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Abstract: The intelligent electrical power system is a comprehensive symmetrical system that con-
trols the power supply and power consumption. As a basis for intelligent power supply control,
load demand forecasting in power system operation management has attracted considerable re-
search attention in energy management. In this study, we proposed a novel unsupervised multi-
dimensional feature learning forecasting model, named MultiDBN-T, based on a deep belief net-
work and transformer encoder to accurately forecast short-term power load demand and implement
power generation planning and scheduling. In the model, the first layer (pre-DBN), based on a deep
belief network, was designed to perform unsupervised multi-feature extraction feature learning on
the data, and strongly coupled features between multiple independent observable variables were
obtained. Next, the encoder layer (D-TEncoder), based on multi-head self-attention, was used to
learn the coupled features between various locations, times, or time periods in historical data. The
feature embedding of the original multivariate data was performed after the hidden variable rela-
tionship was determined. Finally, short-term power load forecasting was conducted. Experimental
comparison and analysis of various sequence learning algorithms revealed that the forecasting re-
sults of MultiDBN-T were the best, and its mean absolute percentage error and root mean square
error were improved by more than 40% on average compared with other algorithms. The effective-
ness and accuracy of the model were experimentally verified.

Keywords: feature learning; feature embed encoding; multivariate; short-term power load
forecasting; unsupervised

1. Introduction and Motivation

The intelligent electrical power system, as a comprehensive symmetrical system, con-
trols the power supply and power consumption. Power load forecasting is critical for
achieving power analysis and intelligent power supply control and plays a crucial role in
power system management. Energy management has become a critical research topic in
electric power. Inaccurate load forecasting can result in overload or congestion of power
dispatch, which can affect the security of power systems and the implementation of power
production plans. Short-term power demand forecasting is a crucial aspect of the load
forecasting model and is indispensable in modern power supply systems. Demands for
electricity or energy load are a result of the interaction and coupling of various observable
factors (such as weather conditions, electricity production, electricity consumption, elec-
tricity price fluctuations) or hidden factors (such as different time periods, different re-
gions, and different industrial structures). Demand is key for integrating production, con-
trol, and dispatch in an energy system. The predictability of power loads can be improved
by considering various explicit and implicit causes, the diversity of various demands, and
the complexity of various loads in a forecasting model, as well as finding a strong cou-
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pling relationship between multi-dimensional relationships of various factors in the ob-
servable data, analyzing all coupling relationships, and performing feature analysis and
extraction to optimize the accuracy of the load forecasting model.

Conventional load forecasting methods are based on a single factor for inde-
pendently forecasting various types of loads. These methods include fitting- or regression-
based methods, such as Kalman filtering, fuzzy linear regression, and support vector ma-
chine (SVM), as well as neural network-based methods, such as LSTM, XGBoost, gradient
boosting regression tree (GBRT), and artificial neural networks (ANN) [1-4]. However,
for the processing of multi-dimensional power load time-series data with both multi-di-
mensional features and long-term time feature dependencies, the aforementioned meth-
ods exhibit certain limitations. One study demonstrated the importance of relevant da-
taset structure for creating optimal logic mining. The authors used a Hopfield neural net-
work to learn and obtain the corresponding optimal induced logical rule in the learning
datasets. Finally, the validity of the optimal logic rules for mining associated datasets for
analyzing data was verified by experiments [5-7].

When analyzing time-series data, a single historical data series cannot truly reflect
the multiple influences of external factors on the generation of the series data and the
complex spatiotemporal dependencies between related datasets. On the one hand, the ex-
isting analytical frameworks usually utilize given spatiotemporal correlations with in-
complete information structures for modeling, which would limit the effective learning of
predictive models on spatiotemporal dependencies. On the other hand, for nonlinear com-
plex spatiotemporal data, the existing methods cannot effectively integrate the inherent
spatiotemporal correlation, local feature correlation, and global multi-dimensional de-
pendence of the dataset. The motivation of this paper is to propose a new unsupervised
multi-dimensional representation learning framework based on data-driven deep feature
extraction and a multi-scale self-attention network, which are more conducive to studying
the dynamics reflected by different granularities in space and time. The application of this
framework can learn and mine the hidden logical rules of spatial and temporal correlation
in multi-dimensional datasets, encode different time granularities at different levels, and
effectively integrate local and global spatial and temporal correlations. Through this pro-
cess, the spatiotemporal dependences of the fusion of internal and external factors are
fully captured. The proposed unsupervised multi-dimensional representation learning
framework can be applied to short-term electricity demand forecasting, traffic flow anal-
ysis, and service task sequence analysis.

To address multi-dimensional power load time-series data and improve the accuracy
and reliability of power load forecasting, a novel unsupervised multi-dimensional feature
learning forecasting model is proposed. First, a deep belief network (DBN) was used to
perform feature learning of unsupervised multi-feature extraction on the data, and the
features obtained after determining strong coupling relationships between independent
factors were embedded. Next, the multi-head self-attention mechanism in the transformer
was used to learn the locations or times of strongly coupled features and internal hidden
features of the sequence to obtain the feature encoding of the multi-related feature infor-
mation at each time point in the sequence. Finally, the spliced code regression learned
through a neural network with a hidden layer. The objective of the power forecasting
model was to forecast the power load demand in the next 12-24 h by analyzing a segment
of multi-dimensional historical data (such as the historical data for 48 or 72 h before fore-
casting). The main contributions of this paper are as follows: (1) a novel data processing
and forecasting model based on unsupervised multi-feature feature learning is proposed;
(2) the model can learn the strongly coupled features among independent multi-factors
and can learn the strongly coupled features and hidden factors between locations or time
points in the sequence; (3) experimental results on multi-dimensional power load se-
quence data reveal that the model outperformed the latest forecasting models in pro-
cessing multi-dimensional time-series data.
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2. Related Work

