg;
k ¼ 0; 1; . . . ;b� a;b� aþ 1; . . . ;b� 1;

(13)

In MAFFT, cyclic convolution is utilized for computing the
correlation cvðkÞ in Eq. (2) and cpðkÞ in Eq. (3), and is imple-
mented with a radix-2 FFT which taken from Flannery et al.
[32]. Sequences have to been padded with zeros till their
lengths reach powers-of-two, which makes its cyclic convo-
lution like linear convolution in some extent.

Fig. 1. Correlation computation of three methods.
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In the next section, an FFT algorithm is proposed to
efficiently compute the correlation cðkÞ between the two
sequences according to Eq. (13). In the algorithm, two FFT
programs are developed. The purpose of one of the two pro-
grams is to compute DFTs of sequences and the second is to
compute the IDFTs.

3.2 Extension to Group-to-Group Alignment

Similar to MAFFT, the proposed one-to-one alignment
can also be easily extended to group-to-group alignment by
considering Eq. (9) as the special case of one group with one
sequence. If the terms s1ðmÞ and s2ðmþ kÞ are replaced by
sgroup1ðmÞ and sgroup2ðmþ kÞ, one can evaluate the correla-
tion between two groups through Eq. (9). The expression of
the group s is defined as

ŝgroupðnÞ ¼
X

i2group
WisiðnÞ; n ¼ 1; 2; . . . ; L� 1; (14)

where L is the maximum length of sequences among the
group.

If the method is applied to nucleotide sequences, the
vector of four real numbers of a nucleotide is to be con-
verted to two complex numbers in which each complex
number derives from two of the four frequencies of A, T ,
G, and C at each column. Assume that the frequencies of
A and T form a complex number and those of G and C
form another one. The correlation cðkÞ between two nucleo-
tide sequences of s1 with length M and s2 with length N is
defined as

cðkÞ ¼ cAT ðkÞ þ cGCðkÞ
¼ <fIDFT ðDFT ðsAT1ÞDFT ðsAT2ÞÞg

þ <fIDFT ðDFT ðsGC1ÞDFT ðsGC2ÞÞg;
k ¼ 0; 1; . . . ;b� a;b� aþ 1; . . . ;b� 1;

(15)

which is similar to Eq. (13). The convolutions in Eqs. (13)
and (15) will be evaluated with the proposed FFT algorithm
in Section 4.

We now summarize the proposed algorithm for the
correlations between sequences. The first and most
important thing is to express the amino acid and the
nucleotide in a regular and strict way. Second, the linear
convolution of the sequences will be efficiently imple-
mented with the proposed FFT algorithm in Section 4.
The real parts of the linear convolution are the final out-
puts. Through the correlations in Eqs. (13) and (15), as
mentioned in Section 2, we can obtain the homologous
regions of pairs of sequences or sequence groups. The
homologous regions divide the 2-D array constructed
from the aligning sequences or sequence groups into
some sub-arrays, while the alignment of two long sequen-
ces of sequence groups is decomposed into some sub-
alignments of pairs of shorter sequences or sequence
groups. The resultant sub-alignments can be implemented
with any approach of aligning two sequences or sequence
groups. When the alignments of pairs of sequences or
sequence groups are used by progressive method or other
MSA methods, the alignment of multiple sequences is
obtained efficiently.

4 PROPOSED FFT ALGORITHM

It is obligatory to implement three FFTs for a protein sequence
alignment and six FFTs for a DNA sequence alignment. Two
of the three FFTs or four of the six FFTs are implemented for
computing the DFTs of sequences (or groups). The other FFTs
are implemented for computing the iDFT of the product of
the DFTs of the pairwise of sequences (or groups). An FFT
algorithm is proposed for efficiently computing the DFTs and
iDFTs. In the algorithm, two FFT programs are developed.
One of the programs can implement the computation of the
DFTs of sequences (or groups). Another one can implement
the IDFT of the product of the DFTs. The two programs are all
based on the split-radix FFT (SRFFT) algorithm [33], [34], [35].
The algorithm for DFTs is decimation-in-frequency (DIF)
structure. The algorithm for IDFTs is decimation-in-time
(DIT) structure, which is a novel output pruning and can
delete all unnecessary operations since only the real parts
of the outputs are necessary. Both algorithms eliminate the
order permutation since this is redundant for the proposed
sequence alignment. The time spent in the order permutation
is about 15-25 percent of total FFT time. Thus, the elimination
of order permutation can reduce the FFT CPU time.