Numerous studies have been conducted on the analysis of time-series data using
conventional methods, such as KLF, SVR, ARIMA, XGBoost, and LSTM [8-10]. In these
methods, the single-mode data are used as the original sequence as the analysis target,
and subsequent time points are forecasted through fitting or regression to the historical
data. To perform forecasting on complex sequence data, based on the classical methods, a
LSTM forecasting model with principal component correlation analysis (PCA) [11], an
SVM forecasting model based on the fruit fly optimization algorithm (FFOA) [12], im-
proved ARIMA models, SARIMA [13,14], and other models have been proposed for short-
term natural gas load forecasting. The SARIMA model transforms nonstationary data into
stationary data by using lagged mean values of power load time-series data. The analysis
of seasonality in the method can be observed by using the autocorrelation function and
the partial autocorrelation function. Because of the nonlinearity of the time-series data,
single linear regression, and multiple linear regression methods based on statistical re-
gression variables and methods, the time changes and nonlinear power load patterns in
the series cannot be captured; these methods are not suitable for processing such time-
series data [15,16]. A novel particle swarm optimization (PSO) two-step method is pre-
sented in [17] for increasing the performance of short-term load forecasting (STLF).

The development of machine learning and neural network technology provides
novel methods for short-term power load forecasting. Compared with forecasting models
based on statistical regression and dimensionality reduction, machine learning methods
are remarkably accurate in forecasting nonlinear power loads and peaks, and their algo-
rithms improve the performance of power load demand forecasting models [18]. For
weather factors in historical data, an ANN model deeply learns the effect of random
weather characteristics on power load and forecasts the power load in a certain period of
time in the future [19,20]. Various K-nearest neighbor (KNN)-based machine learning al-
gorithms perform forecasting by learning to process the time-varying features of nonlin-
ear time-series data by learning the K nearest instances in historical data. In the algo-
rithms, using the most similar instances of detected K, the target points closest to these K
instances were obtained through local interpolation. However, these methods exhibit con-
siderable drawbacks for high-dimensional time-series data—the lack of hyperparameters
can lead to overfitting of a forecasting model, whereas when dealing with high-dimen-
sional data, the curse of dimensionality can occur. These methods cannot handle high-
dimensional time-series data [21,22]. In [23], a novel forecasting model based on pooling
was proposed, in which LSTM was used to train and extract the features encoded with
one-hot encoding. This method mitigated the overfitting problem and improved forecast-
ing accuracy. In [24], a combined model based on EOBL-CSSA-LSSVM, which contains
the machine learning algorithms, the swarm intelligence optimization algorithms, and
data pre-processing in the prediction model, is proposed for power load forecasting.

Because time-series data are becoming increasingly complex, researchers have pro-
posed novel methods for analyzing multi-dimensional power load time-series data. To
obtain the global temporal correlation characteristics (such as overall trend) in historical
data, a FEDformer model combined with a transformer was proposed, and seasonal trend
decomposition methods were used to learn global change trends in time-series to acquire
detailed feature structures in the series [25]. Because of coupling characteristics of deep
factors in time-series, convolutional neural network (CNN), gated recurrent unit, and
GBRT have been integrated to develop a multi-dimensional energy load forecasting
model. A DBN-based multi-task regression neural network model was proposed. The
model acquired hidden features in the multi-energy load time-series through training and
learning, and finally, the energy load demand was forecasted by multi-prosumers [26,27].
By obtaining the internal correlation of the relevant factors in the time-series data in the
multiple energy consumption-load joint forecasting, Wang et al. proposed a joint multi-
energy load forecasting model composed of a single encoder and multiple decoders,
namely multi-decoder transformer (MultiDeT). In this model, a single encoder was used
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to uniformly encode the input data, and the results were obtained after using the decoders
of the multi-prediction task to learn and train the shared data encoding for forecasting
various energy consumption loads [28]. To analyze time-series data, a hybrid ensemble
deep learning model combining MLP, CNN, LSTM, and CNN-LSTM was proposed to
improve the forecasting performance in [29].

The analysis and processing of multi-dimensional sequence data have attracted con-
siderable research interest. These sequence data exhibit nonlinearity, multi-dimensional-
ity, time-series correlation, and hidden coupling. For multi-dimensional data short-term
power load forecasting, the various methods proposed exhibit certain limitations and in-
sufficient capabilities in addressing time-series data that have (1) nonlinearity in pro-
cessing, (2) implicit coupling and correlation characteristics, (3) high-dimensional and
mutually independent characteristics, and (4) multiple coupling and correlations (such as
global trend and time-series periodic correlation). Thus, forecasting performance should
be improved.

3. Unsupervised MultiDBN-T

To investigate the internal correlation characteristics of the data, the strong coupling
correlations of various features in space and time can be obtained by learning historical
data. The trend of the data for the forecasting target can be accurately determined. Repre-
sentation learning, also known as feature learning, is used in machine learning for encod-
ing original data. The transformed encoding retains features that can be easily identified,
rendering it easy for various machine learning algorithms to learn and apply data pro-
cessing procedures [30,31]. To extract the coupled features between dimensions, the tem-
poral coupled features within the dimensions, and the overall change trend features in
multi-dimensional time-series data, we propose a novel unsupervised MultiDBN-T. This
model forecasts power load demand in the next 24 h by learning and training power load
historical data with multi-dimensional data features.

3.1. MultiDBN-T Architecture

The architecture of MultiDBN-T model is displayed in Figure 1, and the detailed com-
position is shown in Figure 2. The forecasting model is primarily composed of three parts.
(1) Pre-DBN: A single-decoder deep belief network used for self-supervised/unsupervised
pre-training. This layer is a pre-training layer that solves the training problem of deep
neural networks by stacking multiple layers of RBMs. It solves the optimization problem
of deep neural network training with high-dimensional correlated but different datasets,
as it can make the whole network with better initial weights achieve the optimal solution
by fine-tuning the layer-by-layer training. (2) DBN-transformer encoder (D-TEncoder):
Transformer encoder based on DBN fine-tuning. After pre-training, by combining with
the multi-head self-attention mechanism, it further constructs spatiotemporal features
with the codes of feature compression to mine the effective logical rules inherent in the
dataset for improving the effectiveness of training. (3) L-Decoder: Fully connected hidden
layer decoder. It optimizes the variables of the model by computing the loss function.
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Figure 1. The overall structure of the MultiDBN-T model and its training process.
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Figure 2. Architecture of the MultiDBN-T model.

The overall structure of the MultiDBN-T model and its training process are shown in
Figure 1. The training process steps are as follows. (1) It pre-trains with pre-DBN using
the training dataset, and then uses the corresponding data for fine-tuning to obtain the
optimized DBN. (2) The training dataset will be directly inputted into the tuned DBN in
the D-TEncoder, and be further encoded by the transformer encoder. (3) Finally, the L-
Decoder is used to decode and calculate the loss function, and the final prediction model
is obtained through the back-propagation gradient calculation and optimization of the
neural network.

As displayed in Figure 2, MultiDBN-T uses dual encoders: pre-DBN (based on the
DBN encoding layer) and DBN-transformer encoder (based on the transformer-based en-
coding layer). These two layers of encoders are the core layers of feature learning in the
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forecasting model. The purpose of pre-DBN is to learn the coupling correlation between
dimensions of multi-dimensional data in the self-supervised/unsupervised process, and
it can be used for data pre-training. Thus, the initial values of the network weights of the
two hidden layers at the bottom of the DBN-transformer encoder were obtained to im-
prove training accuracy. The purpose of the DBN-transformer encoder is to obtain the
temporal coupled features in the historical data, such as periodicity, globality, and corre-
lation of external factors, and obtain deeper hidden features in the sequence through the
multi-head attention mechanism.

3.2. Pre-DBN

Multi-dimensional power load time-series data present a complex nonlinear data dis-
tribution; however, oftentimes, only limited local features, such as weather condition data,
productivity consumption data, different regions, and changes in electricity prices, can be
observed. The data on these dimensions can considerably affect the future power load
demand in a certain area. Therefore, the data are inevitably affected by multiple factors
and contain noise. The distribution is modeled to obtain a representation of internal fea-
tures hidden between the observable variables.

As displayed in Figure 2, pre-DBN consists of three layers of RBM and one fully con-
nected output layer. Because more than three layers of RBM are used to form the encoding
part of pre-DBN, as the network deepens, the features extracted by each layer become
distinctive; that is, the coupled features of the data between the dimensions become
stronger. However, some hidden features may be lost, which is not conducive to the en-
coding of the transformer.

Figure 3 displays the network structure of a one-layer RBM. Let the random vector
observable in the pre-DBN input layer be v € R™. Thus, in the m-dimensional power load
time-series data, at the time point t;, sample vector X € R™, and the first RBM hidden
random vector h(® € R4, then v(® = h(®. The second is A € R¥, v® = h®D; the third
is h® € R¥; and finally, the output layer is X € R™.

Figure 3. An RBM in pre-DBN.

In each RBM,, the dimension of an observable variable is D,, and the dimension of a
hidden variable is Dy,; thatis, v € RP?» and h € RP», The bias of an observable variable in
the visible layer is a € RP», and the bias of a hidden layer variable is b € RP. The weight
matrix between the two layersis W € RP»*DPr_ g, is the bias of v;, b; is the bias of h;, and
W;; is the weight of the edge between v; and h;.

Because the observable variables and hidden variables of the time-series data pro-
cessed in this study satisfy the Gaussian-Gaussian RBM (GG-RBM), studies [32,33] have
revealed that the energy function of GG-RBM E (v, h) can be defined as follows:

(v — a;)* (h; — b)? v by
E(v.h)—z 207 +Z 207 —Z ;i;jWij (1)

iev i€Eh iev jeh
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The observable variable v; and the hidden variable h; are calculated by the follow-
ing:

hy
Ui=ai+UiZ;jWij (2)
JjER
=b +UJZ Wi 3)

iev

where ¢; and o; represent the standard deviations of the noise for v; and h; satisfying
Gaussian distribution, respectively. In practice, the data are normalized so that both o;
and o; are equal to 1. When solving the training, g; can be obtained from raw input data
0; = cov(v);; thatis, o; is based on the two-layer relationship in Figure 3, and can be cal-

culated by o; = \[Zi@ oW

As displayed in Figure 4, in the solving process of the CK-k algorithm, for the original
data v(@ of a given observable variable, the hidden vector h(® is obtained by sampling
the conditional probability p(h|v(®). Next, h® is used to calculate the conditional prob-
ability p(v|h(®) and to obtain v by sampling. The process is repeated to obtain
p(hlv®) > A and p(v|h®V) - v@. According to the aforementioned process, Equa-
tions (1)-(3) and the calculation formulas of ¢; and gj, the equations for updating the pa-
rameters W, a, and b for GG-RBM are follows:

_uihy

(+1) _ (l)
]dat t "I model
1+1 ) Ui Ui
@ =a®yat X ©
idata  imodel
1+1 I Ui Ui
al( )=a§)+a’(—l -— ) (6)

idata  %imodel

where a > 0 is the learning rate of the model, and <->,,,4¢; represents the values of v
and h® in the first [ rounds of sampling. Thus, the parameters of the L-layers of GG-
RBM in the pre-DBN are obtained by 8,4,y = {ngr_k, Aggr ks bggr_k}, k=12, ..,L

phv?)—n”  phpy™)— h”
phv®)— n?

/
- 0000 @000 (XYM

pO|A?)— v pv[h™)— v

Figure 4. Solving process of the CK-k algorithm.