4.1 Order Permutation Elimination

Permuting order in the implementation of FFTs does not
require real operations. However, the striding access to mem-
orymakes a lot of demands onCPU time. Generally speaking,
an FFT algorithm is used in applications where Fourier analy-
sis is implemented in frequency domain, and it is necessary
to permute order. Owing to non-existence of Fourier analysis
of frequency domain in the proposed sequence alignment,
permuting order is unnecessary for the proposed FFT
implementation.

Therefore, in the proposed FFT implementation, the order
permutation is omitted by blending an DIF SRFFT algorithm
and an DIT SRFFT algorithm. As illustrated in Fig. 2, the
implementation of the DIF SRFFT algorithm permutes the
order of sequences at the end of programs, and the imple-
mentation of the DIT SRFFT algorithm permutes the order of
sequences at the beginning of programs. In order to eliminate
the order permutation, the proposed implementation
method uses the DIF SRFFT algorithm to evaluate the DFTs
of sequences, and then uses the DIT SRFFT algorithm to eval-
uate corresponding IDFTs.

The proposed FFT implementations are based on the
SRFFT algorithm. The SRFFT algorithm is the best possible
compromise between regularity and computational com-
plexity [36], and has the optimal number of real multiplica-
tions and the best known minimum of real additions for
lengths up to and including 16. It is the most popular FFT
algorithm on general processors and is a good choice for the
proposed method to implement its FFTs.

Let us review the definition of DFT and the decom-
position of the SRFFT algorithm. For a length-L sequence,

we can obtain a new sequence of length-N ¼ 2dlog2ðLÞe

sequence xðnÞ by padding zeros, its DFT is also a length N
sequence,

XðkÞ ¼
XN�1
n¼0

xðnÞWnk
N ; k ¼ 0; 1; 2; . . . ; N � 1; (16)
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where W ¼ e�j2p=N and j ¼ ffiffiffiffiffiffiffi�1p
. The DIF SRFFT algorithm

is similar to the DIT SRFFT algorithm. The difference
between DIF and DIT lies only in the direction of their flow-
graph. The DIF decomposition of SRFFT gives

Xð2kÞ ¼
XN=2�1

n¼0
ðxðnÞ þ xðnþN=2ÞÞWnk

N ;

k ¼ 0; 1; 2; . . . ; N=2� 1;

(17)

for the even-indexed terms, and

Xð4kþ 1Þ ¼
XN=4�1

n¼0
ððxðnÞ � xðnþN=2ÞÞ

� jðxðnþN=4Þ � xðnþ 3N=4ÞÞÞWn
NW

nk
N ;

k ¼ 0; 1; 2; . . . ; N=4� 1;

(18)

and

Xð4kþ 3Þ ¼
XN=4�1

n¼0
ððxðnÞ � xðnþN=2ÞÞ

þ jðxðnþN=4Þ � xðnþ 3N=4ÞÞÞW 3n
N Wnk

N ;

k ¼ 0; 1; 2; . . . ; N=4� 1;

(19)

for the odd-indexed terms. In the case of the DIT SRFFT
algorithm, the decomposition is

XðkÞ ¼
XN=2�1

n¼0
xð2nÞWnk

N=2 þWk
N

XN=4�1

n¼0
xð4nþ 1ÞWnk

N=4

þW 3k
N

XN=4�1

n¼0
xð4nþ 3ÞWnk

N=4;

k ¼ 0; 1; 2; . . . ; N � 1:

(20)

The flowgraph of DIF SRFFT for 16-point DFT is illustrated
in Fig. 2a, and that of DIT SRFFT for 16-point IDFT is shown
in Fig. 2b.

4.2 DIF and DIT Programs

The SRFFT algorithm decomposes a length-N ¼ 2m DFT into
a length-N=2 sub-DFT and two length-N=4 sub-DFTs by
implementing two special butterflies of n ¼ 0 and n ¼ N=8,
and N=4� 2 general butterflies. To simplify butterfly analy-
sis, we are going to focus on the general L-butterflies. There
exist two types of general butterflies in the proposed FFT
implementation, as shown in Fig. 3. The general butterfly
illustrated in Fig. 3a is implemented in the DIF SRFFT algo-
rithm that is developed for computing the DFTs of sequences.
The general butterfly illustrated in Fig. 3b is implemented in
the DIT SRFFT algorithm that is developed for computing the
IDFTs of the product of the DFTs of two sequences.