Here, pre-DBN is used as a pre-training model. The last layer is a fully connected
hidden layer as an output layer. The weights and biases of the corresponding neural net-
work of each layer are obtained by training through the BP algorithm. The training pro-
cess is as follows:

(1) For each layer of GG-RBM according to Equations (1)-(6), the CD-k algorithm is
used to perform layer-by-layer pre-training from the bottom to the top and to obtain the
parameters of each layer 6,4, = { lagr Qggrs bgg,}. The equation for the iterative calcula-
tion for the training is as follows:
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glety) — ef) +ad8®  e=12, .. itera;k=12,..,L

ggr—k gr—k ggr—k’ (7)

where « is the learning rate, e is the number of iterations of GG-RBM for each layer, and
. . - h: R . .

k is the first k-th layer of GG-RBM. AW;; = L) _ul , Aag; =2 _u ,

9% qata % %imodel %idgata  %imodel

and 4b; = b b .
%idata  “Imodel

(2) After the pre-training of GG-RBM is completed, the last fully connected hidden
layer of pre-DBN is used as the output. The network structure of GG-RBM is converted
into the corresponding neural network structure. The network parameters are trained and

fine-tuned again with the deep neural network. The initialization parameters of the corre-
sponding network layers are 6,.._ppy = {{Vl/ggr, bggr}l},l =1,2,...L, where z, is the out-
put of the last corresponding GG-RBM hidden variable layer. The output of the pre-DBN
is X € R™. The output and the loss function of the model are defined as follows:

X = Wpzp + by 8)

1 e .
Lyse = m; ZieM(x(t' i) — x(t,1))? )

where |P| is the number of samples in the pre-training set, (t,i) € X represents the i-th
dimension data of the sample input at time ¢, and M is the dimension of the time-series
data (m observable variables).

(3) The BP algorithm is applied to the pre-DBN and trains with Adam as the opti-

in
gr bggr}l }'l =
1,2, ... L. The parameters are the initialization network parameters of the corresponding L-
layer neural network in the D-TEncoder encoder.

mizer to obtain the network parameters of the pre-DBN: Bzi,'rle_ DBN = {{Wg

3.3. D-TEncoder

The multi-head self-attention module of the transformer is applied to re-encode the
encoding output from the pre-DBN and capture the interaction information in space and
time in multiple different projection spaces. Let the output code of pre-DBN be z,.; €
RP*T, which is the input sequence of D-TEncoder.

Let D-TEncoder’s initial input sequence be H®, and add the position encoding
learnable parameter W,.s: z; + Wps,; then, we have following expression:

H® = {z, + Woosyr Z2 + Wyosys s Zr + Wyosp } (10)

where W, € R”.

Figure 5 displays a multi-head self-attention encoder. During encoding, through
multiple learnable matrices W, Wi, W', and n, the self-attention model is applied in N
projection spaces. The query, keys, and values in the projection spaces can be calculated

as follows:

MultiHead(H) = Wy[heady; ..., heady]

. Kn' Qn
head, = Attention(Q,, K,, V) = V,softmax( - )
V@i
Qn =W, H
K,=W™H vne{12,..,N} 11)
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where d;, is the dimension of the input matrix @, and V;, d,, is the dimension of the col-
umn vector of V,, W, € RP*V% is the output projection matrix, W, € R°*%, W™ €
RDxdk, and Vl/v(n) € RD*dv.

T —> Add& Normal
| 4
| FNN®’)
L—— — 7T > TT] f
Add& Normal
(——r L1 2 T 1+ 11
| O v
| 4
| S
| [ _— ] I
| Attention-value
k
I | £
! [ -
|
| EARUA
| s 2
e B | [ T 1 z°
A
69 Wpos
ZD Zp ZD
z2 Z2 Q Q z2 Q
44 Zy Zy
15 153 Ir

Figure 5. Transformer encoder.

The MultiDBN-T model in Figure 1 reveals that a total of M transformer encoders are
set up, and each encoding layer is calculated by a multi-head self-attention module and a
nonlinear FNN(-) for each position feedforward neural network. In Figure 5, in the layer
calculation in each encoder, the residuals (time-series data z' and v" in Figure 5) are con-
nected to the output of the previous layer, and the layer normalization is then performed.
Here, FNN(-) is a fully connected layer with two layers connected with ReLu as the acti-
vation function, which is defined as follows:

FNN(') = WypyyReLu(Wipyyv' + bipnn) + bapnn (12)
where v' € ZU is the vector at each position in the input sequence of the previous layer,
Wirny and Wypyy are the weight matrices of the two-layer neural network, and bpyy
and bypyy are the bias for the two layers of the network, respectively. These are all learn-
able network parameters. The connection weights of each layer in the encoder D-TEn-
coder are dynamically calculated by the self-attention mechanism.

3.4. L-Decoder

Through the double encoding of pre-DBN and D-TEncoder, the input multi-dimen-
sional power load time-series data are reconstructed through feature learning. The recon-
structed encoding is used as the input of the last fully connected layer for training. Let D-
TEncoder represent the reconstructed encoded vector u, € R* at time ¢, and the time
window width be T'. All the codes are then concatenated into vector U € R*7 as a linear
layer with network parameters W, € R™"’ and b, € R?, where 7 is the temporal win-
dow width of the output forecasting. The output of the L-Decoder is defined as follows:
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According to the forecasting target of MultiDBN-T, for forecasting the electricity load
demand in the future time 7, the loss function of the model is defined as follows:

1 . "
Loss = ;ley -ylI> 9. y€ER" (14)

3.5. Training Algorithm and Optimal Configuration

The purpose of the forecasting model is to forecast the power load demand in future
T time by inputting an m-dimensional historical data with a duration of T (the m-dimen-
sion includes a column of power load historical data).

According to the original historical data and forecasting target, the input of the model
is Z® e R™7, and the output is § € R*. The initialization of the forecasting model, the
training process, and the list of the output network parameter variable descriptions are
presented in Table 1.

Table 1. Description of the major model parameters.