The proposed FFT algorithm eliminates the order permu-
tation. The algorithm includes two FFT programs. One of
them is to compute the DFTs of sequences, which uses DIF
structure of SRFFT. The other program is devised for com-
puting the IDFT of the product of two DFTs, which uses the
DIT structure of SRFFT. Among them, the latter only
requires real outputs, and is a variant of the real split-radix
IFFT. Compared with the standard SRFFT algorithm, the
proposed IFFT algorithm does not need to permute their
orders, and can save half of real operations. The simulation
result shows that evaluations of the correlation between
two sequences in the proposed manner saves CPU time
ranging from 66:0 to 88:0 percent over that in MAFFT.

The program of the DIF SRFTT algorithm is similar to that
of the DIT SRFFT algorithm, only the direction of control
flow and the types of butterflies are different. Two three-
loop structure programs are developed on Windows and
Ubuntu in C/C++. The searching technique of the L-shape
block adopts the method presented by Sorensen in et al. [34].

Fig. 3. General butterflies of proposed FFT algorithm.

Fig. 2. Flowgraph of 16-point DFT and IDFT.

ZHENG ET AL.: A MODIFIED MULTIPLE ALIGNMENT FAST FOURIER TRANSFORMWITH HIGHER EFFICIENCY 639



Tominimize the access to the lookup table of twiddle factors,
two programs all breath-first traverse all the L-shape blocks.
The programs stride m� 1 stages in the outer loop. In the
middle loop, the programs lookup the table for twiddle fac-
tor of one L-shape butterfly and prepare for the implementa-
tion of the butterfly in the inner loop. The programs
implement one L-shape butterfly at each L-shape blockwhile
the programs traverses the block in the inner loop. The final
stage for the DIF structure and the first stage for the DIT
structure consist of length-2 DFTs. The length-4 L-shape but-
terfly is not proper for them.

5 PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
algorithms by comparing with those in MAFFT. The analy-
sis and comparison include the computational complexity,
and the access to the lookup table of twiddle factors.

5.1 Computational Complexity

Assume the lengths of FFTs are N in the computation of the
correlations of the aligning sequences. We now consider the
computational complexities of the proposed scheme and
MAFFT for the computation of the correlation of two
sequences.

In MAFFT, an DFT or IDFT of length-N is implemented
with a general radix-2 FFT program in the computational
complexity of 5N log2N � 10N þ 16. The FFT source code
in MAFFT has been taken from [32]. The computations of
correlations of two amino acid sequences contains the eval-
uations of four DFTs and two IDFTs of length-N . In addi-
tion, the computations contain 2N complex multiplications
and N real additions. For the correlations of two nucleotide
sequences, MAFFT requires the evaluations of eight DFTs
and four IDFTs of length-N , 4N complex multiplications,
and 3N real additions.

In the proposed algorithms, an DFT of length-N is imple-
mented with the DIF SRFFT algorithm in the computational
complexity of 4N log2N � 6N þ 8, and an IDFT of length-N
is implemented with the real data DIT SRFFT algorithm in
the computational complexity 2N log2N � 3N þ 4. For the
correlations of two amino acid sequences, there are two
DFTs and one IDFT of length-N needed to evaluate. In addi-
tion, the computations requires N complex multiplications.
For the correlations of two nucleotide sequences, the compu-
tations contain the evaluations of four DFTs and two IDFTs of
length-N , 2N complexmultiplications, andN real additions.

Table 2 shows the computational complexities of the pro-
posed scheme and MAFFT for the correlations of two
sequences. We can see that the proposed scheme obtains a
substantial reduction of computational complexity for the
correlations of both two amino acid sequences and two
nucleotide sequences.

5.2 Access to Lookup Table

In recent decades, the memory performance improvements
have not kept pace with processor, and this trend is likely to
continue. So, it becomes increasingly important for memory
assess to be optimized on modern processors. There are few
algorithms considering the access optimization to twiddle
factors which arise in Cooley and Tukey’s algorithm. The

twiddle factors are a set of complex roots of unity, fixed by
the transform order and the particular algorithm [37]. The
breath-first Cooley and Tukey’s traversing algorithms
requires OðNÞ access to twiddle factors, and [38] presents a
more irregular algorithm requiring fewer than N=2, where
N ¼ 2m is the length of the DFT. These traversals require
striding access to memory (sample data), which is more
expensive than the sequential access to memory. However,
by using some cache optimization strategies [39], this defi-

ciency can be avoided. Bowers et al. [37] have proposed GT -
andG-based implementations requiringN access to twiddle
factor and no such striding access to memory. However,
these algorithms are only suitable for the radix-2 FFT with
power-of-two DFTs. The two implementations in this work

require N � 2 real operations while the twiddles factors W 0

and WN=8 being or not being initiated and stored in the
registers of the processor. Their regularity is the same as
that of the breath-first Cooley and Tukey’s algorithm and
more regular than that of [38].

6 RESULTS

6.1 Simulations

In order to evaluate the performance of the proposed
method, we conduct simulations which are focused on the
algorithm efficiency and number of detected homologous
regions, on an Ubuntu operating system (Intel Xeon E6700
3.2 GHz with 2 GB of memory). The gcc version 4.5.2 com-
piler is used with the optimization option ‘-O3’. We set five
switch constants in mltaln.h in MAFFT source code to con-
trol five modifications that can affect MAFFT performance.
The five switch constants are listed as follows:

� MOD.1 controls “fftWinSize” = 30 or = 100 for DNA
sequence alignment. The value of the variable
“fftWinSize” is the size of the sliding window.

� MOD.2 controls whether or not neglects the sen-
tence in Falign.c, in the function “Falign()”: “if(
tmpint == 0) break;”. In the loop of the identifica-
tion of homologous regions from the 20 highest val-
ues of the correlations, this sentence control to exit
the loop if the current correlation does not contains
a homologous region.

� MOD.3 controls whether or not add MAXLAG/2 to
the alignment length “nlen” in Falign() in Falign.c.

TABLE 2
Computational Complexity of Correlation Computation

of Two Sequences

Computational complexity Rounds of order
permutation

2002 MAFFT

Amino acid 30N log2N � 47N þ 96 6
Nucleotide 60N log2N � 93N þ 192 12

Newer MAFFTs

Amino acid 15N log2N � 24N þ 48 3
Nucleotide 60 N log2N � 93N þ 192 12

Proposed scheme

Amino acid 10N logN � 10N þ 20 0
Nucleotide 20N log2N � 19N þ 40 0
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MAXLAG/2 is derived from the variable “a” of the
proposed linear convolution scheme. In the modified
MAFFT, MAXLAG/2 is 75.

� MOD.4 controls the possible candidate lags whether
or not in the range from -MAXLAG/2 to MAX-
LAG/2.

� MOD.5 controls whether or not use the new FFT
program.

In order to obtain an optimal performance, several modi-
fications may be combined in a revision. The MAFFT with
the optimal combination of modification 1, 4 and 5 is the so-
called modified MAFFT in the paper. For a protein sequence
alignment, the modification 1 is neglected automatically by
the modified MAFFT.

By ROSE program [40], [41], we generate the two datasets
“DNA01” and “Protein” with Relatedness ¼ 10, and the
two datasets “DNA02” and “DNA03” with Relatedness ¼
20. Every dataset contains nine pairs of sequences whose
lengths are from 128 to 32,768. From the results based on
datasets “DNA01” and ”DNA02”, it is demonstrated that
our proposed linear convolution scheme can detect more
homologous regions for DNA sequence alignment. The
dataset “DNA03” is a general DNA sequence dataset to
demonstrate the general performance of our proposed
scheme. The dataset “Protein” is a protein sequence dataset,
which can demonstrate the advantage that our proposed
linear convolution scheme can detect more homologous
regions for protein sequence alignment.

Table 3 shows the number of the identified homologous
regions for the four datasets “DNA01”, “DNA02”, “DNA03”
and “Protein” by MAFFT with cyclic or linear convolution.
For the dataset “DNA01”, the sliding window sizes of
MAFFT with cyclic or linear convolution are all 30 sites. For
the datasets “DNA02” and “DNA03”, the sliding window
sizes of MAFFT with cyclic or linear convolution are all 100
sites, i.e., the default sliding window size of the original
MAFF for DNA sequences. For the dataset “Protein”, the
sliding window sizes of MAFFT with cyclic or linear convo-
lution are all 20 sites, i.e., the default sliding window size of
the original MAFFT for protein sequence alignment. The
sliding window size for DNA sequence alignment can be 30
or 100 sites by setting the switch constant “MOD.1” to “0” or
“1”. MAFFT with linear convolution should set the switch
constant “MOD.3” to “1”, i.e., to extend the lengths of

aligning sequences to reach the length of linear convolution.
The switch constant “MOD.3” in MAFFT with cyclic convo-
lution should be “0”. The values in Table 3 are the final val-
ues of the variable “count” in the function “Falign()“ in the C
++ program “Falign.c” for different lengths of MAFFT with
cyclic or linear convolution, i.e., the total number of detected
homologous regions. For the two values of MAFFT with
cyclic or linear convolution of each sequence length of each
dataset, the first one can be obtained when the switch con-
stant “MOD.2” is “0”, and the second one can be obtained
when the switch constant “MOD.2” is “1”.