Symbol Description and Meaning
615421&0 BN—T MultiDBN-T network parameter set; e is the training parameter epoch
{Wo,bo}i_pecoder MultiDBN-T output layer network parameters
Wi, bi}ggr Network parameters obtained by the i-th layer GG-RBM, i = 1,2,3
Wpos Position encoding information in D-TEncoder
{Wq(i), Wk(i), W”(i)}d: Multi-head self-attention parameters in D-TEncoder, i € {1,2, ..., N}
{Wignn, b,-FNN}g\),N Parameters in FNN() in D-TEncoder, j € {1,2, ..., N}

The sample is divided into the 7:2:1 ratio for the training set, validation set, and test
set, respectively. Furthermore, the training set is divided into 80-20%, where 20% is used
for the fine-tuning and verification of hyperparameters. The process of the forecasting
model is as follows. A three-layer RBM (GG-RBM) is built, corresponding to the formation
of pre-DBN. The parameters of the pre-DBN network fine-tuned through training and the
corresponding three-layer RBM network are used as the corresponding three-layer DNN
network configuration and the initial weights of MultiDBN-T. After encoding by D-TEn-
coder, L-Decoder generates an output. The pseudo code of the algorithm is presented in
Algorithm 1 as follows:

Algorithm 1: MultiDBN-T algorithm based on pre-DBN and D-TEncoder feature learning
Input: GG — RBM (v, h), Line(Wyy, byre), ) training batch B

MultiDBN-T’

| , raming oaren
Output: 050l o1 = (Wi bilggr i = 1,2.3, Wpos, (W, W2, W”(L)}dz’ €{12,..,N},

Wienn, bisnn}Youn J € {12, .., NY&i = 1,2, {Wo, b}, -pecoder }
1.Initial GG — RBM (v, h), Aw,Aa, Ab < 0,0_(MultiDBN — T)"*((0))
2.Fori=1to3 Do
3. Aw,Aa,Ab < CD_k(GG — RBM (v, h));//Use CD_k to solve GG—RBM according to//Equations (1)—(7)
4. {W;,b}ggr i = 1,2.3 « pre_train(Pre — DBN);//According to Equations (8)—(9), use the//fine-tuning mode of
DBN to obtain the initial weights of the network parameters of//the corresponding layer of MultiDBN-T
5. For e =1 to epoch Do
6. HI(V;”L:I-)DBN_T « Train(MultiDBN — T(HIE,?I”DBN_T));//Complete the parameter learning of
//MultiDBN-T according to Equations (10)—(14)

(out)
7. Return 0 MultiDBN-T
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Suppose the loss function value obtained according to Equation (14) in the Mul-
tiDBN-T training process is ABA(ZZM pan—7- We apply BP to its partial derivative and then
learn the network parameters and use the Adam optimizer for tuning. The parameter op-

timization in the model is defined as follows:

LD =10 - /- B (1)

mED = gm© + (1 - ﬁl)AeIE;L)thiDBN—T (16)

oD = @ + (1 - BZ)(ABSL)ML'DBN—T)Z (17)
91548513031\1—7‘ = ngjlzltiDBN—T — s m(EH)/(\/m te (18)

L, (0) L (e+1)

is the new learn-
ing rate, calculated from the initial learning rate 1, using Equation (15). m(¢*? is the
first-order exponential smoothing value of the gradient during the training process.
w®@*D g the first-order exponential smoothing value of gradient squared during training.
BA(ZEL.)DBN_T represents the new network parameter set of the forecasting model Mul-
tiDBN-T. Equation (18) calculates the updated values of the network parameter variables.
Furthermore, B;, f,, and € are the parameters of the Adam optimizer, set to 0.9, 0.999,

are 108 in Algorithm 1, respectively.

where is the initial learning rate with an initial value of 0.01.

4. Data Description and Data Formatting

Multi-dimensional time-series data obtained by integrating datasets provided by
multiple open source institutions were used to validate the forecasting model.

4.1. Data Description

The data primarily originate from the European Network of Transmission System
Operators for Electricity, the Spanish Electricity Network, and the Open Weather AP,
which integrate regional weather data for five major cities in Spain, namely, Madrid, Bar-
celona, Barcelona, Valencia, Seville, and Bilbao. These cities are located in the east, south,
west, north, and middle of Spain, respectively, and cover the average weather conditions
in Spain. The historical series data are the four dimensions of weather average, electricity
price, electricity production, and electricity consumption. The data describe the four-di-
mension historical data in the four years from 1 January 2015 to 31 December 2018. The
time interval window for data acquisition was 1 h.

4.2. Description of Observable Variables

According to the data collection time interval, from 1 January 2015 to 31 December
2018, a total of 35,064 rows of data were collected for each dimension. The data dimensions
(observable variables) include time label (2), power production capacity (14), power load
(1), electricity price (1), and weather conditions (9*5), or 63 columns in total. The historical
data are the electricity load in the territory of Spain and cover the electricity consumption
history of five cities in the dataset. The electricity load demand is closely coupled with the
electricity demand of a city. Therefore, each city name and the corresponding weather
indicator are connected to form a label; that is, nine weather indicators and five city names
are connected to form a total of 45 labels. All data are normalized as the original data of
the model. A summary of the observable variables of the dataset is presented in Table 2.
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Table 2. Summary of observable variables.

Term Description and Number of Observable Variables
Time 2 columns: time and holiday labels
Electricity production 14 columns: various power production capacities
Electrical load 1 column: actual consumption of electric energy per hour
Electricity price 1 column: average price of electricity for a company
Weather 9 columns: data of various weather indicators
City label 5 columns: city names

4.3. Data Format Conversion

As described in Section 4.2, 63 observable variables were observed in the original
data, with a total of 35,064 rows of records. The load forecasting model uses two days (48
h), three days (72 h), and four days (96 h) to forecast the electricity demands for the next
day (24 h). Thus, the model inputis Z(® € R%37, T = {48,72,96}.

The data format conversion processes of the MultiDBN-T kernel layers are displayed
in Figure 6. The model undergoes the following three format conversion processes from
raw data to data output:

(1) Initialization of the original data format to the model input format: As displayed
in the left part of Figure 5, after the initial data are cleansed, their format is an array
R35064x63 " According to the format of pre-DBN input in MultiDBN-T, the data of consec-
utive T durations (T = {48,72,96}, that is, T hours, T rows of records, are converted
into one-dimensional R™%*7 array data.

(2) Encoded output after three GG-RBM conversions: A total of three GG-RBMs are
configured in pre-DBN. The input format of the first GG-RBM is RR*¢37, and the output
of the last GG-RBM is R¥87; that is, after pre-DBN feature learning, the input data are
extracted with features close to 63/8 =~ 8 times compressibility after data reconstruction.

(3) Conversion of pre-DBN output encoding to D-TEncoder encoder input: Because
the output of pre-DBN is reconstructed and encoded, the original data are one-dimen-
sional array data R™*?7, and the input of the D-TEncoder encoder is in the R*7 format,
the pre-DBN output encoding is converted to R”*? by segment T for each sample, as
displayed in the right part of Figure 6. The original data lose some information through
pre-DBN. The power load (y) and the converted data in the format of R”*® are spliced
into R7X®*1) ag the input to the D-TEncoder encoder.

= . D=8*T _

m=0. Initial data ——  Pre-DBN Encoded data format

t l |- |
7 (Pre-DBN—out) _ [Z(t),z(t_l), ...,Z(t_T+1)]
PRSI s, 3 y

63*T The input data of Pre-DBN fl T4 7
tl
) = [, -1 (t-T+1)
z [Z 'z o ? ] 7 (D-TEncoder—in) ¢ T X(8+1)
GG-RBM Data convert D-TEncoder input data

Figure 6. MultiDBN-T kernel layer data format conversion.
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5. Experiment and Result Analysis
5.1. Evaluation Metric

The electric load demand of the next day (24 h) in the future is predicted by applying
the collected electric load time-series data. Taking the mean absolute percentage error
(MAPE) and root mean square error (RMSE) as the comparison indicators, the MultiDBN-
T proposed in this paper was analyzed with the algorithms LSTM, Conv3D-LSTM (CNN
+ LSTM), Adaboost, ARIMA, SVR, and RF. The formulas for calculating MAPE, RMSE,
MAE, and RMSLE are as follows:

—| x 100% (19)

1 n
MAPE = —Z
Néai=11 Y;

RMSE = J%Z(y 0% 0

1 .
MAE = — E lyi = il 1)
n i=1

~

YVi—Yi

1 n
RMSLE = \/ZZ (log(1 + ;) —log(1 + y;))? (22)
i=1
where J; is the predicted value of the model, y; represents the actual data, and n is the
number of samples.

5.2. Experimental Setup

Hardware environment: 2 x Dell PowerEdge T720 (2xCPUs: Xeon 6-core E5-2630
2.3G, a total of 12 CPU cores, 64 GB RAM).

Dataset division: The dataset has a total of 35,064 samples. The dimension of each
sample is 63. They are divided by 7:2:1. A total of 24,545 rows are used as training samples,
where 19,636 rows are used for pre-DBN (GG-RBM) pre-training, 4909 rows are used for
pre-DBN fine-tuning, 7012 rows are used as the validation set, and 3507 rows are used as
the test set for comparing the performance of various models.

According to the input format and forecasting target of the experimental data (con-
sidering the computation cost and effectiveness, the model uses the first three days, or 72
h, to forecast the electricity load demand of each time window of 24 h in the next day), the
relevant hyperparameters in MultiDBN-T (the network structure and parameter configu-
ration of each module) are presented in Table 3.

Table 3. Summary of observable variables.

Module/Parameter Description and Number of Observable Variables
Pro-DBN GG-RBM1 (63 x 72, 32 x 72), GG-RBM2 (32 x 72, 16 x 72)
GG-RBM3 (16 x 72, 8 x 72), Linear (63 x 72)
D-TEncoder Feedforward (256), Multi-Head (8), Output-Dimension (256)

Blocks (3), Dropout (0.1)
L-Decoder Linear (1 x 24)
Learning rate 0.01
Batch size 128

5.3. Experimental Results and Analysis

MultiDBN-T was applied and the dataset was tested according to the structure and
configuration parameters in Table 3. According to the set evaluation metrics MAPE and
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RMSE, the new algorithm and the existing algorithms commonly used in time-series anal-
ysis, LSTM, Conv 3D-LSTM (CNN+ LSTM), Adaboost, ARIMA, SVR, and RF, are ana-
lyzed. Table 4 and Figure 6 are the overall data comparison results and the data plots of
the test set (3507 rows of data records) in the dataset.

Table 4. Experimental data.

Algorithm MAPE (%) RMSE (KW) MAE (KW) RMSLE
LSTM 3.038% 958.320 878.1204 0.032806
CNN+LSTM 3.847% 1214.095 1113.74 0.041546
Adaboost 3.418% 1064.107 987.7954 0.036448
SVR 2.837% 902.274 820.3937 0.030889
ARIMA 3.383% 1055.116 978.5581 0.036015
RF 4.027% 1271.662 1165.123 0.043685
MultiDBN-T 1.952% 630.720 566.3686 0.021454

Table 4 and Figure 7 reveal that MultiDBN-T (abbreviated as MultiD-T in the figure),
the proposed forecasting model, outperforms all the compared algorithms in terms of
MAPE (1.952%) and RMSE (630.720 KW) of the prediction results in the test set. RF exhib-
ited the worst performance, with MAPE and RMSE of 4.027% and 1271.662 KW, respec-
tively. Among the algorithms involved in the comparison, the comparison between the
best, MultiDBN-T, and the worst, RF, reveals that the MAPE and RMSE of the proposed
forecasting model were 51.54% and 50.40% higher than RF, respectively.

RMSE em===MAPE

RMSE
MAPE

0 0.000%

CNN+L  Adaboo MultiD-
LSTM ST™M ot SVR  ARIMA T RF

RMSE 95832 1214.095 1064.107 902.2744 1055.116 630.7197 1271.662
=—=MAPE 3.038% 3.847% 3.418% 2.837% 3.383% 1.952% 4.027%

Figure 7. Results of mean absolute percentage error (MAPE) and root mean square error (RMSE)
from different algorithms.