From the mathematical point of view, the number of the
identified homologous regions depends on the way whether
the correlations are computed using linear convolution or
cyclic convolution. The cyclic convolution will result in an
incomplete computation of correlations between aligning
sequences, as discussed in Section 3.1. When the sequences
in the datasets “DNA01”, “DNA02” and “Protein” are gen-
erated by ROSE, only those are detected more homologous
regions with the proposed linear convolution are kept. The
experimental results show that MAFFT with linear convolu-
tion can identify homologous regions twice those of cyclic
convolution for these three datasets.

From the bioinformatics point of view, the alphabets in
the sequences are arranged in a methodical manner rather
than a random fashion. Thus, for a general sequence align-
ment, the effect of the linear convolution will be not so obvi-
ous like the datasets “DNA01”, “DNA02” and “Protein”.
The dataset “DNA03” contains a set of general DNA
sequences generated by ROSE program [40], [41]. When the
switch constant “MOD.2” is “0”, the number of detected
homologous regions by MAFFT with linear convolution is
the same as that of MAFFT with cyclic convolution. When
the switch constant “MOD.2” is “1”, and the number of
detected homologous regions by MAFFT with linear convo-
lution is six more than that of MAFFT with cyclic convolu-
tion. This result can show the general performance of our
proposed scheme in detecting homologous regions.

Besides the number of detected homologous regions, the
proposed scheme can affect the efficiency of the region-level
DP by the parameter a in Eq. (11). The simulations estimate
the efficiency in CPU time of the proposed scheme. Tables 4,
5, 6 and 7 give respectively the CPU time of the four
datasets. The time in Tables 4, 5, 6 and 7 is the CPU

TABLE 3
Number of Detected Homologous Regions by MAFFT with Cyclic or Linear Convolution

Length

DNA01
(fftWinSize ¼ 30)

DNA02
(fftWinSize ¼ 100)

DNA03
(fftWinSize ¼ 100)

Protein
(fftWinSize ¼ 20)

Cyclic Linear Cyclic Linear Cyclic Linear Cyclic Linear

128 2/2 1/2 0/0 0/0 0/0 0/0 1/1 2/2
256 2/2 2/3 0/0 0/0 1/1 1/1 2/2 4/4
512 0/2 2/3 0/1 0/1 3/3 3/3 1/2 4/4
1,024 1/7 7/8 0/1 0/3 0/0 0/0 6/8 11/17
2,048 1/1 1/5 9/9 12/12 9/9 9/9 5/13 7/19
4,096 0/3 2/5 0/14 24/24 1/1 1/2 0/19 29/33
8,192 5/12 5/15 25/26 25/32 48/48 48/49 7/13 12/21
16,384 53/62 62/64 37/50 37/52 80/80 80/84 36/44 55/59
32,768 0/34 37/38 30/73 65/83 36/38 36/38 44/100 117/117

Total 64/128 121/141 101/174 163/207 178/180 178/186 102/202 241/276
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TABLE 5
CPU Time for DNA Sequences of the Dataset “DNA02”

Length Original MAFFT with one separate modification MAFFT with modifications (A�B)/B
MAFFT (A) MOD.1 MOD.2 MOD.3 MOD.4 MOD.5 1 and 4 (C) 1, 4 and 5 (B) (%)

128 0.001454 0.001223 0.002380 0.001555 0.001502 0.001477 0.001256 0.001098 32.42%
256 0.004458 0.001223 0.006369 0.004671 0.004476 0.004390 0.004480 0.002250 98.13%
512 0.015343 0.010697 0.013929 0.015806 0.015275 0.015394 0.005793 0.004222 263.41%
1,024 0.058716 0.023127 0.044397 0.059570 0.023259 0.058551 0.012112 0.018256 221.63%
2,048 0.028103 0.018053 0.041607 0.058127 0.028346 0.016519 0.017888 0.017821 57.70%
4,096 0.262949 0.269357 0.118905 0.209513 0.079892 0.255548 0.049850 0.046833 461.46%
8,192 0.318229 0.230719 0.345677 0.326979 0.305558 0.308853 0.207477 0.147998 115.02%
16,384 1.207311 0.686704 0.643782 1.176340 1.159312 1.161829 0.225703 0.168733 615.52%

Total 1.896563 1.241103 1.217046 1.852561 1.617620 1.822561 0.524559 0.407211 365.74%

TABLE 4
CPU Time for DNA Sequences of the Dataset “DNA01”

Length Original MAFFT with one separate modification MAFFT with modifications (A�B)/B
MAFFT (A) MOD.1 MOD.2 MOD.3 MOD.4 MOD.5 1 and 4 (C) 1, 4 and 5 (B) (%)

128 0.001389 0.001546 0.002285 0.001572 0.001417 0.001351 0.001169 0.001361 2.06%
256 0.001134 0.004628 0.006249 0.004589 0.004267 0.004247 0.004332 0.004443 �74.48%
512 0.015931 0.016134 0.019815 0.01684 0.016097 0.016244 0.006176 0.006069 162.50%
1,024 0.055985 0.053899 0.067599 0.061342 0.060380 0.016710 0.013661 0.013470 315.63%
2,048 0.117004 0.092274 0.100446 0.110018 0.071478 0.064984 0.081252 0.044558 162.59%
4,096 0.309503 0.279974 0.348462 0.282558 0.303333 0.312860 0.129712 0.164499 88.15%
8,192 1.203741 0.308130 0.598595 1.177470 1.123019 1.136245 0.350047 0.267397 350.17%
16,384 1.227750 0.551834 1.201293 1.180107 1.198868 1.207881 0.525641 0.457826 168.17%

Total 2.932437 1.308419 2.344744 2.834496 2.778859 2.760522 1.111990 0.959623 205.58%

TABLE 6
CPU Time for DNA Sequences of the Dataset “DNA03”

Length Original MAFFT with one separate modification MAFFT with modifications (A�B)/B
MAFFT (A) MOD.1 MOD.2 MOD.3 MOD.4 MOD.5 1 and 4 (C) 1, 4 and 5 (B) (%)

128 0.001400 0.001056 0.002317 0.002259 0.001405 0.001408 0.001044 0.000302 363.58%
256 0.003290 0.002250 0.004142 0.004836 0.002336 0.002345 0.002219 0.002170 51.61%
512 0.004070 0.004331 0.007429 0.007256 0.003969 0.003998 0.004243 0.004258 �4.42%
1,024 0.060661 0.01224 0.018181 0.028259 0.039354 0.060623 0.018390 0.018101 235.13%
2,048 0.030596 0.019551 0.042238 0.042297 0.030370 0.055439 0.019273 0.019250 58.94%
4,096 0.207959 0.064030 0.235004 0.249427 0.216534 0.217959 0.099573 0.074558 178.92%
8,192 0.094544 0.039005 0.052383 0.069707 0.075640 0.024645 0.087496 0.045547 107.57%
16,384 0.166922 0.148517 0.137867 0.113686 0.081787 0.103309 0.117290 0.080412 107.58%

Total 0.569442 0.290980 0.499561 0.517727 0.451395 0.469726 0.349528 0.244598 132.81%

TABLE 7
CPU Time for Protein Sequences of the Dataset “Protein”

Length Original MAFFT with one separate modification Modified (A�B)/B
MAFFT (A) MOD.2 MOD.3 MOD.4 MOD.5 MAFFT (B) (%)

128 0.000872 0.001841 0.001404 0.000902 0.000922 0.001218 �28.41%
256 0.001852 0.003652 0.002116 0.001807 0.001845 0.001617 14.53%
512 0.005425 0.008088 0.005767 0.004150 0.005453 0.004610 17.68%
1,024 0.005570 0.034733 0.017446 0.010314 0.010615 0.010374 �46.31%
2,048 0.029323 0.076400 0.024328 0.076035 0.029054 0.057397 �48.91%
4,096 0.249468 0.063404 0.128520 0.080873 0.221190 0.073178 240.91%
8,192 0.305795 0.445294 0.105022 0.099321 0.274955 0.173370 76.38%
16,384 0.665334 0.573191 2.481259 0.221617 0.599801 0.286970 131.85%