To analyze the performance of the aforementioned algorithms and MultiDBN-T on
the test set, the distribution of the components is calculated according to the MAPE and
RMSE of the predicted results and the actual power load demand in each time window

(observation interval of one hour). For MAPE, RE = |%|, and for RMSE, MSE' =

i

(J; — y)? where i = 1,2,...3507, ; is the model predicted value, and y; represents the
actual data. The box plots corresponding to the distribution of MAPE and RMSE compo-
nents are displayed in Figures 8 and 9.
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Figure 8. MAPE component distribution box plots.

[ SVR

Figure 9. RMSE component distribution box plots.

It can be seen from Table 5 and Figure 8 that the values of MAX, Q1, MEDIAN, Q2,
and Q3 of the MAPE component of the MultiDBN-T model are the smallest among all the
methods. The numerical distribution of its MAPE component is also the most concen-

trated, which shows that the stability of the model is also the best.

Table 5. The data of MAPE component distribution (%).

Metrics LSTM CNN + LSTM Adaboost SVR ARIMA RF MultiDBN-T
Max 5.369% 8.005% 6.157% 5.999% 6.861% 7.970% 4.361%
Q1 3.899% 4.894% 4.346% 3.701% 4.249% 5.177% 2.524%
Median 3.038% 3.847% 3.418% 2.837% 3.383% 4.027% 1.952%
Q2 2.918% 3.825% 3.401% 2.745% 3.275% 4.038% 1.898%
Q3 2.157% 2.724% 2.523% 1.931% 2.477% 2.846% 1.288%
Min 0.067% 0.172% 0.065% 0.047% 0.192% 0.0% 0.138%

It can be seen from Table 6 and Figure 9 that the values of MAX, Q1, MEDIAN, Q2,
and Q3 of the RMSE component of the MultiDBN-T model are still the lowest among all

methods.
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Table 6. The data of RMSE component distribution (*10°).
Metrics LSTM CNN + LSTM Adaboost SVR ARIMA RF MultiDBN-T
Max 2562.184 4274.847 3226.730 2387.311 3042.323 4706.446 1212.348
Q1 1248.420 2052.355 1581.224 1133.856 1501.843 2255.543 560.560
Median 918.115 1476.606 1132.002 813.867 1112.953 1616.663 397.694
Q2 693.523 1154.171 931.083 602.291 884.029 1258.970 284.569
Q3 360.841 570.103 482.006 296.404 474.368 621.096 125.185
Min 0.247 1.214 0.525 0.240 1.055 0.000004 0.630719

Figures 8 and 9 reveal that the distributions of the MAPE component (RE) and the
RMSE component (MSE’) in the load demand results forecasted by MultiDBN-T are con-
centrated in the upper and lower quartiles. The distributions exhibit small whisker lengths
and are less spread for MSE’. The data distributions from RF and CNN-LSTM (Conv3D-
LSTM) are more spread, which indicates that their performance is unstable. Their whisker
lengths and outliers are worse in the distribution of MSE’.

To perform a comparative analysis of MultiDBN-T and several other algorithms, the
RE and MSE’ of each algorithm’s prediction results at each observation point were sub-
tracted from the difference of RE and MSE’ obtained by MultiD-T; that is, RE, —
REyuipgy—r and MSE', — MSE'yueipen—1, and then the local performance improvement
is analyzed. Here, a = {LSTM, CNN — LSTM(Conv3D — LSTM), Adaboost, ARIMA, SVR, RF}.
The box plots corresponding to the distributions of performance improvement are dis-
played in Figures 10 and 11.

4.00%

2.00%

0.00%

RE Improvement(100%)

0O VS-LST™M [0 VS-CNNLSTM [ VS-Adaboost
@ VS-SVR [ VS-ARIMA O VS-RF

Figure 10. Box plots for MAPE component improvement.

RMSE component
Improvement*10%

[J VS-LSTM [0 VS-CNNLSTM [ VS—-Adaboost
[J VS-SVR [ VS-ARIMA [J VS-RF

Figure 11. Box plots for distribution of the RMSE component improvement, in comparison with the
improvement in MSE’.
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It can be seen from Table 7 and Figure 10 that the MultiDBN-T model has the most
obvious improvement in the MAPE component compared with the RF method; the im-
provement is not obvious compared with the SVR method, but its component improve-
ment reached an average of 0.89%. From Table 8 and Figure 11, it can be seen that the
situation of the RMSE component improvement is similar to that of the MAPE component
improvement.

Table 7. The data of the MAPE component improvement (%).

Metrics VS-LSTM VS-CNN + LSTM VS-Adaboost VS-SVR VS-ARIMA VS-RF

Max 5.22% 6.69% 5.72% 5.00% 5.50% 7.15%
Q1 2.12% 3.11% 2.54% 1.93% 2.46% 341%
Median 1.09% 1.90% 1.47% 0.89% 1.43% 2.08%
Q2 1.04% 1.86% 1.46% 0.85% 1.38% 2.12%
Q3 0.03% 0.63% 0.41% -0.16% 0.39% 0.79%
Min -3.00% -2.93% -2.73% -3.19% -2.66% -2.99%

Table 8. The data of the RMSE component (MSE’) improvement (*103).

Metrics VS-LSTM VS-CNN + LSTM VS-Adaboost VS-SVR VS-ARIMA VS-RF

Max 2281.035 3730.698 2739.107 2012.757  2599.928  4161.327
Q1 918.079 1628.529 1178.128 778.153  1120.156  1842.060
Median  520.569 1076.218 734.517 416.291 715.463 1219.317
Q2 362.080 788.596 567.339 279.695 524.671 923.383
Q3 6.568 226.248 136.731 —-47.682 126.794 290.765
Min  -1338.101 -1422.029 -1412.882  -1265.45 -1297.318 -1618.46

Figures 10 and 11 reveal that except for the RE versus SVR, the upper and lower
quartiles of RE and MSE’ improved by MultiDBN-T and the several other algorithms
were all above 0. Thus, the performance of MultiDBN-T at each observation point of the
test set was the best. In particular, the lower whiskers of each box plot on MSE’ are short
and mainly distributed above the lower quartile line, and the lower quartile line is above
0. Therefore, the performance improvement of the forecasting model in this paper on
MSE' is remarkable and stable.