Total 1.263639 1.206603 2.765862 0.495019 1.143835 0.608734 107.58%
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time required in one execution of the function “Falign()” in
the program “Falign.c” of MAFFT. Every result is the CPU
time of one execution of one alignment. Although the
results contain some uncertainties, the trend of the results is
clear. By comparing the CPU time of the original MAFFT to
that of MAFFT with five separate modifications or the modi-
fied MAFFT, we can see that the separate modifications 1, 4,
and 5 can improve slightly the efficiency of MAFFT in CPU
time, and the separate modifications 2 and 3 will impair the
efficiency of sequence alignment of MAFFT in CPU time,
but the combination of the modifications 1, 4 and 5 can
greatly improve the efficiency of MAFFT in CPU time for
DNA sequence alignment. The combination of modifica-
tions 1 and 4 requires CPU time more than the combination
of the modifications 1, 4 and 5. The combination of modifi-
cations 4 and 5 can greatly improve the efficiency of MAFFT
in CPU time for protein sequence alignment.

Considering Tables 3, 4, 5, 6 and 7 together, we can draw
several interesting conclusions. (i) By extending the lengths
of sequences, the linear convolution can identifymore homol-
ogous regions. However, this separate modification impairs
the performance of MAFFT in CPU time, since the computa-
tion of the extended FFT needs extra CPU time, and the iden-
tified homologous regions which are not detected by the
original MAFFT are perhaps redundancy for the sequence
alignment in bioinformatics; (ii) Similarly, although by setting
switch constant “MOD.3” to 1, i.e., neglecting the sentence “if
( tmpint == 0) break;” in the function “Falign()” in the pro-
gram “Falign.c”, MAFFT can identify more homologous
regions, this modification also impairs the performance of
MAFFT in CPU time in most cases; (iii) The parameter a of
the proposed scheme, i.e., the limitation of the proposed lin-
ear convolution, is very useful for improving the performance
ofMAFFT in CPU time. A possible reason is that this parame-
ter can improve the efficiency of region-level DP. (iv) To esti-
mate the effect of the modification of the sliding window size
on alignment accuracy, (the sliding window in the modified
MAFFT is set to 30 sites rather than 100 sites for DNA
sequence alignment), we compare the alignments of the origi-
nal MAFFT with those of the modified MAFFT for our four
designed datasets and BAliBASE 3.0 benchmark tests (RV11,
RV12, RV20, RV30, RV40, and RV50), and find that the align-
ments of the modifiedMAFFT are fully identical to that of the
original MAFFT, except for the one alignment of “BB20041”
of BAliBASE 3.0 benchmark tests for MAFFT-FFT-NS1, and
the three alignments of “BB20041”, “BB30008” and
“BB40035” of BAliBASE 3.0 benchmark tests for MAFFT-FFT-
NS2. However, even for these four exceptions, their SP score
and TC score are all the same. Thus, although we are not

sure, but we want to say that it perhaps does not affect the
alignment accuracy for themodifiedMAFFT to set the sliding
window to 30 sites for DNA sequence alignment.

6.2 Experiment on BALiBASE

To benchmark our proposed algorithm for MSA, we carry
out experiment by using BALiBASE 3.0, a standard data-
base for MSA [42], [43]

We used the benchmark BAliBASE3.0 to assess the align-
ment accuracy of the modified algorithm in comparison
with the original MAFFT program. Two accuracy measures
are employed to score the alignment, i.e., the quality score
(Q), which is the number of correctly aligned residue pairs
divided by the number of residue pairs in the reference
alignment, and total column score (TC), which is the num-
ber of correctly aligned columns divided by the number of
columns in the reference alignment [3].

Tables 8 shows the accuracy of different categories of
BAliBASE3.0. We can see that the modified program main-
tains identical accuracy to the original MAFFT, which veri-
fies the validity of the proposed algorithm.

The originalMAFFT FFT-NS-2 can save about 6-8 seconds
for each BAliBASE 3.0 benchmark test (RV11, RV12, RV20,
RV30, RV40, and RV50) on our platform. In original MAFFT,
the aligning sequence is padded automatically with zeros,
since their length has to reach to, power-of-two, the length of
the FFT algorithm, which satisfies partially and even fully
the configuration of the linear convolution. In addition, the
data size of BAliBASE entries are small. Thus, the speed
improved by themodified program is small on BAliBASE 3.0
benchmark tests. The real time of BAliBASE 3.0 tests is
showed in Table 9. The time contains not only CPU time but
also the time of other operations. The benchmark tests con-
sist of RV11, RV12, RV20, RV30, RV40, and RV50.