For the test set, we selected the three-day power load forecast and actual demand
from 8 to 10 August 2018 and 24 and 26 December 2018, respectively. The plots for the
relative errors are displayed in Figures 12 and 13.

Power Load(*10*KW)
RE (%)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

EERRE_LSTM CCCORE_CNN4LSTM &3 RE_Adaboost DImRE_SVR
===9RE_ARIMA EREN RE_MultiD-T C#aRE_RF —o— Actual
——LSTM CNN+LSTM —+— Adaboost ——SVR
—— ARIMA ——MultiD-T RF

Figure 12. Plots of forecasted values and actual results (8 August 2018 to 10 August 2018).
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Figures 12 and 13 reveal that because of the difference in the weather in Spain during
these two periods, the electricity demand differed considerably. The data representation
code obtained by feature learning can represent the coupling and correlation characteris-
tics of power load demand, weather, and power price. Thus, the power load demand can
be predicted accurately with small elative errors (RE).

] 4%
3%

i 2

5 1%
3 0%

31 34 37 40 43 46 49 52 55 58 61 64 67 70

Power Load(*10°KW)
RE (%)

1 4 7 10 13 16 19 22 25 28

=== RE_LSTM ==mARE_CNN+LSTM ®#mIRE_Adaboost ~ @==RE_SVR E==RE_ARIMA
===3 RE_MultiD-T COITURE RF —+— Actual ~———LSTM CNN+LSTM
—*— Adaboost —e—SVR —+—ARIMA —*— MultiD-T —s—RF

Figure 13. Plots of forecasted values and actual results (24 December 2018 to 26 December 2018).

According to the electricity load demand results predicted by the different methods
for these two time periods, the average value of the relative error of each method is calcu-
lated as shown in Table 9.

Table 9. The average relative errors of the two periods (%).

Period LSTM CNN + LSTM Adaboost SVR ARIMA RF MultiDBN-T
2018-08-08 to o o . . . ] :
2018-08-10 3.026% 3.897% 3.430% 2.907% 3.472% 3.803% 1.993%
2018-12-24 to o o . . , . .
2018-12-26 3.231% 3.696% 3.517% 2.900% 3.293% 3.903% 2.882%

A lower average relative error (RE) indicates a better prediction. As we can see from
Table 9, MultiDBN-T obtains the lowest values in average relative error.

According to the analysis, the overall situation of the experiment in Table 10 and
Figure 14 reveals that the proposed MultiDBN-T outperforms other algorithms, whether
locally or as a whole. It performs better than SVR (the next best) in terms of MAPE and
RMSE by 31.21% and 30.10%, respectively. The average increases in the evaluation metrics
of MAPE, RMSE, MAE, and RMSLE were 42.16%, 40.61%, 41.96%, and 40.99% respec-

tively.

Table 10. The improvement of MultiDBN-T (%).

Algorithm MAPE Imp RMSE Imp MAE Imp RMSLE Imp
LSTM 35.76% 34.18% 35.50% 34.60%
CNN+LSTM 49.27% 48.05% 49.15% 48.36%
Adaboost 42.91% 40.73% 42.66% 41.14%
SVR 31.21% 30.10% 30.96% 30.55%
ARIMA 42.30% 40.22% 42.12% 40.43%
RF 51.54% 50.40% 51.39% 50.89%
Average Improvement 42.16% 40.61% 41.96% 40.99%

The analysis of the experimental data revealed that MultiDBN-T achieved satisfac-
tory results for the dataset. Through feature learning, MultiDBN-T performed better in
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obtaining strong coupling and correlation features between the forecasted target data and
multiple observable variables or between hidden variables, time, and time periods. The
feature learning improves the prediction accuracy. Although MultiDBN-T improves pre-
diction accuracy, as the dimension of sample data (observable variables) increases, its net-
work structure expands and become too large and too fast, and the network parameters
that should be learned become large. The resources required for its training also increase,
and the time required for training becomes longer.
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Figure 14. Plots of the improvement of MultiDBN-T.

6. Conclusions

Power load demand forecasting is the basis for power analysis and intelligent power
supply control and has attracted considerable research interest attention in energy man-
agement. This method is critical in operating and managing power systems. To accurately
forecast power load demand and implement power generation planning and scheduling,
we proposed a novel unsupervised MultiDBN-T. The two encoders, pre-DBN and D-TEn-
coder, are used in the model to perform unsupervised multi-dimensional feature learning
on historical data of power loads with multiple observable variables. The data represen-
tation encoding is obtained through feature learning. Thus, the strongly coupled features
between independent multi-factors, the strongly coupled features between positions or
time points in the sequence, and the correlation features between unobservable hidden
variables are obtained, which improves the predictive ability and accuracy of the model.
On integrated multi-dimensional power load data, compared with the classical and new
algorithms for time-series analysis, such as LSTM, Conv3D-LSTM (CNN+LSTM), Ada-
boost, ARIMA, SVR, and RF, MultiDBN-T exhibited the best performance in both local
predictive and overall predictive ability, with an average improvement of more than 40%
in MAPE and RMSE, verifying the effectiveness and predictive ability of the model.

However, the MultiDBN-T model requires a large network on high-dimensional da-
tasets, too many network parameters to learn, and a long training time. In the future, we
will optimize the networks of pre-DBN and D-TEncoder in the forecasting model to re-
duce its consumption of resources, further improve its efficiency and accuracy, and im-
prove its applicability.
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