7 CONCLUSION

We have developed a scheme for correlations computation
between aligning sequences. The scheme uses one and two
complex numbers to represent an amino acid residue and a
nucleotide residue, respectively. The correlations and

TABLE 8
Accuracy of Different Categories of BAliBASE3.0

Method RV11
Q/TC

RV12
Q/TC

RV20
Q/TC

RV30
Q/TC

RV40
Q/TC

RV50
Q/TC

average
Q/TC

MAFFT-FFT-NS-1 0.598/0.340 0.927/0.779 0.967/0.361 0.811/0.332 0.820/0.451 0.848/0.511 0.812/0.439
MAFFT-FFT-NS-2 0.603/0.382 0.974/0.786 0.979/0.370 0.819/0.475 0.884/0.530 0.853/0.525 0.829/0.525
MAFFT-FFT-NS-i 0.615/0.395 0.982/0.796 0.989/0.382 0.832/0.490 0.899/0.547 0.864/0.539 0.841/0.538
NEW-FFT-NS-1 0.598/0.340 0.927/0.779 0.967/0.361 0.811/0.332 0.820/0.451 0.848/0.511 0.812/0.439
NEW-FFT-NS-2 0.603/0.382 0.974/0.786 0.979/0.370 0.819/0.475 0.884/0.530 0.853/0.525 0.829/0.525
NEW-FFT-NS-i 0.615/0.395 0.982/0.796 0.989/0.382 0.832/0.490 0.899/0.547 0.864/0.539 0.841/0.538

TABLE 9
Real Time of BAliBASE 3.0 Benchmark Tests
(RV11, RV12, RV20, RV30, RV40, and RV50)

FFT-NS-1 (s) FFT-NS-2 (s)

Original MAFFT 45.719 92.954
Modified MAFFT 44.615 89.342
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homologous regions between sequences can be obtained by
using linear convolution with a limitation and sliding win-
dow analysis. The proposed correlation calculation align-
ment reduces half of the requirement of memory size and
more than half of the real operations for computing the cor-
relation between two sequences over the method in MAFFT.
The proposed FFT algorithm eliminates the order permuta-
tion, and has the least access to the lookup table of twiddle
factors. Moreover, the FFT algorithm is novel because it
requires only real parts of output signals. Simulation results
showed that, (i) in theory, the use of the linear convolution
can detect the more homologous regions, which is particu-
larly clear to the alignment length of powers-of-two. In
practice, to reach to the length of FFT algorithm, power-of-
two, the original MAFFT automatically pads the sequences
with zeros, which satisfy partially or even fully the configu-
ration of the linear convolution. In addition, from the bioin-
formatics point of view, the identified extra homologous
regions are partly redundant for the alignment of the
region-level DP, which may impair the performance of
MAFFT in CPU time. Thus, the ability that the proposed lin-
ear convolution can identify more homologous regions and
its effect are not as great as expected; (ii) modified MAFFT
is 107.58 to 365.74 percent faster than the original MAFFT
for one execution of the function Falign(), and its alignment
accuracy remains unchanged for FFT-NS-1 and FFT-NS-2.
The possible reason is that the limitation of the proposed
linear convolution can improve greatly the performance of
the region-level DP alignment in CPU time.

APPENDIX A

SUPPLEMENTARY DATA

The source code is provided as supplementary material in
the revisedmanuscript. The code ismodified from the source
code of MAFFT version 7.127b on Ubuntu in five aspects:
(1) The size of the sliding window for DNA sequence align-
ment in the function “alignableReagion()” in the file
“fftFunctions.c”. (2) One of the configurations of linear con-
volution, i.e., the modification of the length of alignment in
the file “Falign.c”. (3) Count all possible homologous regions
after the analysis of the sliding window in the “Falign()” in
the file “Falign.c”. (4) Another configuration of linear convo-
lution, i.e., the configuration of a in Eq. (11) in the function
“getKouho()” in the file “fftFunctions.c”. (5) New FFT source
code in the file “fft.c”, that is compatible with the original
MAFFT. These five modifications are controlled by five
switch constants “MOD.1”, “MOD.2”, “MOD.3”, “MOD.4”,
and “MOD.5” in the head file “mltaln.h”. The configuration
of linear convolution is an inexact and empirical evaluation,
need to be improved in the future.
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